
Under review as submission to TMLR

Generating Diverse Teammates to Train Robust Agents For
Ad Hoc Teamwork

Anonymous authors
Paper under double-blind review

Abstract

Ad hoc teamwork (AHT) is the challenge of designing a learner that effectively collaborates
with unknown teammates without prior coordination mechanisms. Early approaches address
the AHT challenge by training the learner with a diverse set of handcrafted teammate policies,
usually designed based on an expert’s domain knowledge about the policies the learner may
encounter. However, implementing teammate policies for training based on domain knowledge
is not always feasible. In such cases, recent approaches attempted to improve the robustness
of the learner by training it with teammate policies generated by optimising information-
theoretic diversity metrics. However, optimising information-theoretic diversity metrics may
generate teammates with superficially different behaviours, which does not necessarily result
in a robust learner that can effectively collaborate with unknown teammates. In this paper,
we present an automated teammate policy generation method optimising the Best-Response
Diversity (BRDiv) metric, which measures diversity based on the compatibility of teammate
policies in terms of returns. We evaluate our approach in environments with multiple valid
coordination strategies, comparing against methods optimising information-theoretic diversity
metrics and an ablation not optimising any diversity metric. Our experiments indicate that
optimising BRDiv yields a diverse set of training teammate policies that improve the learner’s
performance relative to previous teammate generation approaches when collaborating with
near-optimal previously unseen teammate policies.

1 Introduction

Ad hoc teamwork (AHT) is the challenging problem of creating a single agent, called the learner, which can
collaborate with a set of unknown teammates without prior coordination mechanisms (Stone et al., 2010).
While in AHT all teammates are assumed to be working together to achieve a common goal, they may exhibit
different behaviours or take different roles in the team. Consequently, the learner may need to use distinct
policies to collaborate optimally with the different encountered teammates. A robust AHT learner should be
able to adapt their own policy based on teammates’ displayed behaviour and a team’s composition to achieve
optimal collaboration.

Prior AHT approaches produce robust learners by interacting with teammate policies encountered during
training. During training, AHT approaches learn the best response policy for the different encountered
teammate policies alongside unique characteristics that differentiate their behaviour. After training is finished,
the learner infers whether encountered unknown teammates display these learned characteristics based on
their observed behaviour. Based on inferred characteristics of the unknown teammates, the learner then
computes an approximate best response policy for effective collaboration. Prior AHT methods often use policy
mixtures (Albrecht et al., 2016; Barrett et al., 2017) or neural networks (Rahman et al., 2021; Papoudakis
et al., 2021; Zintgraf et al., 2021) to generalise the best responses for training teammates towards new
teammates with unknown policies.

Designing a collection of teammate policies that covers the myriad of useful cooperation strategies is essential
for ensuring the robustness of learners in AHT. The design of an appropriate set of training teammate policies
is especially crucial in AHT environments with multiple valid cooperation strategies. By only training a

1

Under review as submission to TMLR

(a) First dribbling style.

(b) Second dribbling style.

(c) Third dribbling style.

(d) Best-response policy.

Figure 1: Potential teammate policies generated from information-theoretic diversity maximi-
sation. In Figure 1a- 1c, we provide three example teammate behaviours with high information-theoretic
diversity in a 3 vs 3 soccer environment. Each of these three visualisations highlights the behaviour of a
teammate that favours dribbling and shooting, with the favoured dribbling trajectory of each teammate
indicated by the green dashed arrow. Figure 1d then shows the behaviour acquired by a learner that encounters
the previously mentioned teammates during training. Despite the diversity in these teammates’ trajectories,
an AHT learner will only acquire the skill to pass the ball to teammates, which is indicated by the blue solid
line, since it is sufficient for effective collaboration with all three teammates.

learner against teammate policies that behave according to a subset of the valid strategies, the learner may
not acquire policies for collaborating with teammates that adopt different cooperation strategies unseen
during training. This issue resembles the failure of jointly trained agents to collaborate with other agents
that were not co-trained alongside them (Hu et al., 2020; Vezhnevets et al., 2020; Rahman et al., 2021).

In previous AHT works, approaches to design teammate policies for AHT training fall into two categories.
First, early AHT approaches (Barrett et al., 2014; Albrecht et al., 2016; Barrett et al., 2017) formulate
training teammate policies based on experts’ knowledge regarding reasonable teammate behaviours an agent
may encounter in an environment. Second, more recent AHT approaches (Xing et al., 2021; Lupu et al., 2021;
Lucas & Allen, 2022) generate diverse teammate policies for training by optimising information-theoretic
diversity metrics, which encourage an increased difference of the trajectory or action distribution of different
generated teammate policies.

Existing methods to generate AHT training teammate policies face challenging problems in their goal to
produce robust learners. The reliance on experts’ domain knowledge regarding teammate policies that an
agent may encounter is problematic since such information is often unavailable or difficult to elicit in many
real-world problems. Meanwhile, merely encouraging different training teammate policies to have distinct
trajectory or action distributions may produce teammates with superficial differences (Lupu et al., 2021),
which do not encourage the emergence of robust AHT learners. As an example of behaviour with superficial
differences, consider the problem of creating training teammate policies for a soccer game. Under this
environment, a teammate generation method potentially produces superficial differences when it creates
teammate policies displaying different trajectories to execute the same style of play. Figure 1 exemplifies this
as three teammate policies that like to dribble with different trajectories on the pitch.

Superficially different behaviours provide a challenge to AHT training since they do not encourage improved
learner robustness. In the example in Figure 1, effective collaboration with all generated teammate policies
can be achieved by passing the ball to the teammate. A learner trained to collaborate with these policies will
only acquire expertise in passing the ball to teammates, while neglecting other essential skills in soccer. This
prevents the emergence of effective collaboration when the learner has to interact with teammates where
passing skills alone are insufficient, such as when interacting with a teammate that likes to pass.

A teammate generation method aiming to improve the robustness of a learner should avoid the emergence
of superficial differences between generated teammates and instead produce teammate policies that force
the learner to learn a broader range of cooperation strategies during training. In this work, we present a
teammate generation method which prevents the emergence of teammate policies with superficial differences
by optimising a diversity metric called Best-Response Diversity (BRDiv). Instead of assessing diversity in
terms of information-theoretic measures like previous approaches, BRDiv measures diversity based on the
returns of generated teammate policies when cooperating with best-response policies for other generated
teammate policies. We empirically demonstrate that BRDiv prevents the emergence of teammate policies

2

Under review as submission to TMLR

with superficial differences in their behaviour by forcing the best-response policy for a teammate policy to
be ineffective when collaborating with other teammate policies. The BRDiv metric can then be optimised
using off-the-shelf MARL techniques to produce teammate policies with minimal superficial differences. Our
experiments compare the returns of a learner trained with teammate policies generated by BRDiv, previous
teammate generation approaches based on action and trajectory diversity maximisation (Lupu et al., 2021;
Lucas & Allen, 2022), and an ablation of BRDiv. We empirically demonstrate the robustness of a learner
trained with teammate policies generated by BRDiv by showing its higher returns than other evaluated
baselines when dealing with near-optimal previously unseen teammate policies.

2 Related Work

Ad Hoc Teamwork (AHT). AHT was defined as a formal challenge of developing a learner capable of
collaborating with unknown teammates by Stone et al. (2010). Since then, previous works (Mirsky et al., 2022)
have explored AHT under different application areas and alternative names, such as zero-shot coordination
(ZSC) (Hu et al., 2020) which explores AHT in problems where unknown teammates are optimal agents
optimising the same reward function as the learner. Many of these works utilise type-based methods (Albrecht
et al., 2016; Barrett et al., 2017; Rahman et al., 2021). A limitation of type-based approaches is that they
assume access to predefined teammate policies for learning. This entails the manual specification of all
possible types, which is often an infeasible process. Our work seeks to bridge this gap by providing ways to
automatically generate teammates.

Multi-agent Reinforcement Learning (MARL). The objective of MARL is to jointly train a set of
agents to maximise their returns in the presence of each other (Papoudakis et al., 2020; Zhang et al., 2021).
Unlike ad hoc teamwork, these methods assume full control of all members of the team. Current methods
in the literature have shown great success in solving complex tasks (Vinyals et al., 2019; Christianos et al.,
2021), and have been shown to be able to adapt to novel tasks (Schäfer et al., 2022). However, a drawback of
joint training is that the resulting agents have low performance when interacting with agents that are not
encountered during the joint training process (Vezhnevets et al., 2020; Hu et al., 2020; Rahman et al., 2021).

Teammate Policy Generation. Diverse teammate policy generation has been previously explored in
problems that are closely related to AHT, such as in zero-shot coordination (ZSC) (Hu et al., 2020). Several
works in this area formulate diversity in terms of information-theoretic measures defined over the generated
policies’ trajectories (Xing et al., 2021; Lupu et al., 2021; Lucas & Allen, 2022). Despite its prevalence,
previous works (Lupu et al., 2021; Liu et al., 2021) highlighted that training with teammates generated
by trajectory diversity-based methods does not always lead to improved learner’s robustness, which we
also demonstrate through our experiments. This is because many teammate behaviours producing distinct
trajectories entail the same learner’s best-response policy. While Liu et al. (2021) also proposed an approach
based on the best-response policies’ performance, their approach is limited to zero-sum games.

Diversity in Reinforcement Learning. In single-agent reinforcement learning, diversity maximisation is
mainly utilised as a way for agents to increase exploration (Pathak et al., 2017; Hong et al., 2018; Parker-Holder
et al., 2020) or discover reusable skills (Eysenbach et al., 2019). For example, Eysenbach et al. (2019) proposed
a method to learn a diverse set of reusable skills by only maximising an information-theoretic objective.
Similarly, in multi-agent reinforcement learning (MARL), works such as MAVEN (Mahajan et al., 2019),
have aided exploration by maximising a mutual-information metric between the trajectories and a latent
space. Another recent work also utilised reward randomisation to achieve diverse behaviours in multi-agent
settings (Tang et al., 2021). As another application of diversity optimisation in RL, Li et al. (2021) proposed
a method optimising an information-theoretic objective to facilitate agents’ specialisation towards a diverse
range of roles for solving a MARL problem. Note that unlike when inducing diversity for teammate policy
generation, these techniques are not designed to create a diverse set of teammates to improve the robustness
of a learner.

Population-based Training (PBT). Our method aims to train a population of agent policies that optimise
a specific metric, similar to existing works on population-based training. Population based training was
proposed by Jaderberg et al. (2017) as a way to speed up the optimisation process of neural networks.
This asynchronous algorithm jointly optimises a population of models and their respective hyperparameters,

3

Under review as submission to TMLR

through an alternating process of parallel training and hyperparameter tuning. Further work from Li et al.
(2019) then introduced a framework that enables population-based training in more general settings. Unlike
our method which optimises the diversity of the entire population, note that PBT methods optimise an
objective function defined over a single individual. PBT then uses its population of agents to iteratively
generate new population members having more optimal objective function values, which is different from our
method’s use of MARL techniques for optimisation.

3 Background & Setting

In this section, we formalises the problem of teammate policy generation. We first start by formalising
the interaction between agents in our AHT problem. We then provide details on the main objective of a
teammate generation process given our previous formulation of agents’ interaction.

3.1 Decentralised Partially Observable Markov Decision Process

We model the interaction between agents in a AHT environment as a decentralised partially observable
Markov decision process (Dec-POMDP) (Bernstein et al., 2002). Dec-POMDPs are formally defined as an
8-tuple, ⟨N, S, {Ai}|N |

i=1, P, R, {Ωi}N
i=1, O, γ⟩. Within a Dec-POMDP, N , S, and γ denote the set of agents,

state space, and discount rate, respectively. Ai and Ωi represent the action and observation space of agent i,
respectively. The transition function of a Dec-POMDP is denoted by P : S ×A1 × · · · × A|N | 7→ ∆S, where
∆S represents the set of all possible probability distributions over S. Similarly, the reward function is denoted
by R : S ×A1 × · · · × A|N | 7→ R, and the observation function as O : S 7→ ∆(Ω1 × · · · × Ω|N |).

Each episode in a Dec-POMDP starts from an initial state, s0 ∈ S. At timestep t, each agent i ∈ {1, . . . , N}
receives an observation oi

t ∼ O(st) and selects an action ai
t according to its policy πi(Hi

t), which is conditioned
on its observation-action history Hi

t =
{

oi
≤t, ai

<t

}
containing the sequence of observation and actions observed

up to timestep t. Each agent then jointly executes their selected action in the environment. After execution of
the joint action at, the state of the environment changes according to the transition function st+1 ∼ P (st, at),
and each agent is rewarded with R(st, at). This reward is common to all agents due to the cooperative nature
of AHT problems.

3.2 Teammate Policy Generation

A teammate generation process aims to design a set of teammate policies, Πtrain = {π1, π2, . . . , πK}, that
when being used for AHT training maximises the robustness of the learner. Formalising this goal as a
quantitative learning objective requires a measure of robustness for a given Dec-POMDP. Once such a
robustness measure is formally defined, a learning objective can be formulated by defining how the generated
teammate training policies affect the learner’s robustness.

We characterise a learner policy as robust if it achieves high returns when collaborating with teammates from
an unknown evaluation set, Πeval. Given a Dec-POMDP and a learner policy πi, our proposed measure of
robustness is defined below:

MΠeval(πi) = Eπ−i∼U(Πeval),ai
t∼πi,a−i

t ∼π−i, P,O

[∞∑
t=0

γtR(st, at)
]

, (1)

where U(X) and π−i denote a uniform distribution over a set X and the joint policy of agents other than the
learner respectively. It is important to note that Πeval in Equation 1 may consist of policies not encountered
during AHT training, highlighting the need for a robust learner for effective collaboration.

Since the proposed measure of robustness depends on the set of policies in Πeval, we outline assumptions
regarding the policies that can appear in Πeval. As formulated by Stone et al. (2010), we assume that Πeval

consists of feasible teammate policies that can achieve a minimum threshold expected performance in the
Dec-POMDP used in training. This assumption reflects how an encounter with highly suboptimal teammate
policies is very unlikely in many practical applications of AHT.

4

Under review as submission to TMLR

Shared critic

Self-play interaction Cross-play interaction

Maximised via MAA2C Maximised via MAA2C

Critic Loss

Minimised via MAA2C

Cross-play matrix

Shared critic

Figure 2: Teammate Generation By Optimising BRDiv. This figure visualises our teammate generation
method assuming that we are generating |Πtrain| = 3 for AHT environments with two players. Our method
utilises MAA2C (Papoudakis et al., 2020) to generate a set of teammates that maximises the BRDiv
diversity metric. The MAA2C algorithm trains a separate actor network (purple rectangles) to represent the
policies of each generated teammate, πj ∈ Πtrain, and their associated best response policies, π−j . Assuming
πj , πk ∈ Πtrain, a shared critic network (green box) is trained to estimate expected returns from the interaction
between any possible pairs of (πj , π−k). The shared critic network’s return estimates for all pairs are then
compiled into a cross-play matrix (blue bordered box), which serves as a basis to compute the BRDiv diversity
metric (red box). Finally, a diverse Πtrain is produced by optimising the actor networks to maximise the
cross-play matrix-based BRDiv metric by minimizing the actor loss outlined in Equation 9.

As the missing piece to formalise the goal of the teammate generation process, we now define how Πtrain

affects the robustness of a learner produced by AHT methods based on MΠeval . Given an AHT method to
train a learner, Πtrain is utilised to learn an optimal AHT policy, π∗,i(Πtrain) that maximises the expected
returns of the learner when collaborating with teammates from Πtrain. Given a Dec-POMDP, the optimal
policy given Πtrain is defined below:

π∗,i(Πtrain) = argmax
πi

Eπ−i∼U(Πtrain),ai
t∼πi,a−i

t ∼π−i, P, O

[∞∑
t=0

γtR(st, at)
]

. (2)

Later during the AHT evaluation process, π∗,i(Πtrain) is the policy whose robustness when collaborating with
teammates from Πeval will be measured.

Based on the definition of π∗,i(Πtrain), the goal of a teammate generation process is to find an optimal set of
training teammates, Π∗,train, that maximises the robustness of an AHT agent. Given a Dec-POMDP and an
unknown Πeval, Π∗,train is formally defined as:

Π∗,train = argmax
Πtrain

MΠeval
(
π∗,i(Πtrain)

)
. (3)

While setting Π∗,train = Πeval provides an optimal solution to the above objective, note that the teammate
generation problem operates in a setup where Πeval is unknown during training. Therefore, the main challenge
in the teammate generation problem arises as a result of optimising for Π∗,train without knowing Πeval.

4 Best-Response Diversity-based Teammate Generation

This section provides the details of Best-Response Diversity (BRDiv), the diversity metric that is optimised
by our teammate generation method. Section 4.1 starts by outlining a desirable characteristic for Πtrain, a

5

Under review as submission to TMLR

set of teammates policies generated for AHT training. Section 4.2 then formally defines BRDiv as a diversity
metric optimised by our teammate generation approach to encourage the creation of a desirable Πtrain.

4.1 Desirable Diversity for AHT

Our teammate generation method is based on the idea that a suitable Πtrain for AHT must avoid having
multiple policies that can be effectively collaborated with by the same best-response policy. Assuming a
sufficiently small number ϵ, this characteristic can be formally written as:

∃πi, πj ∈ Πtrain, πi ̸= πj ∧
∣∣Returns(πi, π−i)− Returns(πj , π−i)

∣∣ ≤ ϵ,

with π−i being the best-response policy to πi and Returns(πi, πj) defined as:

Ea1
t ∼πi,a2

t ∼πj , P, O

[∞∑
t=0

γtR(st, at)
]

,

for a given Dec-POMDP. This characteristic we impose in Πtrain is motivated by the need to avoid generating
teammates with superficial differences. As we illustrated in the example provided in Figure 1, a superficial
difference between generated teammate policies is characterised by the existence of a common best-response
policy that can be utilised to facilitate effective collaboration with these different teammate policies.

We argue that AHT training with Πtrain requiring different best-response policies facilitates the design of
a more robust learner. Through the interaction with each πj ∈ Πtrain, the learner will learn different best-
response policies to interact with a possible teammate. This equips the learner with a more comprehensive
library of behaviours to effectively collaborate with any teammate type, which should improve the learner’s
robustness by reducing the likelihood of it having no adequate strategies to effectively collaborate with an
unknown teammate from Πeval.

4.2 BRDiv Metric

This section defines a diversity metric that can be maximised to generate Πtrain requiring different best-
response policies for effective collaboration. The description of BRDiv assumes that only two agents exist in
the environment. Extending our proposed diversity metric and optimisation method to environments with
more than two agents is straightforward.

BRDiv aims to generate a set of diverse policies for AHT training, Πtrain = {π1, π2, ..., πK}, where similar
best-response policies cannot be used to effectively collaborate with different generated teammate types from
Πtrain. Therefore, defining a metric that quantifies the effectiveness of two agents’ policies when collaborating
with each other is a crucial first step in formulating our diversity metric. We measure the effectiveness of two
policies when collaborating via their expected returns, which is inspired by our notion of robust collaboration
introduced in Section 3.2. Assuming that agent j and k are interacting with each other based on policies,
πj(aj |Hj

t) and πk(ak|Hk
t), that are conditioned on their respective observation-action history Hj

t and Hk
t ,

this return-based effectiveness measure is defined as:

Vj,k(Hj
t , Hk

t) = Ea1
T

∼πj ,a2
T

∼πk

[∞∑
T =t

γT −tR(sT , ⟨a1
T , a2

T ⟩)
∣∣∣∣Hj

t , Hk
t

]
. (4)

This return-based effectiveness measure provides a foundation for defining an optimised diversity metric
to achieve the goal of BRDiv. Denoting the best-response policy to πk by π−k,∗, and the set of best
response policies to each policy in Πtrain by BR(Πtrain), we use Equation 4 to evaluate the effectiveness of
π−k,∗ ∈ BR(Πtrain) when collaborating with πj ∈ Πtrain. Given a pair of observation-action histories, H1

t and
H2

t , we arrange the measured cooperative effectiveness between all possible (πj , π−k,∗) ∈ Πtrain × BR(Πtrain)
into a K ×K cross-play matrix, CΠtrain,BR(Πtrain)(H1

t , H2
t). Elements of this cross-play matrix are defined as:

∀j, k ∈ {1, 2, ..., K}, C
Πtrain,BR(Πtrain)
j,k (H1

t , H2
t) = Vj,(−k,∗)(H1

t , H2
t). (5)

6

Under review as submission to TMLR

C
Πtrain,BR(Πtrain)
j,k (H1

t , H2
t) then provides the necessary information to compute the BRDiv metric.

The BRDiv metric is based on the intuition that a good Πtrain to ensure the learner’s robustness must possess
two characteristics. First, the cross-play matrix of Πtrain must have high values on its diagonal elements to
ensure that each πj ∈ Πtrain interacts effectively with its associated best-response policy, π−j ∈ BR(Πtrain).
This characteristic also prevents the emergence of teammate policies producing low returns, which no
reward-optimising agent would have a reason to use in an environment. Second, the off-diagonal elements of
CΠtrain,BR(Πtrain) must also have low values to discourage a best-response policy π−j ∈ BR(Πtrain) from being
effective for collaborating with πk ∈ (Πtrain − {πj}). By optimising the incompatibility of a best-response
policy when dealing with other policies in Πtrain, we aim to induce the need for different collaboration
strategies to deal with each policy in Πtrain.

Based on these two characteristics, we define our diversity metric as:

BRDiv(Πtrain, (H1
t , H2

t)) = Tr
(

CΠtrain,BR(Πtrain)(H1
t , H2

t)
)

+
∑

i,j∈{1,...,K},
i ̸=j

(
C

Πtrain,BR(Πtrain)
i,i (H1

t , H2
t)− C

Πtrain,BR(Πtrain)
i,j (H1

t , H2
t)
)

+
∑

i,j∈{1,...,K},
i ̸=j

(
C

Πtrain,BR(Πtrain)
i,i (H1

t , H2
t)− C

Πtrain,BR(Πtrain)
j,i (H1

t , H2
t)
)

.

(6)

The maximisation of the first term in Equation 6 enforces the first characteristic. Meanwhile, maximising
the remaining terms produces a cross-play matrix with low off-diagonal values, encouraging the generated
policies to fulfil the previously mentioned second desired characteristic.

5 MAA2C-Based Diversity Optimisation

We now describe an optimisation technique that maximises BRDiv to generate Πtrain. Although a wide range
of multi-agent RL algorithms can be used to maximise BRDiv, we propose an optimisation technique based on
the Multi-Agent A2C (MAA2C) algorithm (Papoudakis et al., 2020) due to the straightforward modifications
required to utilise it for maximising BRDiv. We use the centralised critic of MAA2C to estimate the elements
of the cross-play matrix defined in Equation 5. Meanwhile, the policies in Πtrain alongside their associated
best response policies in BR(Πtrain) are treated as actors that MAA2C trains. A detailed pseudocode of our
MARL-based diversity optimisation technique is provided in Algorithm 1 in Appendix C. A visualisation
that summarises our proposed teammate generation method is also provided in Figure 2.

Data Collection. Our optimisation technique separately collects two types of interaction data for training
the actors and the centralised critic. First, we collect self-play experiences where we let a policy, πk ∈ Πtrain,
interact with its associated best-response policy, π−k ∈ BR(Πtrain). The second type of data is cross-play
experiences which we collect by letting a policy, πj ∈ Πtrain, interact with the best-response policy of a
different policy, π−k ∈ BR(Πtrain − {πj}). Both self-play and cross-play interaction data are then stored in
separate storage denoted by DSP and DXP respectively. Note that assuming we also record the identity of
the agents generating the experience, which is j and −k, each experience stored in the storage is then defined
as a 7-tuple, ⟨(H1

t , H2
t), aj

t , a−k
t , {Rt}, (H1

t+1, H2
t+1), j,−k⟩ with H1

t and H2
t denoting the observation-action

history from using policies πj and π−k up to timestep t.

Actor and Centralised Critic Architecture. As we mentioned at the beginning of Section 5, the
trained actors in our optimisation method correspond to the generated teammate policies in Πtrain and their
associated best-response policies. For each πi ∈ (Πtrain ∪ BR(Πtrain)), this policy is represented as a neural
network parameterised by θi. In the remainder of our description of BRDiv, note that we denote the set of
actor parameters from Πtrain ∪ BR(Πtrain) as Θ.

Like the actor networks, the centralised critic used in this optimisation process is also implemented as a neural
network. The centralised critic network is specifically responsible for estimating elements of the cross-play

7

Under review as submission to TMLR

matrix, CΠtrain,BR(Πtrain), based on Equation 5. As shown in Figure 2, the shared critic network input consists
of a sequence of observation-action history from both players in the environment. In the remainder of this
document, note that we drop Πtrain as parameters to the cross-play matrix since evaluating each element of
this matrix at row i and column j does not involve πi and π−j,∗. Instead, we evaluate V ϕ

i,−j(Hi
t , H−j

t) by also
concatenating a one-hot identification of i and −j to the centralised critic’s input as indicated by Figure 2.

Learning Objective. The centralised critic network is trained to minimise the n-step return loss. As in
many deep RL methods, we incorporate a target critic network parameterised by ϕ̄ to compute the target
values for the critic network. Using the collected experiences from DSP and DXP, the centralised critic loss
function is defined below:

Lϕ(DSP,DXP) =
∑

DSP∪DXP

1
2

(
V ϕ

i,−j(H1
t , H2

t)−
n−1∑
k=0

γkRt+k − γnV ϕ̄
i,−j(H1

t+n, H2
t+n)

)2

. (7)

Given a stored experience from DSP or DXP, the actor networks in Πtrain and BR(Πtrain) are trained to
maximise the BRDiv-based advantage function, Aϕ

i,−j(H1
t , H2

t , {Rt+k}n−1
k=0 , H1

t+n, H2
t+n), defined below:

BRDiv(Cpred,ϕ
i,−j (H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t , H2

t))− BRDiv(Cbase,ϕ(st)). (8)

In the above expression, Cpred,ϕ
i,−j (H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t , H2

t) is a cross-play matrix which has its entry at
row i and column j replaced by an n-step return estimate resulting from the interaction between πi and
π−j . We use an n-step return-based estimate for one of the elements of this cross-play matrix to reduce the
bias of gradients associated with the actor loss updates, which is a commonly used method in single-agent
actor-critic methods. Meanwhile, Cbase,ϕ(st) is a baseline cross-play matrix whose elements only depend on
H1

t and H2
t . The role of this baseline in the advantage function is to reduce the variance of the gradient

updates for the actor networks. Given stored experiences from DSP and DXP, this results in the use of the
following loss function to optimise the actor networks:

Lθ(DSP,DXP) =
∑

DSP∪DXP

(
− log

(
π(ai

t|H1
t ; θi)π(a−j

t |H2
t ; θ−j)

)
Aϕ

i,−j(H1
t , H2

t , {Rt+k}n−1
k=0 , H1

t+n, H2
t+n)

)
,

(9)

where,

Cpred,ϕ
i,−j,p,q(H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t+n, H2

t+n) =
{

V ϕ
p,−q(H1

t , H2
t), if (p, q) ̸= (i, j)∑n−1

k=0 γkRt+k + γnV ϕ
i,−j(H1

t+n, H2
t+n), otherwise

Cbase,ϕ
m,n (H1

t , H2
t) = V ϕ

m,−n(H1
t , H2

t). (10)

Minimising Equation 9 updates the actor networks to maximise Cpred,ϕ
i,−j (H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t , H2

t). This
effectively encourages the emergence of actor networks that assign high probabilities towards actions leading
towards trajectories with higher BRDiv values.

6 Experiments

We present the experiments we conduct to demonstrate the effectiveness of BRDiv in improving the robustness
of an AHT learner when dealing with previously unseen teammate types in this section. First, we provide
details of the environments used in our teammate generation experiments in Section 6.1. This is followed
by an overview of our experiments’ AHT training and evaluation process in Section 6.2. Section 6.3 then
details the baseline approaches we compare BRDiv against. We then present and analyse the results of the
teammate generation experiments in Section 6.4. Finally, Section 6.5 ends this chapter by describing the
behaviours of teammate types generated by BRDiv.

8

Under review as submission to TMLR

0.75 1

1 0.75

(a) Cooperative Reaching.

(b) Level-Based Foraging.

(c) Simple Cooking.

Figure 3: Environments for Teammate Generation Experiments. Figure 3a visualizes an example
state of the Cooperative Reaching environment. In this visualisation, the red circle, blue circle, and grids
with texts denote the teammate, learner, and reward-providing coordinates. Meanwhile, an example state of
level-based foraging environment is visualised in Figure 3b. The white and red icons represent the players
and the objects that exist in the environment. The level of each player and object is then visualised in the
bottom right corner of their respective icons. Finally, an example environment state for the Simple Cooking
environment is provided in Figure 3c. The kitchen layout in this environment is such that the chefs are inside
a decagon kitchen with a table in the middle, symbolised by the red decagon with a plate on top of it. The
required cooking items and ingredients to finish the recipe are then placed on top of the green counters in
this kitchen. To finish the task, all processed ingredients and the plate must be placed on the serving counter
which is visualised as a green side of a decagon with a star on top.

6.1 Environments

Our experiments evaluate BRDiv and the baseline approaches in three multi-agent environments. All
environments used in our experiments have two agents, one of which will be controlled by a teammate policy
during an interaction episode. A visualisation of an example state from each environment is shown in Figure 3.
Further details of the environments used in our experiments are provided below:

Cooperative Reaching. Cooperative reaching is a simple environment situated in a 5×5 grid world.
Each agent has five actions corresponding to staying at a particular grid and moving into the four cardinal
directions. The goal of all agents is to reach and jointly stay in a grid cell whose location belongs to
the set of reward-providing coordinates, F = {(0, 0), (0, 4), (4, 0), (4, 4)}. Within these reward-providing
coordinates, (0, 0) and (4, 4) provide a reward of 1 to both agents once they are in the same grid cell with
this coordinate. Meanwhile, the grid in (0, 4) and (4, 0) only provide a reward of 0.75 once both agents arrive.
In this environment, the collaboration strategies correspond to the distinct ways a teammate may select a
destination grid within F . A robust AHT learner should ideally learn to follow their teammates towards any
reward-providing coordinates.

Level-based Foraging (LBF): In this environment, agents must retrieve three objects that are randomly
scattered in a 6× 6 grid world. Agents can move in either of the four cardinal directions and have a special
action that allows them to collect adjacent objects. At the beginning of each episode, each object and each
agent are assigned a level that determines whether an agent may collect an object. To successfully pick up
an object, the total level of agents choosing the object collection action next to the object must be at least
the same as the level of the collected object. We then enforce the need for collaboration between agents by
setting the level of each object as the total level of agents in the environment. For every successful collection
of an object, agents will then be given a reward of 0.33.

Simple Cooking: Simple Cooking is an environment where two chefs must collaborate to create a simple
dish with chopped tomatoes and blended carrots. Following Figure 3c, the two chefs can only be positioned
on 10 empty spaces between the cooking counter and the table in the middle of the kitchen. Each chef is then

9

Under review as submission to TMLR

equipped with eight actions that enable them to (i) stay still, (ii) move clockwise, (iii) move anti-clockwise,
(iv) retrieve an ingredient from a counter, (v) put an ingredient to a counter, (vi) retrieve an ingredient in
the middle table, (vii) put an ingredient on the middle table, or (viii) use cooking tools placed on a counter.
A chef must be positioned in the space closest to the target counter to collect or put an ingredient from or to
a counter. On the other hand, a chef can put or collect items on the table at any time. Using a blender or
knife to blend carrots or chop tomatoes requires an agent to be positioned in the space closest to the tool
and have the right ingredient placed on the same counter as the tool. In this environment, a reward of 0.25 is
provided to both agents right after (i) the tomato is chopped, (ii) the carrot is blended, (iii) both chopped
tomato and blended carrot are placed on a plate, and (iv) a plate containing chopped tomatoes and blended
carrots has been placed on top of the serving counter.

6.2 Experiment Protocol

Our process to evaluate the compared teammate generation methods can be divided into three stages. In
the first stage, we run BRDiv and other baseline teammate generation methods to create a set of training
teammates Πtrain. The second stage utilises the resulting teammates from the first stage to train an AHT
learner. We then evaluate the performance of the robustness of the learner when collaborating with a set of
previously unseen teammate types from Πeval.

In the first stage, we run each evaluated teammate generation method to produce K teammate types. Each
teammate generation method is run for five experiment seeds and learns for T total timesteps. We utilised
different K and T for each evaluated environment. In Cooperative Reaching, each teammate generation
method is trained for 16 million timesteps to produce four teammate types due to the simplicity of the
environment. Meanwhile, each method for 200 million timesteps to produce six and eight different teammate
types for LBF and Simple Cooking. Under each experiment seed, we save Πtrain produced by each compared
algorithm at the end of the teammate generation process.

The second stage utilises Πtrain generated from the first stage to train a learner policy through AHT training.
To enable a fair comparison between results from each teammate generation method, our evaluation protocol
uses the same AHT algorithm to train a learner based on each Πtrain. We specifically use the PLASTIC
Policy algorithm (Barrett et al., 2017) due to its ease of use for computing a learner policy given Πtrain

produced by our teammate generation methods. In particular, a PLASTIC Policy agent’s decision-making
process only requires the policy of each teammate and their associated best-response policies, both being a
by-product of the teammate generation process contained in the resulting Πtrain and BR(Πtrain).

Using learners produced from the previous stage, our experiment protocol’s final stage evaluates the learner’s
robustness when dealing with agents from Πeval. Πeval consists of policies generated by the teammate
generation methods evaluated in this work or policies following predefined heuristics defined in Appendix B.
Note that when evaluating the learner’s robustness against teammates generated by the same teammate
generation method, we also measure the learner’s robustness against teammate policies generated from
different experiment seeds. Such evaluation remains a challenge since teammates generated by the same
method under different seeds may have different behaviours that cause difficulties in effective collaboration.

As a measure of robustness, our evaluation process proceeds by evaluating the mean returns of an AHT
learner when dealing with teammate policies in Πeval. For each teammate generation method, the mean
returns from the learner produced by each experiment seed are logged. Using the reported returns from the
five experiments for each compared method, we compute a 95% confidence interval over the returns of AHT
learners when dealing with each unknown teammate policy type from Πtrain. This confidence interval allows
us to argue over the significance of the difference in robustness between teammate generation methods. The
resulting returns of a learner trained through generated teammate types produced by BRDiv and baseline
approaches are reported and analysed in Section 6.4.

6.3 Baselines

Our experiments compared BRDiv with two types of baselines. The first type of baseline comprises previous
methods for automatically generating teammates in AHT or related problems, such as zero-shot coordination.

10

Under review as submission to TMLR

Meanwhile, the second type of baseline consists of an ablation of BRDiv, which removes parts of BRDiv
responsible for encouraging ineffective collaboration between a generated teammate policy and the best
response policy associated with another generated teammate type. Details of these methods and their
implementation are provided below. Appendix C then provides the value of each methods’ hyperparameters
used in our experiments.

Prior teammate generation methods. Among methods under this category, we choose TrajeDi (Lupu
et al., 2021) and Any-Play (Lucas & Allen, 2022) as representative baselines. We choose TrajeDi following
its usage of the action discounting term, which provides additional flexibility when defining the optimised
information-theoretic diversity metric. Prior teammate generation methods other than TrajeDi define their
optimised diversity metric in terms of an agent’s overall trajectory or its selected action at each timestep,
which both have their drawbacks. TrajeDi’s action discounting term enables users to tune the resemblance of
its optimised diversity metric to an action diversity and trajectory diversity-based approach. In the plots
that we report in this work, we denote these TrajeDi-based baselines as TrajeDi0, TrajeDi025, TrajeDi05,
TrajeDi075, and TrajeDi1, which use the action discounting term of 0, 0.25, 0.5, 0.75, and 1 respectively.

We also add Any-Play as a baseline following the results from Lucas & Allen (2022) that demonstrated its
improved performance over TrajeDi in a few environments. This baseline will be denoted in our analysis as
AnyPlay. Unlike BRDiv and TrajeDi, Any-Play’s teammate generation process adds an intrinsic reward
that the actor networks also attempt to maximise aside from the original rewards from the environment. This
intrinsic reward is specifically an information-theoretic diversity metric computed based on a classifier that
distinguishes the different policies in Πtrain. Thus, comparing BRDiv’s performance against Any-Play also
delivers insights regarding the gains from using a different optimisation technique to induce diversity.

Implementing TrajeDi and Any-Play based on our MAA2C-based teammate generation method is straightfor-
ward. First, we remove all loss functions evaluated based on cross-play data since TrajeDi and Any-Play only
rely on self-play data for training. This is effectively done by subtracting LXP

ϕ and LXP
Θ from the loss function

returned by Algorithm 2. Using DSP for its evaluation, we also add the negative of the information-theoretic
diversity metric maximised by TrajeDi to the loss function returned by Algorithm 2. Meanwhile, for Any-Play
we also add a loss function that trains a classifier that identifies the population a teammate belongs to based
on an observed state and its action. The output of this classifier is then used at each timestep to compute an
intrinsic reward that is added on top of the environment rewards during training. These straightforward
changes enable us to generate teammates with TrajeDi and Any-Play using our proposed BRDiv pseudocode.

Ablations of BRDiv. We also compare BRDiv against an ablation which independently trains K teammate
policies with MAA2C (Papoudakis et al., 2020) without maximising BRDiv’s proposed diversity metric
outlined in Equation 6. Our experiments denote this baseline as Independent. Comparing BRDiv’s resulting
performance against this ablation helps us identify the impact of optimising our proposed diversity metric on
the resulting learner’s robustness when dealing with previously unseen teammates. Similar to our TrajeDi
baseline, we implement this ablation with our pseudocode by first subtracting LXP

ϕ and LXP
Θ from BRDiv’s

original loss function. Furthermore, when computing MAA2C’s actor loss, we use a modified diversity metric
that subtracts all terms on the right-hand side of Equation 6 except for the first term. This modification
ensures that all K generated policies are only trained to maximise their performance when collaborating with
its best response policy.

6.4 AHT Evaluation

This section provides the results of using the generated teammate policies for training an AHT learner,
following the experimental protocol outlined in Section 6.2. Figure 4 show the performance of a PLASTIC
Policy-based learner when interacting with teammates that follow one of the previously unseen heuristics
defined in Appendix B. The performance of the same learner when dealing with previously unseen teammates
generated by different teammate generation methods is then provided in Figure 5.

As shown in Figure 4a and Figure 4b, BRDiv provides a more reliable way to generate robust learners than
the baseline methods when collaborating with unseen heuristics that are near optimal. When comparing the
resulting returns between BRDiv-based learners with the Independent baseline, we see that BRDiv achieves

11

Under review as submission to TMLR

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

H0
1

H0
2

H0
3

H0
4

H0
5

H0
6

H0
7

H0
8

H0
9

H1
0

H1
1

Ev
al

ua
tio

n
Te

am
m

at
e

He
ur

ist
ic

Na
m

e
0.85

(0.79,0.90)
0.49

(0.24,0.73)
0.53

(0.38,0.68)
0.50

(0.39,0.60)
0.44

(0.31,0.57)
0.71

(0.62,0.80)
0.52

(0.33,0.71)
0.45

(0.20,0.69)

0.86
(0.79,0.93)

0.47
(0.26,0.67)

0.34
(0.10,0.58)

0.45
(0.17,0.73)

0.29
(0.10,0.47)

0.71
(0.58,0.85)

0.38
(0.16,0.60)

0.38
(0.12,0.64)

1.00
(1.00,1.00)

0.38
(-0.21,0.97)

0.62
(0.32,0.91)

0.85
(0.61,1.09)

0.66
(0.44,0.88)

0.93
(0.77,1.09)

0.56
(0.24,0.88)

0.63
(0.37,0.90)

1.00
(1.00,1.00)

0.35
(-0.21,0.91)

0.45
(0.08,0.82)

0.76
(0.38,1.14)

0.53
(0.22,0.83)

0.95
(0.84,1.06)

0.43
(0.05,0.82)

0.55
(0.24,0.86)

0.66
(0.53,0.80)

0.63
(0.45,0.81)

0.34
(-0.01,0.68)

0.04
(0.03,0.06)

0.04
(-0.02,0.10)

0.38
(0.04,0.71)

0.40
(-0.01,0.81)

0.14
(-0.07,0.36)

0.64
(0.45,0.82)

0.62
(0.42,0.82)

0.30
(-0.03,0.63)

0.03
(0.01,0.05)

0.05
(-0.03,0.13)

0.38
(0.01,0.74)

0.38
(-0.01,0.78)

0.12
(-0.06,0.30)

0.82
(0.73,0.91)

0.50
(0.26,0.75)

0.43
(0.22,0.64)

0.42
(0.28,0.56)

0.29
(0.13,0.45)

0.62
(0.51,0.74)

0.40
(0.17,0.63)

0.39
(0.18,0.59)

0.89
(0.87,0.92)

0.81
(0.72,0.89)

0.91
(0.82,1.01)

0.99
(0.99,1.00)

0.99
(0.98,1.00)

0.95
(0.89,1.00)

0.91
(0.81,1.00)

0.97
(0.90,1.04)

1.00
(1.00,1.00)

0.68
(0.34,1.01)

0.85
(0.62,1.09)

1.00
(1.00,1.00)

1.00
(1.00,1.00)

0.99
(0.97,1.01)

0.83
(0.57,1.09)

0.99
(0.96,1.02)

0.90
(0.86,0.94)

0.80
(0.72,0.88)

0.92
(0.81,1.02)

1.00
(0.99,1.00)

1.00
(1.00,1.00)

0.94
(0.86,1.01)

0.91
(0.79,1.03)

0.97
(0.89,1.05)

0.57
(0.50,0.64)

0.35
(0.27,0.42)

0.36
(0.29,0.42)

0.47
(0.32,0.62)

0.41
(0.30,0.51)

0.52
(0.47,0.57)

0.35
(0.30,0.41)

0.44
(0.29,0.59)

Evaluation in Cooperative Reaching Against Heuristic Agents

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cooperative Reaching

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

H0
1

H0
2

H0
3

H0
4

H0
5

H0
6

H0
7

H0
8

H0
9

H1
0

Ev
al

ua
tio

n
Te

am
m

at
e

He
ur

ist
ic

Na
m

e

0.73
(0.64,0.82)

0.65
(0.53,0.78)

0.42
(0.18,0.65)

0.41
(0.21,0.62)

0.58
(0.39,0.77)

0.59
(0.41,0.77)

0.51
(0.27,0.76)

0.46
(0.22,0.70)

0.81
(0.74,0.89)

0.90
(0.85,0.96)

0.80
(0.73,0.88)

0.79
(0.73,0.85)

0.76
(0.61,0.91)

0.75
(0.64,0.86)

0.86
(0.75,0.97)

0.86
(0.80,0.92)

0.67
(0.61,0.73)

0.55
(0.37,0.74)

0.44
(0.23,0.65)

0.42
(0.21,0.63)

0.53
(0.36,0.70)

0.55
(0.38,0.71)

0.48
(0.21,0.75)

0.47
(0.28,0.65)

0.69
(0.63,0.75)

0.56
(0.48,0.63)

0.44
(0.22,0.65)

0.43
(0.23,0.63)

0.59
(0.44,0.73)

0.61
(0.45,0.76)

0.47
(0.24,0.69)

0.40
(0.19,0.61)

0.68
(0.60,0.76)

0.58
(0.42,0.74)

0.41
(0.23,0.59)

0.47
(0.23,0.70)

0.59
(0.40,0.77)

0.57
(0.42,0.72)

0.45
(0.23,0.68)

0.38
(0.17,0.58)

0.70
(0.64,0.76)

0.63
(0.50,0.77)

0.42
(0.14,0.70)

0.42
(0.26,0.58)

0.57
(0.38,0.75)

0.58
(0.41,0.76)

0.46
(0.24,0.68)

0.42
(0.17,0.66)

0.67
(0.60,0.74)

0.62
(0.49,0.74)

0.41
(0.18,0.64)

0.43
(0.23,0.63)

0.58
(0.42,0.74)

0.58
(0.47,0.68)

0.47
(0.26,0.68)

0.45
(0.28,0.63)

0.75
(0.68,0.81)

0.60
(0.43,0.77)

0.42
(0.22,0.62)

0.48
(0.29,0.68)

0.59
(0.38,0.80)

0.57
(0.43,0.71)

0.46
(0.26,0.67)

0.45
(0.23,0.66)

0.73
(0.67,0.80)

0.64
(0.53,0.76)

0.43
(0.21,0.65)

0.44
(0.22,0.65)

0.59
(0.44,0.75)

0.61
(0.44,0.78)

0.48
(0.24,0.73)

0.44
(0.21,0.66)

0.64
(0.54,0.73)

0.53
(0.38,0.68)

0.38
(0.20,0.55)

0.38
(0.15,0.60)

0.55
(0.39,0.72)

0.53
(0.39,0.68)

0.44
(0.23,0.65)

0.40
(0.16,0.64)

Evaluation in LBF Against Heuristic Agents

0.0

0.2

0.4

0.6

0.8

1.0

(b) LBF

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

H0
1

H0
2

H0
3

H0
4

H0
5

H0
6

H0
7

H0
8

H0
9

H1
0

H1
1

H1
2

Ev
al

ua
tio

n
Te

am
m

at
e

He
ur

ist
ic

Na
m

e

0.51
(0.45,0.57)

0.68
(0.55,0.81)

0.42
(0.36,0.49)

0.61
(0.59,0.64)

0.60
(0.56,0.65)

0.61
(0.54,0.67)

0.42
(0.27,0.57)

0.48
(0.33,0.62)

0.31
(0.24,0.38)

0.53
(0.42,0.63)

0.22
(0.09,0.34)

0.61
(0.56,0.66)

0.61
(0.57,0.64)

0.61
(0.58,0.64)

0.20
(0.03,0.38)

0.27
(0.15,0.38)

0.54
(0.43,0.64)

0.70
(0.57,0.83)

0.48
(0.42,0.54)

0.65
(0.63,0.67)

0.62
(0.58,0.65)

0.62
(0.60,0.65)

0.45
(0.32,0.57)

0.49
(0.28,0.70)

0.55
(0.50,0.61)

0.71
(0.61,0.82)

0.37
(0.22,0.52)

0.65
(0.62,0.69)

0.62
(0.58,0.66)

0.61
(0.59,0.63)

0.36
(0.09,0.63)

0.46
(0.21,0.70)

0.28
(0.20,0.36)

0.61
(0.45,0.76)

0.17
(0.08,0.26)

0.65
(0.64,0.66)

0.63
(0.60,0.66)

0.64
(0.62,0.67)

0.17
(-0.00,0.33)

0.29
(0.09,0.49)

0.62
(0.56,0.68)

0.80
(0.77,0.83)

0.62
(0.56,0.67)

0.70
(0.67,0.72)

0.66
(0.63,0.70)

0.68
(0.63,0.72)

0.62
(0.54,0.70)

0.69
(0.50,0.89)

0.08
(0.01,0.14)

0.32
(0.07,0.56)

0.04
(-0.03,0.11)

0.23
(0.07,0.39)

0.30
(0.16,0.43)

0.12
(0.03,0.22)

0.05
(-0.01,0.11)

0.15
(0.02,0.28)

0.08
(0.01,0.16)

0.32
(0.08,0.57)

0.04
(0.00,0.07)

0.23
(0.07,0.40)

0.33
(0.16,0.49)

0.14
(0.03,0.25)

0.05
(-0.01,0.10)

0.16
(0.02,0.30)

0.08
(0.02,0.14)

0.34
(0.06,0.62)

0.04
(-0.00,0.09)

0.22
(0.03,0.41)

0.34
(0.18,0.50)

0.11
(0.03,0.19)

0.04
(-0.00,0.08)

0.17
(0.01,0.32)

0.08
(0.01,0.15)

0.32
(0.08,0.56)

0.06
(-0.03,0.14)

0.20
(0.07,0.33)

0.31
(0.17,0.45)

0.12
(0.02,0.21)

0.05
(-0.00,0.10)

0.16
(0.02,0.29)

0.10
(0.04,0.17)

0.33
(0.07,0.60)

0.04
(-0.00,0.08)

0.25
(0.04,0.46)

0.33
(0.17,0.49)

0.13
(0.01,0.25)

0.04
(-0.01,0.09)

0.17
(0.03,0.32)

0.09
(0.02,0.16)

0.30
(0.07,0.54)

0.03
(0.00,0.06)

0.23
(0.06,0.39)

0.30
(0.16,0.44)

0.12
(0.03,0.20)

0.04
(-0.01,0.09)

0.16
(0.02,0.29)

Evaluation in Simple Cooking Against Heuristic Agents

0.0

0.2

0.4

0.6

0.8

1.0

(c) Simple Cooking

Figure 4: AHT Evaluation Results Against Heuristic-based Teammates. We provide the average
returns resulting from the interaction between Πeval consisting of heuristic-based teammates and the learner,
which is trained using PLASTIC Policy (Barrett et al., 2017) and Πtrain produced by the evaluated teammate
generation methods. Labels on the x-axis of the heatmap visualisation indicate the teammate generation
method used to produce Πtrain. Labels on the y-axis highlight the heuristics followed by agent policies from
Πeval. Within each entry of the heatmap, the first number provides the average returns from the collaboration
between learners trained with Πtrain generated by the method indicated in the x-axis and teammates following
heuristics labelled in the y-axis. The numbers in the parentheses provide a 95% confidence interval of the
returns based on teammate generation experiments conducted across five seeds. Figure 4a show the results
in the Cooperative Reaching environment where training a learner with BRDiv-based teammates produces
more robust agents that can deliver higher returns than the baselines, except for interactions against H08 and
H10. Meanwhile, the results in the LBF environment also mirrors the general findings from the Cooperative
Reaching environment where a BRDiv-based learner yields higher average returns than all baselines with the
exception for interactions against H02. Finally, Figure 4c show the results in the Simple Cooking environment
where BRDiv did not achieve the best performance compared to other methods due to its inadequacy when
dealing with suboptimal teammate heuristics.

higher returns in all but three heuristics throughout the entire types of teammates used in the evaluation
process. Except for interactions against teammates using heuristics H08 and H10, a learner trained with
BRDiv-based teammates consistently achieves the highest average returns compared to the other evaluated
teammate generation methods in Cooperative Reaching. Meanwhile, BRDiv also consistently yields more
robust learners than compared baselines in LBF except for interactions against teammates using heuristic
H02. In experiments against teammates using policies generated by other teammate generation methods
which results are provided by Figures 5a and 5b, learners trained using BRDiv-based teammates consistently
achieve the highest average returns compared to other baseline methods in all environments. Finally, note
that in cases where specific baseline methods outperform a BRDiv-based learner in terms of the resulting
average returns, the difference in performance between BRDiv and these baselines is insignificant.

Another substantial evidence of BRDiv’s reliability in training robust learners can be found by comparing
the confidence interval of returns between compared methods. In Figures 4 and 5, we observe BRDiv’s
tendency to produce more compact confidence intervals in its returns, which indicates lower variance in
a BRDiv-based learner’s returns across different training seeds. The baseline methods’ larger variance in
returns results from their generated Πtrain having high variance in Best-Response Diversity across different
experiment seeds. Across some seeds, the baseline methods still discover Πtrain with a high BRDiv value even
without optimising BRDiv. These baseline methods can discover Πtrain with high BRDiv values since policies
in Πtrain with high BRDiv also exhibit high diversity in the trajectories they generate. However, since high
trajectory diversity does not imply high BRDiv, a few seeds of the baseline methods also discover Πtrain with

12

Under review as submission to TMLR

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

Tr
aj

eD
i1

Tr
aj

eD
i0

75
BR

Di
v

Tr
aj

eD
i0

Tr
aj

eD
i0

5
Tr

aj
eD

i0
25

An
yP

la
y

In
de

pe
nd

en
t

Ev
al

ua
tio

n
Te

am
m

at
e

Ge
ne

ra
to

r A
lg

or
ith

m

0.90
(0.87,0.93)

0.35
(0.07,0.63)

0.55
(0.41,0.69)

0.62
(0.53,0.71)

0.60
(0.53,0.67)

0.78
(0.68,0.88)

0.54
(0.33,0.76)

0.42
(0.11,0.74)

0.92
(0.89,0.95)

0.32
(0.03,0.60)

0.50
(0.41,0.60)

0.65
(0.49,0.81)

0.59
(0.46,0.72)

0.85
(0.81,0.89)

0.53
(0.32,0.73)

0.48
(0.23,0.74)

0.85
(0.79,0.91)

0.38
(0.18,0.59)

0.36
(0.28,0.44)

0.44
(0.25,0.63)

0.38
(0.21,0.55)

0.71
(0.59,0.82)

0.41
(0.28,0.54)

0.39
(0.23,0.54)

0.90
(0.88,0.93)

0.34
(0.08,0.61)

0.55
(0.42,0.68)

0.63
(0.54,0.72)

0.60
(0.53,0.66)

0.79
(0.69,0.88)

0.54
(0.31,0.77)

0.42
(0.11,0.73)

1.00
(1.00,1.00)

0.19
(-0.24,0.61)

0.75
(0.34,1.17)

0.97
(0.94,1.00)

0.96
(0.94,0.99)

1.00
(0.99,1.00)

0.59
(0.04,1.14)

0.60
(0.02,1.18)

1.00
(0.99,1.00)

0.19
(-0.22,0.60)

0.56
(0.37,0.75)

0.79
(0.57,1.01)

0.72
(0.54,0.90)

1.00
(1.00,1.00)

0.53
(0.21,0.85)

0.60
(0.29,0.91)

0.76
(0.69,0.82)

0.58
(0.56,0.60)

0.46
(0.33,0.59)

0.49
(0.31,0.67)

0.42
(0.27,0.58)

0.68
(0.59,0.77)

0.52
(0.33,0.71)

0.41
(0.25,0.57)

0.92
(0.92,0.92)

0.20
(-0.14,0.54)

0.53
(0.35,0.70)

0.72
(0.53,0.91)

0.66
(0.51,0.82)

0.91
(0.90,0.92)

0.50
(0.21,0.79)

0.54
(0.25,0.83)

Evaluation in Cooperative Reaching Against Generated Agents

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cooperative Reaching

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

Tr
aj

eD
i1

Tr
aj

eD
i0

25
In

de
pe

nd
en

t
Tr

aj
eD

i0
5

BR
Di

v
Tr

aj
eD

i0
An

yP
la

y
Tr

aj
eD

i0
75

Ev
al

ua
tio

n
Te

am
m

at
e

Ge
ne

ra
to

r A
lg

or
ith

m

0.84
(0.66,1.03)

0.77
(0.64,0.90)

0.45
(0.28,0.62)

0.62
(0.45,0.79)

0.63
(0.49,0.77)

0.65
(0.51,0.78)

0.68
(0.42,0.94)

0.53
(0.23,0.84)

0.73
(0.61,0.86)

0.60
(0.41,0.80)

0.40
(0.33,0.46)

0.58
(0.43,0.73)

0.56
(0.42,0.70)

0.63
(0.53,0.73)

0.56
(0.26,0.86)

0.52
(0.29,0.76)

0.86
(0.70,1.03)

0.67
(0.35,1.00)

0.46
(0.34,0.58)

0.63
(0.30,0.96)

0.65
(0.44,0.86)

0.79
(0.58,1.00)

0.71
(0.26,1.16)

0.71
(0.42,1.00)

0.69
(0.56,0.82)

0.57
(0.41,0.72)

0.36
(0.30,0.43)

0.49
(0.30,0.68)

0.54
(0.42,0.66)

0.51
(0.43,0.59)

0.52
(0.28,0.76)

0.46
(0.25,0.67)

0.87
(0.83,0.91)

0.65
(0.49,0.81)

0.35
(0.28,0.43)

0.56
(0.30,0.83)

0.63
(0.47,0.79)

0.61
(0.53,0.70)

0.57
(0.31,0.82)

0.46
(0.19,0.73)

0.85
(0.70,1.01)

0.72
(0.56,0.89)

0.49
(0.38,0.61)

0.61
(0.44,0.78)

0.62
(0.51,0.73)

0.61
(0.51,0.71)

0.66
(0.38,0.93)

0.53
(0.23,0.82)

0.80
(0.62,0.97)

0.71
(0.59,0.82)

0.30
(0.19,0.41)

0.50
(0.34,0.65)

0.57
(0.42,0.71)

0.49
(0.40,0.58)

0.54
(0.46,0.62)

0.37
(0.20,0.55)

0.68
(0.58,0.79)

0.54
(0.36,0.71)

0.35
(0.25,0.46)

0.48
(0.29,0.66)

0.50
(0.37,0.63)

0.56
(0.51,0.62)

0.53
(0.30,0.77)

0.49
(0.30,0.68)

Evaluation in LBF Against Generated Agents

0.0

0.2

0.4

0.6

0.8

1.0

(b) LBF

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

Tr
aj

eD
i0

75
In

de
pe

nd
en

t
Tr

aj
eD

i0
5

BR
Di

v
Tr

aj
eD

i1
Tr

aj
ed

i0
Tr

aj
eD

i0
25

An
yP

la
y

Ev
al

ua
tio

n
Te

am
m

at
e

Ge
ne

ra
to

r A
lg

or
ith

m

0.82
(0.56,1.07)

0.84
(0.62,1.06)

0.62
(0.35,0.90)

0.79
(0.61,0.96)

0.92
(0.78,1.06)

0.78
(0.55,1.00)

0.59
(0.41,0.77)

0.79
(0.50,1.07)

0.64
(0.39,0.89)

0.76
(0.48,1.03)

0.50
(0.27,0.72)

0.74
(0.54,0.93)

0.85
(0.65,1.04)

0.67
(0.42,0.92)

0.42
(0.32,0.52)

0.65
(0.38,0.93)

0.82
(0.59,1.04)

0.84
(0.61,1.06)

0.60
(0.30,0.90)

0.79
(0.62,0.96)

0.91
(0.73,1.09)

0.76
(0.53,0.99)

0.58
(0.38,0.79)

0.78
(0.49,1.06)

0.76
(0.52,1.00)

0.74
(0.54,0.94)

0.46
(0.21,0.71)

0.68
(0.53,0.82)

0.84
(0.66,1.02)

0.67
(0.45,0.88)

0.41
(0.27,0.56)

0.62
(0.36,0.88)

0.60
(0.40,0.80)

0.73
(0.49,0.97)

0.42
(0.21,0.64)

0.69
(0.53,0.85)

0.78
(0.60,0.95)

0.63
(0.40,0.87)

0.45
(0.35,0.54)

0.58
(0.39,0.77)

0.55
(0.34,0.76)

0.67
(0.45,0.89)

0.50
(0.29,0.71)

0.68
(0.56,0.81)

0.75
(0.63,0.86)

0.63
(0.45,0.80)

0.37
(0.25,0.48)

0.52
(0.26,0.78)

0.89
(0.74,1.04)

0.85
(0.58,1.13)

0.68
(0.37,0.99)

0.86
(0.60,1.11)

0.88
(0.61,1.15)

0.75
(0.43,1.07)

0.71
(0.39,1.03)

0.85
(0.54,1.15)

0.71
(0.52,0.90)

0.84
(0.64,1.05)

0.56
(0.33,0.79)

0.77
(0.61,0.94)

0.88
(0.73,1.03)

0.74
(0.53,0.95)

0.49
(0.34,0.65)

0.70
(0.39,1.00)

Evaluation in Simple Cooking Against Generated Agents

0.0

0.2

0.4

0.6

0.8

1.0

(c) Simple Cooking

Figure 5: AHT Evaluation Results Against Previously Unseen Generated Teammates. Given
Πtrain generated by a teammate generation method, we also report the average returns achieved by the learner
when dealing with Πeval consisting of teammates generated by the different evaluated teammate generation
methods. In the figures above, the labels on the x-axis, y-axis, and numbers within the heatmap have similar
semantics with their respective counterparts in Figure 4. Note that when dealing with Πeval generated by the
same algorithm producing Πtrain, it is possible that effective collaboration cannot be achieved since Πeval

also consists of policies generated through experiments using different seeds from which is being used to
produce Πtrain. In Cooperative Reaching and LBF, BRDiv-based learners produce higher average returns
when dealing with its previously unseen teammates. For certain teammate generation methods, the difference
between a BRDiv-based learner’s and its mean returns is even statistically significant. For Simple Cooking,
our method occasionally struggles to deal with suboptimal teammate policies generated by some teammate
generation methods. Further discussions regarding the suboptimality of policies produced by certain methods
are provided in Section 6.5.

lower BRDiv that yields learners with lower returns due to superficial differences between generated policies.
While TrajeDi has an action discounting hyperparameter that can be tuned to minimise the emergence of
Πtrain with superficial differences (Lupu et al., 2021), our results indicate that tuning this hyperparameter is
less effective in preventing the emergence of superficial differences between generated teammates compared to
directly optimising BRDiv.

Important insights are also obtained from evaluating learners when collaborating with more suboptimal
teammates. Against teammate-following heuristics H08 and H10 in Cooperative Reaching, BRDiv ceased to
become the best-performing teammate generation method to improve the robustness of the learner. The
same trend is seen in Figure 4c where the learner must collaborate with H01-H12 whose expertise only spans
parts of tasks in the environment, such as processing the ingredients, assembling them into a dish, and
delivering it to a serving counter. This echoes with the results of BRDiv when dealing with other Simple
Cooking teammate policies generated by other baseline teammate generation methods, which we discuss
in Section 6.5 to have generated suboptimal policies. All these results point towards the inadequacy of
BRDiv-based generated policies to improve learner robustness when dealing with suboptimal teammates.

6.5 Behaviour Evaluation

In this section, we provide additional empirical evidence regarding the effectiveness of BRDiv in generating
Πtrain for AHT training. First, we show an example of Πtrain exhibiting superficial differences based on the
results of running one of our baseline teammate generation methods in the Cooperative Reaching environment.
We then show how BRDiv successfully avoids generating Πtrain exhibiting superficial differences, which then
leads to improved learner robustness when Πtrain is used for AHT training.

13

Under review as submission to TMLR

0.75

0.75

1

1

(a) Example of superficial differ-
ences between generated team-
mates.

0 1 2 3
Policy ID

0
1

2
3

P
ol

ic
y

ID

0.96 0.96 0 0

0.96 0.96 0 0

0 0 0.96 0.95

0 0 0.95 0.95

Cross-Play Matrix With Superficial Differences in Coop Navigation

0.0

0.2

0.4

0.6

0.8

(b) Cross-play matrix between poli-
cies generated following Figure 6a.

Figure 6: Example of Superficial Policy Differences in Cooperative Reaching. From one of the
Πtrain resulting from a baseline teammate generation method in our experiments, we see an example of
teammates with superficial differences in Cooperative Reaching. Figure 6a show that superficial difference
is characterised by different teammate policies that move a teammate towards the same reward-providing
corner. Since an effective collaboration with teammates having superficial differences can be achieved using
the same best response policy, the cross-play matrix from Figure 6b demonstrates the compatibility of some
best response policies with multiple policies from Πtrain.

0.75

0.75

1

1

(a) Πtrain generated by BRDiv
in Cooperative Reaching.

0 1 2 3
Policy ID

0
1

2
3

P
ol

ic
y

ID

0.69 0 0 0.17

0 0.67 0.027 0

0 0.027 0.92 0

0.17 0 0 0.93

Cross-Play Matrix Between BRDiv-based Generated Policies in Coop Reaching

0.0

0.2

0.4

0.6

0.8

(b) Cross-play matrix between the
policies generated by BRDiv in Fig-
ure 7a.

Figure 7: Ideal Πtrain for Cooperative Reaching. An example Πtrain generated by maximising BRDiv is
provided in Figure 7a. A robust learner is more likely to be produced from training with this Πtrain since it
contains different policies that move teammates towards all the reward-providing coordinates in Cooperative
Reaching. Following Figure 7b, this Πtrain is characterised by the distinct best response policies required for
effective collaboration against each generated policy.

An example of Πtrain with superficial differences discovered by one of our baseline methods can be seen
in Figure 6a. In this visualisation, multiple policies in Πtrain move towards the same reward-providing
coordinates. Effective collaboration with these policies can be achieved through the same best response policy
of moving towards a reward-providing grid the teammate moves towards. This commonality in best response
policies is reflected in Figure 6b, which shows the cross-play matrix resulting from the interaction between
the policies in Πtrain and BR(Πtrain).

Training a Cooperative Reaching learner based on Πtrain in Figure 6a will not provide a robust learner. This
is because certain teammate behaviours are not present in the training set, such as teammates that move

14

Under review as submission to TMLR

(a) Trajectories produced by two ran-
domly sampled policies from Πtrain.

0 1 2 3 4 5
Policy ID

0
1

2
3

4
5

P
ol

ic
y

ID

0.89 0 0 0.092 0.53 0.017

0 0.88 0.56 0 0.12 0.077

0 0.56 0.9 0.22 0 0.36

0.092 0 0.22 0.87 0.11 0.35

0.53 0.12 0 0.11 0.86 0.0092

0.017 0.077 0.36 0.35 0.0092 0.81

Cross-Play Matrix Between BRDiv-based Generated Policies in LBF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Cross-play matrix from Πtrain pro-
duced by BRDiv.

Figure 8: Πtrain Generated by Optimising BRDiv in LBF. Assuming that the level one agent is the
teammate, example trajectories from two randomly sampled policies generated by optimising BRDiv for
LBF are displayed in Figure 8a. In this visualisation, each sequence of the same coloured arrows starting
from the teammate’s position corresponds to a trajectory of a single policy from Πtrain. Different policies
in Πtrain specifically correspond to the distinct orderings that a teammate may follow to collect objects in
the environment. Since an effective collaboration with teammates that follow a specific object collection
ordering requires best response policies that follow the same object collection ordering, the best response to
every policy in Πtrain is distinct and incompatible for collaboration with other policies. This results in the
cross-play matrix displayed in Figure 8b.

towards the upper-left or bottom-right reward-providing corners. A better Πtrain for training learners in
Cooperative Reaching is visualised by the BRDiv-based teammate policies in Figure 7a. In this case, Πtrain

produces a more robust learner by equipping it with a more comprehensive set of strategies against teammates
moving towards any reward-providing grid. We can consistently find this desirable Πtrain since each policy in
Πtrain requires different best response policies, which makes it highly likely to be discovered by optimising
BRDiv.

Optimising BRDiv also enables the discovery of a Πtrain that encourages the emergence of robust learners in
the LBF environment. As seen in Figure 8a, each policy in Πtrain generated by optimising BRDiv for LBF
corresponds to the distinct orderings that an optimal agent may take to collect objects in the environment.
Since any optimal or near-optimal teammate should follow one of the six possible orderings when collecting
objects, the discovery of Πtrain containing policies that follow each ordering prevents the learner from not
having an adequate strategy to deal with optimal or near-optimal teammates. As in the case with Cooperative
Reaching, note that the discovery of good quality teammate policies for LBF is made possible by each policy
in Πtrain requiring different best response policies, which makes it highly likely to be discovered by optimising
BRDiv.

Besides highlighting why optimising BRDiv facilitates improved learner robustness in Cooperative Reaching
and LBF, analysing the behaviour of policies generated by our method and the baselines also provides insights
into why our method does not yield the most robust learner in Simple Cooking. As displayed by Figure 9,
teammate policies generated by optimising BRDiv are highly optimal. The generated policies alongside its
best-response policy quickly learn to divide and execute the available subtasks among themselves. Between
different generated policies in Πtrain, a difference emerges due to different task assignments between agents
and different orderings to complete the subtasks. In general, BRDiv-based generated policies and their
best-response policies tend to finish an episode of Simple Cooking in 17-20 timesteps. Learning from such
highly optimal policies makes a learner unprepared when facing highly suboptimal policies during evaluation.

This result from BRDiv highly contrasts with the results from optimising alternative diversity metrics
tested in this work. A detailed breakdown of the number of timesteps required by each compared teammate
generation method to solve Simple Cooking in self-play is provided in Table 1. The better-performing baselines

15

Under review as submission to TMLR

1

2

3

4

5

6

7

(a) Tomato Preparation.

1

2

3

4

5

6

7

(b) Carrot Preparation.

8

10
9

(c) Food Assembly & Delivery.

Figure 9: Teammate Policy Generated By Optimising BRDiv & Its Best-Response Policy. From
left to right, we show an example of a teammate policy alongside its best-response policy generated by
optimising BRDiv. The generated policy and its best-response policy learn to quickly divide the ingredient
preparation, dish assembly, and delivery tasks between themselves. In Figure 9a, the generated policy collects
the tomato and puts it on the table so another teammate closer to the knife and positioned on the opposite
side of the kitchen can retrieve and chop it. After chopping the tomato, Figure 9b then shows that the
best-response policy learns to move towards the carrot and puts it on the table so that the agent controlled
by the generated policy can collect and blend it. After the generated policy puts the blended carrot on the
table, the best-response policy collects the plate and carrot to combine it with its chopped tomatoes. The
best-response policy eventually delivers this combined food to the serving counter as seen in Figure 9c.

for generating robust learners for Simple Cooking against heuristic-based teammates particularly produce
suboptimal teammate policies that solve the environment in 30-195 timesteps. Throughout interaction,
Any-Play and TrajeDi-based policies often exhibit suboptimal behaviour such as (i) going back and forth
between putting an item on the counter and retrieving it again or (ii) stopping working on subtasks and
doing nothing. The availability of such suboptimal policies in Πtrain makes the learner more prepared to
complete a task on its own in case teammates are performing poorly in the task. While this inability to deal
with highly suboptimal teammates presents potential research directions to further improve BRDiv, note
that such suboptimal teammates are rarely encountered in many realistic applications of AHT. As originally
formulated by (Stone et al., 2010), encountered teammates are normally assumed to be capable of achieving
a specific return threshold at the given task.

Table 1: Required Timesteps to Solve Simple Cooking In Self-Play. The number of timesteps required
by each method to solve Simple Cooking is provided in their respective entries in the second row.

BRDiv Any-Play TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
17-20 30-35 18-25 65-158 85-233 53-161 20-28 18-29

7 Conclusion & Future Work

In this work, we discussed the importance of generating a collection of training teammate policies, Πtrain,
that require different best-response policies to improve the robustness of an AHT agent. To achieve this, we
proposed a teammate generation method that optimises BRDiv, a diversity metric designed to prevent the
emergence of superficial differences between policies in Πtrain. Based on a comparison against TrajeDi (Lupu
et al., 2021), Any-Play (Lucas & Allen, 2022), and a baseline that independently trains different teammate
policies via MARL, our experiments show that optimising BRDiv achieves higher average returns when
dealing with near-optimal previously unseen teammate policies. At the same time, we also see a smaller
variance in the returns produced by learners trained with Πtrain produced by optimising BRDiv.

16

Under review as submission to TMLR

Further analysis of the generated teammates’ behaviour shows that optimising BRDiv avoids generating
teammates with superficial differences. At the same time, Πtrain generated by optimising BRDiv covers
a comprehensive set of reward-maximising teammate behaviours. Training against this set of teammates
eventually produced teammates that can perform a wider range of strategies to collaborate against previously
unseen teammate policies.

Although our results in the teammate generation experiments show that optimising BRDiv can generate
teammate policies that require different strategies for effective collaboration, we note that this is not the
only type of diversity displayed by decision-making agents in real-world problems. In many applications of
AHT, a learner also has to deal with teammates that vary in their ability to maximise the teams’ returns.
For example, even with different teammates that prefer a specific role such as being a striker, we see a wide
range of skill levels between potential teammates in a pick-up soccer game. A teammate’s ability may range
from having the skills of an amateur player to possessing elite skills displayed by top-division professional
players. Currently, this diversity cannot be discovered solely based on optimising BRDiv. The first term
on the right-hand side of Equation 6 encourages the creation of teammates with near-optimal policies when
we optimise BRDiv. By only training a learner against teammates generated by optimising BRDiv, this
limitation potentially results in a learner yielding suboptimal returns when dealing with teammates with a
low skill level. The results of our experiments in the Simple Cooking environment also confirmed the need for
further improvements under this direction.

The proposed method to optimise BRDiv also faces challenges when dealing with problems other than
two-player games. In many real-world problems such as those addressed in open ad hoc teamwork (Rahman
et al., 2021), generating a team of multiple agents with different policies is desirable. While our proposed
optimisation method can be modified to generate a team of teammates, many such teams must be generated
at once to improve the robustness of the learner. After all, the number of generated training teams must
match the exponential increase in the space of possible team configurations. Since training agents via MARL
may require millions of experiences even in simple domains, the computational resources required by our
proposed method to generate a large collection of teams can quickly grow impractical as the size of a generated
team increases.

References
Stefano V. Albrecht, Jacob W. Crandall, and Subramanian Ramamoorthy. Belief and truth in hypothesised

behaviours. Artificial Intelligence, 235:63–94, 2016.

Samuel Barrett, Noa Agmon, Noam Hazon, Sarit Kraus, and Peter Stone. Communicating with unknown
teammates. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, pp. 1433–1434, Richland, SC, 2014. International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 9781450327381.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. Making friends on the fly: Cooperating with
new teammates. Artificial Intelligence, 242:132–171, 2017.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized
control of markov decision processes. Mathematics of operations research, 27(4):819–840, 2002.

Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Albrecht. Scaling multi-agent
reinforcement learning with selective parameter sharing. In International Conference on Machine Learning
(ICML), 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=SJx63jRqFm.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee. Diversity-
driven exploration strategy for deep reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,

17

https://openreview.net/forum?id=SJx63jRqFm

Under review as submission to TMLR

volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
a2802cade04644083dcde1c8c483ed9a-Paper.pdf.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot coordination.
In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi,
Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu.
Population based training of neural networks. CoRR, abs/1711.09846, 2017. URL http://arxiv.org/
abs/1711.09846.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu, David Budden, Tim Harley,
and Pramod Gupta. A generalized framework for population based training. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp.
1791–1799, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi:
10.1145/3292500.3330649. URL https://doi.org/10.1145/3292500.3330649.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang. Celebrating
diversity in shared multi-agent reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=CO87OIEOGU8.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, ZHIPENG HU, and Yaodong
Yang. Towards unifying behavioral and response diversity for open-ended learning in zero-sum games. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 941–952. Curran Associates, Inc., 2021. URL https:
//proceedings.neurips.cc/paper/2021/file/07bba581a2dd8d098a3be0f683560643-Paper.pdf.

Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination. arXiv
preprint arXiv:2201.12436, 2022.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot coordination.
In Proceedings of the 38th International Conference on Machine Learning, 2021.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent variational
exploration. In Advances in Neural Information Processing Systems, pp. 7611–7622, 2019.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan, Peter
Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. European Conference on Multi-Agent
Systems (EUMAS), 2022.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking multi-agent
deep reinforcement learning algorithms in cooperative tasks. arXiv preprint arXiv:2006.07869, 2020.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial observability
for deep reinforcement learning. Advances in Neural Information Processing Systems, 35, 2021.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts. Effective diversity in
population based reinforcement learning. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, pp. 2778–2787. JMLR.org, 2017.

18

https://proceedings.neurips.cc/paper/2018/file/a2802cade04644083dcde1c8c483ed9a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a2802cade04644083dcde1c8c483ed9a-Paper.pdf
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846
https://doi.org/10.1145/3292500.3330649
https://openreview.net/forum?id=CO87OIEOGU8
https://openreview.net/forum?id=CO87OIEOGU8
https://proceedings.neurips.cc/paper/2021/file/07bba581a2dd8d098a3be0f683560643-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/07bba581a2dd8d098a3be0f683560643-Paper.pdf

Under review as submission to TMLR

Arrasy Rahman, Niklas Höpner, Filippos Christianos, and Stefano V. Albrecht. Towards open ad hoc
teamwork using graph-based policy learning. In International Conference on Machine Learning, volume
139. PMLR, 2021.

Lukas Schäfer, Filippos Christianos, Amos Storkey, and Stefano V. Albrecht. Learning task embeddings for
teamwork adaptation in multi-agent reinforcement learning, 2022.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In AAAI Conference on Artificial Intelligence, pp. 1504–1509,
2010.

Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Du, Yu Wang,
and Yi Wu. Discovering diverse multi-agent strategic behavior via reward randomization, 2021. URL
https://arxiv.org/abs/2103.04564.

Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. Options as responses:
Grounding behavioural hierarchies in multi-agent reinforcement learning. In International Conference on
Machine Learning, pp. 9733–9742. PMLR, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo
Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch,
Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782):350–354, November 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z. URL
https://www.nature.com/articles/s41586-019-1724-z. Number: 7782 Publisher: Nature Publishing
Group.

Dong Xing, Qianhui Liu, Qian Zheng, and Gang Pan. Learning with generated teammates to achieve type-free
ad-hoc teamwork. In IJCAI, pp. 472–478, 2021.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Reinforcement Learning: A Selective Overview
of Theories and Algorithms, pp. 321–384. Springer International Publishing, Cham, 2021. ISBN 978-3-030-
60990-0. doi: 10.1007/978-3-030-60990-0_12. URL https://doi.org/10.1007/978-3-030-60990-0_12.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive bayesian
reinforcement learning via meta-learning. arXiv preprint arXiv:2101.03864, 2021.

A BRDiv Pseudocode

We complete the description of our method by providing a pseudocode for the teammate generation process
undergone in BRDiv, shown in in Algorithm 1. An essential part of Algorithm 1 is a call to the COM-
PUTE_LOSS function that evaluates the loss functions minimised by BRDiv. How BRDiv utilises the
gathered self-play and cross-play experience to compute the minimised loss functions is then described in
Algorithm 2.

B Heuristic-based Teammates

As we mentioned in Section 6.2, we use Πeval consisting of heuristic-based policies to evaluate the methods
used in our experiments. The details of heuristics followed by each policy for the Cooperative Reaching
environment are provided in Section B.1. Meanwhile, Section B.2 outlines the heuristics followed by the
policies in Πeval for LBF.

19

https://arxiv.org/abs/2103.04564
https://www.nature.com/articles/s41586-019-1724-z
https://doi.org/10.1007/978-3-030-60990-0_12

Under review as submission to TMLR

Algorithm 1 BRDiv-based Teammate Generation Process
Require:

Number of training episodes, neps.
Episode length, T .
Update period, tupdate.
Number of generated teammate types, K.
Initial population actor network parameters, Θ = {θ1, θ2, ..., θK}.
Initial centralised critic parameters, ϕ.
Target centralised critic parameters, ϕ̄.
Learning Rate, α.
Target network update coefficient, ᾱ.
Environment for SP and XP interaction, envSP & envXP.

1: for i = 1 to neps do
2: t← 0
3: DSP,DXP ← {}, {}
4: IDSP ∼ Uniform({1, . . . , K}) ▷ Sample Population ID for SP
5: IDXP

1 , IDXP
2 ∼ Uniform({(i, j)|i, j ∈ 1, . . . , K, i ̸= j}) ▷ Sample Population ID for XP

6: Observe HSP
0 = (o1,SP

0 , o2,SP
0) and HXP

0 = (o1,XP
0 , o2,XP

0) from envSP and envXP respectively.
7: H1,SP

0 , H2,SP
0 , H1,XP

0 , H2,XP
0 ← {o1,SP

0 }, {o2,SP
0 }, {o1,XP

0 }, {o2,XP
0 }

8: while t < T do
9: // Self-Play Data Collection

10: a1,SP
t ∼ π

(
a1,SP

t |H1,SP
t ; θIDSP

)
and a2,SP

t ∼ π
(

a2,SP
t |H2,SP

t ; θIDSP
)

11: rSP
t+1, HSP

t+1 ← envSP(HSP
t , aSP

t

)
12: DSP ← DSP||⟨HSP

t , aSP
t , rSP

t+1, HSP
t+1, IDSP⟩

13: // Cross-Play Data Collection
14: a1,XP

t ∼ π
(

a1,XP
t |H1,XP

t ; θIDXP
1

)
and a2,XP

t ∼ π
(

a2,XP
t |H2,XP

t ; θIDXP
2

)
15: rXP

t+1, HXP
t ← envXP(HXP

t , aXP
t

)
16: DXP ← DXP||⟨HXP

t , aXP
t , rXP

t+1, HXP
t+1, IDXP

1 , IDXP
2 ⟩

17: if t mod tupdate = 0 then
18: // Parameter Update
19: LΘ,ϕ(DSP,DXP)← COMPUTE_LOSS(DSP,DXP, Θ, ϕ, ϕ̄)
20: for θi ∈ Θ do
21: θi ← GRADIENT_DESCENT(θi, α,∇θi

LΘ,ϕ(DSP,DXP))
22: end for
23: ϕ← GRADIENT_DESCENT(ϕ, α,∇θiLΘ,ϕ(DSP,DXP))
24: ϕ̄← (1− ᾱ)ϕ + ᾱϕ
25: DSP ← {}
26: DXP ← {}
27: end if
28: t← t + 1
29: end while
30: end for
31: Return: Θ

B.1 Cooperative Reaching

For Cooperative Reaching, we implement 11 heuristics as part of Πeval. Each heuristic differs from others in
terms of their way of selecting which reward-providing coordinates to move towards. Some heuristics also
encourage teammates to follow the learner towards one of the existing reward-providing coordinates. The
details of each heuristic used in Cooperative Reaching are provided below:

20

Under review as submission to TMLR

Algorithm 2 Loss Computation
Require:

Self-play and cross-play data, DSP & DXP.
Population actor network parameters, Θ.
Centralised critic parameters, ϕ.
Target centralised critic parameters, ϕ̄

1: function COMPUTE_LOSS(DSP,DXP, Θ, ϕ, ϕ̄)
2: tstart ← first time in the buffers DSP,DXP

3: tend ← latest time in the buffers DSP,DXP

4: Vtarget ← V (HSP
tend+1, IDSP, IDSP; ϕ̄)

5: LSP
ϕ ← 0 ▷ Compute Self-Play Critic Loss

6: for t = tend to tstart do
7: Vpred ← V (HSP

t , IDSP, IDSP; ϕ)

8: Vtarget ←

{
rSP

t , if episode terminates at t

rSP
t + γVtarget, otherwise.

9: LSP
ϕ ← LSP

ϕ + 1
2(Vpred − Vtarget)2

10: end for
11: Vtarget ← V (HXP

tend+1, IDXP
1 , IDXP

2 ; ϕ̄)
12: LXP

ϕ ← 0 ▷ Compute Cross-Play Critic Loss
13: for t = tend to tstart do
14: Vpred ← V (HXP

t , IDXP
1 , IDXP

2 ; ϕ)

15: Vtarget ←

{
rXP

t , if episode terminates at t

rXP
t + γVtarget, otherwise.

16: LXP
ϕ ← LXP

ϕ + 1
2(Vpred − Vtarget)2

17: end for
18: Vbootstrap ← V (HSP

tend+1, IDSP, IDSP; ϕ)
19: LSP

Θ ← 0 ▷ Compute Self-Play Actor Loss
20: for t = tend to tstart do
21: Mbaseline ← TO_XP_MATRIX

({
V (HSP

t , i, j; ϕ)|i, j ∈ 1, . . . , N
})

22: Vbootstrap ←

{
rSP

t , if episode terminates at t

rSP
t + γVbootstrap, otherwise.

23: Mpred ←Mbaseline
24: Mpred,IDSP,IDSP ← Vbootstrap ▷ Replace matrix element of interacting populations
25: LSP

Θ ← LSP
Θ − log(π(a1,SP

t |H1,SP
t ; θIDSP)π(a2,SP

t |H2,SP
t ; θIDSP))(BRDiv(Mpred)− BRDiv(Mbaseline))

26: end for
27: Vbootstrap ← V (HXP

tend+1, IDXP
1 , IDXP

2 ; ϕ)
28: LXP

Θ ← 0 ▷ Compute Cross-Play Actor Loss
29: for t = tend to tstart do
30: Mbaseline ← TO_XP_MATRIX

({
V (HXP

t , i, j; ϕ)|i, j ∈ 1, . . . , N
})

31: Vbootstrap ←

{
rXP

t , if episode terminates at t

rXP
t + γVbootstrap, otherwise.

32: Mpred ←Mbaseline
33: Mpred,IDXP

1 ,IDXP
2
← Vbootstrap ▷ Replace matrix element of interacting populations

34: LXP
Θ ← LXP

Θ − log(π(a1,XP
t |H1,XP

t ; θIDXP
1

)π(a2,XP
t |H2,XP

t ; θIDXP
2

))(BRDiv(Mpred)−BDiv(Mbaseline))
35: end for
36: Return: LSP

ϕ + LXP
ϕ + LSP

Θ + LXP
Θ

37: end function

21

Under review as submission to TMLR

• Heuristic H01. This heuristic selects the action that gets a teammate closer to the closest
reward-providing coordinate.

• Heuristic H02. This heuristic selects the action that gets a teammate closer to the furthest
reward-providing coordinate from its initial position at the beginning of the episode.

• Heuristic H03. A teammate under this heuristic moves towards the closest optimal reward-providing
coordinate.

• Heuristic H04. H4 moves an agent towards the furthest optimal reward-providing coordinate from
a teammate’s initial location in an episode.

• Heuristic H05. Same as H4, except that the learner only considers the suboptimal reward-providing
coordinates instead of the optimal ones.

• Heuristic H06. Same as H5, except the teammate goes towards the closest suboptimal reward-
providing coordinate.

• Heuristic H07. At the beginning of the episode, agents under this heuristic randomly select a
reward-providing coordinate and move towards it.

• Heuristic H08. This heuristic moves a teammate towards the reward-providing coordinate closest
to its counterpart agent’s location.

• Heuristic H09. Same as H8, but only optimal reward-providing coordinates are considered as the
teammate’s destination.

• Heuristic H10. This heuristic moves the teammate towards its counterpart agent’s location.

• Heuristic H11. This heuristic always randomly selects an action from the teammate’s possible
actions.

B.2 LBF

Like Cooperative Reaching, we create diverse teammate heuristics requiring a learner to adapt their policies
to achieve optimal collaboration. The ten heuristics used for LBF generally correspond to different ways of
deciding the ordering to collect objects scattered in LBF’s grid world. Details of each heuristic are provided
below:

• Heuristic H01. The teammate attempts to collect whichever object is closest to its current location.

• Heuristic H02. At each timestep, the teammate computes the midpoint between the learner and
its location. This teammate then attempts to collect whichever object is closest to this midpoint.

• Heuristics H03-H08. For heuristics H03 to H08, we assign a distinct random index from {1, 2, 3}
to each object at the beginning of each episode. Heuristics H03-H08 then collect the objects according
to one of the 6 distinct possible orderings of the object index.

• Heuristic H09. The teammate always attempts to collect food closest to the learner’s location.

• Heuristic H10. At the beginning of each episode, H10 identifies the object furthest from its location
and attempts to collect it. Each time its target item is collected, H10 then attempts to collect the
remaining object at the furthest distance from the current location of the controlled teammate.

22

Under review as submission to TMLR

B.3 Simple Cooking

As the layout of our Simple Cooking is a ring, we consider two movement directions around the ring: clockwise
and anti-clockwise. Each heuristic agent has a goal, such as “seek and process the nearest food." Once their
goal has been completed, the heuristic agent finds a counter without any tools on it and stands on the empty
space closest to the said counter.

• Heuristic H1: Seeks the nearest food in the clockwise direction, picks it up, and continues to move
clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H2: Seeks the nearest food in the anti-clockwise direction, picks it up, and continues to
move anti-clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H3: Takes the shortest path to the nearest food item, picks it up, and continues to take
the shortest path to the appropriate food processing counter, where it processes the food.

• Heuristic H4: Seeks the furthest away food in the clockwise direction, picks it up, and continues to
move clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H5: Seeks the furthest away food in the anti-clockwise direction, picks it up, and continues
to move anti-clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H6: Same as Heuristic H3, except 25% of the time, the agent takes a uniform random
action.

• Heuristic H7: This heuristic seeks the nearest processed food in the clockwise direction. It then
picks up the processed food and checks whether the plate is on one of the counter or not. If the plate
is on one of the counters, the agent moves clockwise to the plate in order to put the processed food.
Otherwise, the agent goes towards the serving counter to place the food. Once there are no processed
food to move, this agent moves clockwise to stand in front of an outer counter without any items on
top.

• Heuristic H8: This heuristic is similar to H7 except that agents under this heuristic always move
in an anti-clockwise direction.

• Heuristic H9: This heuristic is similar to heuristics H7 and H8 except that agents under this
heuristic always decide its clockwise or anti-clockwise movement based on the shortest distance
between its target object or location.

• Heuristic 10: This heuristic is similar to heuristics H7 except that agents under this heuristic will
immediately put the processed food on the serving counter.

• Heuristic H11: This heuristic is similar to heuristics H8 except that agents under this heuristic
always put the retrieved processed food on the service counter.

• Heuristic H12: This heuristic is similar to heuristics H9 except that agents under this heuristic
will immediately put retrieved processed food on the service counter.

C Experiment Hyperparameters

This section provides details of the hyperparameters and neural network architectures used in our teammate
generation experiments.

• When optimising BRDiv, we run 32 parallel threads to collect self-play experiences during training.
Meanwhile, the remaining methods use 160 parallel threads to gather self-play experiences used
during their teammate generation process.

23

Under review as submission to TMLR

• Aside from the threads used to gather self-play experiences, we use 128 parallel environments to
collect cross-play experiences when optimising BRDiv.

• All evaluated methods have their actor and critic networks updated every 8 timesteps.

• γ is set to 0.99.

• The generated actor networks alongside the critic network are trained using Adam optimiser (Kingma
& Ba, 2014) with a learning rate of 10−4.

• We clip the gradients of the model so that it always lies between -1 and 1.

• Each actor network corresponding to policies in the generated Πtrain and BR(Πtrain) are implemented
as multilayer perceptrons. The size of these networks for each environment is detailed below:

– Cooperative Reaching. The model comprises of four hidden layers with 128, 256, 256, and
128 neurons respectively.

– LBF. The model comprises of two hidden layers, each consisting of 128 neurons.
– Simple Cooking. Our network for this environment has two hidden layers with each layer

having 256 neurons.

• We also associated different weights to the optimised loss functions when generating Πtrain using
our proposed method, TrajeDi, Any-Play and the independent baseline. The weights of each loss
function optimised by these methods are detailed below:

– For all methods, the critic loss function for SP data is also set to 1.0. Meanwhile, BRDiv assigns
a weight of 1.0 to the loss function that minimizes the critic loss function following cross-play
interaction data.

– For BRDiv, the weights of the losses optimised for training the actor networks is set to 25.
– The Jensen-Shannon Divergence term maximised by TrajeDi is given a weight of 10−3. We

arrive at this value after finding the largest possible weight from {10−1, 10−2, 10−3, 10−4} that
still ensures every policy in Πtrain to achieve optimal performances in the environment when
collaborating with its associated best response policy.

– The weights of Any-Play’s intrinsic reward to maximise diversity between populations is tuned
in the same way as how we tuned the Jensen-Shannon Divergence weights for TrajeDi. This
results in the intrinsic reward weights of 10−2, 10−3, and 10−3 for Cooperative Reaching, LBF,
and Simple Cooking.

– The classifier Any-Play uses to compute the intrinsic rewards uses the same architecture of other
methods’ critic networks. The term associated with the supervised learning loss utilised to train
this classifier is also set to 1.

– For TrajeDi, Any-Play, and the independent baseline, the weights associated with the term
that maximises the self-play performance between a policy in Πtrain and their associated best
response policies is set to 1.

24

	Introduction
	Related Work
	Background & Setting
	Decentralised Partially Observable Markov Decision Process
	Teammate Policy Generation

	Best-Response Diversity-based Teammate Generation
	Desirable Diversity for AHT
	BRDiv Metric

	MAA2C-Based Diversity Optimisation
	Experiments
	Environments
	Experiment Protocol
	Baselines
	AHT Evaluation
	Behaviour Evaluation

	Conclusion & Future Work
	BRDiv Pseudocode
	Heuristic-based Teammates
	Cooperative Reaching
	LBF
	Simple Cooking

	Experiment Hyperparameters

