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ABSTRACT

An Axial Shifted MLP architecture (AS-MLP) is proposed in this paper. Different
from MLP-Mixer, where the global spatial feature is encoded for information flow
through matrix transposition and one token-mixing MLP, we pay more attention to
the local features interaction. By axially shifting channels of the feature map, AS-
MLP is able to obtain the information flow from different axial directions, which
captures the local dependencies. Such an operation enables us to utilize a pure
MLP architecture to achieve the same local receptive field as CNN-like architec-
ture. We can also design the receptive field size and dilation of blocks of AS-MLP,
etc, in the same spirit of convolutional neural networks. With the proposed AS-
MLP architecture, our model obtains 83.3% Top-1 accuracy with 88M parameters
and 15.2 GFLOPs on the ImageNet-1K dataset. Such a simple yet effective archi-
tecture outperforms all MLP-based architectures and achieves competitive perfor-
mance compared to the transformer-based architectures (e.g., Swin Transformer)
even with slightly lower FLOPs. In addition, AS-MLP is also the first MLP-based
architecture to be applied to the downstream tasks (e.g., object detection and se-
mantic segmentation). The experimental results are also impressive. Our proposed
AS-MLP obtains 51.5 mAP on the COCO validation set and 49.5 MS mIoU on the
ADE20K dataset, which is competitive compared to the transformer-based archi-
tectures. Our AS-MLP establishes a strong baseline of MLP-based architecture.
Code is available at https://github.com/svip-lab/AS-MLP.

1 INTRODUCTION

In the past decade, Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012; He et al.,
2016) have received widespread attention and have become the de-facto standard for computer vi-
sion. Furthermore, with the in-depth exploration and research on self-attention, transformer-based
architectures have also gradually emerged, and have surpassed CNN-based architectures in natural
language processing (e.g., Bert (Devlin et al., 2018)) and vision understanding (e.g., ViT (Dosovit-
skiy et al., 2021), DeiT (Touvron et al., 2021b)) with amounts of training data. Recently, Tolstikhin
et al. (2021) first propose MLP-based architecture, where almost all network parameters are learned
from MLP (linear layer). It achieves amazing results, which is comparable with CNN-like models.

Such promising results drive our exploration of MLP-based architecture. In the MLP-Mixer (Tol-
stikhin et al., 2021), the model obtains the global receptive field through matrix transposition and
token-mixing projection such that the long-range dependencies are covered. However, this rarely
makes full use of the local information, which is very important in CNN-like architecture (Simonyan
& Zisserman, 2015; He et al., 2016) because not all pixels need long-range dependencies, and the
∗Equal contribution.
†Corresponding author.
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local information focuses more on extracting the low-level features. In the transformer-based ar-
chitectures, Swin Transformer (Liu et al., 2021b) computes the self-attention in a window (7 × 7)
instead of the global receptive field, which is similar to directly using a convolution layer with a large
kernel size (7×7) to cover the local receptive field. Some other papers have also already emphasized
the advantages of local receptive fields, and introduced local information in the transformer, such as
Localvit (Li et al., 2021), NesT (Zhang et al., 2021), etc. Driven by these ideas, we mainly explore
the influence of locality on MLP-based architectures.

In order to introduce locality into the MLP-based architecture, one of the simplest and most intuitive
ideas is to add a window to the MLP-Mixer, and then perform a token-mixing projection of the local
features within the window, just as done in Swin Transformer (Liu et al., 2021b) and LINMAPPER
(Fang et al., 2021). However, if we divide the window (e.g., 7 × 7) and perform the token-mixing
projection in the window, then the linear layer has the 49× 49 parameters shared between windows,
which greatly limits the model capacity and thus affects the learning of parameters and final results.
Conversely, if the linear layer is not shared between windows, the model weights trained with fixed
image size cannot be adapted to downstream tasks with various input sizes because unfixed input
sizes will cause a mismatch in the number of windows.

Therefore, a more ideal way to introduce locality is to directly model the relationship between a
feature point and its surrounding feature points at any position, without the need to set a fixed
window (and window size) in advance. To aggregate the features of different spatial positions in the
same position and model their relationships, inspired by (Wu et al., 2018; Lin et al., 2019; Wang
et al., 2020; Ho et al., 2019), we propose an axial shift strategy for MLP-based architecture, where
we spatially shift features in both horizontal and vertical directions. Such an approach not only
aggregates features from different locations, but also makes the feature channel only need to be
divided into k groups instead of k2 groups to obtain a receptive field of size k × k with the help of
axial operation. After that, a channel-mixing MLP combines these features, enabling the model to
obtain local dependencies. It also allows us to design MLP structure as the same as the convolutional
kernel, for instance, to design the kernel size and dilation rate.

Based on the axial shift strategy, we design Axial Shifted MLP architecture, named AS-MLP. Our
AS-MLP obtains 83.3% Top-1 accuracy with 88M parameters and 15.2 GFLOPs in the ImageNet-
1K dataset without any extra training data. Such a simple yet effective method outperforms all
MLP-based architectures and achieves competitive performance compared to the transformer-based
architectures. It is also worth noting that the model weights in MLP-Mixer trained with fixed image
size cannot be adapted to downstream tasks with various input sizes because the token-mixing MLP
has a fixed dimension. On the contrary, the AS-MLP architecture can be transferred to downstream
tasks (e.g., object detection) due to the design of axial shift. As far as we know, it is also the first
work to apply MLP-based architecture to the downstream task. With the pre-trained model in the
ImageNet-1K dataset, AS-MLP obtains 51.5 mAP on the COCO validation set and 49.5 MS mIoU
on the ADE20K dataset, which is competitive compared to the transformer-based architectures.

2 RELATED WORK

CNN-based Architectures. Since AlexNet (Krizhevsky et al., 2012) won the ImageNet competition
in 2012, the CNN-based architectures have gradually been utilized to automatically extract image
features instead of hand-crafted features. Subsequently, the VGG network (Simonyan & Zisserman,
2015) is proposed, which purely uses a series of 3 × 3 convolution and fully connected layers.
ResNet (He et al., 2016) utilizes the residual connection to transfer features in different layers,
which alleviates the gradient vanishing and obtains superior performance. Some papers make further
improvements to the convolution operation in CNN-based architecture, such as dilated convolution
(Yu & Koltun, 2016) and deformable convolution (Dai et al., 2017). EfficientNet (Tan & Le, 2019;
2021) introduces neural architecture search into CNN to search for a suitable network structure.
These architectures build the CNN family and are used extensively in computer vision tasks.

Transformer-based Architectures. Transformer is first proposed in (Vaswani et al., 2017), where
the attention mechanism is utilized to model the relationship between features from the different
spatial positions. Subsequently, the popularity of BERT (Devlin et al., 2018) in NLP also promotes
the research on transformer in the field of vision. ViT (Dosovitskiy et al., 2021) uses a transformer
framework to extract visual features, where an image is divided into 16× 16 patches and the convo-

2



Published as a conference paper at ICLR 2022

!"#$%&

'() (*

+
#
,-
.
/+
#
0,
1,
12
3

4
13
%
#
0/
5
"
6
%
7
7
13
$

891#:/;.1<,/

=4+/

>:2-?

+
#
,-
.
/=
%
0$
13
$

891#:/;.1<,/

=4+/

>:2-?

+
#
,-
.
=
%
0$
13
$

891#:/;.1<,/

=4+/

>:2-?

+
#
,-
.
/=
%
0$
13
$

891#:/;.1<,/

=4+/

>:2-?

@A(
)

@
(
*

@
B(

)

@
(
*

@
CB(

)

A
(
*

A
@B(

)

DE
(
*

DE
AB(

)

'C
(
*

'C

(C (C (E (C

;,#$% D ;,#$% C ;,#$% ' ;,#$% @

Figure 1: A tiny version of the overall Axial Shifted MLP (AS-MLP) architecture.

lution layer is completely abandoned. It shows that the transformer-based architecture can perform
well in large-scale datasets (e.g., JFT-300M). After that, DeiT (Touvron et al., 2021b) carefully de-
signs training strategies and data augmentation to further improve performance on the small datasets
(e.g., ImageNet-1K). DeepViT (Zhou et al., 2021) and CaiT (Touvron et al., 2021c) consider the op-
timization problem when the network deepens, and train a deeper transformer network. CrossViT
(Chen et al., 2021a) combines the local patch and global patch by using two vision transformers.
CPVT (Chu et al., 2021b) uses a conditional position encoding to effectively encode the spatial po-
sitions of patches. LeViT (Graham et al., 2021) improves ViT from many aspects, including the
convolution embedding, extra non-linear projection and batch normalization, etc. Transformer-LS
(Zhu et al., 2021) proposes a long-range attention and a short-term attention to model long sequences
for both language and vision tasks. Some papers also design hierarchical backbone to extract spatial
features at different scales, such as PVT (Wang et al., 2021), Swin Transformer (Liu et al., 2021b),
Twins (Chu et al., 2021a) and NesT (Zhang et al., 2021), which can be applied to downstream tasks.

MLP-based Architectures. MLP-Mixer (Tolstikhin et al., 2021) designs a very concise framework
that utilizes matrix transposition and MLP to transmit information between spatial features, and
obtains promising performance. The concurrent work FF (Melas-Kyriazi, 2021) also applies a sim-
ilar network architecture and reaches similar conclusions. Subsequently, Res-MLP (Touvron et al.,
2021a) is proposed, which also obtains impressive performance with residual MLP only trained on
ImageNet-1K. gMLP (Liu et al., 2021a) and EA (Guo et al., 2021) introduce Spatial Gating Unit
(SGU) and the external attention to improve the performance of the pure MLP-based architecture,
respectively. Recently, Container (Gao et al., 2021) proposes a general network that unifies convo-
lution, transformer, and MLP-Mixer. S2-MLP (Yu et al., 2021) uses spatial-shift MLP for feature
exchange. ViP (Hou et al., 2021). proposes a Permute-MLP layer for spatial information encoding
to capture long-range dependencies. Different from these work, we focus on capturing the local
dependencies with axially shifting features in the spatial dimension, which obtains better perfor-
mance and can be applied to the downstream tasks. Besides, the closest concurrent work with us,
CycleMLP (Chen et al., 2021b) and S2-MLPv2 (Yu et al., 2021) are also proposed. S2-MLPv2 im-
proves S2-MLP and CycleMLP designs Cycle Fully-Connected Layer (Cycle FC) to obtain a larger
receptive field than Channel FC.

3 THE AS-MLP ARCHITECTURE

3.1 OVERALL ARCHITECTURE

Figure 1 shows our Axial Shifted MLP (AS-MLP) architecture, which refers to the style of Swin
Transformer (Liu et al., 2021b). Given an RGB image I ∈ R3×H×W , where H and W are the
height and width of the image, respectively, AS-MLP performs the patch partition operation, which
splits the original image into multiple patch tokens with the patch size of 4×4, thus the combination
of all tokens has the size of 48 × H

4 ×
W
4 . AS-MLP has four stages in total and there are different

numbers of AS-MLP blocks in different stages. Figure 1 only shows the tiny versxion of AS-MLP,
and other variants will be discussed in Sec. 3.4. All the tokens in the previous step will go through
these four stages, and the final output feature will be used for image classification. In Stage 1, a
linear embedding and the AS-MLP blocks are adopted for each token. The output has the dimension
of C × H

4 ×
W
4 , where C is the number of channels. Stage 2 first performs patch merging on the

features outputted from the previous stage, which groups the neighbor 2 × 2 patches to obtain a
feature with the size of 4C × H

8 ×
W
8 and then a linear layer is adopted to warp the feature size to

2C×H
8 ×

W
8 , followed by the cascaded AS-MLP blocks. Stage 3 and Stage 4 have similar structures

to Stage 2, and the hierarchical representations will be generated in these stages.
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Figure 2: (a) shows the structure of the AS-MLP block; (b) shows the horizontal shift, where the
arrows indicate the steps, and the number in each box is the index of the feature.

3.2 AS-MLP BLOCK

The core operation of AS-MLP architecture is the AS-MLP block, which is illustrated in Figure
2a. It mainly consists of the Norm layer, Axial Shift operation, MLP, and residual connection. In
the Axial Shift operation, we utilize the channel projection, vertical shift, and horizontal shift to
extract features, where the channel projection maps the feature with a linear layer. Vertical shift and
horizontal shift are responsible for the feature translation along the spatial directions.

As shown in Figure 2b, we take the horizontal shift as an example. The input has the dimension
of C × h × w. For convenience, we omit h and assume C = 3, w = 5 in this figure. When
the shift size is 3, the input feature is split into three parts and they are shifted by {-1, 0, 1} units
along the horizontal direction, respectively. In this operation, zero padding is performed (indicated
by gray blocks), and we also discuss the experimental results of using other padding methods in
Sec. 4. After that, the features in the dashed box will be taken out and used for the next channel
projection. The same operation is also performed in the vertical shift. In the process of both shifts,
since the feature performs different shift units, the information from different spatial positions can
be combined together. In the next channel projection operation, information from different spatial
locations can fully flow and interact. The code of AS-MLP block is listed in Alg. 1.

Complexity. In the transformer-based architecture, the multi-head self-attention (MSA) is usually
adopted, where the attention between tokens is computed. Swin Transformer (Liu et al., 2021b)
introduces a window to partition the image and propose window multi-head self-attention (W-MSA),
which only considers the computation within this window. It significantly reduces the computation
complexity. However, in the AS-MLP block, without the concept of the window, we only Axially
Shift (AS) the feature from the previous layer, which does not require any multiplication and addition
operations. Further, the time cost of Axial Shift is very low and almost irrelevant to the shift size.
Given a feature map (is usually named patches in transformer) with the dimension of C × h × w,
each Axial shift operation in Figure 2a only has four channel projection operations, which has the
computation complexity 4hwC2. If the window size in Swin Transformer (Liu et al., 2021b) is M ,
the complexities of MSA, W-MSA and AS are as follows: Ω(MSA) = 4hwC2 + 2(hw)2C,

Ω(W-MSA) = 4hwC2 + 2M2hwC,
Ω(AS) = 4hwC2.

(1)

Therefore, the AS-MLP architecture has slightly less complexity than Swin Transformer. The spe-
cific complexity calculation of each layer is shown in Appendix A.2.

3.3 COMPARISONS BETWEEN AS-MLP, CONVOLUTION, TRANSFORMER AND MLP-MIXER

In this section, we compare AS-MLP with the recent distinct building blocks used in computer
vision, e.g., the standard convolution, Swin Transformer, and MLP-Mixer. Although these modules
are explored in completely different routes, from the perspective of calculation, they are all based
on a given output location point, and the output depends on the weighted sum of different sampling
location features (multiplication and addition operation). These sampling location features include
local dependencies (e.g., convolution) and long-range dependencies (e.g., MLP-Mixer). Figure 3
shows the main differences of these modules in the sampling location. Given an input feature map
X ∈ RH×W×C , the outputs Yi,j with different operations in position (i, j) are as follows:
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Algorithm 1 Code of AS-MLP Block in a
PyTorch-like style.

# norm: normalization layer
# proj: channel projection
# actn: activation layer

import torch
import torch.nn.functional as F

def shift(x, dim):
x = F.pad(x, "constant", 0)
x = torch.chunk(x, shift_size, 1)
x = [ torch.roll(x_s, shift, dim) for x_s,

shift in zip(x, range(-pad, pad+1))]
x = torch.cat(x, 1)
return x[:, :, pad:-pad, pad:-pad]

def as_mlp_block(x):
shortcut = x
x = norm(x)
x = actn(norm(proj(x)))
x_lr = actn(proj(shift(x, 3)))
x_td = actn(proj(shift(x, 2)))
x = x_lr + x_td
x = proj(norm(x))
return x + shortcut
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Figure 3: The different sampling locations of
convolution, Swin Transformer, MLP-Mixer,
and AS-MLP. e.g., AS-MLP (s = 3, d = 1)
shows the sampling locations when the shift
size is 3 and dilation is 1.

Convolution. For convolution operation, a sliding kernel with the shape of k × k (receptive field
regionR) is performed on X to obtain the output Y conv

i,j :

Y conv
i,j =

∑
(m,n)∈R

Xi+m,j+n,:W
conv
m,n,:, (2)

where W conv ∈ Rk×k×C is the learnable weight. h and w are the height and width of X , respectively.
As shown in Figure 3, the convolution operation has a local receptive field, thus it is more suitable
at extracting features with the local dependencies.

Swin Transformer. Swin Transformer introduces a window into the transformer-based architecture
to cover the local attention. The input X from a window is embedded to obtain Q,K, V matrix, and
the output Yswin is the attention combination of features within the window:

Y swin
i,j = Softmax(Q(Xi,j)K(X)T /

√
d)V (X). (3)

The introduction of locality further improves the performance of the transformer-based architecture
and reduces the computational complexity.

MLP-Mixer. MLP-Mixer abandons the attention operation. It first transposes the input X , and then
a token-mixing MLP is appended to obtain the output Y mixer

i,j :

Y mixer
i,j = (XTWmixer

iW+j)
T , (4)

where Wmixer ∈ Rhw×hw is the learnable weight in token-mixing MLP. MLP-Mixer perceives the
global information only with matrix transposition and MLP.

AS-MLP. AS-MLP axially shifts the feature map as shown in Figure 2b. Given the input X , shift
size s and dilation rate d, X is first divided into s splits in the horizontal and vertical direction. After
the axial shift in Figure 2b, the output Y as

i,j is:

Y as
i,j =

C∑
c=0

Xi+b c
dC/se c−b

s
2 c·d,j,cW

as-h
c +

C∑
c=0

Xi,j+b c
dC/se c−b

s
2 c·d,cW

as-v
c (5)

where W as-h,W as-v ∈ RC are the learnable weights of channel projection in the horizontal and
vertical directions (here we omit activation function and bias). Unlike MLP-Mixer, we pay more
attention to the local dependencies through axial shift of features and channel projection. Such
an operation is closely related to Shift (Wu et al., 2018) and TSM (Lin et al., 2019). However,
our method has the following characteristics: i) we use axial shift in the horizontal and vertical
directions, which focuses more on the information exchange in two directions; ii) the proposed
network is built upon Swin transformer and pure MLP-based architecture, where only linear layer
is used and BN is replaced by LN; iii) as will be shown in Sec. 4, our network achieves superior
performance, which shows the effectiveness of our method. Although such an operation can be
implemented in the original shift (Wu et al., 2018), the feature channel needs to split into k2 groups
to achieve a receptive field of size k × k. However, the axial operation makes the feature channel
only need to be divided into k groups instead of k2 groups, which reduces the complexity.
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Network Input
Resolution Top-1 (%) Params FLOPs Throughput

(image / s)

CNN-based

RegNetY-8GF (Radosavovic et al., 2020) 224× 224 81.7 39M 8.0G 591.6
RegNetY-16GF (Radosavovic et al., 2020) 224× 224 82.9 84M 15.9G 334.7

EfficientNet-B5 (Tan & Le, 2019) 456× 456 83.6 30M 9.9G 169.1

Transformer-based

ViT-B/16 (Dosovitskiy et al., 2021) 384× 384 77.9 86M 55.5G 85.9
DeiT-B/16 (Touvron et al., 2021b) 224× 224 81.8 86M 17.6G 292.3

PVT-Large (Wang et al., 2021) 224× 224 82.3 61M 9.8G -
Swin-T (Liu et al., 2021b) 224× 224 81.3 29M 4.5G 755.2
Swin-S (Liu et al., 2021b) 224× 224 83.0 50M 8.7G 436.9
Swin-B (Liu et al., 2021b) 224× 224 83.3 88M 15.4G 278.1
Swin-B (Liu et al., 2021b) 384× 384 84.2 88M 47.0G 84.7

MLP-based

gMLP-S (Liu et al., 2021a) 224× 224 79.4 20M 4.5G -
ViP-Small/14 (Hou et al., 2021) 224× 224 80.5 30M - 789.0
ViP-Small/7 (Hou et al., 2021) 224× 224 81.5 25M - 719.0

AS-MLP-T (ours) 224× 224 81.3 28M 4.4G 1047.7

Mixer-B/16 (Tolstikhin et al., 2021) 224× 224 76.4 59M 11.7G -
FF (Melas-Kyriazi, 2021) 224× 224 74.9 62M 11.4G -

ResMLP-36 (Touvron et al., 2021a) 224× 224 79.7 45M 8.9G 478.7
S2-MLP-wide (Yu et al., 2021) 224× 224 80.0 68M 13.0G -
S2-MLP-deep (Yu et al., 2021) 224× 224 80.7 51M 9.7G -

ViP-Medium/7 (Hou et al., 2021) 224× 224 82.7 55M - 418.0
AS-MLP-S (ours) 224× 224 83.1 50M 8.5G 619.5

gMLP-B (Liu et al., 2021a) 224× 224 81.6 73M 15.8G -
ViP-Large/7 (Hou et al., 2021) 224× 224 83.2 88M - 298.0

AS-MLP-B (ours) 224× 224 83.3 88M 15.2G 455.2
AS-MLP-B (ours) 384× 384 84.3 88M 44.6G 179.2

Table 1: The experimental results of different networks on ImageNet-1K. Throughput is measured
with the batch size of 64 on a single V100 GPU (32GB). The more complete accuracy and through-
put comparisons are listed in Appendix B.2.

3.4 VARIANTS OF AS-MLP ARCHITECTURE

Figure 1 only shows the tiny version of our AS-MLP architecture. Following DeiT (Touvron et al.,
2021b) and Swin Transformer (Liu et al., 2021b), we also stack different number of AS-MLP blocks
(the number of blocks in four stages) and expand the channel dimension (C in Figure 1) to obtain
variants of the AS-MLP architecture of different model sizes, which are AS-MLP-Tiny (AS-MLP-
T), AS-MLP-Small (AS-MLP-S) and AS-MLP-Base (AS-MLP-B), respectively. The specific con-
figuration is as follows:

• AS-MLP-T: C = 96, the number of blocks in four stages = {2, 2, 6, 2};
• AS-MLP-S: C = 96, the number of blocks in four stages = {2, 2, 18, 2};
• AS-MLP-B: C = 128, the number of blocks in four stages = {2, 2, 18, 2}.

The detailed configurations can be found in Appendix A.1. Table 1 in Sec. 4 shows Top-1 accuracy,
model size (Params), computation complexity (FLOPs) and throughput of different variants.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION ON THE IMAGENET-1K DATASET

Settings. To evaluate the effectiveness of our AS-MLP, we conduct experiments of the image classi-
fication on the ImageNet-1K benchmark, which is collected in (Deng et al., 2009). It contains 1.28M
training images and 20K validation images from a total of 1000 classes. We report the experimental
results with single-crop Top-1 accuracy. We use an initial learning rate of 0.001 with cosine decay
and 20 epochs of linear warm-up. The AdamW (Loshchilov & Hutter, 2019) optimizer is employed
to train the whole model for 300 epochs with a batch size of 1024. Following the training strategy
of Swin Transformer (Liu et al., 2021b), we also use label smoothing (Szegedy et al., 2016) with a
smooth ratio of 0.1 and DropPath (Huang et al., 2016) strategy.
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Results. All image classification results are shown in Table 1. We divide all network architec-
tures into CNN-based, Transformer-based and MLP-based architectures. The input resolution is
224× 224. Our proposed AS-MLP outperforms other MLP-based architectures when keeping sim-
ilar parameters and FLOPs. e.g., AS-MLP-S obtains higher top-1 accuracy (83.1%) with fewer
parameters than Mixer-B/16 (Tolstikhin et al., 2021) (76.4%) and ViP-Medium/7 (Hou et al., 2021)
(82.7%). Furthermore, it achieves competitive performance compared with transformer-based ar-
chitectures, e.g., AS-MLP-B (83.3%) vs. Swin-B (Liu et al., 2021b) (83.3%), which shows the
effectiveness of our AS-MLP architecture.

Method Top-1 (%) Top-5 (%) Params

Swin (mobile) 75.11 92.50 11.2M
AS-MLP (mobile) 76.05 92.81 9.6M

Table 2: The result comparisons of the mobile setting.

Results of Mobile Setting. In addition to
standard experiments, we also compare the
results of AS-MLP in the mobile setting,
which is shown in Table 2. We build the
Swin (mobile) model and AS-MLP (mo-
bile) model with similar parameters (about
10M). The specific network details can be found in Appendix A.3. The experimental results show
that our model significantly exceeds Swin Transformer (Liu et al., 2021b) in the mobile setting
(76.05% vs. 75.11%).

4.2 THE CHOICE AND IMPACT OF AS-MLP BLOCK

The core component in the AS-MLP block is the axial shift. We perform experiments to analyze
the choices of different configurations of the AS-MLP block, its connection types and the impact
of AS-MLP block. All ablations are conducted based on the AS-MLP-T, as shown in the setting of
Sec. 3.4.

Shift size Padding method d.r. Top-1 (%) Top-5 (%)

(1, 1) N/A 1 74.17 91.13
(3, 3) No / Circular padding 1 81.04 95.37
(3, 3) Zero padding 1 81.26 95.48
(3, 3) Reflect padding 1 81.14 95.37
(3, 3) Replicate padding 1 81.14 95.42

(3, 3) Zero padding 2 80.50 95.12
(5, 5) Zero padding 2 80.57 95.12

(5, 5) Zero padding 1 81.34 95.56
(7, 7) Zero padding 1 81.32 95.55
(9, 9) Zero padding 1 81.16 95.45

(a) The impacts of the different configurations of the
AS-MLP architecture. d.r. means dilation rate.

Connection type Structure Top-1 (%) Top-5 (%)

Serial

(1, 1)→ (1, 1) 74.32 91.46
(3, 3)→ (3, 3) 81.21 95.42
(5, 5)→ (5, 5) 81.28 95.58
(7, 7)→ (7, 7) 81.17 95.54

Parallel

(1, 1) + (1, 1) 74.17 91.13
(3, 3) + (3, 3) 81.26 95.48
(5, 5) + (5, 5) 81.34 95.56
(7, 7) + (7, 7) 81.32 95.55

(b) The impacts of the different connection types.
‘→’ means serial and ‘+’ means parallel.

Table 3: Choices of different configurations and connection types.

Different Configurations of AS-MLP Block. In order to encourage the information flow from
different channels in the spatial dimension, the features from the horizontal shift and the vertical
shift are aggregated together in Figure 2. We evaluate the influence of different configurations
of AS-MLP block, including shift size, padding method, and dilation rate, which are similar to the
configuration of a convolution kernel. All experiments of different configurations are shown in Table
3a. We have three findings as follows: i) ‘Zero padding’ is more suitable for the design of AS-MLP
block than other padding methods1; ii) increasing the dilation rate slightly reduces the performance
of AS-MLP, which is consistent with CNN-based architecture. Dilation is usually used for semantic
segmentation rather than image classification; iii) when expanding the shift size, the accuracy will
increase first and then decrease. A possible reason is that the receptive field is enlarged (shift size
= 5 or 7) such that AS-MLP pays attention to the global dependencies, but when shift size is 9, the
network pays too much attention to the global dependencies, thus neglecting the extraction of local
features, which leads to lower accuracy. Therefore, we use the configuration (shift size = 5, zero
padding, dilation rate = 1) in all experiments, including object detection and semantic segmentation.

Connection Type. We also compare the different connection types of AS-MLP block, such as se-
rial connection and parallel connection, and the results are shown in Table 3b. Parallel connection
consistently outperforms serial connection in terms of different shift sizes, which shows the effec-

1Since we use circular shift, thus ‘No padding’ and ‘Circular padding’ are equivalent.
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tiveness of the parallel connection. When the shift size is 1, the serial connection is better but it is
not representative because only channel-mixing MLP is used.

Method Top-1 (%) Method Top-1 (%)

Global-MLP 79.81 (5, 1) 78.37
Axial-MLP 79.69 (1, 5) 78.45

Window-MLP 78.40 (5, 5) 81.34

Table 4: The impact of AS-MLP block.

The Impact of AS-MLP Block. We also evalu-
ate the impact of AS-MLP block in Table 4. Here
we design five baselines: i) Global-MLP; ii) Axial-
MLP; iii) Window-MLP; iv) shift size (5, 1); v)
shift size (1, 5). The first three baselines are de-
signed from the perspective of how to use MLP for
feature fusion at different positions, and the latter
two are designed from the perspective of the axial
shift in a single direction. The specific settings are listed in Appendix A.5. The results in Table 4
show that our AS-MLP block with shift size (5, 5) outperforms other baselines.

Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs

Mask R-CNN (3×)

ResNet50 (He et al., 2016) 41.0 61.7 44.9 37.1 58.4 40.1 44M 260G
PVT-Small (Wang et al., 2021) 43.0 65.3 46.9 39.9 62.5 42.8 44M 245G

Swin-T (Liu et al., 2021b) 46.0 68.2 50.2 41.6 65.1 44.8 48M 267G
AS-MLP-T (ours) 46.0 67.5 50.7 41.5 64.6 44.5 48M 260G

ResNet101 (He et al., 2016) 42.8 63.2 47.1 38.5 60.1 41.3 63M 336G
PVT-Medium (Wang et al., 2021) 44.2 66.0 48.2 40.5 63.1 43.5 64M 302G

Swin-S (Liu et al., 2021b) 48.5 70.2 53.5 43.3 67.3 46.6 69M 359G
AS-MLP-S (ours) 47.8 68.9 52.5 42.9 66.4 46.3 69M 346G

Cascade Mask R-CNN (3×)

DeiT-S (Touvron et al., 2021b) 48.0 67.2 51.7 41.4 64.2 44.3 80M 889G
ResNet50 (He et al., 2016) 46.3 64.3 50.5 40.1 61.7 43.4 82M 739G
Swin-T (Liu et al., 2021b) 50.5 69.3 54.9 43.7 66.6 47.1 86M 745G

AS-MLP-T (ours) 50.1 68.8 54.3 43.5 66.3 46.9 86M 739G

ResNext101-32 (Xie et al., 2017) 48.1 66.5 52.4 41.6 63.9 45.2 101M 819G
Swin-S (Liu et al., 2021b) 51.8 70.4 56.3 44.7 67.9 48.5 107M 838G

AS-MLP-S (ours) 51.1 69.8 55.6 44.2 67.3 48.1 107M 824G

ResNext101-64 (Xie et al., 2017) 48.3 66.4 52.3 41.7 64.0 45.1 140M 972G
Swin-B (Liu et al., 2021b) 51.9 70.9 56.5 45.0 68.4 48.7 145M 982G

AS-MLP-B (ours) 51.5 70.0 56.0 44.7 67.8 48.4 145M 961G

Table 5: The object detection and instance segmentation results of different backbones with 3x
schedule on the COCO val2017 dataset. The results with 1x schedule are listed in Appendix B.1.

4.3 OBJECT DETECTION ON COCO

The experimental setting is listed in Appendix A.4, and the results are shown in Table 5. It is worth
noting that we do not compare our method with MLP-Mixer (Tolstikhin et al., 2021) because it
uses a fixed spatial dimension for token-mixing MLP, which cannot be transferred to the object
detection. As far as we know, we are the first work to apply MLP-based architecture to object
detection. Our AS-MLP achieves comparable performance with Swin Transformer in the similar
resource limitation. To be specific, Cascade Mask R-CNN + Swin-B achieves 51.9 APb with 145M
parameters and 982 GFLOPs, and Cascade Mask R-CNN + AS-MLP-B obtains 51.5 APb with 145M
parameters and 961 GFLOPs. The visualizations of object detection are shown in Appendix C.

4.4 SEMANTIC SEGMENTATION ON ADE20K

The experimental setting is listed in Appendix A.4 and Table 6 shows the performance of our AS-
MLP on the ADE20K dataset. Note that we are also the first to apply the MLP-based architecture to
semantic segmentation. With slightly lower FLOPs, AS-MLP-T achieves better result than Swin-T
(46.5 vs. 45.8 MS mIoU). For the large model, UperNet + Swin-B has 49.7 MS mIoU with 121M pa-
rameters and 1188 GFLOPs, and UperNet + AS-MLP-B has 49.5 MS mIoU with 121M parameters
and 1166 GFLOPs, which also shows the effectiveness of our AS-MLP architecture in processing
the downstream task. The visualizations of semantic segmentation are shown in Appendix C.
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Method Backbone val
MS mIoU Params FLOPs

DANet (Fu et al., 2019a) ResNet-101 45.2 69M 1119G
DeepLabv3+ (Chen et al., 2018) ResNet-101 44.1 63M 1021G

ACNet (Fu et al., 2019b) ResNet-101 45.9 - -
DNL (Yin et al., 2020) ResNet-101 46.0 69M 1249G

OCRNet (Yuan et al., 2020) ResNet-101 45.3 56M 923G
UperNet (Xiao et al., 2018) ResNet-101 44.9 86M 1029G

OCRNet (Yuan et al., 2020) HRNet-w48 45.7 71M 664G
DeepLabv3+ (Chen et al., 2018) ResNeSt-101 46.9 66M 1051G
DeepLabv3+ (Chen et al., 2018) ResNeSt-200 48.4 88M 1381G

UperNet (Xiao et al., 2018) Swin-T (Liu et al., 2021b) 45.8 60M 945G
AS-MLP-T (ours) 46.5 60M 937G

UperNet (Xiao et al., 2018) Swin-S (Liu et al., 2021b) 49.5 81M 1038G
AS-MLP-S (ours) 49.2 81M 1024G

UperNet (Xiao et al., 2018) Swin-B (Liu et al., 2021b) 49.7 121M 1188G
AS-MLP-B (ours) 49.5 121M 1166G

Table 6: The semantic segmentation results of different backbones on the ADE20K validation set.

4.5 VISUALIZATION

Image Swin AS-MLPAS-MLP (h) AS-MLP (v)

Figure 4: The visualization of features from Swin
Transformer and our AS-MLP.

We visualize the heatmap of learned features
from Swin Transformer and AS-MLP in Fig-
ure 4, where the first column shows the image
from ImageNet, and the second column shows
the activation heatmap of the last layer of Swin
transformer (Swin-B). The third, fourth, and
fifth columns respectively indicate the response
after the horizontal shift (AS-MLP (h)), the ver-
tical shift (AS-MLP (v)) and the combination
of both in the last layer of AS-MLP (AS-MLP-
B). From Figure 4, one can see that i) AS-MLP
can better focus on object regions compared to
Swin transformer; ii) AS-MLP (h) can better
focus on the vertical part of objects (as shown
in the second row) because it shifts feature in
the horizontal direction. It is more reasonable
because the shift in the horizontal direction can
cover the edge of the vertical part, which is
more helpful for recognizing the object. Sim-
ilarly, AS-MLP (v) can better focus on the horizontal part of objects (as shown in the fourth row).

5 CONCLUSION AND FUTURE WORK

In this paper, we propose an axial shifted MLP architecture, named AS-MLP, for vision. Compared
with MLP-Mixer, we pay more attention to the local features extraction and make full use of the
channel interaction between different spatial positions through a simple feature axial shift. With
the proposed AS-MLP, we further improve the performance of MLP-based architecture and the
experimental results are impressive. Our model obtains 83.3% Top-1 accuracy with 88M parameters
and 15.2 GFLOPs on the ImageNet-1K dataset. Such a simple yet effective method outperforms
all MLP-based architectures and achieves competitive performance compared to the transformer-
based architectures even with slightly lower FLOPs. We are also the first work to apply AS-MLP
to the downstream tasks (e.g., object detection and semantic segmentation). The results are also
competitive or even better compared to transformer-based architectures, which shows the ability of
MLP-based architectures in handling downstream tasks.

For future work, we will investigate the effectiveness of AS-MLP in natural language processing,
and further explore the performance of AS-MLP on downstream tasks.
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A THE ARCHITECTURE DETAILS

A.1 THE DETAILED CONFIGURATIONS OF DIFFERENT ARCHITECTURES

We show the detailed configurations of different architectures in Table 7, where we assume the size
of the input image is 224 × 224. The second column shows the output size of the image after
each stage. Following Swin Transformer (Liu et al., 2021b), we use “Concat n × n” to indicate a
concatenation of n × n neighboring features in a patch. “shift size (5, 5)” means that the shift size
in the horizontal and vertical directions is 5.

downsp. rate
(output size) AS-MLP-T AS-MLP-S AS-MLP-B

stage 1 4×
(56×56)

concat 4×4, 96-d, LN concat 4×4, 96-d, LN concat 4×4, 128-d, LN[
shift size (5, 5),

dim 96

]
× 2

[
shift size (5, 5),

dim 96

]
× 2

[
shift size (5, 5),

dim 128

]
× 2

stage 2 8×
(28×28)

concat 2×2, 192-d , LN concat 2×2, 192-d , LN concat 2×2, 256-d , LN[
shift size (5, 5),

dim 192

]
× 2

[
shift size (5, 5),

dim 192

]
× 2

[
shift size (5, 5),

dim 256

]
× 2

stage 3 16×
(14×14)

concat 2×2, 384-d , LN concat 2×2, 384-d , LN concat 2×2, 512-d , LN[
shift size (5, 5),

dim 384

]
× 6

[
shift size (5, 5),

dim 384

]
× 18

[
shift size (5, 5),

dim 512

]
× 18

stage 4 32×
(7×7)

concat 2×2, 768-d , LN concat 2×2, 768-d , LN concat 2×2, 1024-d , LN[
shift size (5, 5),

dim 768

]
× 2

[
shift size (5, 5),

dim 768

]
× 2

[
shift size (5, 5),

dim 1024

]
× 2

Params 28M 50M 88M

FLOPs 4.4G 8.5G 15.2G

Table 7: The detailed configurations of different architectures.

A.2 THE COMPUTATIONAL COMPLEXITY OF AS-MLP ARCHITECTURE

In this section, we show the specific computational complexity in each layer of AS-MLP architec-
ture. The symbol definition is first given as follows. An input image: I ∈ R3×H×W ; patch size
(p, p); the number of blocks in four stages: {n1, n2, n3, n4}; Channel dimension C; MLP ratio:
r. The specific computational complexity is shown in Table 8, where only convolution operation is
computed.

Stage 1 Stage 2

Linear embedding AS-MLP block Patch merging AS-MLP block

Params 3Cp2 (4 + 2r)C2n1 8C2 (4 + 2r)4C2n2

FLOPs 3Cp2H
p

W
p (4 + 2r)C2H

p
W
p n1 8C2 H

2p
W
2p (4 + 2r)4C2 H

2p
W
2pn2

Stage 3 Stage 4

Patch merging AS-MLP block Patch merging AS-MLP block

Params 32C2 (4 + 2r)16C2n3 128C2 (4 + 2r)64C2n4

FLOPs 32C2 H
4p

W
4p (4 + 2r)16C2 H

4p
W
4pn3 128C2 H

8p
W
8p (4 + 2r)64C2 H

8p
W
8pn4

Table 8: The computational complexity of the AS-MLP Architecture.
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A.3 THE NETWORK DETAILS IN THE MOBILE SETTING

In addition to AS-MLP-T, AS-MLP-S, and AS-MLP-B, we also design AS-MLP in the mobile
setting. For a fair comparison, we modify the Swin Transformer correspondingly to adopt to the
mobile setting. The configurations are as follow:

• Swin (mobile): C = 64, the number of blocks in four stages = {2, 2, 2, 2}, the number of
heads = {2, 4, 8, 16};

• AS-MLP (mobile): C = 64, the number of blocks in four stages = {2, 2, 2, 2};

A.4 THE SETTINGS OF OBJECT DETECTION AND SEMANTIC SEGMENTATION

Object Detection on COCO. For the object detection and instance segmentation, we employ mmde-
tection (Chen et al., 2019) as the framework and COCO (Lin et al., 2014) as the evaluation dataset,
which consists of 118K training data and 5K validation data. We compare the performance of our
AS-MLP with other backbones on COCO. Following Swin Transformer (Liu et al., 2021b), we con-
sider two typical object detection frameworks: Mask R-CNN (He et al., 2017) and Cascade R-CNN
(Cai & Vasconcelos, 2018). The training strategies are as follows: optimizer (AdamW), learning
rate (0.0001), weight decay (0.05), and batch size (2 imgs/per GPU×8 GPUs). We utilize the typi-
cal multi-scale training strategy (Carion et al., 2020; Sun et al., 2021) (the shorter side is between 480
and 800 and the longer side is at most 1333). All backbones are initialized with weights pre-trained
on ImageNet-1K and all models are trained with 3x schedule (36 epochs).

Semantic Segmentation on ADE20K. Following Swin Transformer (Liu et al., 2021b), we conduct
experiments of AS-MLP on the challenging semantic segmentation dataset, ADE20K, which con-
tains 20,210 training images and 2,000 validation images. We utilize UperNet (Xiao et al., 2018)
and AS-MLP backbone as our main experimental results. The framework is based on mmsegmenta-
tion (Contributors, 2020). The training strategies are as follows: optimizer (AdamW), learning rate
(6 × 10−5), weight decay (0.01), and batch size (2 imgs/per GPU×8 GPUs). We utilize random
horizontal flipping, random re-scaling within ratio range [0.5, 2.0] and random photometric distor-
tion as data augmentation. The input image resolution is 512× 512, the stochastic depth ratio is set
as 0.3 and all models are initialized with weights pre-trained on ImageNet-1K and are trained 160K
iterations.

A.5 BASELINES

We list the specific configurations of baselines in Sec. 4.2 as follows.

• Global-MLP: following MLP-Mixer (Tolstikhin et al., 2021), we use global MLP (token-
mixing MLP) along with full spatial size instead of AS-MLP block in our architecture
configurations. For Global-MLP, the model weights trained with fixed image size cannot
be adapted to downstream tasks with various input sizes.

• Axial-MLP: built upon Global-MLP, Axial-MLP employs two axial MLPs along with hor-
izontal and vertical directions instead of global MLP. Similar to Global-MLP, the model
weights trained with fixed image size cannot be adapted to downstream tasks with various
input sizes.

• Window-MLP: as stated in Sec 1, we set fixed window (7× 7) in our architecture configu-
rations and perform MLP operations within the window.

• Shift size (5, 1): horizontal shift is 5 and vertical shift is 1 in AS-MLP block.

• Shift size (1, 5): horizontal shift is 1 and vertical shift is 5 in AS-MLP block.

A.6 DIFFERENCES BETWEEN AS-MLP AND TSM

We elaborate the differences between AS-MLP and TSM as follows.

• TSM performs a shift in the temporal dimension and, as stated in (Lin et al., 2019), they
target the temporal dimension for efficient video understanding. However, we explore the
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Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs

Mask R-CNN (1×)

ResNet50 (He et al., 2016) 38.0 58.6 41.4 34.4 55.1 36.7 44M 260G
PVT-Small (Wang et al., 2021) 40.4 62.9 43.8 37.8 60.1 40.3 44M 245G

Swin-T (Liu et al., 2021b) 43.7 66.6 47.7 39.8 63.3 42.7 48M 267G
AS-MLP-T (ours) 44.0 66.0 48.5 40.0 62.8 43.1 48M 260G

ResNet101 (He et al., 2016) 40.4 61.1 44.2 36.4 57.7 38.8 63M 336G
PVT-Medium (Wang et al., 2021) 42.0 64.4 45.6 39.0 61.6 42.1 64M 302G

AS-MLP-S (ours) 46.7 68.8 51.4 42.0 65.6 45.2 69M 346G

Cascade Mask R-CNN (1×)

ResNet50 (He et al., 2016) 46.3 64.3 50.5 40.1 61.7 43.4 82M 739G
Swin-T (Liu et al., 2021b) 48.1 67.1 52.2 41.7 64.4 45.0 86M 745G

AS-MLP-T (ours) 48.4 67.1 52.6 42.0 64.5 45.3 86M 739G
AS-MLP-S (ours) 50.5 69.4 54.7 43.7 66.9 47.3 107M 824G
AS-MLP-B (ours) 51.1 70.0 55.6 44.2 67.4 47.8 145M 961G

Table 9: The object detection and instance segmentation results of different backbones with 1x
schedule on the COCO val2017 dataset. Mask R-CNN and Cascade Mask R-CNN frameworks are
employed.

shift from a spatial perspective, for the more general tasks, such as image classification,
object detection, and segmentation.

• TSM shows that shifting too many channels in a network will significantly hurt the spatial
modeling ability and result in performance degradation. However, Table reftable: abla-
tion(a) shows that as the shift size increases, the channel needs to be divided into more
parts, but the performance does not decrease significantly. This suggests that the argument
of TSM is not obvious in the pure MLP architecture.

• Our motivation is quite different. TSM is designed to be more effective and efficient on
video. Our motivation is derived from Swin Transformer’s exploration of the local receptive
field of the transformer. We use shift to explore the local receptive field of MLP. Also, AS-
MLP is the first MLP-based architecture for object detection and semantic segmentation
with the help of such a method. Furthermore, we use axial shift to reduce the complexity
of the shift split.

B MORE EXPERIMENTS

B.1 MORE EXPERIMENTAL RESULTS ON COCO

Table 5 lists the object detection and instance segmentation results of different backbones with 3x
schedule (36 epochs). For a complete comparison, we also conduct experiments with 1x schedule
(12 epochs). The results are shown in Table 9. Our AS-MLP-T outperforms Swin-T (Liu et al.,
2021b) under the Mask R-CNN (44.0 vs. 43.7 APb) and Cascade Mask R-CNN (48.4 vs. 48.1 APb)
frameworks.

B.2 THE COMPLETE CLASSIFICATION ACCURACY AND THROUGHPUT COMPARISON

Table 10 shows the complete accuracy comparison with other state-of-the-art architectures on the
ImageNet-1K dataset. In addition, Table 1 shows the throughput results of the AS-MLP architecture
measured with the batch size 64 on a single V100 GPU (32GB). In order to make a fair comparison
with other papers, we also conduct a thorough evaluation of throughput. The results are shown in
Figure 5, where we list the throughputs when the batch size is 1, 4, 8, 16, 32, 64, 128, respectively.
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Network Input
Resolution Top-1 (%) Params FLOPs Throughput

(image / s)

CNN-based

RegNetY-8GF (Radosavovic et al., 2020) 224× 224 81.7 39M 8.0G 591.6
RegNetY-16GF (Radosavovic et al., 2020) 224× 224 82.9 84M 15.9G 334.7

EfficientNet-B3 (Tan & Le, 2019) 300× 300 81.6 12M 1.8G 732.1
EfficientNet-B5 (Tan & Le, 2019) 456× 456 83.6 30M 9.9G 169.1

Transformer-based

ViT-B/16 (Dosovitskiy et al., 2021) 384× 384 77.9 86M 55.5G 85.9
DeiT-B/16 (Touvron et al., 2021b) 224× 224 81.8 86M 17.6G 292.3

PVT-Large (Wang et al., 2021) 224× 224 82.3 61M 9.8G -
CPVT-B (Chu et al., 2021b) 224× 224 82.3 88M 17.6G 285.5

TNT-B (Han et al., 2021) 224× 224 82.8 66M 14.1G -
T2T-ViTt-24 (Yuan et al., 2021) 224× 224 82.6 65M 15.0G -
CaiT-S36 (Touvron et al., 2021c) 224× 224 83.3 68M 13.9G -

Swin-T (Liu et al., 2021b) 224× 224 81.3 29M 4.5G 755.2
Swin-S (Liu et al., 2021b) 224× 224 83.0 50M 8.7G 436.9
Swin-B (Liu et al., 2021b) 224× 224 83.3 88M 15.4G 278.1
Nest-B (Zhang et al., 2021) 224× 224 83.8 68M 17.9G 235.8
Container (Gao et al., 2021) 224× 224 82.7 22M 8.1G 347.8
Swin-B (Liu et al., 2021b) 384× 384 84.2 88M 47.0G 84.7

MLP-based

gMLP-S (Liu et al., 2021a) 224× 224 79.4 20M 4.5G -
ViP-Small/14 (Hou et al., 2021) 224× 224 80.5 30M - 789.0
ViP-Small/7 (Hou et al., 2021) 224× 224 81.5 25M - 719.0

AS-MLP-T (ours) 224× 224 81.3 28M 4.4G 1047.7

Mixer-B/16 (Tolstikhin et al., 2021) 224× 224 76.4 59M 11.7G -
FF (Melas-Kyriazi, 2021) 224× 224 74.9 62M 11.4G -

ResMLP-36 (Touvron et al., 2021a) 224× 224 79.7 45M 8.9G 478.7
S2-MLP-wide (Yu et al., 2021) 224× 224 80.0 68M 13.0G -
S2-MLP-deep (Yu et al., 2021) 224× 224 80.7 51M 9.7G -

ViP-Medium/7 (Hou et al., 2021) 224× 224 82.7 55M - 418.0
AS-MLP-S (ours) 224× 224 83.1 50M 8.5G 619.5

gMLP-B (Liu et al., 2021a) 224× 224 81.6 73M 15.8G -
ViP-Large/7 (Hou et al., 2021) 224× 224 83.2 88M - 298.0

AS-MLP-B (ours) 224× 224 83.3 88M 15.2G 455.2
AS-MLP-B (ours) 384× 384 84.3 88M 44.6G 179.2

Table 10: The complete experimental results of different networks on ImageNet-1K. Throughput is
measured with the batch size of 64 on a single V100 GPU (32GB).

B.3 EVALUATION ACCURACY

In Figure 6, we visualize the evaluation accuracy of AS-MLP and Swin transformer on the ImageNet,
COCO and ADE20K datasets during training. For image classification on ImageNet, AS-MLP-T
keeps pace with Swin-T in each epoch and they finally converge to the similar accuracy (81.3 vs.
81.3). For object detection and semantic segmentation on COCO and ADE20K, we can see that
AS-MLP-T achieves better performance than Swin-T in the early stage, and keeps winning during
the training process.

B.4 COMPARISONS TO SHIFTRESNET

In this section, we compare the performance with ShiftResNet (Wu et al., 2018) in Table 11. The
results of ShiftResNet50 with different configurations are from Table 3 of ShiftResNet paper (Wu
et al., 2018). Our AS-MLP (mobile) achieves better accuracy with fewer parameters.
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Figure 5: The throughput curve when the batch size is 1, 4, 8, 16, 32, 64, 128, respectively.
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Figure 6: The evaluation accuracy of AS-MLP and Swin transformer on the ImageNet, COCO and
ADE20K datasets during training.

C THE VISUALIZATION OF RESULTS ON COCO AND ADE20K

We visualize the object detection and instance segmentation results on the COCO dataset in Figure
7, where the Cascade Mask R-CNN model with the AS-MLP-T backbone is used. We also visualize
the semantic segmentation results on the ADE20K dataset in Figure 8, where we utilize the UperNet
model with the AS-MLP-T backbone. The object can be detected and segmented correctly.

Method Top-1 (%) Top-5 (%) Params

ShiftResNet50-0 70.6 89.9 6M
ShiftResNet50-1 73.7 91.8 11M
ShiftResNet50-2 75.6 92.8 22M

AS-MLP (mobile) 76.05 92.81 9.6M
AS-MLP-T 81.34 95.56 28M

Table 11: The comparisons with ShiftResNet.
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Figure 7: The object detection and instance segmentation results on the COCO dataset.

Figure 8: The semantic segmentation results on the ADE20K dataset.
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