
Graph-O-Planner: Injecting Graph Neural Tool Embeddings into LLMs
for Efficient and Accurate Task Execution

Anonymous ACL submission

Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have enabled the development of AI003
agents capable of multi-step reasoning. How-004
ever, deploying these agents in real-world appli-005
cations requires planners that adapt to domain-006
specific tools and workflows, where traditional007
prompting frameworks often struggle to ac-008
curately represent available functional depen-009
dencies. To address this gap, we propose010
Graph-O-Planner, a novel graph-learning011
method that explicitly encodes tool relation-012
ships and execution sequences into LLM plan-013
ning. Our approach constructs graph embed-014
dings of available tools, enabling agents to dy-015
namically map dependencies while minimizing016
context window overload. Evaluations across017
multiple benchmarks, including UltraTool and018
Task Bench, demonstrate that Graph-O-Planner019
achieves up to 68% higher and 60% higher020
performance with our approach, compared to021
state-of-the-art hybrid graph+LLM based plan-022
ners and LLM-finetuned planners respectively,023
while significantly reducing any hallucinations024
in LLM generation. The method’s tool knowl-025
edge compression further reduces inference la-026
tency by 20%, validating its effectiveness in027
resource-constrained environments and mak-028
ing it more compatible for real-life practical029
deployment. We release our code here1.030

1 Introduction031

The advent of Large Language Model (LLM)-032

powered agents marks a paradigm shift in artifi-033

cial intelligence, with transformative potential for034

real-world applications ranging from autonomous035

robotics to precision medicine. Early implemen-036

tations like HuggingGPT (Shen et al., 2023a)037

demonstrate problem-solving flexibility in con-038

trolled benchmarks, and agents such as Voyager039

(Wang et al., 2023a) showcase emergent strategic040

reasoning in gaming environments.041

1https://anonymous.4open.science/r/Graph-O-Planner-
16B3

Effective planning modules with precise tool 042

alignment are essential for developing practical 043

AI agentic systems in both consumer and industrial 044

applications. Recent advances leverage prompt- 045

ing strategies to decompose complex tasks: Wei 046

et al. (2022); Yu et al. (2025) pioneered Chain-of- 047

Thought(CoT) reasoning through sequential step 048

generation, while Wang et al. (2023b) introduced 049

plan-and-solve prompting for systematic task de- 050

composition. Yao et al. (2024) later expanded these 051

concepts with tree-based reasoning architectures. 052

A parallel research trajectory has focused on trans- 053

lating these reasoning structures into executable 054

tool operations (Schick et al., 2023; Shen et al., 055

2023b; Singh et al., 2023; Song et al., 2023). 056

These methods, however, are purely prompt- 057

based and use LLMs deployed on the cloud. This 058

centralization exposes sensitive data to privacy 059

risks, incurs network-dependent latency, and com- 060

plicates regulatory compliance. Another focus has 061

been locally deployable solutions (Erdogan et al., 062

2024; Wu et al., 2024) where the model is finetuned 063

for planning and tool-calling. Locally deploying 064

preserves data privacy and minimizes inference de- 065

lay, yet small to mid-sized models introduce their 066

own constraints. We describe these constraints: 067

1. Challenge 1. Tool Hallucination/ Tool 068

Grounding significantly drives down task- 069

sequence determination, especially with a big- 070

ger set of tools/sub-tasks (CodeLlama13B and 071

GPT3.5 Turbo see 60% hallucination in edge 072

prediction with a set of 260 sub-tasks) (Wu 073

et al., 2024). 074

2. Challenge 2. Fixed Context: The limited 075

context window of LLMs prevents them from 076

handling a large number of tools, often forcing 077

tools to truncate from the context. 078

3. Challenge 3. Token Overhead and Latency 079

Issues: Tool usage in current systems involves 080

repeatedly injecting detailed descriptions of 081

1

 https://anonymous.4open.science/r/Graph-O-Planner-16B3

tools into prompts. This token increase leads082

to quadratic increase in memory requirements083

due to attention, impacting latency during in-084

ference085

4. Challenge 4. Shallow GNN+LLM Fusion:086

Existing GNN+LLM hybrid lacks deep struc-087

tural grounding, limiting planning quality and088

scalability.089

We draw upon these insights to propose a frame-090

work that effectively uses GNN for tool information091

injection during task-planning. Building upon the092

initial work done by Wu et al. (2024), we propose093

Graph-O-Planner, that represents tools as nodes094

in a dynamic graph, leveraging Graph Neural Net-095

works (GNNs) to capture functional dependencies096

and enable scalable tool representation. By fusing097

GNN with Large Language Models (LLMs), we098

create a more grounded and hallucination-resistant099

decision-making process while reducing latency100

and memory requirements.101

Our main contributions are summarized as:102

• To the best of our knowledge, Graph-O-103

Planner is the first attempt to deeply integrate104

multilevel interaction of a GNN with LLMs105

for task planning. This setup uses the lan-106

guage understanding skills of LLMs in con-107

junction with the effective information propa-108

gation capability of GNNs.109

• We show the efficacy of adding GNN based110

interaction by comparing against LLM-only111

models. Graph-O-Planner improves upon the112

finetuned LLM performance by nearly 60%113

while beating hybrid LLM+graph-based base-114

lines by 35%.115

• By incorporating dependency-aware tool116

graph reduces tool hallucination metrics by117

13%, ensuring that model generates correct118

tool names instead of similar looking tool119

names. It further reduces the context tokens120

which is a major bottleneck for local deploy-121

ment and speeds up inference by 1.25x.122

2 Related Work123

2.1 GNN-based Learning124

Recent works employ task graphs to model inter-125

linked sub-tasks and align LLMs with tool-relevant126

information. GNNs demonstrate strong capabil-127

ities for complex decision-making (Khalil et al.,128

2017; Xu et al., 2019; Dudzik and Veličković,129

2022). Graph-based QA systems have successfully130

leveraged external KGs for factual queries through 131

LLMs, using relevant subgraph retrieval (Luo et al., 132

2023; Zhang et al., 2023, 2024; Yao et al., 2022). 133

GNNs have also been shown to enhance LLMs’ 134

ability to model textual relational structures. While 135

transformers (Guo et al., 2025; Chung et al., 2022; 136

Dubey et al., 2024; Yang et al., 2024) dominate 137

sequential processing, they falter with long-range 138

dependencies like tool relationships. GNNs over- 139

come this by representing text as graphs (Huang 140

et al., 2019; Pham et al., 2023; Zhu et al., 2021), im- 141

proving LLMs’ understanding of local and global 142

patterns (Wu et al., 2024, 2021). 143

2.2 Tool Graph-based Planning 144

Taking inspiration from KG based learning(Liu 145

et al., 2021; Wang et al., 2021; Ye et al., 2022; 146

Tena Cucala et al., 2022; Chen et al., 2020), train- 147

ing GNN using task graphs has become a powerful 148

tool for task planning, enabling the modeling of 149

complex dependencies between tasks, resources, 150

and constraints. They have been applied across di- 151

verse domains, including MoE task planning (Zhou 152

et al., 2022; Cai et al., 2024; Li et al., 2025) and 153

multi-agent coordination (Wu et al., 2023; Chan 154

et al., 2023; Talebirad and Nadiri, 2023; Nasci- 155

mento et al., 2023) by facilitating decentralized 156

decision making. 157

3 Preliminaries 158

In this section, we describe tool graphs, which we 159

define as dynamically changing graphs. Subse- 160

quent paragraphs provide a detailed explanation of 161

tool graphs, including their structure, tool descrip- 162

tions & input/output formats. 163

Tool Graph: Let G = (V,E,A, T,X) where, 164

V is a set of tool nodes, E corresponds to edges 165

between node embedding (vi→vj) if output of Vi 166

can be fed to Vj . A denotes the edge weight matrix 167

between pair of nodes, such that A[i, j] ∈ (0, 1], 168

if vi,vj ∈ V and (vi, vj) = eij ∈ E , and 0 169

otherwise. Tool information is defined as T = 170

{n, d, i, o}V(k=1), where n is kth tool name, d is 171

kth tool description, i and o corresponds to kth in- 172

put and output format of tool respectively. Thus, 173

X = Emb(T), whereEmb is the embedding func- 174

tion. X = {xi}V(k=1) contains feature embedding 175

of tool’s information for each vi ∈ V . 176

Planning task definition: A task query Q can 177

be decomposed into sub-tasks S = s1, s2. . . sn, 178

such that each sub-task si can be completed by 179

an unique tool vi. The objective is to construct 180

2

Figure 1: Overall schematic block diagram of Graph-O-Planner including data flow, key component and internal
interactions. Yellow layers in the diagram represent trainable parameters, while purple indicates frozen parameters.

Figure 2: Creation of dependency-aware tool embeddings from GNN

a Directed Acyclic Graph (G) that represents the181

sequence of processes to solve query Q. This can182

be formally represented as:183

DAG = (v1 → v2 → . . . → vP)

showcasing the sequence of tools that needs to184

be executed in order to solve the query Q. Each185

tool vi is connected to the next tool vi+1 through a186

dependency edge.187

4 Graph-O-Planner188

We introduce Graph-O-Planner, a novel graph-189

infused learning framework for task planning, to190

effectively align task steps to the available tools.191

Figure 1 illustrates the pipeline of our proposed192

approach. We first convert the target dataset into193

an aligned tool-graph, incorporating the tool name,194

description, required inputs and generated output195

(Section 4.1). This is then passed to a GNN to cre-196

ate its aligned node embeddings & edge scores at197

each layer, as defined in Section 3. Finally, a layer-198

wise knowledge injection method is utilized to in-199

ject knowledge from GNN layers to corresponding 200

LLM layers (Section 4.3). This allows the LLM 201

to effectively map the subtask to the correct tool 202

sequence. The rough decomposed plan (attained 203

from any global LLM) is processed sequentially 204

through the LLM layers with injected information 205

from the GNN to generate a sequence of tools as a 206

DAG to be executed. With Graph-O-Planner, both 207

LLMs and GNNs are trained in alignment with in- 208

jected knowledge, to allow the model to build an 209

understanding of how a subtask relates to a particu- 210

lar sequence of nodes in the available tool graph. 211

4.1 Tool Graph Creation 212

We first encode dataset’s Tool information using 213

a text encoder. We chose ModernBERT Large 214

(Warner et al., 2024) which outperforms other 215

encoder-based language models on Natural Lan- 216

guage Understanding (NLU) and retrieval tasks. 217

Using the encoder model we generate a tool’s em- 218

3

bedding representation x.219

xi = Emb(ToolName, ToolDesc.,

ToolInputs, ToolOutput)
(1)220

where xi is ith tool embedding and Emb is embed-221

ding model. For a given set of task steps, some222

nodes and edges are more semantically relevant223

than others. To effectively model this by leverag-224

ing core semantic information, the edge connec-225

tions between the tools are scored. Alignment with226

the requirements of the decomposed task steps is227

obtained by using a bilinear layer to estimate the228

relevance score for each edge given the embed-229

ding of the sub-task. Finally, these embeddings are230

normalized to increase computational efficiency.231

Motivated by Jang et al. (2017), we used Gumbel232

softmax approach to model the output as soft la-233

bels with a stop gradient mechanism to address the234

problem of gradient propagation of hard labels dur-235

ing backward pass. The node and the scored edge236

embeddings together comprise the required Tool237

Graph (defined in Section 3).238

4.2 Dependency-Aware Tool Graph239

The scored tool graph is then passed through a240

graph network, to obtain its graphical embedding241

representation at every layer. This is pictorially242

shown in Figure 2. We use Graph Attention (GAT)243

layers for encoding the tool info graph representa-244

tions X = {x1x2,xn}, via iterative convolu-245

tional operations between neighboring nodes of the246

graph network.247

1. Edge Encoding248

Given a graph, G = (V,E,A, T,X) (refer249

section 3), with node features hli ∈ Rd (ini-250

tially h0i = xi, xi ∈ X), and auxiliary node251

features ϕ ∈ R|K|×d, our goal is to learn node252

representations that captures structural neigh-253

borhood patterns and edge semantic relation-254

ship. For each edge eij ∈ E, we obtain its255

encoding ϵij as:256

ϵij = fedge(ϕeij ⊕ τki ⊕ τkj) (2)257

where fedge is a multi-layer MLP, ϕeij repre-258

sents the Gumbel Softmax of edge eij , and259

τki and τkj represents the Gumbel Softmax260

of node ki and kj respectively, with ⊕ as the261

concatenate function.262

2. Multi-Head Heterogeneous Attention263

Each edge’s representation ϵij is then uti-264

lized to transform node representations us- 265

ing a multi-head heterogeneous attention, M . 266

Specifically, for each graph node, we obtain 267

the normalized attention of the pre-head com- 268

putations. The node embedding h̃i is obtained 269

by concatenating (⊕) node features and its fea- 270

tures of its neighboring edges N(i), to better 271

capture neighborhood patterns every iteration: 272

h̃i = hi ⊕
⊕

j∈N(i)

ϵij (3) 273

The pre-heads of Key, Query and Value for 274

the k-th node are thus computed as: 275

Qk
i =W k

Qh̃i (4) 276

277
Kk

i =W k
K h̃i (5) 278

279
Qk

i =W k
V h̃i (6) 280

which is then normalized based on the degree 281

of the node: 282

αk
ij =

dj
Zi
∗ exp

⟨qkj , kki ⟩√
d

(7) 283

where Zi =
∑

j∈N(i) dj ∗ exp
⟨qkj ,kki ⟩√

d
and 284

di = |N(i)| is the out degree of node j. 285

3. Message Aggregation 286

The multi head attention output are aggre- 287

gated through a two stage process to synthe- 288

size neighborhood information. First for each 289

attention head k, messages from neighboring 290

nodes are weighted by their normalized coef- 291

ficients αk
ij producing head-specific represen- 292

tations 293

mk
i =

∑
j∈N(i)

(αk
ijv

k
ij) (8) 294

These head embeddings are then concatenated 295

across all k heads and linearly projected to the 296

original dimension d using learnable weights 297

Wo to obtain M - edge aware attention. This 298

ensures structured fusion of heterogeneous 299

relation patterns. The hybrid approach re- 300

tains structural information while allowing the 301

model to learn incremental feature updates, 302

balancing neighborhood influence with node- 303

specific characteristics. 304

Finally, we use a three phase computation over 305

the edge-attention M to obtain the embeddings for 306

every time-stamp: 307

H l+1 =MLP (Agg(M(H l, E, ϵ))) (9) 308

4

We use an additional node, master node which con-309

nects to all the nodes in the graph to pool the repre-310

sentations of all the nodes and obtain representation311

of the graph.312

4.3 Deep Fusion of GNN with LLM313

Finally, we inject the GNN knowledge into LLM314

layers for effective tool-aligned subtask creation.315

For a chosen subset of LLM layers, the standard316

multi-head self-attention and feed-forward layer is317

extended to fuse the modalities between text and318

graph domain. The pooled representation of the319

graph embeddings i.e. representation of the master320

node H from equation 9 is fused by concatenating321

(⊕) with LLM decoder module to obtain an inter-322

mediate representation Ic formulated as follows:323

Ic = {θkey ⊕ ψkey, θquery ⊕ ψquery,

θvalue ⊕ ψvalue}
(10)324

where ψi are aligned values obtained from GNN325

after passing through two Feed Forward Layers.326

The injection pipeline is aligned with the LoRA327

layers of the LLM to avoid re-training of the com-328

plete LLM. As the knowledge injection methodol-329

ogy only needs aligned layer output fusion, it is330

independent of the architecture of the LLM in use.331

5 Experimental Setup and Results332

In this section, we describe the training setup333

and datasets used. We also enumerate a detailed334

set of experiments to evaluate the performance335

of Graph-O-Planner against state-of-the-art graph-336

based baselines and LLMs finetuned on four open-337

source datasets. For our primary pipeline, we338

choose Flan-T5-XL (3B) as the LLM with a LoRA339

of rank 8 and alpha 16. All models are trained us-340

ing Adam Optimizer, with the batch size of 32 and341

learning rate of 1e− 4 and 3e− 4 for the LLM and342

GNN respectively. All models are trained using343

A-6000 GPU in a Pytorch framework and CUDA344

12.6. We provide specific hardware and software345

versions information in appendix A.2346

5.1 Datasets347

We train and evaluate our model on four open348

source datasets, UltraTool (Huang et al., 2024),349

HuggingFace, Multimedia and TaskBench-Daily350

Life (Shen et al., 2023b). Each dataset is converted351

to a Tool Graph as described in Section 4.1. De-352

tailed dataset description has been provided in the353

Appendix A.6.354

Figure 3: Statistics of tool graph and samples of
datasets.

5.2 Results & Analysis 355

We present our model performance across accu- 356

racy, hallucination and latency metrics, detailed 357

in the section below. In all experiments, our base 358

pipeline uses FlanT5-XL as LLM and a GAT GNN. 359

We compare our model performance against vari- 360

ous existing SOTA models. We also demonstrate 361

the impact of a graph based knowledge injection 362

by comparing the performance against traditional 363

LLM only approaches, shallow GNN interaction 364

methods and reasoning only based settings. We 365

report tool and sequence performances along with 366

hallucination and model latency for all four target 367

datasets in below sections. 368

5.2.1 Tool and Sequence Detection 369

The primary requirement of a tool aligned planner 370

is to ensure that the model is able to correctly pick 371

from the provided set of available tools. A planner 372

that provides a "somewhat-correct" output is not 373

scalable in a real-life application. We thus measure 374

node prediction F1-score as a primary metric of per- 375

formance evaluation. Node-F1 score is estimated 376

as the correctness of predicted tool nodes required 377

to complete a given task. 378

Another crucial performance metric is to ensure 379

that the correct nodes are detected in the correct 380

sequence. Thus, the edges between various task 381

nodes and their relative sequence is of utmost im- 382

portance. Accordingly, we design Edge-F1 score 383

which compares the predicted links with the ground 384

truth edges, using the tool network topology popu- 385

lated adjacency matrices. We present the edge and 386

node F1 algorithm in Appendix A.9. 387

For F1 scores, the set of predicted nodes/edges 388

and set of ground truth nodes/edges is used for each 389

5

Method/Dataset Huggingface Ultratool Multimedia Dailylife
Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1

Mistral7b + GraphToken* 20.08 32.55 62.15 64.57 68.57 85.63 35.06 74.57 63.71 69.42 73.57 92.50
e5-335M + GraphSAGE* 24.74 40.60 66.52 37.56 42.36 71.23 62.37 70.25 88.86 86.57 85.80 97.42
e5-335M + GCN* 16.36 30.23 60.06 46.23 32.54 63.54 61.25 50.76 73.34 75.49 65.49 86.39
e5-335M + GIN* 23.31 39.37 65.77 57.84 37.25 69.25 62.55 69.84 88.74 84.49 82.65 93.36
e5-335M + GAT* 23.39 40.66 66.44 60.25 40.23 80.23 63.69 70.24 88.90 89.91 89.32 97.21
e5-335M + GraphTransformer* 24.54 41.64 66.92 46.42 57.68 76.38 NA 70.24 88.90 NA 85.80 97.43
Qwen 2.5 Coder 3B‡ 81.32 68.23 87.77 74.80 78.57 91.87 21.48 26.96 56.94 89.86 91.83 99.24
Deepseek R1 1.5B ‡ 79.28 80.22 84.33 85.28 89.27 87.33 82.25 83.24 81.27 87.23 88.23 86.24
Flan T5 XL‡ 49.0 63.48 74.11 73.8 73.87 83.87 43.40 58.25 58.25 63.87 48.77 66.45
RAG + Qwen 2.5 Coder 3B (not fintuned)ψ 32.8 42.86 40.09 56.8 46.84 38.36 30 32.89 36.65 30.13 32.56 36.36
RAG + Qwen 2.5 Coder 3B (finetuned) ψ 75.00 76.33 78.26 95.56 95.87 96.56 75.6 76.82 78.76 96.8 96.00 96.41
Graph-O-Planner(Ours) 82.6 89.73 97.36 97.39 97.73 99.19 92.0 93.55 99.13 96.81 95.59 99.82

Table 1: Accuracy, Edge-F1 and Node-F1 scores across all four datasets. All result are in (%) with the best bold and
runner-up underlined. * indicates hybrid LLM+graph based approaches and that the numbers are sourced from Wu
et al. (2024). ‡ indicates LLM-only models finetuned for each dataset. ψ indicated Retrieval Augmented Generation
(RAG) based results. The information about the baseline models are described in Appendix A.7.

sample i among N total samples.390

Precision =
1

N

N∑
i=1

|Predictedi ∩ Ground Truthi|
|Predictedi|

(11)391392

Recall =
1

N

N∑
i=1

|Predictedi ∩ Ground Truthi|
|Ground Truthi|

(12)393

F1 Score =
2 · Precision · Recall
Precision + Recall

(13)394

We also evaluate the success rate at the task level395

using the Accuracy (Acc) metric. The Accuracy396

metric is defined as:397

Accuracy =
1

N

N∑
i=1

I(F1i = 1) (14)398

Here, I(F1i = 1) is an indicator function that399

assigns a value of 1 if the F1 score for a given task400

i is perfect (i.e., all nodes are correctly predicted),401

and 0 otherwise. This binary evaluation allows us402

to assess the model’s ability to accurately predict403

all nodes in a task.404

Table 1 shows our performance across four dif-405

ferent datasets, which included a variety of task406

types and complexities. This suggests that our407

method is flexible and can be applied to differ-408

ent problems and datasets. Specifically, across409

the more voluminous ultratool dataset (with410

260+ tools), Graph-O-Planner shows a 33% im-411

provement over older graph interaction meth-412

ods and 8% improvement against Deepseek, 5̃4%413

improvement againt retrieval+prompt based set-414

tings and 6.4% accuracy improvement against415

retrieval+finetune. even when the pipeline using416

a lesser competent llm (Flan-t5). This improve-417

ment is even more significant when considering the418

more convoluted huggingface dataset, with Graph- 419

O-Planner seeing nearly 68% improvement over 420

previous models as presented in Table 1. 421

5.2.2 Tool Hallucination Reduction 422

We also demonstrate the efficacy of integrating 423

GNNs in reducing hallucination in LLMs. We use 424

two hallucination metrics: micro hallucination and 425

macro hallucination. These metrics are designed to 426

quantify the extent of hallucination in the predicted 427

sets of nodes compared to the ground truth sets. 428

Let N be the total number of samples, Pi be the 429

predicted set of nodes for the ith sample, and let V 430

be the set of valid nodes. 431

Micro hallucination calculates the fraction of 432

predicted nodes that are absent in the ground truth, 433

averaged over all samples, represented as: 434

Micro Hallucination =
1

N

N∑
i=1

|Pi \ V |
|Pi|

(15) 435

where |Pi \ V | represents the number of nodes 436

in Pi that are not in V , essentially the number of 437

hallucinated nodes in the prediction. 438

Macro hallucination checks if any of the pre- 439

dicted nodes are absent from the ground truth and 440

assigns 1 if at least one node is absent, 0 otherwise, 441

and then averages over all samples: 442

Macro Hallucination =
1

N

N∑
i=1

I(Pi \ V ̸= ∅)

(16) 443

where I(Pi \ V ̸= ∅) equals 1 if there are any 444

nodes in Pi not in V (i.e., Pi \ V is not empty), 445

and 0 otherwise. 446

As shown in figure 4a and 4b, our proposed 447

GNN-based approach achieves a substantial reduc- 448

tion in prediction hallucination, with a 13% de- 449

crease in incorrect edge predictions. 450

6

(a) Micro hallucination in Flan T5 XL vs Graph-O-
Planner

(b) Macro hallucination in Flan T5 XL vs Graph-O-
Planner

Figure 4: Tool Prediction Hallucination in Flan T5 XL vs Graph-O-Planner

The results suggest that the GNN’s ability to451

model complex structural relationships between452

tasks is instrumental in mitigating hallucination.453

By representing task sequences as graphs and lever-454

aging the strengths of GNNs, we can better cap-455

ture the nuances of task dependencies and generate456

more accurate and contextually relevant responses.457

5.2.3 Model Latency458

A complementary benefit of our proposed approach459

is the reduction in input context size during both460

training and inference as presented in more detail461

in Appendix A.5. In the current literature, train-462

ing Large Language Model (LLM) planners pass463

all the tool information, including name, descrip-464

tion, input/output format, directly to the prompt465

resulting into longer context with a large number466

of tools, as seen in the Ultratool dataset. Even with467

context length of 8192, we observed a spill-over468

of input tokens. Since we inject tool knowledge469

as tool embeddings directly into the Graph Neural470

Network (GNN) layers, while the LLM focuses on471

the input query and the steps needed to execute the472

task. This makes it a more scalable and reliable473

solution for handling complex task sequences and474

a large number of tools.475

This also significantly reduces inference time476

latency, as shown in Figure 5, making it more suit-477

able for real-time applications due to the reduced in-478

put size, computational requirements, and focused479

input context. Our method achieves faster infer-480

ence than encoder-decoder, reasoning, and prompt-481

based LLMs. Compact inputs and rapid generation482

enable more efficient, reliable outputs with fewer483

hallucinations.484

Figure 5: Inference time comparison of different models.
The bar plot illustrates the average inference time (in ms)
for each model, highlighting performance variations.

5.3 Ablation Study 485

1. Effect of Number of GNN Layers. We fur- 486

ther conducted a study to evaluate the impact of 487

varying GNN layer depths (2, 5, 10) across tool 488

graph datasets of different structures and reported 489

the result in Table 3. We observe that for smaller 490

tool graphs such as huggingface, multimedia and 491

dailylife, lesser layers of GNN suffice. Increasing 492

the number of layers can cause a negative effect 493

due to over-smoothing effect. For UltraTool with 494

260 tools, 5 GNN layers perform the best. For the 495

Ultratool graph increasing depth from 2 to 5 lay- 496

ers yielded statistically significant improvements 497

in edge prediction (edge-F1: 95.79% → 97.73%), 498

accompanied by a marginal yet consistent gain in 499

node prediction (node-F1: 98.83% → 99.19%). 500

Performance degradation at 10 layers (edge-F1: 501

97.26%) aligns with established phenomena of 502

over-smoothing in excessively deep architectures. 503

Conversely, datasets with dense connections but 504

less number of nodes such as dailylife and hug- 505

7

Method/Dataset Huggingface Ultratool Multimedia Dailylife
Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1

Message Passing 88.25 96.21 97.56 98.88 93.55 97.11 95.06 97.51
GCN 90.15 97.50 97.73 98.99 92.80 99.05 94.96 98.85
SGC 89.73 97.23 97.20 98.99 91.43 99.00 95.43 99.82
GAT 89.73 97.36 97.73 99.19 91.49 99.13 95.59 99.82

Table 2: Effect of different GNN networks used in Graph-O-Planner, evaluated on Node -f1 and Edge-f1. All result
are in (%) with the best bold and runner-up underlined.

Layers/Dataset Huggingface Ultratool Multimedia Dailylife

Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1
2 89.73 97.12 95.79 98.83 93.52 98.87 95.59 99.84
5 88.74 97.36 97.73 99.19 93.18 99.13 92.78 99.71
10 88.8 98.96 97.26 98.72 93.55 99.04 94.54 99.82

Table 3: Performance comparison across datasets by GNN layer depth. For each dataset best performing epoch in
15 epochs is reported in above table. Best numbers were highlighted in bold.

gingface exhibited peak edge-F1 scores at 2 layers506

(95.59% and 89.73%, respectively), with deeper507

configurations inducing performance declines (dai-508

lylife edge-F1: 92.78% at 5 layers). Node predic-509

tion metrics remained stable across depths for these510

datasets (node-f1 ∆ < 0.2%), suggesting limited511

utility of extended neighborhood aggregation in512

locally cohesive graphs.513

2. Comparison of different GNN ap-514

proaches. We experiment with different GNN515

approaches, namely Message Passing Neural Net-516

works (MPNNs), Simplified Graph Convolution517

(SGC), standard Graph Convolutional Networks518

(GCN) and Graph Attention Networks (GAT). The519

experimental results presented (Table 2) demon-520

strate that GAT outperforms other GNNs for Ul-521

tratool, Multimedia and Dailylife and second best522

performance on Ultratool.523

3. Other Design Choices - In addition to the524

type and size of GNN used, Graph-O-Planner525

reuses some of modules and techniques that have526

been proven as state-of-art in earlier works. As527

discussed earlier, we use frozen ModernBERT to528

encode the task graph information. It provides529

strong semantic representations while maintaining530

a lightweight and efficient architecture in compari-531

son to previous work such as BERT and DeBERTa532

(discussed in Warner et al. (2024)). Our decision to533

freeze the encoder ensures that the entire learning534

capacity is focused on the GNN and LLM layers,535

keeping the pipeline modular and resource-efficient.536

Additionally, instead of normal softmax, we choose537

to use Gumbel Softmax. The recent work of (Zhang538

et al., 2024) validates the increased efficacy of us-539

ing gumbel softmax for graphical architectures. As 540

these choices are derivative usages of proven SOTA 541

techniques, we do not include detailed insights into 542

variations caused by these design choices. We pro- 543

vide more details of multi-layer and multi-level 544

interactions in Graph-O-Planner in Appendix A.8. 545

6 Conclusion 546

In this work, we propose Graph-O-Planner, a graph- 547

based task selection method for generalized agent 548

planning. Traditional prompt based methods of 549

LLM based agent creation are hindered by con- 550

cerns related to ever increasing tool context length, 551

hallucinations and inductive biases. We propose 552

using a GNN based network to effectively em- 553

bed the information of the available tools, and use 554

a knowledge-injection methodology in Graph-O- 555

Planner to empower the LLM to map the sub-tasks 556

to the appropriate tool sequence. Our method en- 557

ables a more modular and flexible architecture by 558

decoupling tool knowledge from the input prompt 559

and injecting it into GNN layers, allowing for seam- 560

less integration of new tools and task sequences 561

complementing the LLM for better performance 562

as presented in Appendix A.3. We evaluate our 563

model across 4 open-source datasets, comparing 564

with multiple existing SOTA methodologies. As 565

noted in results, we beat existing benchmarks by 566

significant levels, enforcing the efficacy of the pro- 567

posed model. The impact of tool information com- 568

pression is also seen in inference latency, with a 569

1.25x improvement in inference speed. To the best 570

of our knowledge, proposed work is the first of 571

its kind, exploring a deeply integrated GNN-LLM 572

framework for effective task planning. 573

8

Limitations574

Despite encouraging performance, this work is only575

the beginning of exploring the GNN-LLM interac-576

tion in-depth. We also want to extend the pipeline577

to make the planning truly generalizable across any578

unseen tool-graph, task type, ambiguous data and579

erroreneous formats/descriptions. In real-life appli-580

cation scenarios, the available tools and user prefer-581

ences will be constantly evolving and varied from582

person-to-person. A truly intelligent agent should583

be able to effectively generalize across all such in-584

teractions without the need of any fine-tuning or585

adaption. We aim to look into more details on these586

in future works.587

References588

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang,589
Sunghun Kim, and Jiayi Huang. 2024. A survey on590
mixture of experts. arXiv preprint arXiv:2407.06204.591

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,592
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan593
Liu. 2023. Chateval: Towards better llm-based eval-594
uators through multi-agent debate. arXiv preprint595
arXiv:2308.07201.596

Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A597
review: Knowledge reasoning over knowledge graph.598
Expert systems with applications, 141:112948.599

Hyung Won Chung, Le Hou, Shayne Longpre, Barret600
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,601
Mostafa Dehghani, Siddhartha Brahma, Albert Web-602
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-603
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan604
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,605
Yanping Huang, Andrew Dai, Hongkun Yu, Slav606
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam607
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.608
2022. Scaling instruction-finetuned language models.609
arXiv preprint.610

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,611
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,612
Akhil Mathur, Alan Schelten, Amy Yang, Angela613
Fan, et al. 2024. The llama 3 herd of models. arXiv614
preprint arXiv:2407.21783.615

Andrew J Dudzik and Petar Veličković. 2022. Graph616
neural networks are dynamic programmers. Ad-617
vances in neural information processing systems,618
35:20635–20647.619

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Se-620
hoon Kim, Ryan Tabrizi, Suhong Moon, Coleman621
Hooper, Gopala Anumanchipalli, Kurt Keutzer, and622
Amir Gholami. 2024. Tinyagent: Function calling at623
the edge. Preprint, arXiv:2409.00608.624

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 625
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 626
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 627
centivizing reasoning capability in llms via reinforce- 628
ment learning. arXiv preprint arXiv:2501.12948. 629

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong 630
Zhang, and Houfeng Wang. 2019. Text level graph 631
neural network for text classification. arXiv preprint 632
arXiv:1910.02356. 633

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji- 634
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, 635
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng 636
Xu, and Qun Liu. 2024. Planning, creation, us- 637
age: Benchmarking llms for comprehensive tool uti- 638
lization in real-world complex scenarios. Preprint, 639
arXiv:2401.17167. 640

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cat- 641
egorical reparameterization with gumbel-softmax. 642
Preprint, arXiv:1611.01144. 643

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, 644
and Le Song. 2017. Learning combinatorial opti- 645
mization algorithms over graphs. Advances in neural 646
information processing systems, 30. 647

Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, 648
Lu Xu, Fan Chen, Jitesh Jain, Humphrey Shi, and 649
Longyin Wen. 2025. Cumo: Scaling multimodal llm 650
with co-upcycled mixture-of-experts. Advances in 651
Neural Information Processing Systems, 37:131224– 652
131246. 653

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor 654
Kostylev. 2021. Indigo: Gnn-based inductive knowl- 655
edge graph completion using pair-wise encoding. Ad- 656
vances in Neural Information Processing Systems, 657
34:2034–2045. 658

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and 659
Shirui Pan. 2023. Reasoning on graphs: Faithful and 660
interpretable large language model reasoning. arXiv 661
preprint arXiv:2310.01061. 662

Nathalia Nascimento, Paulo Alencar, and Donald 663
Cowan. 2023. Self-adaptive large language model 664
(llm)-based multiagent systems. In 2023 IEEE In- 665
ternational Conference on Autonomic Computing 666
and Self-Organizing Systems Companion (ACSOS-C), 667
pages 104–109. IEEE. 668

Phu Pham, Loan TT Nguyen, Witold Pedrycz, and 669
Bay Vo. 2023. Deep learning, graph-based text 670
representation and classification: a survey, perspec- 671
tives and challenges. Artificial Intelligence Review, 672
56(6):4893–4927. 673

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 674
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 675
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 676
Toolformer: Language models can teach themselves 677
to use tools. Advances in Neural Information Pro- 678
cessing Systems, 36:68539–68551. 679

9

https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2409.00608
https://arxiv.org/abs/2409.00608
https://arxiv.org/abs/2409.00608
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,680
Weiming Lu, and Yueting Zhuang. 2023a. Hugging-681
gpt: Solving ai tasks with chatgpt and its friends in682
hugging face. Preprint, arXiv:2303.17580.683

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,684
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,685
and Yueting Zhuang. 2023b. Taskbench: Benchmark-686
ing large language models for task automation. arXiv687
preprint arXiv:2311.18760.688

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit689
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,690
Jesse Thomason, and Animesh Garg. 2023. Prog-691
prompt: Generating situated robot task plans using692
large language models. In 2023 IEEE International693
Conference on Robotics and Automation (ICRA),694
pages 11523–11530. IEEE.695

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,696
Han Qian, Mingbo Song, Hailiang Huang, Cheng697
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-698
necting large language models with real-world restful699
apis. arXiv preprint arXiv:2306.06624.700

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-701
agent collaboration: Harnessing the power of intelli-702
gent llm agents. arXiv preprint arXiv:2306.03314.703

DJ Tena Cucala, B Cuenca Grau, Egor V Kostylev, and704
Boris Motik. 2022. Explainable gnn-based models705
over knowledge graphs.706

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-707
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and708
Anima Anandkumar. 2023a. Voyager: An open-709
ended embodied agent with large language models.710
Preprint, arXiv:2305.16291.711

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,712
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.713
2023b. Plan-and-solve prompting: Improving zero-714
shot chain-of-thought reasoning by large language715
models. arXiv preprint arXiv:2305.04091.716

Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, and717
Philip S Yu. 2021. Dskreg: Differentiable sampling718
on knowledge graph for recommendation with rela-719
tional gnn. In Proceedings of the 30th ACM Inter-720
national Conference on Information & Knowledge721
Management, pages 3513–3517.722

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,723
Orion Weller, Oskar Hallström, Said Taghadouini,724
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom725
Aarsen, Nathan Cooper, Griffin Adams, Jeremy726
Howard, and Iacopo Poli. 2024. Smarter, better,727
faster, longer: A modern bidirectional encoder for728
fast, memory efficient, and long context finetuning729
and inference. Preprint, arXiv:2412.13663.730

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten731
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,732
et al. 2022. Chain-of-thought prompting elicits rea-733
soning in large language models. Advances in neural734
information processing systems, 35:24824–24837.735

Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Han- 736
ning Gao, Shucheng Li, Jian Pei, and Bo Long. 2021. 737
Graph neural networks for natural language process- 738
ing: A survey. CoRR, abs/2106.06090. 739

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 740
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 741
Xiaoyun Zhang, and Chi Wang. 2023. Auto- 742
gen: Enabling next-gen llm applications via multi- 743
agent conversation framework. arXiv preprint 744
arXiv:2308.08155. 745

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Si- 746
wei Wang, Bohang Zhang, Jiarui Feng, Hong Cheng, 747
Wei Chen, Yun Xiong, et al. 2024. Can graph 748
learning improve task planning? arXiv preprint 749
arXiv:2405.19119. 750

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 751
Han, and Mike Lewis. 2024. Efficient streaming 752
language models with attention sinks. Preprint, 753
arXiv:2309.17453. 754

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, 755
Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2019. 756
What can neural networks reason about? arXiv 757
preprint arXiv:1905.13211. 758

Peng Xu, Xinchi Chen, Xiaofei Ma, Zhiheng Huang, 759
and Bing Xiang. 2021. Contrastive document rep- 760
resentation learning with graph attention networks. 761
In Findings of the Association for Computational 762
Linguistics: EMNLP 2021, pages 3874–3884, Punta 763
Cana, Dominican Republic. Association for Compu- 764
tational Linguistics. 765

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 766
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 767
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 768
nical report. arXiv preprint arXiv:2412.15115. 769

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 770
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 771
2024. Tree of thoughts: Deliberate problem solving 772
with large language models. Advances in Neural 773
Information Processing Systems, 36. 774

Yunzhi Yao, Shaohan Huang, Li Dong, Furu Wei, 775
Huajun Chen, and Ningyu Zhang. 2022. Kformer: 776
Knowledge injection in transformer feed-forward lay- 777
ers. In CCF International Conference on Natural 778
Language Processing and Chinese Computing, pages 779
131–143. Springer. 780

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan 781
Song, and Junsong Wang. 2022. A comprehen- 782
sive survey of graph neural networks for knowledge 783
graphs. IEEE Access, 10:75729–75741. 784

Junwei Yu, Yepeng Ding, and Hiroyuki Sato. 2025. 785
Dyntaskmas: A dynamic task graph-driven frame- 786
work for asynchronous and parallel llm-based multi- 787
agent systems. Preprint, arXiv:2503.07675. 788

10

https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://doi.org/10.18653/v1/2021.findings-emnlp.327
https://doi.org/10.18653/v1/2021.findings-emnlp.327
https://doi.org/10.18653/v1/2021.findings-emnlp.327
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675
https://arxiv.org/abs/2503.07675

Qinggang Zhang, Junnan Dong, Hao Chen, Xiao Huang,789
Daochen Zha, and Zailiang Yu. 2023. Knowgpt:790
Black-box knowledge injection for large language791
models. arXiv preprint arXiv:2312.06185.792

Yu Zhang, Kehai Chen, Xuefeng Bai, Quanjiang793
Guo, Min Zhang, et al. 2024. Question-guided794
knowledge graph re-scoring and injection for knowl-795
edge graph question answering. arXiv preprint796
arXiv:2410.01401.797

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping798
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,799
James Laudon, et al. 2022. Mixture-of-experts with800
expert choice routing. Advances in Neural Informa-801
tion Processing Systems, 35:7103–7114.802

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li,803
Markus Pelger, Tianqi Yang, Liangjie Zhang, Ruofei804
Zhang, and Huasha Zhao. 2021. Textgnn: Improving805
text encoder via graph neural network in sponsored806
search. In Proceedings of the Web Conference 2021,807
pages 2848–2857.808

A Appendix809

A.1 Notations810

The symbolic notations used in the paper are sum-811

marized in Table 4.812

A.2 Implementation Details813

Detailed information on the experimental setup sec-814

tion 5.815

Hardware. All the models are trained using Py-816

Torch 2.3.1 framework in Python 3.11 conda envi-817

ronment. Ubuntu server equipped with four 48GB818

Nvidia-RTX A6000 with driver version 560.35.03819

and CUDA 12.6 are utilized to perform the study.820

Hybrid GNN+LLM Baselines: We used the821

repo by Wu et al. (2024) to reproduce the results.822

LLM-Only: We used the Transformer library’s823

Trainer with LoRA similar to Graph-O-Planner to824

train the piepeline.825

RAG Baselines We utilize open-source Chro-826

maDB framework which uses a hierarchical con-827

figuration architecture, employing the all-MiniLM-828

L6-v2 transformer model as its default text em-829

bedding engine, which produces 384-dimensional830

semantic vectors optimized for cosine similarity831

computations through PyTorch-based inference. In-832

put text undergoes preprocessing via whitespace833

normalization and lexical truncation at 256 tokens834

prior to vectorization, with document batches pro-835

cessed at 32-sample granularity to balance memory836

efficiency and throughput. The system implements837

an in-memory HNSW (Hierarchical Navigable838

Small World) index with empirically tuned param- 839

eters (ef_construction=200, M=16) to optimize ap- 840

proximate nearest neighbor search latency. Graph- 841

O-Planner: GNN. The dimensions of GNN mod- 842

ule is converted from 1024 embedding size to 200, 843

which can be modified as per user’s choice and a 844

variable number of layer of GNN modules between 845

5 and 7 both inclusive with a dropout of 0.18 ap- 846

plied within each consecutive layer. Training. All 847

models are trained using Adam optimizer. Learn- 848

ing rate of LLM module and GNN module is kept 849

1e-4 and 3e-4 respectively, with batch size of 32. 850

We choose FLAN-T5-XL(3B) model as LLM for 851

Low-Rank Adaption (LoRA) training with rank 8 852

and alpha 16. The maximum token length across 853

tokenizer is kept variable as per the requirement of 854

dataset. 855

A.3 Additional aid to LLM with 856

Graph-O-Planner 857

In the figure 6, 7, 8, 9, 10, 11 shown Dev, test 858

and loss for only LLM approach in comparison 859

with Graph-O-Planner approach. From figure 6 860

and 7, it is observed that Graph-O-Planner ap- 861

proach with the help of tool embeddings from GNN 862

through multilevel interaction learn meaningful in- 863

sights about the tool graph and surpass 80% edge- 864

f1 in merely 5 epochs and settles at >90% after 10 865

epochs. While in T5 only training approach we 866

find that the overall edge-f1 cannot surpass 60% 867

even after 30 epochs as shown in figure 8 and 11. 868

We also observed a much reliable training with 869

Graph-O-Planner approach. As seen from Figure 870

10, the loss curve much cohesively justifies the 871

overall loss when compared with the improvement 872

seen from test eval curve. While for T5 only ap- 873

proch in Figure 11 we can observe that the loss 874

drops drastically till 40th epoch, but soon reaches a 875

stagnant curve, however as can be observed from 9, 876

the test edge-f1 has a lot of scope for improvement. 877

From these result we can come to conclusion that 878

Knowledge fusion between LLM and GNN can 879

lead to benefits listed below: 880

• Unified Task Perspective. In our approach, 881

the LLM can be directly leveraged to produce 882

outputs for multiple tasks. For varying tasks, 883

it can either operate in a masked mode using 884

precomputed embeddings—eliminating the 885

need for re-computing task graph. This under- 886

scores our core contribution: the LLM+GNN 887

functions as a flexible, "plug-and-play" mod- 888

11

Notations Definition
G,V,E Tool graph with set of nodes V and edges E
Ti, Ai Features embeddings i-th tool in graph G, A represents adjacency matrix
T Tool information in graph G
Qi i-th query of dataset
Si = s1, . . . sn Subtasks of query Q_i
Emb(.) Embedding function representing tool info in graph space for GNN training
h(l) GNN node representation at step l
M(.) Edge aware attention function
1ϕ(eij) Encoded edge features obtained after applying Gumbel softmax transform
1τ(vi) Encoded node features obtained after applying Gumbel softmax transform
(eij) Edge representation obtained after concatenation of encoded edge and node features
qkj , k

k
j , v

k
ij Query, Key and Value projections of k-th GNN node

αk
ij Normalized node attention based on out degree of k-th GNN node
N(i) Out degree of i-th node
mk

i Head Specific attention of k-th GNN node after message passing to neighbors
h

′
i Edge representation of GNN node after message passing
Ic Intermediate LLM+GNN interaction layer
θkey, θquery, θvalue Key, Query and Value obtained from LLM decoder
ϕkey, ϕquery, ϕvalue Key, Query and Value obtained from GNN decoder

Table 4: Notation table in Graph-O-Planner

ule, significantly improving efficiency and per-889

formance over conventional large language890

model (LLM)-only approaches by storing pre-891

computed task graph embeddings and lower892

context length requirement.893

• Integrated Fusion Strategy. Our fusion strat-894

egy facilitates concurrent information propa-895

gation from tool graphs (hidden embeddings)896

and (task-specific output vectors) to the query897

input. This enables structured knowledge in-898

jection and task-specific adaptation, making899

our LLM + Graph Network (GNN) paradigm900

superior to LLM-only models, which often901

struggle with structural reasoning and compo-902

sitional generalization. By leveraging graph903

representations, our approach effectively cap-904

tures relational dependencies, improving both905

adaptability and interpretability across tasks.906

A.4 Necessity of GNN integration907

Large Language Model (LLM)-only planners re-908

quire all tool information—including tool descrip-909

tions and capabilities to be included within the910

input prompt at both training and inference time.911

This quickly becomes infeasible due to the lim-912

ited context window of current LLMs (Context913

Overflow Problem). When the tool-related con-914

tent exceeds the model’s context length, critical915

parts of the input are truncated, leading to incom- 916

plete information available for planning. 917

Even though models with longer context win- 918

dows are emerging, they come with practical trade- 919

offs: 920

• Latency and Memory Bottlenecks: The la- 921

tency increases nearly quadratically as atten- 922

tion has (O(n2)) time complexity. So, when 923

the prompt size increases linearly, the latency 924

increases quadratically. 925

• Windowed Attention Limitations: Many 926

long-context LLMs rely on windowed atten- 927

tion mechanisms, which suffer from "window 928

sink" issues that prevent the model from cap- 929

turing long-range dependencies across win- 930

dows, as demonstrated in earlier works (Xu 931

et al., 2021; Xiao et al., 2024). 932

To address these limitations, Graph Neural Net- 933

works (GNNs) encodes and pools tool information 934

into a fixed-size vector representation, independent 935

of the number of tools. GNNs are well-suited to 936

model complex and structured data, capturing long- 937

range and interdependent relationships between 938

tools efficiently. 939

12

A.5 How Graph-O-Planner overcomes940

context overflow and latency problem941

The integration of Large Language Models (LLMs)942

with Graph Neural Networks (GNNs) presents943

a compelling advancement over LLM-only ap-944

proaches for task planning, particularly in scenarios945

involving an extensive set of tools with complex946

specifications. Traditional LLM-based methods947

rely on tokenization to encode tool-related infor-948

mation, which inherently limits scalability due to949

increasing sequence lengths and associated com-950

putational costs. In our experiments, we observed951

that models such as Qwen struggle when provided952

with a large number of tools and their descriptions953

in Ultratool dataset. The excessive tokenization954

required to process tool details not only constrains955

the model’s ability to handle more elaborate queries956

but also results in increased latency and memory957

overhead, making real-time task planning ineffi-958

cient.959

Context Overflow mitigation. Our proposed960

Graph-O-Planner framework mitigates these limita-961

tions by encoding tool information as embeddings962

within a graph structure, rather than representing963

them as lengthy text sequences. By leveraging964

GNNs to store and propagate tool-specific embed-965

dings, we significantly reduce tokenization over-966

head, enabling the LLM to allocate more of its967

token budget toward processing complex queries968

rather than repetitive tool descriptions. This struc-969

tured approach enhances efficiency by shifting the970

burden of tool representation from token-based en-971

coding to a graph-based framework, leading to972

more scalable and interpretable reasoning over973

available tools. Furthermore, the graph structure in-974

herently captures relational dependencies between975

tools, facilitating a more structured understanding976

of tool applicability and interoperability.977

Reduced Model Latency. Beyond tokeniza-978

tion efficiency, the incorporation of GNNs also979

enhances inference speed by caching for repetitive980

Task info embeddings on first fly. In LLM-only981

approaches, each query requires reprocessing tool982

descriptions, leading to redundant computation. In983

contrast, our GNN-enhanced model precomputes984

and stores tool embeddings, allowing for direct985

retrieval and propagation of relevant tool informa-986

tion without unnecessary recomputation. This not987

only accelerates inference but also ensures that the988

model retains a more contextually enriched and per-989

sistent representation of tools across different task990

planning queries. By leveraging message-passing 991

mechanisms within the GNN, our approach ensures 992

efficient information flow, reducing the reliance on 993

autoregressive decoding for tool-related reasoning. 994

By encoding tool knowledge in a structured 995

graph representation, we achieve a dual advantage: 996

reducing tokenization demands while improving 997

inference efficiency. This allows for handling more 998

complex and multi-step task planning scenarios, 999

where an LLM alone would struggle due to token 1000

constraints and redundant processing. Our findings 1001

demonstrate that integrating structured graph-based 1002

reasoning with LLMs enables more effective tool 1003

selection, faster response times, and improved scal- 1004

ability, making it a superior approach for real-world 1005

Agentic planning applications. 1006

Figure 6: Dev edge-f1 of Graph-O-Planner

Figure 7: Test edge-f1 of Graph-O-Planner

A.6 Dataset 1007

In this section we will deep dive into dataset men- 1008

tioned in section 5.1. 1009

Ultratool. It consist of 260 tools with 3527 1010

task and steps samples. On average each sample’s 1011

13

Figure 8: Dev edge-f1 of Flan T5 XL

Figure 9: Test edge-f1 of Flan T5 XL

Figure 10: Loss graph of Graph-O-Planner after training
for 15 epochs

plan include 2.42 tool callings. All samples within1012

ultratool have at least one tool calling. In particular1013

64.24% of samples consist of two tool calling and1014

rest consist of multiple tool calling. Each sample1015

contains at least two tool calls.1016

Huggingface. It consist of 40 tools with 75461017

training samples. The tools comprise of hugging1018

face hosted models fine-tuned to perform various1019

Figure 11: Loss of Flan T5 XL while training for 30
Epochs

downstream tasks. The overall dataset requires 1020

20177 tool callings with an average of 3.28 argu- 1021

ments per tool call. The dataset consists of 40.64% 1022

of samples with single tool calling. 1023

Multimedia. This dataset also consist of 40 1024

unique tools with 5584 training samples. The tools 1025

comprises of generic multimedia tools like ‘Video- 1026

to-Audio’, ‘Audio-Splicer’ etc. It consist of 15860 1027

distinct tool calls with 3.49 arguments per tool call. 1028

Out of 5584 samples 36.48% of samples requires 1029

only single tool calling. 1030

Dailylife. The dataset contains 40 distinct tools 1031

with 4320 samples out of which 1258 samples con- 1032

tains single tool calls. In the dataset it requires on 1033

average of 3.09 tool calls per sample with average 1034

of 4.95 arguments per tool call. The tool consist of 1035

general tool present in most virtual assistants like 1036

‘book_hotel’ , ‘book_flight’ etc. 1037

Next we show sample input data fed from these 1038

dataset. 1039

Huggingface 1040

t e x t { ' id ' : ' 5 7 9 9 3 0 6 7 ' , 1041

' seed ' : 513420 , 1042

' n _ t o o l s ' : 1 , 1043

' sampled_nodes ' : 1044

[{ ' t a s k ' : ' O b j e c t D e t e c t i o n ' , 1045

' i n p u t − type ' : [' image '] , 1046

' o u t p u t − type ' : [' t e x t '] }] , 1047

' s a m p l e d _ l i n k s ' : [] , 1048

' u s e r _ r e q u e s t ' : " I need 1049

t o i d e n t i f y a n d l a b e l o b j e c t s 1050

i n t h e p r o v i d e d image 1051

' example . jpg ' . " , 1052

' t a s k _ s t e p s ' : [1053

' S t ep 1 : Use O b j e c t 1054

D e t e c t i o n t o i d e n t i f y 1055

14

o b j e c t s i n t h e image1056

and l a b e l them . '1057

] ,1058

' t a s k _ n o d e s ' : [{1059

' t a s k ' : ' O b j e c t D e t e c t i o n ' ,1060

' a rguments ' : [' example . jpg ']1061

}1062

] ,1063

' t a s k _ l i n k s ' : [] ,1064

' t ype ' : ' s i n g l e ' }1065

Multimedia1066

{ ' id ' : ' 1 6 0 9 7 6 1 3 ' ,1067

' seed ' : 154967 ,1068

' n _ t o o l s ' : 3 ,1069

' sampled_nodes ' :1070

[{ ' i n p u t − type ' : [' aud io ' ,1071

' t e x t '] ,1072

' o u t p u t − type ' : [' aud io '] ,1073

' t a s k ' : ' Audio E f f e c t s ' } ,1074

{ ' i n p u t − type ' : [' aud io '] ,1075

' o u t p u t − type ' : [' aud io '] ,1076

' t a s k ' : ' Audio Noise1077

Reduc t ion ' } ,1078

{ ' i n p u t − type ' : [' v ideo '] ,1079

' o u t p u t − type ' : [' aud io '] ,1080

' t a s k ' : ' Video − to −Audio ' }] ,1081

' s a m p l e d _ l i n k s ' : [1082

{ ' sou rce ' : ' Audio Noise1083

Reduc t ion ' ,1084

' t a r g e t ' : ' Audio E f f e c t s ' } ,1085

{ ' sou rce ' : ' Video − to −Audio ' ,1086

' t a r g e t ' : ' Audio Noise1087

Reduc t ion ' }] ,1088

' u s e r _ r e q u e s t ' : ' I have a v i d e o1089

f i l e example . mp4 , and I want t o1090

e x t r a c t i t s a u d i o t r a c k , r e d u c e1091

background1092

n o i s e , and t h e n add a r e v e r b1093

e f f e c t .1094

P l e a s e p r o v i d e t h e1095

p r o c e s s e d a u d i o f i l e . ' ,1096

' t a s k _ s t e p s ' : [1097

' E x t r a c t a u d i o from t h e g i v e n1098

v i d e o f i l e ' ,1099

' Reduce n o i s e from t h e1100

e x t r a c t e d audio ' ,1101

' Apply a u d i o e f f e c t s t o t h e1102

n o i s e − r e d u c e d1103

a u d i o a c c o r d i n g t o u s e r1104

i n s t r u c t i o n s '] ,1105

' t a s k _ n o d e s ' : [1106

{ ' t a s k ' : ' Audio E f f e c t s ' , 1107

' a rguments ' : 1108

[' < node −1 > ' , ' r e v e r b '] } , 1109

{ ' t a s k ' : ' Audio Noise 1110

Reduc t ion ' , 1111

' a rguments ' : [' < node −2 > ']} , 1112

{ ' t a s k ' : ' Video − to −Audio ' , 1113

' a rguments ' : [' example . mp4 '] }] , 1114

' t a s k _ l i n k s ' : [1115

{ ' sou rce ' : ' Audio 1116

Noise Reduc t ion ' , 1117

' t a r g e t ' : ' Audio E f f e c t s ' } , 1118

{ ' sou rce ' : ' Video − to −Audio ' , 1119

' t a r g e t ' : ' Audio Noise 1120

Reduc t ion ' }] , 1121

' t ype ' : ' cha in ' } 1122

Dailylife 1123

{ ' id ' : ' 1 3 5 9 0 1 0 1 ' , 1124

' seed ' : 283717 , 1125

' n _ t o o l s ' : 1 , 1126

' sampled_nodes ' : [1127

{ ' t a s k ' : ' p l a y _ m o v i e _ b y _ t i t l e ' , 1128

' a rguments ' : [{ ' name ' : ' t i t l e ' , 1129

' t ype ' : ' s t r i n g ' , 1130

' desc ' : ' The t i t l e o f t h e 1131

movie t o p lay ' }] }] , 1132

' s a m p l e d _ l i n k s ' : [] , 1133

' u s e r _ r e q u e s t ' : " I want t o 1134

watch t h e movie t i t l e d 1135

' Example Movie ' " , 1136

' t a s k _ s t e p s ' : [" S t ep 1 : C a l l 1137

p l a y _ m o v i e _ b y _ t i t l e API 1138

wi th t i t l e : ' Example Movie ' "] , 1139

' t a s k _ n o d e s ' : [1140

{ ' a rguments ' : [1141

{ ' name ' : ' t i t l e ' , 1142

' v a lue ' : ' Example Movie ' }] , 1143

' t a s k ' : ' p l a y _ m o v i e _ b y _ t i t l e ' }] , 1144

' t a s k _ l i n k s ' : [] , 1145

' t ype ' : ' s i n g l e ' } 1146

Ultratool 1147

{ ' id ' : ' 3 1 8 6 ' , 1148

' u s e r _ r e q u e s t ' : ' I need t o 1149

c a n c e l t h e s i n g l e a l a rm s e t 1150

f o r 8 :00 AM today , and change 1151

t h e d a i l y a l a rm from 7:00 AM 1152

t o 6 :30 AM e v e r y day . \ n ' , 1153

' t a s k _ s t e p s ' : [1154

' S t ep 1 C a l l c l o c k _ a l a r m _ c a n c e l 1155

t o c a n c e l t h e a l a rm s e t f o r 1156

15

8 :00 AM today ' ,1157

' S t ep 2 C a l l c l o c k _ a l a r m _ c h a n g e1158

t o change t h e d a i l y1159

a l a rm from 7:00 AM t o 6 :30 AM1160

e v e r y day '] ,1161

' t a s k _ n o d e s ' : [1162

{ ' t a s k ' :1163

' c l o c k _ a l a r m _ c a n c e l ' } ,1164

{ ' t a s k ' :1165

' c l o c k _ a l a r m _ c h a n g e ' }] ,1166

' t a s k _ l i n k s ' : [1167

{ ' sou rce ' :1168

' c l o c k _ a l a r m _ c a n c e l ' ,1169

' t a r g e t ' :1170

' c l o c k _ a l a r m _ c h a n g e ' }] ,1171

' n _ t o o l s ' : 2 ,1172

' t ype ' : ' cha in ' }1173

A.7 Baselines1174

In this appendix section, we present the details of1175

baselines shown in Table 1.1176

• Graph Token. A method that introduces a1177

global virtual token to GNNs allowing im-1178

proved global information aggregation and1179

better graph-level representations.1180

• GraphSAGE. A GNN that learns node em-1181

beddings by sampling and aggregating infor-1182

mation from a nodes’ neighborhood, enabling1183

scalable learning on large graphs.1184

• GCN(Graph Convolutional Network). A1185

fundamental GNN model that extends convo-1186

lutional operations to graph structure by prop-1187

agating and aggregating node features using1188

adjacency-based weight metrics1189

• GAT(Graph Attention Network). A GNN1190

model that incorporates attention mechanism1191

to assign different importance weights to1192

neighboring nodes, improving feature aggre-1193

gation adaptively.1194

• GIN(Graph Isomophism Network). A pow-1195

erful GNN variant designed to be as expres-1196

sive as the Weisfeiler-Lehman graph isomor-1197

phism test, using MLP-based neighborhood1198

aggregation.1199

• Deepseek R1. DeepSeek-R1 is a reasoning1200

model that achieves performance compara-1201

ble to OpenAI-o1 across math, code, and rea-1202

soning tasks, and is open-sourced along with1203

its distilled dense models to support the re- 1204

search community. DeepSeek-R1 is devel- 1205

oped through a pipeline that incorporates rein- 1206

forcement learning and supervised fine-tuning, 1207

and its reasoning patterns can be distilled 1208

into smaller models, resulting in better per- 1209

formance on benchmarks. like Multi head 1210

Latent attention. 1211

• Qwen 2.5 Coder. Qwen2.5-Coder is a large 1212

language model series with six mainstream 1213

model sizes, offering improved code gener- 1214

ation, reasoning, and fixing capabilities. It 1215

has become the state-of-the-art open-source 1216

codeLLM, matching the coding abilities of 1217

GPT-4o with enhanced coding capabilities and 1218

long-context support up to 128K tokens. 1219

A.8 More Detailed study 1220

1. Effect of multilayer interaction between LLM 1221

and GNN. We investigate the contribution of multi- 1222

layer interaction, experiments using single-layer 1223

interaction of SGC, GCN, GAT, and GraphSAGE 1224

without multi-layer feature injection showed that 1225

this component significantly boosts performance 1226

(up to 30%) by aggregating richer contextual infor- 1227

mation across layers as observed in Table 5. Our ex- 1228

periments demonstrate the critical role of hierarchi- 1229

cal feature aggregation through direct comparison 1230

with shallow graph convolution baselines. Single- 1231

layer variants (SGC, GCN, GAT, GraphSAGE) 1232

exhibit substantially inferior performance across 1233

all datasets—Huggingface edge-F1 reaches just 1234

43.09% (GraphSAGE) versus our 89.73%, while 1235

Multimedia node-F1 plateaus at 75.51% (Graph- 1236

SAGE) versus our 99.13%. The performance dif- 1237

ferential is most pronounced in edge prediction 1238

tasks, where our method achieves relative improve- 1239

ments of 108.3% (Huggingface edge-F1: 89.73 1240

vs. 43.09) and 44.6% (Dailylife edge-F1: 95.59 1241

vs. 66.57) over the strongest shallow baselines. 1242

Even node classification, traditionally less depth- 1243

sensitive, shows absolute gains of 29.85% (Hug- 1244

gingface) and 23.62% (Multimedia) compared to 1245

single-layer counterparts, empirically validating 1246

the necessity of cross-layer information fusion. 1247

2. Architectural implication of Multilevel 1248

fusion. The stark performance margins (∆edge- 1249

F1 > 46% across all datasets) reveal fundamen- 1250

tal limitations of shallow interaction paradigms. 1251

While shallow methods like SGC achieve compu- 1252

tational efficiency through layer truncation, they 1253

16

Method/Dataset Huggingface Multimedia Dailylife
Node-F1 Edge-F1 Node-F1 Edge-F1 Node-F1 Edge-F1

SGC 67.43 42.08 74.07 49.90 87.13 66.49
GCN 66.54 40.74 73.34 50.76 86.39 65.49
GAT 66.77 40.74 73.36 50.20 86.39 65.49
GraphSAGE 68.12 43.09 75.51 52.94 87.51 66.57
Graph-O-Planner (ours) 97.36 89.73 99.13 91.49 99.82 95.59

Table 5: Comparison of shallow interaction between LLM and various GNN settings vs. ours

forfeit the ability to capture hierarchical dependen-1254

cies—evidenced by Huggingface’s edge prediction1255

collapse to 42.08% (SGC) versus our 89.73%. Our1256

multi-layer architecture addresses this through de-1257

liberate feature injection across depths, enabling1258

progressive refinement of both local and global1259

graph patterns. This is particularly crucial for com-1260

plex edge prediction tasks, where shallow mod-1261

els lack the representational capacity to resolve1262

indirect relationships (e.g., Multimedia edge-F1:1263

52.94% vs. 91.49%). The consistent outperfor-1264

mance (minimum ∆node-F1: 12.31% in Dailylife)1265

across diverse graph types further substantiates1266

multi-layer interaction as a generalizable design1267

principle rather than a dataset-specific optimiza-1268

tion.1269

3. Proof of effectiveness of GNN.1270

In this section, we will theoretically prove that1271

using Graph-O-Planner can significantly improve1272

the LLM generation performance. Assume Xl as1273

input tokens to the LLM and G as input tool graph1274

features to the GNN, Y represents target output1275

tool labels. We introduce a dependency function1276

DF (.) that quantifies the dependency between in-1277

put labelsX and Y , which reflects the performance1278

of LLM. By introducing tool-graph knowledge into1279

GNN, we can impactfully improve model perfor-1280

mance in predicting labels Y as DF (Xl, G, Y) ≥1281

DF (Xl, Y). The following outlines the derivation:1282

DF (Xl, G, Y)−DF (Xl, Y)

=
∑

Xl,G,Y

p(Xl, G, Y) log

(
p(Xl, G, Y)

p(X,G)p(Y)

)

−
∑
Xl,Y

p(Xl, Y) log

(
p(Xl, Y)

p(X)p(Y)

)

=
∑

Xl,G,Y

p(Xl, G, Y) log

(
p(Xl, G, Y)

p(X,G)p(Y)

)

−
∑

Xl,G,Y

p(Xl, G, Y) log

(
p(Xl, Y)

p(X)p(Y)

)

=
∑

Xl,G,Y

p(Xl, G, Y) log

(
p(Xl, G, Y)

p(X,G)p(Y)
· p(Xl)p(Y)

p(Xl, Y)

)

=
∑

Xl,G,Y

p(Xl, G, Y) log

(
p(Xl, G, Y)

p(G|X)p(Y)p(Xl, Y)

)

=
∑

Xl,G,Y

p(Y,G|X)p(X) log

(
p(Y,G|X)

p(G|X)p(Y)p(Y |X)

)

1283

4. Training time Computation analysis In this 1284

section we provide the computation comparison of 1285

LLM only v/s Graph-O-Planner approach. During 1286

the experiments, the number of trainable param- 1287

eters remains constant across all the dataset. We 1288

observed that for Graph-O-Planner approach the 1289

time required for each epoch ranges between 23-32 1290

minutes, while for LLM only approach the time 1291

taken to complete one epoch ranges between 150- 1292

180 minutes. From these results we infer that our 1293

approach is much faster and promising than other 1294

SOTA methods. 1295

5. Rationale for usage of ModernBERT 1296

as text-embedder for encoding tool info. 1297

ModernBERT-Large has been used to generate ini- 1298

tial embeddings for each node/tool description, 1299

which are then passed as input features to the 1300

GNN. The recent work Warner et al. (2024) shows 1301

ModernBERT-Large performing better than its pre- 1302

decessors on NLU tasks. It is also finetuned on 1303

using triplet networks (i.e. NLI tasks), thus a suit- 1304

able choice to work with similarity, clustering and 1305

retrieval tasks. Morever, it improves upon BERT 1306

17

and RoBERTa by combining masked and permuted1307

language modelling, capturing global dependencies1308

better other approaches like MiniLM or MPNet.1309

A.9 Algorithms1310

In this section we provide detailed description of1311

all the major algorithms explained in section 5.2.1.1312

Algorithm 1: Node F1. The algorithm takes1313

two list as input. Lines 1-2 contains ground truth1314

tools L and predicted tools R which is given to1315

the function in Line 3-19 to calculate node f1. In1316

more detail Lines 4-5 computes the length of lists1317

L and R and stores them in gt_len and pred_len1318

respectively. Lines 8-10 stores unique tool names1319

from ground truth in set gt_tools and respectively1320

for predicted tools in pred_tools in Lines 11-13.1321

Finally, the node f1 is calculated in Line 14-1322

17 by taking precision and recall and storing in1323

variables p and r and then computing node_f1.1324

Algorithm 2: Edge F1. The algorithm takes1325

two list. Lines 1-2 contains ground truth tools L1326

and predicted toolsR which is given to the function1327

in Line 3-19 to calculate edge f1. Lines 4-5 com-1328

putes the length of lists L and R and stores them1329

in gt_len and pred_len respectively. Lines 7-131330

takes every tool link present in predicted links and1331

checks if the tool is present in ground truth links.1332

If the tools is present, the counter of common links1333

c_links is increased by 1. Finally in Line 14, 151334

precision and recall for links are computed and then1335

edge_f1 is calculated in Line 17.1336

Finally, the node accuracy is calculated in Line1337

14-15 as length of intersection set between pre-1338

dicted tool names and ground truth tool names set1339

over length of gt_tools.1340

Algorithm 1:Node-F11341

1: L← [l1, l2, . . . , ln] ▷ List of ground truth tool1342

pairs. ri : (tooli1, tooli2)1343

2: R← [r1, r2, ..., rn] ▷ List of predicted tool1344

pairs. ri : (toolj1, toolj2)1345

3: procedure NODE F1(L,R)1346

4: gt_len← length ofL1347

5: pred_len← length ofR1348

6: gt_tools← {}1349

7: pred_tools← {}1350

8: for i = 1 to gt_len do1351

9: gt_tools = gt_nodes ∪ L [i] [0] ∪1352

L [i] [1]1353

10: end for1354

11: for i = 1 to pred_len do1355

12: pred_tools = gt_nodes ∪ R [i] [0] ∪ 1356

R [i] [1] 1357

13: end for 1358

14: c_tools← pred_tools ∩ gt_tools 1359

15: p← length(c_tools)
length(pred_tools) 1360

16: r ← length(c_tools)
length(gt_tools) 1361

17: node_f1 = 2∗p∗r
p+r+α 1362

18: return node_f1 1363

19: end procedure 1364

Algorithm 2:Edge-F1 1365

1: L← [l1, l2, . . . , ln] ▷ List of ground truth tool 1366

pairs. ri : (tooli1, tooli2) 1367

2: R← [r1, r2, ..., rn] ▷ List of predicted tool 1368

pairs. ri : (toolj1, toolj2) 1369

3: procedure EDGE F1(L,R) 1370

4: gt_len← length ofL 1371

5: pred_len← length ofR 1372

6: c_links← 0 1373

7: for i = 1 to pred_len do 1374

8: for j = 1 to gt_len do 1375

9: if R [i] == L [j] then 1376

10: c_links← c_links+ 1 1377

11: end if 1378

12: end for 1379

13: end for 1380

14: c_tools← pred_tools ∩ gt_tools 1381

15: p← length(c_tools)
length(pred_len) 1382

16: r ← length(c_tools)
length(gt_len) 1383

17: edge_f1← c_links
gt_len 1384

18: return edge_f1 1385

19: end procedure 1386

Algorithm 3: Pseudocode for Graph-O-Planner 1387

1388

1: Input: Task query Q, tool metadata T = 1389

{(ni, di, ii, oi)}Vi=1 1390

2: Output: Tool execution DAG DAG = (v1 → 1391

v2 → . . .→ vP) 1392

3: procedure GRAPHOPLANNER(Q,T) 1393

4: // Step 1: Tool Graph Construction 1394

5: for each tool ti ∈ T do 1395

6: Compute embedding: xi = 1396

Emb(ni, di, ii, oi) (Eq. 1) 1397

7: end for 1398

18

8: Form tool graphG = (V,E,A, T,X) with1399

nodes V , edges E, and embeddings X = {xi}1400

9: // Step 2: Edge Encoding1401

10: for each edge (vi, vj) ∈ E do1402

11: Compute edge representation:1403

ϵij = fedge(ϕeij ⊕ τki ⊕ τkj) (Eq. 2)1404

12: end for1405

13: // Step 3: Attention-Enhanced Graph1406

Convolution1407

14: for each GNN layer l do1408

15: for each node vi do1409

16: h
(l)
i = xi if l = 01410

17: Aggregate neighboring edge fea-1411

tures:1412

h̃i = h
(l)
i ⊕

⊕
j∈N(i)

ϵij (Eq. 3)1413

18: Compute attention heads:1414

Qk
i =W k

Qh̃i, Kk
i =W k

K h̃i, V k
i =W k

V h̃i (Eqs. 4–6)1415

19: Normalize attention:1416

αk
ij =

dj
Zi
· exp

(
⟨Qk

j ,K
k
i ⟩√

d

)
(Eq. 7)1417

20: Aggregate messages:1418

mk
i =

∑
j∈N(i)

αk
ijV

k
ij (Eq. 8)1419

21: end for1420

22: Fuse heads and update node embed-1421

dings:1422

H(l+1) = MLP(Agg(M(H(l), E, ϵ))) (Eq. 9)1423

23: end for1424

24: // Step 4: Inject GNN Embeddings into1425

LLM1426

25: For selected LLM layers:1427

Ic = {θkey⊕ψkey, θquery⊕ψquery, θvalue⊕ψvalue}1428

26: (Eq. 10)1429

1430

27: where ψ· are GNN projections passed1431

through FFNs1432

28: // Step 5: Decode Tool DAG1433

29: Use LLM (augmented with injected GNN1434

knowledge) to decode:1435

DAG = (v1 → v2 → . . .→ vP)1436

30: end procedure1437

19

	Introduction
	Related Work
	GNN-based Learning
	Tool Graph-based Planning

	Preliminaries
	Graph-O-Planner
	Tool Graph Creation
	Dependency-Aware Tool Graph
	Deep Fusion of GNN with LLM

	Experimental Setup and Results
	Datasets
	Results & Analysis
	Tool and Sequence Detection
	Tool Hallucination Reduction
	Model Latency

	Ablation Study

	Conclusion
	Appendix
	Notations
	Implementation Details
	Additional aid to LLM with Graph-O-Planner
	Necessity of GNN integration
	How Graph-O-Planner overcomes context overflow and latency problem
	Dataset
	Baselines
	More Detailed study
	Algorithms

