Graph-O-Planner: Injecting Graph Neural Tool Embeddings into LL.Ms
for Efficient and Accurate Task Execution

Anonymous ACL submission

Abstract

Recent advancements in Large Language Mod-
els (LLMs) have enabled the development of Al
agents capable of multi-step reasoning. How-
ever, deploying these agents in real-world appli-
cations requires planners that adapt to domain-
specific tools and workflows, where traditional
prompting frameworks often struggle to ac-
curately represent available functional depen-
dencies. To address this gap, we propose
Graph-O-Planner, a novel graph-learning
method that explicitly encodes tool relation-
ships and execution sequences into LLM plan-
ning. Our approach constructs graph embed-
dings of available tools, enabling agents to dy-
namically map dependencies while minimizing
context window overload. Evaluations across
multiple benchmarks, including UltraTool and
Task Bench, demonstrate that Graph-O-Planner
achieves up to 68 % higher and 60 % higher
performance with our approach, compared to
state-of-the-art hybrid graph+LLM based plan-
ners and LLM-finetuned planners respectively,
while significantly reducing any hallucinations
in LLM generation. The method’s tool knowl-
edge compression further reduces inference la-
tency by 20%, validating its effectiveness in
resource-constrained environments and mak-
ing it more compatible for real-life practical
deployment. We release our code here!.

1 Introduction

The advent of Large Language Model (LLM)-
powered agents marks a paradigm shift in artifi-
cial intelligence, with transformative potential for
real-world applications ranging from autonomous
robotics to precision medicine. Early implemen-
tations like HuggingGPT (Shen et al., 2023a)
demonstrate problem-solving flexibility in con-
trolled benchmarks, and agents such as Voyager
(Wang et al., 2023a) showcase emergent strategic
reasoning in gaming environments.

"https://anonymous.4open.science/r/Graph-O-Planner-
16B3

Effective planning modules with precise tool
alignment are essential for developing practical
Al agentic systems in both consumer and industrial
applications. Recent advances leverage prompt-
ing strategies to decompose complex tasks: Wei
et al. (2022); Yu et al. (2025) pioneered Chain-of-
Thought(CoT) reasoning through sequential step
generation, while Wang et al. (2023b) introduced
plan-and-solve prompting for systematic task de-
composition. Yao et al. (2024) later expanded these
concepts with tree-based reasoning architectures.
A parallel research trajectory has focused on trans-
lating these reasoning structures into executable
tool operations (Schick et al., 2023; Shen et al.,
2023b; Singh et al., 2023; Song et al., 2023).

These methods, however, are purely prompt-
based and use LL.Ms deployed on the cloud. This
centralization exposes sensitive data to privacy
risks, incurs network-dependent latency, and com-
plicates regulatory compliance. Another focus has
been locally deployable solutions (Erdogan et al.,
2024; Wu et al., 2024) where the model is finetuned
for planning and tool-calling. Locally deploying
preserves data privacy and minimizes inference de-
lay, yet small to mid-sized models introduce their
own constraints. We describe these constraints:

1. Challenge 1. Tool Hallucination/ Tool
Grounding significantly drives down task-
sequence determination, especially with a big-
ger set of tools/sub-tasks (CodeLlamal3B and
GPT3.5 Turbo see 60% hallucination in edge
prediction with a set of 260 sub-tasks) (Wu
et al., 2024).

2. Challenge 2. Fixed Context: The limited
context window of LLMs prevents them from
handling a large number of tools, often forcing
tools to truncate from the context.

3. Challenge 3. Token Overhead and Latency
Issues: Tool usage in current systems involves
repeatedly injecting detailed descriptions of

 https://anonymous.4open.science/r/Graph-O-Planner-16B3

tools into prompts. This token increase leads
to quadratic increase in memory requirements
due to attention, impacting latency during in-
ference

4. Challenge 4. Shallow GNN+LLM Fusion:
Existing GNN+LLM hybrid lacks deep struc-
tural grounding, limiting planning quality and
scalability.

We draw upon these insights to propose a frame-
work that effectively uses GNN for tool information
injection during task-planning. Building upon the
initial work done by Wu et al. (2024), we propose
Graph-O-Planner, that represents tools as nodes
in a dynamic graph, leveraging Graph Neural Net-
works (GNNs) to capture functional dependencies
and enable scalable tool representation. By fusing
GNN with Large Language Models (LLMs), we
create a more grounded and hallucination-resistant
decision-making process while reducing latency
and memory requirements.

Our main contributions are summarized as:

* To the best of our knowledge, Graph-O-
Planner is the first attempt to deeply integrate
multilevel interaction of a GNN with LLMs
for task planning. This setup uses the lan-
guage understanding skills of LLLMs in con-
junction with the effective information propa-
gation capability of GNNss.

We show the efficacy of adding GNN based
interaction by comparing against LLM-only
models. Graph-O-Planner improves upon the
finetuned LLM performance by nearly 60%
while beating hybrid LLM+graph-based base-
lines by 35%.

* By incorporating dependency-aware tool
graph reduces tool hallucination metrics by
13%, ensuring that model generates correct
tool names instead of similar looking tool
names. It further reduces the context tokens
which is a major bottleneck for local deploy-
ment and speeds up inference by 1.25x.

2 Related Work
2.1 GNN-based Learning

Recent works employ task graphs to model inter-
linked sub-tasks and align LLMs with tool-relevant
information. GNNs demonstrate strong capabil-
ities for complex decision-making (Khalil et al.,
2017; Xu et al., 2019; Dudzik and Velickovic,
2022). Graph-based QA systems have successfully

leveraged external KGs for factual queries through
LLMs, using relevant subgraph retrieval (Luo et al.,
2023; Zhang et al., 2023, 2024; Yao et al., 2022).
GNNs have also been shown to enhance LLMs’
ability to model textual relational structures. While
transformers (Guo et al., 2025; Chung et al., 2022;
Dubey et al., 2024; Yang et al., 2024) dominate
sequential processing, they falter with long-range
dependencies like tool relationships. GNNs over-
come this by representing text as graphs (Huang
etal., 2019; Pham et al., 2023; Zhu et al., 2021), im-
proving LL.Ms’ understanding of local and global
patterns (Wu et al., 2024, 2021).

2.2 Tool Graph-based Planning

Taking inspiration from KG based learning(Liu
et al., 2021; Wang et al., 2021; Ye et al., 2022;
Tena Cucala et al., 2022; Chen et al., 2020), train-
ing GNN using task graphs has become a powerful
tool for task planning, enabling the modeling of
complex dependencies between tasks, resources,
and constraints. They have been applied across di-
verse domains, including MoE task planning (Zhou
et al., 2022; Cai et al., 2024; Li et al., 2025) and
multi-agent coordination (Wu et al., 2023; Chan
et al., 2023; Talebirad and Nadiri, 2023; Nasci-
mento et al., 2023) by facilitating decentralized
decision making.

3 Preliminaries

In this section, we describe tool graphs, which we
define as dynamically changing graphs. Subse-
quent paragraphs provide a detailed explanation of
tool graphs, including their structure, tool descrip-
tions & input/output formats.

Tool Graph: Let G = (V, E, A, T, X) where,
V is a set of tool nodes, E corresponds to edges
between node embedding (v;—v;) if output of V;
can be fed to V. A denotes the edge weight matrix
between pair of nodes, such that A[i, j] € (0, 1],
if v;,v; € Vand (v;,v;) = e;; € E, and 0
otherwise. Tool information is defined as 7' =
{n, d,z’,o}‘&‘:l), where n is k" tool name, d is
k" tool description, 7 and o corresponds to k" in-
put and output format of tool respectively. Thus,
X = Emb(T), where Emb is the embedding func-
tion. X = {xi}‘&‘:l) contains feature embedding
of tool’s information for each v; € V.

Planning task definition: A task query () can
be decomposed into sub-tasks S = s1, S9... Sy,
such that each sub-task s; can be completed by
an unique tool v;. The objective is to construct

\ Final Qutput

LM GNN
g Image Segmentation > Tabular
+ L N Classification
‘ Transformer Layer | (oRA erlaE Tabular Classification > Translation
Transiation > Text-to-Speech
EE) eee
= Tabular
‘ Transformer Layer | + I™~—- GAT Layer 0.977\ Classification
} LoRA Image
Segmentation, 0.07
EEE— 0.93
‘ Transformer Layer | + (oRA GAT Layer Token
B — Mx Classification
D)
T 0.15
\ Text-2-Speech Je—,
Transformer Layer | + T Tool Translation
0
Nx Preprocessor Tagﬁﬁmph

t

t

Steps
| "Step 1: Divide the input image into
| segments using the Image Segmentation |
] tool.” :
| "Step 2° Classify the segmented image as H
i atable using the Tabular Classification

User Input

Ex: | have an image
of a table 'agc jpg’ in
a foreign language. |
want to extract the
information from the
table, transiate it into
English, and
generaie an audio
file of that translated

table.
o

H tool ",

: "Step 3: Translate the text obtained from :

| the table into another language using the

i Translation tool.”, :
"Step 4: Generate a natural sounding

. speech from the translated text using the 3

" Text-to-Speech tool.” 4

[{"id": "Token Classification”

understanding task in which a
!+ |label is assigned to some tokens

task of converting text from one

Tool Info

I:l Trainable Parameters
(I
L]

Frozen Parameters
‘desc™ "Token classification
is a natural language

Optional Input

in atext]\,

{"id™: "Translation",
"desc™ "Translation is the

language to another" }]

Figure 1: Overall schematic block diagram of Graph-O-Planner including data flow, key component and internal
interactions. Yellow layers in the diagram represent trainable parameters, while purple indicates frozen parameters.

Tool Graph

Final Tool

*" 7x Graph Attention layers

(Edge encoding)

i

Input

hn)

I’

W,

in

- Fesd N\ -
.®®® = /m\... \/

3

Graph Output

N X Message Aggregation

. Lesmasie eants :
1) W, | Edge scored
N ~B2) | o,

nnl w
) e

G=(V,EXAY)

Figure 2: Creation of dependency-aware tool embeddings from GNN

a Directed Acyclic Graph (G) that represents the
sequence of processes to solve query (). This can
be formally represented as:

DAG:(01—>2)2—>... —)’Up)

showcasing the sequence of tools that needs to
be executed in order to solve the query (). Each
tool v; is connected to the next tool v;4; through a
dependency edge.

4 Graph-O-Planner

We introduce Graph-O-Planner, a novel graph-
infused learning framework for task planning, to
effectively align task steps to the available tools.
Figure 1 illustrates the pipeline of our proposed
approach. We first convert the target dataset into
an aligned tool-graph, incorporating the tool name,
description, required inputs and generated output
(Section 4.1). This is then passed to a GNN to cre-
ate its aligned node embeddings & edge scores at
each layer, as defined in Section 3. Finally, a layer-
wise knowledge injection method is utilized to in-

ject knowledge from GNN layers to corresponding
LLM layers (Section 4.3). This allows the LLM
to effectively map the subtask to the correct tool
sequence. The rough decomposed plan (attained
from any global LLM) is processed sequentially
through the LLLM layers with injected information
from the GNN to generate a sequence of tools as a
DAG to be executed. With Graph-O-Planner, both
LLMs and GNNss are trained in alignment with in-
jected knowledge, to allow the model to build an
understanding of how a subtask relates to a particu-
lar sequence of nodes in the available tool graph.

4.1 Tool Graph Creation

We first encode dataset’s Tool information using
a text encoder. We chose ModernBERT Large
(Warner et al., 2024) which outperforms other
encoder-based language models on Natural Lan-
guage Understanding (NLU) and retrieval tasks.
Using the encoder model we generate a tool’s em-

bedding representation x.

x; = Emb(Tool Name, Tool Desc.,

1
ToolInputs, Tool Output) M

where z; is i*" tool embedding and Emb is embed-
ding model. For a given set of task steps, some
nodes and edges are more semantically relevant
than others. To effectively model this by leverag-
ing core semantic information, the edge connec-
tions between the tools are scored. Alignment with
the requirements of the decomposed task steps is
obtained by using a bilinear layer to estimate the
relevance score for each edge given the embed-
ding of the sub-task. Finally, these embeddings are
normalized to increase computational efficiency.
Motivated by Jang et al. (2017), we used Gumbel
softmax approach to model the output as soft la-
bels with a stop gradient mechanism to address the
problem of gradient propagation of hard labels dur-
ing backward pass. The node and the scored edge
embeddings together comprise the required Tool
Graph (defined in Section 3).

4.2 Dependency-Aware Tool Graph

The scored tool graph is then passed through a
graph network, to obtain its graphical embedding
representation at every layer. This is pictorially
shown in Figure 2. We use Graph Attention (GAT)
layers for encoding the tool info graph representa-
tions X = {x129,....z,}, via iterative convolu-
tional operations between neighboring nodes of the
graph network.

1. Edge Encoding
Given a graph, G = (V, E, A, T, X) (refer
section 3), with node features hé € R% (ini-
tially h? = z;,x; € X), and auxiliary node
features ¢ € RIF1%4 our goal is to learn node
representations that captures structural neigh-
borhood patterns and edge semantic relation-
ship. For each edge ¢;; € £, we obtain its
encoding €;; as:

€ij = fedge(Pe;; © T, D Thy) (2)

where f,q4¢ is a multi-layer MLP, d)eij repre-
sents the Gumbel Softmax of edge e;;, and
T, and Tk; represents the Gumbel Softmax
of node k; and k; respectively, with @ as the
concatenate function.

2. Multi-Head Heterogeneous Attention
Each edge’s representation ¢;; is then uti-

lized to transform node representations us-
ing a multi-head heterogeneous attention, M.
Specifically, for each graph node, we obtain
the normalized attention of the pre-head com-
putations. The node embedding h; is obtained
by concatenating () node features and its fea-
tures of its neighboring edges NN (7), to better
capture neighborhood patterns every iteration:

ﬁi = hi D @ €ij (3)
JEN()
The pre-heads of Key, Query and Value for
the k-th node are thus computed as:

QF = Whh; @)
K} =Wihi)
Q= Wihi ©)
which is then normalized based on the degree
of the node:
) k Lk
akfﬁ*e <q]7 Z> @)

vz P Vd
(g5 kF)
where Z; = > icn@)dj * exp = and

d; = |N(7)| is the out degree of node j.

3. Message Aggregation
The multi head attention output are aggre-
gated through a two stage process to synthe-
size neighborhood information. First for each
attention head k, messages from neighboring
nodes are weighted by their normalized coef-
ficients afj producing head-specific represen-

tations

mf = Z (af}vfj))

JEN(3)

These head embeddings are then concatenated
across all £ heads and linearly projected to the
original dimension d using learnable weights
W, to obtain M - edge aware attention. This
ensures structured fusion of heterogeneous
relation patterns. The hybrid approach re-
tains structural information while allowing the
model to learn incremental feature updates,
balancing neighborhood influence with node-
specific characteristics.

Finally, we use a three phase computation over
the edge-attention M to obtain the embeddings for
every time-stamp:

H'""' = MLP(Agg(M(H',E,¢))) (9

‘We use an additional node, master node which con-
nects to all the nodes in the graph to pool the repre-
sentations of all the nodes and obtain representation
of the graph.

4.3 Deep Fusion of GNN with LLM

Finally, we inject the GNN knowledge into LLM
layers for effective tool-aligned subtask creation.
For a chosen subset of LLM layers, the standard
multi-head self-attention and feed-forward layer is
extended to fuse the modalities between text and
graph domain. The pooled representation of the
graph embeddings i.e. representation of the master
node H from equation 9 is fused by concatenating
() with LLM decoder module to obtain an inter-
mediate representation /. formulated as follows:

Ic = {ekey b wkegp equery S wqueryv

(10)
evalue @ f‘/}value}

where 1); are aligned values obtained from GNN
after passing through two Feed Forward Layers.
The injection pipeline is aligned with the LoRA
layers of the LLM to avoid re-training of the com-
plete LLM. As the knowledge injection methodol-
ogy only needs aligned layer output fusion, it is
independent of the architecture of the LLM in use.

S Experimental Setup and Results

In this section, we describe the training setup
and datasets used. We also enumerate a detailed
set of experiments to evaluate the performance
of Graph-O-Planner against state-of-the-art graph-
based baselines and LL.Ms finetuned on four open-
source datasets. For our primary pipeline, we
choose Flan-T5-XL (3B) as the LLM with a LoRA
of rank 8 and alpha 16. All models are trained us-
ing Adam Optimizer, with the batch size of 32 and
learning rate of 1e — 4 and 3e — 4 for the LLM and
GNN respectively. All models are trained using
A-6000 GPU in a Pytorch framework and CUDA
12.6. We provide specific hardware and software
versions information in appendix A.2

5.1 Datasets

We train and evaluate our model on four open
source datasets, UltraTool (Huang et al., 2024),
HuggingFace, Multimedia and TaskBench-Daily
Life (Shen et al., 2023b). Each dataset is converted
to a Tool Graph as described in Section 4.1. De-
tailed dataset description has been provided in the
Appendix A.6.

Nodes vs Links (Count) All Data vs Test Set Samples

uuuuuu

Figure 3: Statistics of tool graph and samples of
datasets.

=l Data Som

Test Set Somples
5000
g & 1000

- H
10 3000
2000
1000
0
Daily Lte UtraToo! Woggingface Multmedia DailyUfe Utiaol

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

5.2 Results & Analysis

We present our model performance across accu-
racy, hallucination and latency metrics, detailed
in the section below. In all experiments, our base
pipeline uses FlanT5-XL as LLM and a GAT GNN.
We compare our model performance against vari-
ous existing SOTA models. We also demonstrate
the impact of a graph based knowledge injection
by comparing the performance against traditional
LLM only approaches, shallow GNN interaction
methods and reasoning only based settings. We
report tool and sequence performances along with
hallucination and model latency for all four target
datasets in below sections.

5.2.1 Tool and Sequence Detection

The primary requirement of a tool aligned planner
is to ensure that the model is able to correctly pick
from the provided set of available tools. A planner
that provides a "somewhat-correct” output is not
scalable in a real-life application. We thus measure
node prediction F1-score as a primary metric of per-
formance evaluation. Node-F1 score is estimated
as the correctness of predicted tool nodes required
to complete a given task.

Another crucial performance metric is to ensure
that the correct nodes are detected in the correct
sequence. Thus, the edges between various task
nodes and their relative sequence is of utmost im-
portance. Accordingly, we design Edge-F1 score
which compares the predicted links with the ground
truth edges, using the tool network topology popu-
lated adjacency matrices. We present the edge and
node F1 algorithm in Appendix A.9.

For F1 scores, the set of predicted nodes/edges
and set of ground truth nodes/edges is used for each

Method/Dataset Huggingface Ultratool Multimedia Dailylife
Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1

Mistral7b + GraphToken* 20.08 32.55 62.15 64.57 6857 85.63 35.06 7457 63.71 69.42 7357 92.50
€5-335M + GraphSAGE* 24.74 40.60 66.52 37.56 42.36 71.23 62.37 70.25 88.86 86.57 85.80 97.42
€5-335M + GCN* 16.36 30.23 60.06 46.23 3254 63.54 61.25 50.76 73.34 75.49 6549 86.39
€5-335M + GIN* 2331 3937 65.77 57.84 3725 69.25 62.55 69.84 88.74 84.49 82.65 93.36
€5-335M + GAT* 23.39 40.66 66.44 60.25 40.23 80.23 63.69 70.24 88.90 89.91 89.32 97.21
€5-335M + GraphTransformer* 24.54 41.64 66.92 46.42 57.68 76.38 NA 70.24 88.90 NA 85.80 9743
Qwen 2.5 Coder 3B} 81.32 68.23 87.77 74.80 7857 91.87 2148 26.96 56.94 89.86 91.83 99.24
Deepseek R1 1.5B f 79.28 80.22 84.33 85.28 89.27 87.33 82.25 83.24 81.27 87.23 88.23 86.24
Flan T5 XL} 49.0 6348 74.11 73.8 73.87 83.87 4340 5825 58.25 63.87 48.77 66.45
RAG + Qwen 2.5 Coder 3B (not fintuned)y) 32.8 42.86 40.09 56.8 46.84 38.36 30 32.89 36.65 30.13 3256 36.36
RAG + Qwen 2.5 Coder 3B (finetuned) 1 75.00 76.33 78.26 95.56 95.87 96.56 75.6 76.82 78.76 96.8 96.00 96.41
Graph-O-Planner(Ours) 82.6 89.73 97.36 97.39 97.73 99.19 92.0 9355 99.13 96.81 95.59 99.82

Table 1: Accuracy, Edge-F1 and Node-F1 scores across all four datasets. All result are in (%) with the best bold and
runner-up underlined. * indicates hybrid LLM+graph based approaches and that the numbers are sourced from Wu
et al. (2024). T indicates LLM-only models finetuned for each dataset. ¢ indicated Retrieval Augmented Generation
(RAG) based results. The information about the baseline models are described in Appendix A.7.

sample ¢ among N total samples.

Precision — 1 i |Predicted; N Ground Truth;|
- N 1=1

|Predicted, |

a1
N .
1 |Predicted; N Ground Truth,|
Recall = —

eca N ; |Ground Truth;|
(12)
Fl Score — 2 - Precision - Recall (13)

Precision + Recall

‘We also evaluate the success rate at the task level
using the Accuracy (Acc) metric. The Accuracy
metric is defined as:

N
1
Accuracy = - S IFL=1) (14
=1

Here, I(F1; = 1) is an indicator function that
assigns a value of 1 if the F1 score for a given task
1 1s perfect (i.e., all nodes are correctly predicted),
and O otherwise. This binary evaluation allows us
to assess the model’s ability to accurately predict
all nodes in a task.

Table 1 shows our performance across four dif-
ferent datasets, which included a variety of task
types and complexities. This suggests that our
method is flexible and can be applied to differ-
ent problems and datasets. Specifically, across
the more voluminous ultratool dataset (with
260+ tools), Graph-O-Planner shows a 33% im-
provement over older graph interaction meth-
ods and 8% improvement against Deepseek, 54%
improvement againt retrieval+prompt based set-
tings and 6.4% accuracy improvement against
retrieval+finetune. even when the pipeline using
a lesser competent llm (Flan-t5). This improve-
ment is even more significant when considering the

more convoluted huggingface dataset, with Graph-
O-Planner seeing nearly 68 % improvement over
previous models as presented in Table 1.

5.2.2 Tool Hallucination Reduction

We also demonstrate the efficacy of integrating
GNNs in reducing hallucination in LLMs. We use
two hallucination metrics: micro hallucination and
macro hallucination. These metrics are designed to
quantify the extent of hallucination in the predicted
sets of nodes compared to the ground truth sets.

Let N be the total number of samples, F; be the
predicted set of nodes for the i sample, and let V/
be the set of valid nodes.

Micro hallucination calculates the fraction of
predicted nodes that are absent in the ground truth,
averaged over all samples, represented as:

B\ V]

15
r P

. T
Micro Hallucination = N Z
=1
where | P; \ V| represents the number of nodes
in FP; that are not in V, essentially the number of
hallucinated nodes in the prediction.

Macro hallucination checks if any of the pre-
dicted nodes are absent from the ground truth and
assigns 1 if at least one node is absent, O otherwise,
and then averages over all samples:

N
o 1
Macro Hallucination = N z; I(P\V #0)
i

(16)
where I(P;\'V # () equals 1 if there are any
nodes in P; not in V' (i.e., P; \ V is not empty),
and O otherwise.

As shown in figure 4a and 4b, our proposed
GNN-based approach achieves a substantial reduc-
tion in prediction hallucination, with a 13% de-
crease in incorrect edge predictions.

B2 Flan T5 XL
X Graph-O-Planner

Micro Hallucination (% age)

Multimedia Dailylife Ultratool

Datasets

Huggingface

(a) Micro hallucination in Flan TS XL vs Graph-O-
Planner

B2 Flan T5 XL
X Graph-O-Planner

Macro Hallucination (% age)

Multimedia Dailylife Ultratool

Datasets

04 :
Huggingface

(b) Macro hallucination in Flan TS XL vs Graph-O-
Planner

Figure 4: Tool Prediction Hallucination in Flan TS XL vs Graph-O-Planner

The results suggest that the GNN’s ability to
model complex structural relationships between
tasks is instrumental in mitigating hallucination.
By representing task sequences as graphs and lever-
aging the strengths of GNNs, we can better cap-
ture the nuances of task dependencies and generate
more accurate and contextually relevant responses.

5.2.3 Model Latency

A complementary benefit of our proposed approach
is the reduction in input context size during both
training and inference as presented in more detail
in Appendix A.5. In the current literature, train-
ing Large Language Model (LLM) planners pass
all the tool information, including name, descrip-
tion, input/output format, directly to the prompt
resulting into longer context with a large number
of tools, as seen in the Ultratool dataset. Even with
context length of 8192, we observed a spill-over
of input tokens. Since we inject tool knowledge
as tool embeddings directly into the Graph Neural
Network (GNN) layers, while the LLM focuses on
the input query and the steps needed to execute the
task. This makes it a more scalable and reliable
solution for handling complex task sequences and
a large number of tools.

This also significantly reduces inference time
latency, as shown in Figure 5, making it more suit-
able for real-time applications due to the reduced in-
put size, computational requirements, and focused
input context. Our method achieves faster infer-
ence than encoder-decoder, reasoning, and prompt-
based LLMs. Compact inputs and rapid generation
enable more efficient, reliable outputs with fewer
hallucinations.

30000

BN Deepseek R1 1.58
=3 Qwen 2.5 Coder 38
= Flan T5 XL

BB Graph-O-Planner

25000

20000

15000

Time {ms/query)

10000

5000

Huggingface Multimedia Dailylife Ultratool

Datasets

Figure 5: Inference time comparison of different models.
The bar plot illustrates the average inference time (in ms)
for each model, highlighting performance variations.

5.3 Ablation Study

1. Effect of Number of GNN Layers. We fur-
ther conducted a study to evaluate the impact of
varying GNN layer depths (2, 5, 10) across tool
graph datasets of different structures and reported
the result in Table 3. We observe that for smaller
tool graphs such as huggingface, multimedia and
dailylife, lesser layers of GNN suffice. Increasing
the number of layers can cause a negative effect
due to over-smoothing effect. For UltraTool with
260 tools, 5 GNN layers perform the best. For the
Ultratool graph increasing depth from 2 to 5 lay-
ers yielded statistically significant improvements
in edge prediction (edge-F1: 95.79% — 97.73%),
accompanied by a marginal yet consistent gain in
node prediction (node-F1: 98.83% — 99.19%).
Performance degradation at 10 layers (edge-F1:
97.26%) aligns with established phenomena of
over-smoothing in excessively deep architectures.
Conversely, datasets with dense connections but
less number of nodes such as dailylife and hug-

Method/Dataset Huggingface Ultratool Multimedia Dailylife

Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1
Message Passing 88.25 96.21 97.56 98.88 93.55 97.11 95.06 97.51
GCN 90.15 97.50 97.73 98.99 92.80 99.05 94.96 98.85
SGC 89.73 97.23 97.20 98.99 9143 99.00 95.43 99.82
GAT 89.73 97.36 97.73 99.19 91.49 99.13 95.59 99.82

Table 2: Effect of different GNN networks used in Graph-O-Planner, evaluated on Node -f1 and Edge-f1. All result

are in (%) with the best bold and runner-up underlined.

Layers/Dataset Huggingface Ultratool Multimedia Dailylife
Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1
2 89.73 97.12 95.79 98.83 93.52 98.87 95.59 99.84
88.74 97.36 97.73 99.19 93.18 99.13 92.78 99.71
10 88.8 98.96 97.26 98.72 93.55 99.04 94.54 99.82

Table 3: Performance comparison across datasets by GNN layer depth. For each dataset best performing epoch in
15 epochs is reported in above table. Best numbers were highlighted in bold.

gingface exhibited peak edge-F1 scores at 2 layers
(95.59% and 89.73%, respectively), with deeper
configurations inducing performance declines (dai-
lylife edge-F1: 92.78% at 5 layers). Node predic-
tion metrics remained stable across depths for these
datasets (node-f1 A < 0.2%), suggesting limited
utility of extended neighborhood aggregation in
locally cohesive graphs.

2. Comparison of different GNN ap-
proaches. We experiment with different GNN
approaches, namely Message Passing Neural Net-
works (MPNNs), Simplified Graph Convolution
(SGC), standard Graph Convolutional Networks
(GCN) and Graph Attention Networks (GAT). The
experimental results presented (Table 2) demon-
strate that GAT outperforms other GNNs for Ul-
tratool, Multimedia and Dailylife and second best
performance on Ultratool.

3. Other Design Choices - In addition to the
type and size of GNN used, Graph-O-Planner
reuses some of modules and techniques that have
been proven as state-of-art in earlier works. As
discussed earlier, we use frozen ModernBERT to
encode the task graph information. It provides
strong semantic representations while maintaining
a lightweight and efficient architecture in compari-
son to previous work such as BERT and DeBERTa
(discussed in Warner et al. (2024)). Our decision to
freeze the encoder ensures that the entire learning
capacity is focused on the GNN and LLM layers,
keeping the pipeline modular and resource-efficient.
Additionally, instead of normal softmax, we choose
to use Gumbel Softmax. The recent work of (Zhang
et al., 2024) validates the increased efficacy of us-

ing gumbel softmax for graphical architectures. As
these choices are derivative usages of proven SOTA
techniques, we do not include detailed insights into
variations caused by these design choices. We pro-
vide more details of multi-layer and multi-level
interactions in Graph-O-Planner in Appendix A.8.

6 Conclusion

In this work, we propose Graph-O-Planner, a graph-
based task selection method for generalized agent
planning. Traditional prompt based methods of
LLM based agent creation are hindered by con-
cerns related to ever increasing tool context length,
hallucinations and inductive biases. We propose
using a GNN based network to effectively em-
bed the information of the available tools, and use
a knowledge-injection methodology in Graph-O-
Planner to empower the LLM to map the sub-tasks
to the appropriate tool sequence. Our method en-
ables a more modular and flexible architecture by
decoupling tool knowledge from the input prompt
and injecting it into GNN layers, allowing for seam-
less integration of new tools and task sequences
complementing the LLLM for better performance
as presented in Appendix A.3. We evaluate our
model across 4 open-source datasets, comparing
with multiple existing SOTA methodologies. As
noted in results, we beat existing benchmarks by
significant levels, enforcing the efficacy of the pro-
posed model. The impact of tool information com-
pression is also seen in inference latency, with a
1.25x improvement in inference speed. To the best
of our knowledge, proposed work is the first of
its kind, exploring a deeply integrated GNN-LLM
framework for effective task planning.

Limitations

Despite encouraging performance, this work is only
the beginning of exploring the GNN-LLM interac-
tion in-depth. We also want to extend the pipeline
to make the planning truly generalizable across any
unseen tool-graph, task type, ambiguous data and
erroreneous formats/descriptions. In real-life appli-
cation scenarios, the available tools and user prefer-
ences will be constantly evolving and varied from
person-to-person. A truly intelligent agent should
be able to effectively generalize across all such in-
teractions without the need of any fine-tuning or
adaption. We aim to look into more details on these
in future works.

References

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang,
Sunghun Kim, and Jiayi Huang. 2024. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. 2023. Chateval: Towards better 1lm-based eval-
uators through multi-agent debate. arXiv preprint
arXiv:2308.07201.

Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A
review: Knowledge reasoning over knowledge graph.
Expert systems with applications, 141:112948.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
arXiv preprint.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Andrew J Dudzik and Petar Velickovi¢. 2022. Graph
neural networks are dynamic programmers. Ad-
vances in neural information processing systems,
35:20635-20647.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Se-
hoon Kim, Ryan Tabrizi, Suhong Moon, Coleman
Hooper, Gopala Anumanchipalli, Kurt Keutzer, and
Amir Gholami. 2024. Tinyagent: Function calling at
the edge. Preprint, arXiv:2409.00608.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng Wang. 2019. Text level graph
neural network for text classification. arXiv preprint
arXiv:1910.02356.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024. Planning, creation, us-
age: Benchmarking llms for comprehensive tool uti-
lization in real-world complex scenarios. Preprint,
arXiv:2401.17167.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cat-
egorical reparameterization with gumbel-softmax.
Preprint, arXiv:1611.01144.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina,
and Le Song. 2017. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural
information processing systems, 30.

Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo,
Lu Xu, Fan Chen, Jitesh Jain, Humphrey Shi, and
Longyin Wen. 2025. Cumo: Scaling multimodal 1lm
with co-upcycled mixture-of-experts. Advances in
Neural Information Processing Systems, 37:131224—
131246.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor
Kostylev. 2021. Indigo: Gnn-based inductive knowl-
edge graph completion using pair-wise encoding. Ad-
vances in Neural Information Processing Systems,
34:2034-2045.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2023. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv
preprint arXiv:2310.01061.

Nathalia Nascimento, Paulo Alencar, and Donald
Cowan. 2023. Self-adaptive large language model
(Ilm)-based multiagent systems. In 2023 IEEE In-
ternational Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C),
pages 104—-109. IEEE.

Phu Pham, Loan TT Nguyen, Witold Pedrycz, and
Bay Vo. 2023. Deep learning, graph-based text
representation and classification: a survey, perspec-
tives and challenges. Artificial Intelligence Review,
56(6):4893-4927.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539—68551.

https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2409.00608
https://arxiv.org/abs/2409.00608
https://arxiv.org/abs/2409.00608
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023a. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face. Preprint, arXiv:2303.17580.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023b. Taskbench: Benchmark-
ing large language models for task automation. arXiv
preprint arXiv:2311.18760.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA),
pages 11523-11530. IEEE.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-
agent collaboration: Harnessing the power of intelli-
gent llm agents. arXiv preprint arXiv:2306.03314.

DJ Tena Cucala, B Cuenca Grau, Egor V Kostylev, and
Boris Motik. 2022. Explainable gnn-based models
over knowledge graphs.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023a. Voyager: An open-
ended embodied agent with large language models.
Preprint, arXiv:2305.16291.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqgiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023b. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, and
Philip S Yu. 2021. Dskreg: Differentiable sampling
on knowledge graph for recommendation with rela-
tional gnn. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management, pages 3513-3517.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallstrom, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

10

Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Han-
ning Gao, Shucheng Li, Jian Pei, and Bo Long. 2021.
Graph neural networks for natural language process-
ing: A survey. CoRR, abs/2106.06090.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Si-
wei Wang, Bohang Zhang, Jiarui Feng, Hong Cheng,
Wei Chen, Yun Xiong, et al. 2024. Can graph
learning improve task planning? arXiv preprint
arXiv:2405.19119.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks. Preprint,
arXiv:2309.17453.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du,
Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2019.
What can neural networks reason about? arXiv
preprint arXiv:1905.13211.

Peng Xu, Xinchi Chen, Xiaofei Ma, Zhiheng Huang,
and Bing Xiang. 2021. Contrastive document rep-
resentation learning with graph attention networks.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3874-3884, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Yunzhi Yao, Shaohan Huang, Li Dong, Furu Wei,
Huajun Chen, and Ningyu Zhang. 2022. Kformer:
Knowledge injection in transformer feed-forward lay-
ers. In CCF International Conference on Natural
Language Processing and Chinese Computing, pages
131-143. Springer.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan
Song, and Junsong Wang. 2022. A comprehen-
sive survey of graph neural networks for knowledge
graphs. IEEE Access, 10:75729-75741.

Junwei Yu, Yepeng Ding, and Hiroyuki Sato. 2025.
Dyntaskmas: A dynamic task graph-driven frame-
work for asynchronous and parallel llm-based multi-
agent systems. Preprint, arXiv:2503.07675.

https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://doi.org/10.18653/v1/2021.findings-emnlp.327
https://doi.org/10.18653/v1/2021.findings-emnlp.327
https://doi.org/10.18653/v1/2021.findings-emnlp.327
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675

Qinggang Zhang, Junnan Dong, Hao Chen, Xiao Huang,
Daochen Zha, and Zailiang Yu. 2023. Knowgpt:
Black-box knowledge injection for large language
models. arXiv preprint arXiv:2312.06185.

Yu Zhang, Kehai Chen, Xuefeng Bai, Quanjiang
Guo, Min Zhang, et al. 2024. Question-guided
knowledge graph re-scoring and injection for knowl-
edge graph question answering. arXiv preprint
arXiv:2410.01401.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Informa-
tion Processing Systems, 35:7103-7114.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li,
Markus Pelger, Tiangi Yang, Liangjie Zhang, Ruofei
Zhang, and Huasha Zhao. 2021. Textgnn: Improving
text encoder via graph neural network in sponsored
search. In Proceedings of the Web Conference 2021,
pages 2848-2857.

A Appendix

A.1 Notations

The symbolic notations used in the paper are sum-
marized in Table 4.

A.2 Implementation Details

Detailed information on the experimental setup sec-
tion 5.

Hardware. All the models are trained using Py-
Torch 2.3.1 framework in Python 3.11 conda envi-
ronment. Ubuntu server equipped with four 48GB
Nvidia-RTX A6000 with driver version 560.35.03
and CUDA 12.6 are utilized to perform the study.

Hybrid GNN+LLM Baselines: We used the
repo by Wu et al. (2024) to reproduce the results.

LLM-Only: We used the Transformer library’s
Trainer with LoRA similar to Graph-O-Planner to
train the piepeline.

RAG Baselines We utilize open-source Chro-
maDB framework which uses a hierarchical con-
figuration architecture, employing the all-MiniLLM-
L6-v2 transformer model as its default text em-
bedding engine, which produces 384-dimensional
semantic vectors optimized for cosine similarity
computations through PyTorch-based inference. In-
put text undergoes preprocessing via whitespace
normalization and lexical truncation at 256 tokens
prior to vectorization, with document batches pro-
cessed at 32-sample granularity to balance memory
efficiency and throughput. The system implements
an in-memory HNSW (Hierarchical Navigable

11

Small World) index with empirically tuned param-
eters (ef_construction=200, M=16) to optimize ap-
proximate nearest neighbor search latency. Graph-
O-Planner: GNN. The dimensions of GNN mod-
ule is converted from 1024 embedding size to 200,
which can be modified as per user’s choice and a
variable number of layer of GNN modules between
5 and 7 both inclusive with a dropout of 0.18 ap-
plied within each consecutive layer. Training. All
models are trained using Adam optimizer. Learn-
ing rate of LLM module and GNN module is kept
le-4 and 3e-4 respectively, with batch size of 32.
We choose FLAN-T5-XL(3B) model as LLM for
Low-Rank Adaption (LoRA) training with rank 8
and alpha 16. The maximum token length across
tokenizer is kept variable as per the requirement of
dataset.

A.3 Additional aid to LLM with
Graph-O-Planner

In the figure 6, 7, 8, 9, 10, 11 shown Deyv, test
and loss for only LLLM approach in comparison
with Graph-O-Planner approach. From figure 6
and 7, it is observed that Graph-O-Planner ap-
proach with the help of tool embeddings from GNN
through multilevel interaction learn meaningful in-
sights about the tool graph and surpass 80% edge-
fl in merely 5 epochs and settles at >90% after 10
epochs. While in T5 only training approach we
find that the overall edge-f1 cannot surpass 60%
even after 30 epochs as shown in figure 8 and 11.

We also observed a much reliable training with
Graph-O-Planner approach. As seen from Figure
10, the loss curve much cohesively justifies the
overall loss when compared with the improvement
seen from test eval curve. While for T5 only ap-
proch in Figure 11 we can observe that the loss
drops drastically till 40th epoch, but soon reaches a
stagnant curve, however as can be observed from 9,
the test edge-f1 has a lot of scope for improvement.
From these result we can come to conclusion that
Knowledge fusion between LLM and GNN can
lead to benefits listed below:

* Unified Task Perspective. In our approach,
the LLM can be directly leveraged to produce
outputs for multiple tasks. For varying tasks,
it can either operate in a masked mode using
precomputed embeddings—eliminating the
need for re-computing task graph. This under-
scores our core contribution: the LLM+GNN
functions as a flexible, "plug-and-play" mod-

Notations Definition

G,V,E Tool graph with set of nodes V and edges E

T, A; Features embeddings i-th tool in graph G, A represents adjacency matrix
T Tool information in graph G

Qi i-th query of dataset

S;i = 81,...8n Subtasks of query Q_i

Emb(.) Embedding function representing tool info in graph space for GNN training
h® GNN node representation at step [

M(.) Edge aware attention function

Lo(ess) Encoded edge features obtained after applying Gumbel softmax transform
Lr(w) Encoded node features obtained after applying Gumbel softmax transform
(€ij) Edge representation obtained after concatenation of encoded edge and node features
qf, kf, vfj Query, Key and Value projections of k-th GNN node

afj Normalized node attention based on out degree of k-th GNN node

N(i) Out degree of i-th node

mf Head Specific attention of k-th GNN node after message passing to neighbors
h; Edge representation of GNN node after message passing

1. Intermediate LLM+GNN interaction layer

ekeya 9(111,67"3/7 evalue
¢key7 ¢queryu ¢value

Key, Query and Value obtained from LLM decoder
Key, Query and Value obtained from GNN decoder

Table 4: Notation table in Graph-O-Planner

ule, significantly improving efficiency and per-
formance over conventional large language
model (LLM)-only approaches by storing pre-
computed task graph embeddings and lower
context length requirement.

Integrated Fusion Strategy. Our fusion strat-
egy facilitates concurrent information propa-
gation from tool graphs (hidden embeddings)
and (task-specific output vectors) to the query
input. This enables structured knowledge in-
jection and task-specific adaptation, making
our LLM + Graph Network (GNN) paradigm
superior to LLM-only models, which often
struggle with structural reasoning and compo-
sitional generalization. By leveraging graph
representations, our approach effectively cap-
tures relational dependencies, improving both
adaptability and interpretability across tasks.

A.4 Necessity of GNN integration

Large Language Model (LLM)-only planners re-
quire all tool information—including tool descrip-
tions and capabilities to be included within the
input prompt at both training and inference time.
This quickly becomes infeasible due to the lim-
ited context window of current LLMs (Context
Overflow Problem). When the tool-related con-
tent exceeds the model’s context length, critical

parts of the input are truncated, leading to incom-
plete information available for planning.

Even though models with longer context win-
dows are emerging, they come with practical trade-
offs:

* Latency and Memory Bottlenecks: The la-
tency increases nearly quadratically as atten-
tion has (O(n?)) time complexity. So, when
the prompt size increases linearly, the latency
increases quadratically.

* Windowed Attention Limitations: Many
long-context LLMs rely on windowed atten-
tion mechanisms, which suffer from "window
sink" issues that prevent the model from cap-
turing long-range dependencies across win-
dows, as demonstrated in earlier works (Xu
et al., 2021; Xiao et al., 2024).

To address these limitations, Graph Neural Net-
works (GNNs) encodes and pools tool information
into a fixed-size vector representation, independent
of the number of tools. GNNs are well-suited to
model complex and structured data, capturing long-
range and interdependent relationships between
tools efficiently.

A.5 How Graph-O-Planner overcomes
context overflow and latency problem

The integration of Large Language Models (LLMs)
with Graph Neural Networks (GNNs) presents
a compelling advancement over LLM-only ap-
proaches for task planning, particularly in scenarios
involving an extensive set of tools with complex
specifications. Traditional LLM-based methods
rely on tokenization to encode tool-related infor-
mation, which inherently limits scalability due to
increasing sequence lengths and associated com-
putational costs. In our experiments, we observed
that models such as Qwen struggle when provided
with a large number of tools and their descriptions
in Ultratool dataset. The excessive tokenization
required to process tool details not only constrains
the model’s ability to handle more elaborate queries
but also results in increased latency and memory
overhead, making real-time task planning ineffi-
cient.

Context Overflow mitigation. Our proposed
Graph-O-Planner framework mitigates these limita-
tions by encoding tool information as embeddings
within a graph structure, rather than representing
them as lengthy text sequences. By leveraging
GNN s to store and propagate tool-specific embed-
dings, we significantly reduce tokenization over-
head, enabling the LLM to allocate more of its
token budget toward processing complex queries
rather than repetitive tool descriptions. This struc-
tured approach enhances efficiency by shifting the
burden of tool representation from token-based en-
coding to a graph-based framework, leading to
more scalable and interpretable reasoning over
available tools. Furthermore, the graph structure in-
herently captures relational dependencies between
tools, facilitating a more structured understanding
of tool applicability and interoperability.

Reduced Model Latency. Beyond tokeniza-
tion efficiency, the incorporation of GNNs also
enhances inference speed by caching for repetitive
Task info embeddings on first fly. In LLM-only
approaches, each query requires reprocessing tool
descriptions, leading to redundant computation. In
contrast, our GNN-enhanced model precomputes
and stores tool embeddings, allowing for direct
retrieval and propagation of relevant tool informa-
tion without unnecessary recomputation. This not
only accelerates inference but also ensures that the
model retains a more contextually enriched and per-
sistent representation of tools across different task

13

planning queries. By leveraging message-passing
mechanisms within the GNN, our approach ensures
efficient information flow, reducing the reliance on
autoregressive decoding for tool-related reasoning.

By encoding tool knowledge in a structured
graph representation, we achieve a dual advantage:
reducing tokenization demands while improving
inference efficiency. This allows for handling more
complex and multi-step task planning scenarios,
where an LLM alone would struggle due to token
constraints and redundant processing. Our findings
demonstrate that integrating structured graph-based
reasoning with LLMs enables more effective tool
selection, faster response times, and improved scal-
ability, making it a superior approach for real-world
Agentic planning applications.

Dev Accuracy

0.9

0.8 1

0.7

0.6

Accuracy

0.5 4

0.4

—— multimedia Dataset
daily Dataset
| —— huggingface Dataset

0.3 4

T T T T T T T T
o 2 4 6 8 10 12 14

of Epochs

Figure 6: Dev edge-fl of Graph-O-Planner

Test Accuracy

0.9 4

0.8 4

0.7 4

0.6 1

Accuracy

0.5 1

0.4 4

—— multimediatest
dailytest
—— huggingfacetest

0.3

0.2 4

] 2 4 6 8 10 12 14
of Epochs

Figure 7: Test edge-f1 of Graph-O-Planner

A.6 Dataset

In this section we will deep dive into dataset men-
tioned in section 5.1.

Ultratool. It consist of 260 tools with 3527
task and steps samples. On average each sample’s

Dev Accuracy

—— t5Smultimedia Dataset
t5daily Dataset

—— t5huggingface Dataset
0.8 4

0.6 1

Accuracy

0.4 4

0.2 1

7

T
10

0.0

T T T
15 20 30

of Epochs

Figure 8: Dev edge-f1 of Flan T5 XL

Dev Accuracy

—— t5multimediatest
t5dailytest

—— t5huggingfacetest
0.8

0.6

Accuracy

0.4 1

0.2 1

/4

0.0 T
10

T T T
15 20 30

of Epochs

Figure 9: Test edge-f1 of Flan T5 XL

Training Loss

— ultraloss
multimedialoss

—— dailyloss

—— huggingfaceloss

0.8 1

0.6 1

Loss

0.4 1

0.2 4

S

0 25

0.0

75 100 125 150 175

of steps

50

Figure 10: Loss graph of Graph-O-Planner after training
for 15 epochs

plan include 2.42 tool callings. All samples within
ultratool have at least one tool calling. In particular
64.24% of samples consist of two tool calling and
rest consist of multiple tool calling. Each sample
contains at least two tool calls.

Huggingface. It consist of 40 tools with 7546
training samples. The tools comprise of hugging
face hosted models fine-tuned to perform various

14

Training Loss

—— tSultraloss
tSmultimedialoss

—— t5dailyloss

—— t5huggingfaceloss

3500 1
3000
2500

2000 4
o

Los:

1500

1000

500 4

T T T T T
200 250 300 350 400

of steps

T T T T
o 50 100 150

Figure 11: Loss of Flan TS XL while training for 30
Epochs

downstream tasks. The overall dataset requires
20177 tool callings with an average of 3.28 argu-
ments per tool call. The dataset consists of 40.64%
of samples with single tool calling.

Multimedia. This dataset also consist of 40
unique tools with 5584 training samples. The tools
comprises of generic multimedia tools like ‘Video-
to-Audio’, ‘Audio-Splicer’ etc. It consist of 15860
distinct tool calls with 3.49 arguments per tool call.
Out of 5584 samples 36.48% of samples requires
only single tool calling.

Dailylife. The dataset contains 40 distinct tools
with 4320 samples out of which 1258 samples con-
tains single tool calls. In the dataset it requires on
average of 3.09 tool calls per sample with average
of 4.95 arguments per tool call. The tool consist of
general tool present in most virtual assistants like
‘book_hotel’ , ‘book_flight’ etc.

Next we show sample input data fed from these
dataset.

Huggingface
text{'id ': '57993067",

'seed ': 513420,

"'n_tools ': 1,

'sampled_nodes '

[{"task ': 'Object Detection ',
"input—type ': ['image'],
"output—type ': ['text']}],

"sampled_links ": [],

'user_request ': "I need

to identifyand label
in the provided
"example.jpg '." .,
"task_steps ": [
‘Step 1: Use Object
Detection to identify

objects
image

objects in the image {'task ': "Audio Effects ',

and label them.' "arguments ':

1, ['<node-1>"', 'reverb ']},
"task_nodes ": [{ {'task ': '"Audio Noise
"task ': 'Object Detection ', Reduction ',
"arguments ':['example.jpg '] "arguments ': ['<node-2>"']},
} {'task ': 'Video-to-Audio',
1, "arguments ':['example.mp4']}],
"task_links '": [], "task_links ': [
"type ': 'single '} {'source ': 'Audio
. . Noise Reduction ',
Multimedia "target ': 'Audio Effects '},
{'id ': '16097613", {'source ': 'Video—-to-Audio ',

'seed ': 154967, "target ': 'Audio Noise
'n_tools ': 3, Reduction '}],
'sampled_nodes ': "type ': 'chain '}

['{ 1n1?ut—type ['audio ', Dailylife

text '],

"output—type ': ['audio '], {'id ': '13590101",

"task ': '"Audio Effects '}, 'seed ': 283717,

{'input—type ': ['audio '], 'n_tools ": 1,

"output—type ': ['audio '], "'sampled_nodes ': [

"task ': 'Audio Noise {'task ': 'play_movie_by_title ',

Reduction '}, "arguments ':[{ 'name': 'title ',
{'input—type ': ['video '], "type ': 'string ',

"output—type ': ['audio '], "desc ': 'The title of the

"task ': 'Video—-to-Audio'}], movie to play '}]1}1],
"sampled_links ': ["sampled_links '": [],

{'source ': 'Audio Noise 'user_request ': "I want to

Reduction ', watch the movie titled
"target ': 'Audio Effects '}, "Example Movie'" ,

{'source ': 'Video-to—-Audio', "task_steps ': ["Step 1: Call
"target ': 'Audio Noise play_movie_by_title API
Reduction '}], with title: 'Example Movie'"],

'user_request ': 'l have a video "task_nodes ': [

file example.mp4, and I want to {'arguments ': [

extract its audio track, reduce { 'mame ': 'title ',
background ‘value ': 'Example Movie'}],
noise , and then add a reverb "task ': 'play_movie_by_title '}],
effect. "task_links '": [],

Please provide the "type ': 'single '}

Processed a1'1d10 file . ', Ultratool

task_steps ': |

"Extract audio from the given {'id': '3186"',
video file ', 'user_request ': 'l need to

'Reduce noise from the cancel the single alarm set

extracted audio', for 8:00 AM today, and change
"Apply audio effects to the the daily alarm from 7:00 AM
noise —reduced to 6:30 AM every day.\n',

audio according to user "task_steps ': [
instructions '], "‘Step 1 Call clock_alarm_cancel
"task_nodes ': [to cancel the alarm set for

15

8:00 AM today ',
"Step 2 Call clock_alarm_change
to change the daily
alarm from 7:00 AM to 6:30 AM
every day'],
"task_nodes
{ "task ':
"clock_alarm_cancel '},
{"task ':
"clock_alarm_change '}],
"task_links ': [
{"source ':
'clock_alarm_cancel ',
"target ':
"clock_alarm_change '}],
'n_tools ': 2,
"type ': 'chain '}

P

A.7 Baselines

In this appendix section, we present the details of
baselines shown in Table 1.

¢ Graph Token. A method that introduces a
global virtual token to GNNs allowing im-
proved global information aggregation and
better graph-level representations.

GraphSAGE. A GNN that learns node em-
beddings by sampling and aggregating infor-
mation from a nodes’ neighborhood, enabling
scalable learning on large graphs.

GCN(Graph Convolutional Network). A
fundamental GNN model that extends convo-
lutional operations to graph structure by prop-
agating and aggregating node features using
adjacency-based weight metrics

GAT(Graph Attention Network). A GNN
model that incorporates attention mechanism
to assign different importance weights to
neighboring nodes, improving feature aggre-
gation adaptively.

GIN(Graph Isomophism Network). A pow-
erful GNN variant designed to be as expres-
sive as the Weisfeiler-Lehman graph isomor-
phism test, using MLP-based neighborhood
aggregation.

Deepseek R1. DeepSeek-R1 is a reasoning
model that achieves performance compara-
ble to OpenAl-ol across math, code, and rea-
soning tasks, and is open-sourced along with

16

its distilled dense models to support the re-
search community. DeepSeek-R1 is devel-
oped through a pipeline that incorporates rein-
forcement learning and supervised fine-tuning,
and its reasoning patterns can be distilled
into smaller models, resulting in better per-
formance on benchmarks. like Multi head
Latent attention.

Qwen 2.5 Coder. Qwen2.5-Coder is a large
language model series with six mainstream
model sizes, offering improved code gener-
ation, reasoning, and fixing capabilities. It
has become the state-of-the-art open-source
codeLLLM, matching the coding abilities of
GPT-40 with enhanced coding capabilities and
long-context support up to 128K tokens.

A8

1. Effect of multilayer interaction between LLM
and GNN. We investigate the contribution of multi-
layer interaction, experiments using single-layer
interaction of SGC, GCN, GAT, and GraphSAGE
without multi-layer feature injection showed that
this component significantly boosts performance
(up to 30%) by aggregating richer contextual infor-
mation across layers as observed in Table 5. Our ex-
periments demonstrate the critical role of hierarchi-
cal feature aggregation through direct comparison
with shallow graph convolution baselines. Single-
layer variants (SGC, GCN, GAT, GraphSAGE)
exhibit substantially inferior performance across
all datasets—Huggingface edge-F1 reaches just
43.09% (GraphSAGE) versus our 89.73%, while
Multimedia node-F1 plateaus at 75.51% (Graph-
SAGE) versus our 99.13%. The performance dif-
ferential is most pronounced in edge prediction
tasks, where our method achieves relative improve-
ments of 108.3% (Huggingface edge-F1: 89.73
vs. 43.09) and 44.6% (Dailylife edge-F1: 95.59
vs. 66.57) over the strongest shallow baselines.
Even node classification, traditionally less depth-
sensitive, shows absolute gains of 29.85% (Hug-
gingface) and 23.62% (Multimedia) compared to
single-layer counterparts, empirically validating
the necessity of cross-layer information fusion.

2. Architectural implication of Multilevel
fusion. The stark performance margins (Aedge-
F1 > 46% across all datasets) reveal fundamen-
tal limitations of shallow interaction paradigms.
While shallow methods like SGC achieve compu-
tational efficiency through layer truncation, they

More Detailed study

Method/Dataset Huggingface Multimedia Dailylife

Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1
SGC 67.43 42.08 74.07 49.90 87.13 66.49
GCN 66.54 40.74 73.34 50.76 86.39 65.49
GAT 66.77 40.74 73.36 50.20 86.39 65.49
GraphSAGE 68.12 43.09 75.51 52.94 87.51 66.57
Graph-O-Planner (ours) 97.36 89.73 99.13 91.49 99.82 95.59

Table 5: Comparison of shallow interaction between LLM and various GNN settings vs. ours

forfeit the ability to capture hierarchical dependen-
cies—evidenced by Huggingface’s edge prediction
collapse to 42.08% (SGC) versus our 89.73%. Our
multi-layer architecture addresses this through de-
liberate feature injection across depths, enabling
progressive refinement of both local and global
graph patterns. This is particularly crucial for com-
plex edge prediction tasks, where shallow mod-
els lack the representational capacity to resolve
indirect relationships (e.g., Multimedia edge-F1:
52.94% vs. 91.49%). The consistent outperfor-
mance (minimum Anode-F1: 12.31% in Dailylife)
across diverse graph types further substantiates
multi-layer interaction as a generalizable design
principle rather than a dataset-specific optimiza-
tion.

3. Proof of effectiveness of GNN.

In this section, we will theoretically prove that
using Graph-O-Planner can significantly improve
the LLM generation performance. Assume X; as
input tokens to the LLM and G as input tool graph
features to the GNN, Y represents target output
tool labels. We introduce a dependency function
DF(.) that quantifies the dependency between in-
put labels X and Y, which reflects the performance
of LLM. By introducing tool-graph knowledge into
GNN, we can impactfully improve model perfor-
mance in predicting labels Y as DF(X;,G,Y) >
DF(X;,Y). The following outlines the derivation:

17

DF(X;,G,Y) - DF(X,,Y)

(XL, GY)
X%YP(X“ G,Y)log (p o

)

p(Xl-‘G> Y)
p(X,G)p(Y)
p(X,Y)
p(X)p(Y)
p(Xi,G)Y)
p(X,G)p(Y) p(X,Y)

' p(X;,G,Y)

> #0618 (S

X,,G,Y)
p(Y,G|X)

PaRCEEEaL (p(ALE

)

)
)

p(Xy)p(Y)

_ o p(Xl7Y)
;p(Xl’Y)l & (p(X)p(Y)

> p(X1,G,Y)log (

X,GY

- Y p(X,GY) log<

X,,G)Y

> p(X1,G,Y)log (

X,,GY

)

)

4. Training time Computation analysis In this
section we provide the computation comparison of
LLM only v/s Graph-O-Planner approach. During
the experiments, the number of trainable param-
eters remains constant across all the dataset. We
observed that for Graph-O-Planner approach the
time required for each epoch ranges between 23-32
minutes, while for LLM only approach the time
taken to complete one epoch ranges between 150-
180 minutes. From these results we infer that our
approach is much faster and promising than other
SOTA methods.

5. Rationale for usage of ModernBERT
as text-embedder for encoding tool info.
ModernBERT-Large has been used to generate ini-
tial embeddings for each node/tool description,
which are then passed as input features to the
GNN. The recent work Warner et al. (2024) shows
ModernBERT-Large performing better than its pre-
decessors on NLU tasks. It is also finetuned on
using triplet networks (i.e. NLI tasks), thus a suit-
able choice to work with similarity, clustering and
retrieval tasks. Morever, it improves upon BERT

and RoBERTa by combining masked and permuted
language modelling, capturing global dependencies
better other approaches like MiniLM or MPNet.

A.9 Algorithms

In this section we provide detailed description of
all the major algorithms explained in section 5.2.1.
Algorithm 1: Node F1. The algorithm takes
two list as input. Lines 1-2 contains ground truth
tools L and predicted tools R which is given to
the function in Line 3-19 to calculate node f1. In
more detail Lines 4-5 computes the length of lists
L and R and stores them in gt_len and pred_len
respectively. Lines 8-10 stores unique tool names
from ground truth in set gt_tools and respectively
for predicted tools in pred_tools in Lines 11-13.

Finally, the node f1 is calculated in Line 14-
17 by taking precision and recall and storing in
variables p and 7 and then computing node_f1.

Algorithm 2: Edge F1. The algorithm takes
two list. Lines 1-2 contains ground truth tools L
and predicted tools R which is given to the function
in Line 3-19 to calculate edge f1. Lines 4-5 com-
putes the length of lists L. and R and stores them
in gt_len and pred_len respectively. Lines 7-13
takes every tool link present in predicted links and
checks if the tool is present in ground truth links.
If the tools is present, the counter of common links
c_links is increased by 1. Finally in Line 14, 15
precision and recall for links are computed and then
edge_f1 is calculated in Line 17.

Finally, the node accuracy is calculated in Line
14-15 as length of intersection set between pre-
dicted tool names and ground truth tool names set
over length of gt_tools.

Algorithm 1:Node-F1

1: L < [l1,lo,...,1,] > List of ground truth tool
pairs. 7; : (tool;1,tool;s)
2: R« [r1,r2,...,m] © List of predicted tool
pairs. 7; : (toolj1,tool ;)
: procedure NODE F1(L, R)
: gt_len + length of L

3
4
5 pred_len < length of R
6: gt_tools < {}
7 pred_tools < {}
8 for ; = 1to gt_len do
9 gt_tools gt_nodes U L[i] [0] U
L[]
end for
for i = 1 to pred_len do

10:
11:

18

12: pred_tools = gt_nodes U R[i] [0] U
R[] [1]
13: end for
14: c_tools < pred_tools N gt_tools
. length(c_tools)
15: P length(pred_tools)
. length(c_tools)
16: U length(gt_tools)
17: node_f1 = pzjfiz
18: return node_f1

19: end procedure

Algorithm 2:Edge-F1

1: L <+ [ly,ly,...,1,] > List of ground truth tool
pairs. 7; : (tool;1,tool;o)

2: R« [r1,re,...,m] > List of predicted tool
pairs. 7; : (toolj1,tool;)

3: procedure EDGE F1(L, R)

4 gt_len < length of L

5: pred_len < length of R

6: c links + 0

7 for i = 1 to pred_len do

8 for j = 1to gt_len do

9: if R [i] == L [j] then

10: c_links < c_links + 1

11: end if

12: end for

13: end for

14: c_tools < pred_tools N gt_tools
. length(c_tools)

15: P length(pred_len)

16: length(c_tools)
’ length(gt_len)

17: edge_f1 « ‘;—tljﬁi‘s

18: return edge_f1

19: end procedure

Algorithm 3: Pseudocode for Graph-O-Planner

1: Input: Task query @, tool metadata T° =
{(ni7 di7 ii7 Oi)}zyzl

2: Output: Tool execution DAG DAG = (v; —
vy = ... — vp)

3: procedure GRAPHOPLANNER(Q),T)

4: // Step 1: Tool Graph Construction

5: for each tool t; € T do

6: Compute embedding: x; =
Emb(nz, di, ii, Oi) (Eq 1)

7: end for

8:

10:
11:

12:
13:
14:
15:
16:
17:

18:

19:

20:

21:
22:

23:
24

25:

26:

27:

28:
29:

30:

Formtool graph G = (V, E, A, T, X) with
nodes V, edges F, and embeddings X = {x;}
// Step 2: Edge Encoding
for each edge (v;,v;) € E do
Compute edge representation:

€ij = fedge(Pey; & Tk, @ Tr;) (Eq. 2)

end for
// Step 3: Attention-Enhanced Graph
Convolution
for each GNN layer [do
for each node v; do
h =2 ifl1=0
Aggregate neighboring edge fea-
tures:

hi=n" e @ e (Eq.3)
JEN(9)

Compute attention heads:
QF =Whhi, KF=Wihi, V&=W{h
Normalize attention:

. k Kk
o= 7 exp (M\/ﬁ) (Eq. 7)

Aggregate messages:
mf= > aVk (Bq.8)
JEN(i)
end for

Fuse heads and update node embed-
dings:

HD = MLP(Agg(M(HY E,€))) (Eq.9)

end for

// Step 4: Inject GNN Embeddings into
LLM

For selected LLLM layers:

(Egs. 4-6)

Ic = {ekey@wkeya Hquery@wqueryy evalue@wvalue}

(Eq. 10)

where 1. are GNN projections passed
through FFNs

// Step 5: Decode Tool DAG

Use LLM (augmented with injected GNN
knowledge) to decode:

DAG = (v > v — ... > vp)

end procedure

19

	Introduction
	Related Work
	GNN-based Learning
	Tool Graph-based Planning

	Preliminaries
	Graph-O-Planner
	Tool Graph Creation
	Dependency-Aware Tool Graph
	Deep Fusion of GNN with LLM

	Experimental Setup and Results
	Datasets
	Results & Analysis
	Tool and Sequence Detection
	Tool Hallucination Reduction
	Model Latency

	Ablation Study

	Conclusion
	Appendix
	Notations
	Implementation Details
	Additional aid to LLM with Graph-O-Planner
	Necessity of GNN integration
	How Graph-O-Planner overcomes context overflow and latency problem
	Dataset
	Baselines
	More Detailed study
	Algorithms

