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Abstract

Causal discovery, the task of inferring causal structure from data, has the potential to uncover
mechanistic insights from biological experiments, especially those involving perturbations.
However, causal discovery algorithms over larger sets of variables tend to be brittle against
misspecification or when data are limited. For example, single-cell transcriptomics measures
thousands of genes, but the nature of their relationships is not known, and there may be
as few as tens of cells per intervention setting. To mitigate these challenges, we propose a
foundation model-inspired approach: a supervised model trained on large-scale, synthetic
data to predict causal graphs from summary statistics — like the outputs of classical causal
discovery algorithms run over subsets of variables and other statistical hints like inverse
covariance. Our approach is enabled by the observation that typical errors in the outputs
of classical methods remain comparable across datasets. Theoretically, we show that the
model architecture is well-specified in terms of computational capacity. Empirically, we
train the model to be robust to misspecification and distribution shift using diverse datasets.
Experiments on biological and synthetic data confirm that this model generalizes well beyond
its training set, runs on graphs with hundreds of variables in seconds, and can be adapted
(zero-shot or finetuned) to different underlying data assumptionsE]

1 Introduction

A fundamental aspect of scientific research is to discover and validate causal hypotheses involving variables
of interest. Given observations of these variables, the goal of causal discovery algorithms is to extract
such hypotheses in the form of directed graphs, in which edges denote causal relationships (Spirtes et al.|
2001). There are several challenges to their widespread adoption in basic science. The core issue is that
the correctness of these algorithms is tied to their assumptions on the data-generating processes, which are
unknown in real applications. In principle, one could circumvent this issue by exhaustively running discovery
algorithms with different assumptions and comparing their outputs with surrogate measures that reflect graph
quality (Faller et al.l 2023]). However, this search would be costly: current algorithms must be optimized
from scratch each time, and they scale poorly to the graph and dataset sizes present in modern scientific big
data (Replogle et al., [2022).

Causal discovery algorithms follow two primary approaches that differ in their treatment of the causal graph.
Discrete optimization algorithms explore the super-exponential space of graphs by proposing and evaluating
changes to a working graph (Glymour et all [2019). While these methods are fast on small graphs, the
combinatorial space renders them intractable for exploring larger structures. Furthermore, these algorithms
are driven by hypothesis tests, which necessarily impose functional assumptions on the data-generating
process, and whose results can be erroneous, especially as the number of variables increases. An alternative is
to frame causal discovery as a continuous optimization over weighted adjacency matrices. These algorithms
either fit a generative model to the data and extract the causal graph as a parameter (Zheng et al. [2018)),
or train a supervised learning model on simulated data (Lorch et al., [2022). However, the former must be
trained from scratch per-dataset, and latter are not easily extensible to causal mechanisms beyond those in
the training set.

1Our code is available in the supplement.
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In this work, we present SEA: Sample, Estimate, Aggregate, a supervised causal discovery framework that
aims to perform well even when data-generating processes are unknown, and to easily incorporate prior
knowledge when it is available. We train a deep learning model to predict causal graphs from two types of
statistical descriptors: the estimates of classical discovery algorithms over small subsets, and graph-level
statistics. Classical discovery algorithms output a representation of a graph’s equivalency class, whose format
is largely consistent across algorithms, and whose errors are comparable across datasets. Statistics like
correlation or inverse covariance are strong indicators for a graph’s overall connectivity and can reduce the
number of subsets on which we must run discovery algorithms. Theoretically, we show that our model can
implement a combinatorial algorithm that recovers larger causal graphs that are consistent with smaller,
marginal subgraphs. Empirically, our training procedure forces the model to predict causal graphs across
diverse synthetic data, including on datasets that are misaligned with the discovery algorithms’ assumptions,
or when insufficient subsets are provided.

Our experiments probe three qualities that we view a foundation model should fulfill, with thorough comparison
to three classical baselines and five deep learning approaches. Specifically, we assess the framework’s ability
to generalize to unseen and out-of-distribution data; to steer predictions based on prior knowledge; and
to perform well in low-data regimes. SEA attains the state-of-the-art results on synthetic and real causal
discovery tasks, while providing 10-1000x faster inference. To incorporate domain knowledge, we show that it
is possible to swap classic discovery algorithms at inference time, for significant improvements on datasets
that match the assumptions of the new algorithm. Our models can also be finetuned at a fraction of the
training cost to accommodate new graph-level statistics that capture different (e.g. nonlinear) relationships.
We extensively analyze SEA in terms of low-data performance, scalability, causal identifiability, and other
design choices. To conclude, while our experiments focus on specific algorithms and architectures, this work
presents a blueprint for designing causal discovery foundation models, in which sampling heuristics, classical
causal discovery algorithms, and summary statistics are the fundamental building blocks.

2 Background and related work

2.1 Causal structure learning

A causal graphical model is a directed, acyclic graph G = (V, E), where each node i € V' corresponds to a
random variable X; € X and each edge (7,j) € E represents a causal relationship from X; — X;. There are
a number of assumptions that relate data distribution Px to G (Spirtes et al., |2001; |Hauser & Biithlmann)
2012)), which determine whether G is identifiable Causal graphical models allow us to perform interventions
on nodes i by setting conditional P(X; | X,,) to a different distribution P(X; | X,,). In this paper, our
experiments cover the observational case (no interventions) and the case with perfect interventions on each
node, i.e. P(X; | Xr,) = P(X;).

Given a dataset D ~ Py, the goal of causal structure learning (causal discovery) is to recover G. There
are two main challenges. First, the number of possible graphs is super-exponential in the number of nodes N,
so algorithms must navigate this combinatorial search space efficiently. Second, depending on data availability
and the underlying data generation process, causal discovery algorithms may or may not be able to recover
G in practice. In fact, many algorithms are only analyzed in the infinite-data regime and require at least
thousands of data samples for reasonable empirical performance (Spirtes et al., [2001} |Brouillard et al., 2020).

Discrete optimization methods make atomic changes to a proposal graph until a stopping criterion is met.
Constraint-based algorithms identify edges based on conditional independence tests, and their correctness is
inseparable from the empirical results of those tests (Glymour et al. 2019]), whose statistical power depends
directly on dataset size. These include the observational FCI and PC algorithms (Spirtes et al.l [1995), and
the interventional JCI algorithm (Mooij et al., 2020). Score-based methods also make iterative modifications
to a working graph, but their goal is to maximize a continuous score over the discrete space of all valid graphs,
with the true graph at the optimum. Due to the intractable search space, these methods often make decisions
based on greedy heuristics. Classic examples include GES (Chickering), 2002), GIES (Hauser & Biihlmann)
2012), CAM (Bihlmann et al., [2014), LINGAM (Shimizu et all 2006, and IGSP (Wang et al., [2017)).
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Figure 1: Overview of our goals and approach. (A) Criteria we aim to fulfill. (B-C) Inference and training
procedure. Green: raw data. Blue: graph / features. Yellow: Learned. Gray: Stochastic, but not learned.

Continuous optimization approaches recast the combinatorial space of graphs into a continuous space
of weighted adjacency matrices. Many of these works train a generative model to learn the empirical data
distribution, which is parameterized through the adjacency matrix (Zheng et al., |2018; |Lachapelle et al.,
2020; Brouillard et al., [2020). Others focus on properties related to the empirical data distribution, such
as a relationship between the underlying graph and the Jacobian of the learned model (Reizinger et al.l
2023), or between the Hessian of the data log-likelihood and the topological order (Sanchez et al., 2023)).
Finally, most similar to this work, amortized inference approaches (Ke et al., |2022; [Lorch et al., [2022) frame
causal discovery as a supervised learning problem of predicting (synthetic) graphs from (synthetic) datasets.
However, to incorporate new information, they must simulate new datasets and re-train the models. Since
they operate on raw observations, they also scale poorly to larger datasets.

2.2 Foundation models

The concept of foundation models has revolutionized the machine learning workflow in a variety of disci-
plines: instead of training domain-specific models from scratch, we start from a pretrained, general-purpose
model (Bommasani et al.l [2021)). This work describes a blueprint for designing “foundation models” in the
context of causal discovery. The precise definition of a foundation model varies by application, but we aim to
fulfill the following properties (Figure ), enjoyed by modern text and image foundation models (Radford
et al.l 2021} Brown et al., |2020).

1. A foundation model should enable us to outperform domain-specific models trained from scratch,
even if the former has never seen similar tasks during training (Radford et al.; 2019). In the context
of causal discovery, we would like to train a model that outperforms any individual algorithm on real,
misspecified, and/or out-of-distribution datasets.

2. It should be possible to explicitly steer a foundation model’s behavior towards better performance on
new tasks, either directly at inference time, e.g. “prompting” (Reynolds & McDonell, 2021)), or at
low cost compared to pretraining (Ouyang et al., |2022). Here, we would like to easily change our
causal discovery algorithm’s “assumptions” regarding the data, e.g. by incorporating the knowledge
of non-linearity, non-Gaussianity.

3. Scaling up a foundation model should lead to improved performance in few-shot or data-poor
regimes (Brown et al., 2020). This aspect we analyze empirically.

In the following sections, we will revisit these desiderata from both the design and experimental perspectives.
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3 Methods

3.1 Inference procedure

SEA is a causal discovery framework that learns to resolve statistical features and estimates of marginal
graphs into a global causal graph. The inference procedure is depicted in Figure [IB. Specifically, given a new
dataset D € RM>¥ faithful to graph G = (V, E), we apply the following stages.

Sample: takes as input dataset D; and outputs data batches { Dy, D1, ..., Dr} and node subsets {51, ..., Sr}.

1. Sample T + 1 batches of b < M observations uniformly at random from D.

2. Compute selection scores a € (0, 1)V*¥ over Dy (e.g. correlation or inverse covariance).

3. Sample T node subsets of size k. Each subset S; C V is constructed iteratively, where nodes are
added with probability proportional to » jes, Qi (details and alternatives in .

Estimate: takes as inputs data batches, node subsets, and (optionally) intervention targets; and outputs
global statistics p and marginal estimates {EY, ..., EL}.

1. Compute global statistics p € RV*Y over Dy (e.g. correlation or inverse covariance).

2. Run discovery algorithm f to obtain marginal estimates f(D;[S:]) = E} fort =1...T.

We use D;[S;] to denote the observations in D; that correspond only to the variables in S;. Each estimate E}
is a k x k adjacency matrix, corresponding to the k£ nodes in S;.

Aggregate: takes as inputs global statistics, marginal estimates, and node subsets. A pretrained aggregator
model outputs the predicted global causal graph £ € (0,1)V*" (Section .

3.2 Training procedure

The training procedure mirrors the inference procedure (Figure[[JC). Each input is a whole dataset (summarized
into global statistics and a set of marginal estimates), and the supervised output is the ground truth graph.
Sampling and estimation are run in parallel on CPU, while aggregation is run on GPU.

We trained two aggregator models, which employed the FcI algorithm with the Fisherz test and GIES
algorithm with the Bayesian information criterion (Schwarz, [1978). Both estimation algorithms were chosen
for speed, and they differ in the types of edges they output (e.g. FCI reports ancestral relations). Note that
the algorithm used for inference can differ from the one used during training, as long as their outputs are the
same format, e.g. a CPDAG (Andersson et all [1997) (experiments in Section . The training dataset
contains both data that are correctly and incorrectly specified (details in Section , so the aggregator
is forced to predict the correct graph regardless. In addition, each training instance is provided a random
number of marginal estimates, which might not cover every edge. As a result, the aggregator must extrapolate
to unseen edges using the available estimates and the global statistics. For example, if two variables have
low correlation, and they are located in different neighborhoods of the already-identified graph, it may be
reasonable to assume that they are unconnected.

3.3 Model architecture

The aggregator is a neural network that takes as input: global statistics p € RV*¥ marginal estimates
By 5 € ETXkXE and node subsets S 7 € [N]T** (Figure , where £ is the set of output edge types for
the causal discovery algorithm f E|

We project global statistics into the model dimension via a learned linear projection matrix W, : R — R,

and we embed edge types via a learned embedding ebdg : £ — R%. To collect estimates of the same edge over

all subsets, we align entries of E| . into E18" ¢ £TxK

align {E{M ifieS.jeS, W

te=(63) — ) otherwise

2E.g. “no relationship,” “X causes Y,” “X is not a descendent of Y”
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Figure 2: Aggregator architecture. Marginal graph estimates and global statistics are embedded into the
model dimension. 1D positional embeddings are added along both rows and columns. Embedded features
pass through a series of axial attention blocks, which attend to the marginal and global features. Final layer
global features pass through a feedforward network to predict the causal graph.

where ¢ indexes into the subsets, e indexes into the set of unique edges, and K is the number of unique edges.
We add learned 1D positional embeddings along both dimensions of each input,

pos-ebd(p; ;) = ebdnode (i) + ebdpode (i)
pos—ebd(E;’aehgn) = ebdgime(t) + FFN([ebduode (i'), ebdnode(5")])

where 7/, j' index into a random permutation on V for invariance to node permutation and graph SizeEI Due
to the (a)symmetries of their inputs, pos-ebd(p; ;) is symmetric, while pos—ebd(Et?ilg“) considers the node
ordering. In summary, the inputs to our axial attention blocks are

hﬁj = (W,p)i,; + pos-ebd(p;, ;) (2)
hfe = ebds(E;?ehgn) + pos—ebd(E;?e“gn) (3)

for i,j € [N]?, t € [T], e € [K]. Note that attention is permutation invariant, so positional embeddings
are required for the model to know which edges belong to the same subset, or what each edge’s endpoints
endpoints are.

Axial attention An axial attention block contains two axial attention layers (marginal estimates, global
statistics) and a feed-forward network (Figure [2] right). Given a 2D input, an axial attention layer attends
first along the rows, then along the columns. For example, on a matrix of size (R,C,d), one pass of the axial
attention layer is equivalent to running standard self-attention along C with batch size R, followed by the
reverse. For marginal estimates, R is the number of subsets 7', and C is the number of unique edges K. For
global statistics, R and C are both the total number of vertices V.

Following (2021)), each self-attention mechanism is preceded by layer normalization and followed by
dropout, with residual connections to the input,

2 = z + Dropout(Attn(LayerNorm(z))). (4)

3The random permutation 3’ = o(V); allows us to avoid updating positional embeddings of lower order positions more than
higher order ones, due to the mixing of graph sizes during training.



Under review as submission to TMLR

We pass messages between the marginal and global layers to propagate information. Let ¢ ¢ be marginal
layer ¢, let ¢, be global layer ¢, and let h'** denote the hidden representations out of layer £. The marginal
to global message m¥—7? ¢ RN*XNxd contains representations of each edge averaged over subsets,

i,J (5)

1 B . .
mE‘—Wvé — T, Zt ht,e:(i,j) if EISta (ZWS St
€ otherwise.

where T, is the number of S; containing e, and missing entries are padded to learned constant €. The global
to marginal message m? ¥ € RX*4 is simply the hidden representation itself,

p—EL  _ ppl
te=(ig) — M- (6)

We update representations based on these messages as follows.

pEl = ¢)E7€(hE’Z*1) (marginal feature) (7)
hPtl — Wt [hp’zfl, mEﬁp’E] (marginal to global) (8)
hot = QSP’Z(hP’Z*l) (global feature) (9)
hEL  pBE e B (global to marginal) (10)

W* € R?@%d s a learned linear projection, and [-] denotes concatenation.

Graph prediction For each pair of vertices i # j € V, we predict e = 0,1, or 2 for no edge, i — j, and
7 — 1. We do not additionally enforce that our predicted graphs are acyclic, similar in spirit to [Lippe et al.
(2022). Given the output of the final axial attention block h”, we compute logits

2y = FEN ([0, 02,]) € R? (11)

2,77 %9,
which correspond to probabilities after softmax normalization. The overall output Ee {0, 1} V>N

by the ground truth E. Our model is trained with cross entropy loss and L2 regularization.

is supervised

Implementation details Unless otherwise noted, inverse covariance is used for the global statistic and
selection score, due to its relationship to partial correlation. We sample batches of size b = 500 over kK =5
nodes each (analysis in . Our model was implemented with 4 layers with 8 attention heads and hidden
dimension 64. Our model was trained using the AdamW optimizer with a learning rate of le-4 (Loshchilov &
Hutter, 2019)). See for additional details about hyperparameters.

Complexity The aggregator should be be invariant to node labeling, while maintaining the order of sampled
subsets, so attention-based architectures were a natural choice (Vaswani et al., 2017)). If we concatenated p
and Ef  into a length N?T input, quadratic-scaling attention would cost O(N1T?). Instead, we opted for
axial attention blocks, which attend along each of the three axes separately in O(N3T + N2T?). Both are
parallelizable on GPU, but the latter is more efficient, especially on larger V.

3.4 Theoretical interpretation

Marginal graph resolution It is well-established that estimates of causal graphs over subsets of variables
can be “merged” into consistent graphs over their union (Faller et al.| [2023), and various algorithms have
been proposed towards this task (Tillman et al.| |2008; Huang et al., 2020). Our main theoretical contribution
is demonstrating that our axial attention model can implement such an algorithm under realistic conditions
(description of algorithm and all proofs in Appendix [A]).

Theorem 3.1. Let G = (V, E) be a directed acyclic graph with mazimum degree d. For S CV, let Ey
denote the marginal estimate over S. Let Sg denote the superset that contains all subsets S CV of size at
most d. Given {E§}ses, ., o stack of L axial attention blocks has the capacity to recover G'’s skeleton and
v-structures in O(N) width, and propagate orientations on paths of O(L) length.
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There are two practical considerations that motivate a framework like SEA, instead of directly running
these reconciliation algorithms. First, many of these algorithms rely on specific characterizations of the
data-generating process, e.g. linear non-Gaussian (Huang et al.| |2020)). While our proof does not constrain the
causal mechanisms or exogenous noise, it assumes that the marginal estimates are correct. These assumptions
may not hold on real data. However, the failure modes of causal discovery algorithms may be similar across
datasets and can be corrected using statistics that capture richer information. For example, an algorithm
that assumes linearity will make (predictably) asymmetric mistakes on non-linear data and underestimate
the presence of edges. However, we may be able to recover nonlinear relationships with statistics like distance
correlation (Sz’ekely et al., |2007). By training a deep learning model to reconcile marginal estimates and
interpret global statistics, we are less sensitive to artifacts of sampling and discretization (e.g. p-value
thresholds, statistics < 0). The second consideration is that checking a combinatorial number of subsets is
wasteful on smaller graphs and infeasible on larger graphs. In fact, if we only leverage marginal estimates, we
must check at least O(N?) subsets to cover each edge at least once. To this end, the classical Independence
Graph algorithm (Spirtes et al., [2001) motivates statistics such as inverse covariance to initialize the undirected
skeleton and reduce the number of independence tests required. This allows us to use marginal estimates
more efficiently, towards answering orientation questions. We verify this latter consideration in Section [5.4]
where we empirically quantify the number of estimates a global statistic is “worth.”

On identifiability The goal of this paper is a principled, yet practical framework for causal discovery.
Instead of focusing on the identifiability of any particular setting, we provide these interpretations of our
model’s outputs, and show empirically that our model respects classic identifiability theory (Section .
When all assumptions are upheld, and infinite data are available, the model has the capacity to infer a
sound graph, as far as its (Markov/interventional) equivalence class. In practice, the model will output an
orientation for all edges, but the graph can be interpreted as one member of an equivalence class. When data
do not match a causal discovery algorithm’s assumptions, its performance is inherently an empirical question,
and we show empirically that our model still does well (Section . Finally, recent work (Montagna et al.|
2024]) has specifically studied the identifiability of amortized causal discovery algorithms in depth, and their
findings are complementary to our own.

4 Experimental setup

Our experiments aim to address the three desiderata proposed in Section [2:2] — namely, generalization,
adaptability, and emergent few-shot behavior. These experiments span both real and synthetic data. Real
experiments quantify the practical utility of this framework, while synthetic experiments allow us to probe
and compare each design choice in a controlled setting.

4.1 Datasets

We pretrained SEA models on 6,480 synthetic datasets, which constitute approximately 280 million individual
observations, each of 10-100 variablesﬁ To assess generalization and robustness, we evaluate on unseen
in-distribution and out-of-distribution synthetic datasets, as well as two real biological datasets (Sachs et al.,
2005; [Replogle et al., 2022)), using the versions from [Wang et al.| (2017)); |Chevalley et al.| (2022). To probe for
emergent few-shot behavior, we down-sample both the training and testing sets. We also include experiments
on simulated mRNA datasets with unseen datasets in Appendix (Dibaeinia & Sinhay, (2020)).

The training datasets were constructed by 1) sampling Erdés-Rényi and scale free graphs with N = 10, 20, 100
nodes and F = N,2N,3N,4N expected edges; 2) sampling random instantiations of causal mechanisms
(Linear, NN with additive/non-additive Gaussian noise); and 3) iteratively sampling observations in topological
order (details in Appendix . For each graph, we generated both observational and interventional datasets
with 1000N points, either all observational or split equally among observational and perfect single-node
interventions. We generated 90 training, 5 validation, and 5 testing datasets for each combination. For testing,

43 mechanisms, 3 graph sizes, 4 sparsities, 2 topologies, 1000N examples, 90 datasets — 280,800,000 examples. For a sense of
scale, single cell foundation models are trained on 300K (Rosen et al.l 2024) to 30M cells (Cui et al.| [2024).
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we also sampled out-of-distribution datasets with 1) Sigmoid and Polynomial mechanisms with Gaussian
noise; and 2) Linear with additive non-Gaussian noise.

4.2 Metrics

We report standard causal discovery metrics (Lorch et al., |2022)), computed with respect to the ground truth
graph. In the observational setting, the “oracle” value of each metric will vary depending on the size of the
equivalence class (e.g. if multiple graphs are observationally equivalent, the expected accuracy is < 1; see
Section for more analysis). For all continuous metrics, we exclude the diagonal since several baselines
manually set it to zero (Brouillard et al., [2020; |Lopez et al., [2022).

SHD: Structural Hamming distance is the minimum number of edge edits required to match two
graphs (Tsamardinos et al., [2006). Discretization thresholds are as published or default to 0.5.

mAP: Mean average precision computes the area under precision-recall curve per edge and averages over the
graph. The random guessing baseline depends on the positive rate.

AUC: Area under the ROC curve (Bradleyl |1997)) computed per edge (binary prediction) and averaged over
the graph. For each edge, 0.5 indicates random guessing, while 1 indicates perfect performance.

Orientation accuracy: We compute the accuracy of edge orientations as

_ > yer WP, 5) > P(j,1)}

OA
1]

(12)

Since OA is normalized by || E||, it is invariant to the positive rate. In contrast to orientation F1 (Geffner
et al., [2022)), it is also invariant to the assignment of forward/reverse edges as 1/0.

4.3 Baselines

We compare against several deep learning and classical baselines. All baselines were trained and/or run
from scratch on each testing dataset using their published code and hyperparameters, except AvVICI (their
recommended checkpoint was trained on their synthetic train and test sets after publication, Appendix [B.2)).

DCDI (Brouillard et al., 2020) extracts the causal graph as a parameter of a generative model. The G and
DsF variants use Gaussian or deep sigmoidal flow likelihoods, respectively. DCD-FG (Lopez et al., [2022))
follows DCDI-G, but factorizes the graph into a product of two low-rank matrices for scalability. DiffAn
(Sanchez et al.; 2023 uses the trained model’s Hessian to obtain a topological ordering, followed by a classical
pruning algorithm. AVICI (Lorch et al., [2022]) uses an amortized inference approach to estimate P(G | D)
over a class of data-generating mechanisms via variational inference. Both DCD-* and AVICI were run
with full knowledge of intervention targets. VarSort (a.k.a. “sort and regress”) (Reisach et al., 2021) sorts
nodes by marginal variance and sparsely regresses nodes based on their predecessors. This naive baseline is
intended to reveal artifacts of synthetic data generation. FCI, GIES run the FCI and GIES algorithms over
all nodes. VARSORT, FcI, and GIES were run using non-parametric bootstrapping (Friedman et al., [1999)),
with 100 subsets of 500 examples each.

5 Results

We highlight representative results in each section, with additional experiments and analyses in Appendix [C]

1. Section [5.1] examines the case where we have no prior knowledge about the data. Our models achieve
high performance out-of-the-box, even when the data are misspecified or out-of-domain.

2. Section focuses on the case where we do know (or can estimate) the class of causal mechanisms
or exogenous noise. We show that adapting our pretrained models with this information at zero/low
cost leads to substantial improvement and exceeds the best baseline trained from scratch.

3. Section [5.3| analyzes SEA predictions in context of classic identifiability theory. In particular, we
focus on the linear Gaussian case, and show that SEA approaches “oracle” performance (with respect
to the MEC), while simply running a classic discovery algorithm cannot, on our finite datasets.
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Table 1: Causal discovery on synthetic datasets. Mean/std over 5 distinct Erdés-Rényi graphs. 1 indicates
0.0.d. setting. * indicates non-parametric bootstrapping. Runtimes based on 1 CPU and 1 V100 GPU.
Baseline implementation details in Additional baselines and ablations in Appendix Q

N E Model Linear NN add. Sigmoid? Polynomial Overall
mAP+ SHD| mAPt SHD|] mAP1 SHD| mAP?t SHD ] Time(s) |

Dcpi-G 0.59+.12 6.4+.9 0.78+.07 3.0+.7 0.36+.06 42.7+.3 0.42+.08 10.4+.4 4735.7
Dcpi-Dsr 0.66+.16 5.24+.3 0.69+.18 42+5 0.37+.04 43.2+4 0.26+.08 15.7+.2 3569.1

DIFFAN 0.19+.09 40.2+4.4 0.16+.10 38.6+£3.1 0.29+.11 19.2+6 0.09+.03 49.7+4.6 434.3
Avict 0.48+.17 17.2+.1 0.59+.09 10.8+.1 0.42+.13 17.2+.8 0.24+.08 18.4+.1 2.0
20020 \uRSOoRT*  0.81+4.s 10.04.4 081415 6.6+ 050413 16147 033413 17.14. 0.4
For* 0.66+.07 19.0+.3 0.42+.19 17.4+2 0.56+.08 18.5+.5 0.41+.14 18.9+.3 22.2
GIES* 0.84+.08 7.4+.0 0.79+.07 9.0+1 0.71+.10 12.5+7 0.62+.09 13.7+.7 482.1
SEA (For)  0.96+.03  3.2+6 0.91+.04 5.0+.8 0.85+.00 6.7+.1 0.69+.09 9.8+.2 4.2
SEA (GIES) 0.97+.02 3.0+.9 0.94+.03 34+4 0.84x07 8.1+s 0.69+.12 10.1x.0 3.0
Dcp-Fa 0.05+.00 3068+131 0.07+.00 3428+154 0.13+.02 3601+272 0.12+.03 3316+698 1838.2
Avict 0.12+.02 39148 0.17+.01 407+19 0.10+.02  398+11 0.03+.00 402+19 9.3
100400 \7\pSoRT*  0.804.02 224410 0.18+.03 11394260 0.514.05 350415 0.27+.01 380417 5.1
SEA (For)  0.84+.02 162+12 0.04+.00 403+16 0.63+.03 247+17 0.34+.04 325+22 19.2
SEA (GIES) 0.91+.01 11647 0.27+.10 364+31 0.69+.03 218+21 0.38+.04 328+22 3.1

4. Section [5.4] contains a variety of ablation studies. In particular, SEA exhibits impressive low-data
performance, requiring only 400 samples to perform well on N = 100 datasets. We also ablate
estimation hyperparameters and the contribution of marginal/global features.

5.1 SEA generalizes to out-of-distribution, misspecified, and real datasets

Table [I] summarizes our controlled experiments on synthetic data. SEA exceeds all baselines in the Linear
case, which matches the models’ assumptions exactly (causal discovery algorithms and inverse covariance).
In the misspecified (NN) or misspecified and out-of-distribution settings (Sigmoid, Polynomial), SEA also
attains the best performance in the vast majority of cases, even though DcbDI and Avicl both have access to
the raw data. Furthermore, our models outperform VARSORT in every single setting, while most baselines
are unable to do so consistently. This indicates that our models do not simply overfit to spurious features of
the synthetic data generation process.

Table |2| illustrates that we exceed baselines on single cell gene expression data from CausalBench (Chevalley|
et all 2022; |Replogle et al., |2022)). Furthermore, when we increase the subset size to b = 2000, we achieve
very high precision (0.838) over 2834 predicted edges. SEA runs within 5s on this dataset of 162k cells and
N = 622 genes, while the fastest naive baseline takes 5 minutes and the slowest deep learning baseline takes 9
hours (run in parallel on subsets of genes).

5.2 SEA adapts to new data assumptions with zero to minimal finetuning

We illustrate two strategies that allow us to use pretrained SEA models with different implicit assumptions.
First, if two causal discovery algorithms share the same output format, they can be used interchangeably
for marginal estimation. On observational, linear non-Gaussian data, replacing the GES algorithm with
LINGAM (Shimizu et al., |2006) is beneficial without any other change (Table . The same improvement
can be observed on Polynomial and Sigmoid non-additive data, when running FcI with a polynomial kernel
conditional independence test (KcI, |Zhang et al.| (2011)) instead of the Fisherz test, which assumes linearity
(Table [5)). In principle, different algorithms might make different mistakes, so this strategy could lead
to out-of-distribution inputs for the pretrained aggregator. However, we find empirically (Table [7)) that
performance remains similar for multiple unseen discovery algorithms, even those of an entirely different class
(permutation-based GRaSP (Lam et al.l [2022), instead of constraint/score-based).
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Table 2: Results on K562 single cell data, with Table 3: Performance on Sachs (C.4) varies depend-
STRING database (physical) as ground truth. Base- ing on implicit (AVICI training set) and explicit (SEA

lines taken from |Chevalley et al.| (2022). variants) assumptions.

Model P+ Rt F14 Time(s) | Model mAP 4 AUC 1 SHD |
GRNBoOOST 0.070 0.710 0.127 316 Dcpi-DsF 0.20 0.59 20.0
GIES 0.190 0.020 0.036 2350 AVICLL 0.35 0.78 20.0
NOTEARS 0.080 0.620 0.142 32883 Avici-R 0.29 0.65 18.0
Dcpi-G 0.180 0.030 0.051 16561 Avicl-L+R 0.59 0.83 14.0
Dcpi-Dsr 0.140 0.040 0.062 5709

SEA (F) 023 054  24.0
Dcp-Fa 0.110 0.070 0.086 6368 1Ker 0.33 0.63 14.0
SEA (G)+CorrR 0.491 0.109 0.179 4 +CORR 0.41 0.70 15.0
with b = 2000 0.838 0.093 0.167 5 +Koi+CoRrr 0.49 0.71 13.0

Table 4: Adapting SEA to linear non-Gaussian Table 5: Adapting SEA to polynomial, sigmoid non-
(Uniform) noise. LINGAM run without finetuning; additive (N=10, E=10). FcI run with KcI test;

SEA(G) finetuned for distance correlation. SEA(F) finetuned for distance correlation.
Model N=10, E=10 N=20, E=20 Model Polynomial Sigmoid
mAP 1+ SHD | mAP 1 SHD | mAP 1t SHD | mAP 1 SHD |
Dcp1-DsF 0.34 22.3 0.32 63.0 Dcp1-DsF 0.39 9.8 0.81 13.6
LINGAM™* 0.34 7.2 0.30 18.8 Fcr* 0.12 10.6 0.53 8.1
SEA (G) 0.26 12.7 0.12 46.6 SEA (F) 0.22 10.6 0.59 4.8
+LINGAM 0.52 10.1 0.22 39.7 +KCI 0.30 10.6 0.59 5.5
+DCOR 0.44 8.0 0.21 33.1 +DCOR 0.45 9.6 0.90 2.1
+LING+DCOR  0.76 4.6 0.67 14.2 +KCI+DCOR  0.52 8.2 0.86 3.4

Another strategy is to “finetune” the aggregator, either fully or using low-cost methods like LoRA (Hu
et al., 2022)). Specifically, we keep the same training set and classification objective, while changing the
input’s featurization, e.g. a different global statistic. Here, we show that finetuning our models for distance
correlation (DCOR) is beneficial in both Tables 4] and [5] and the combination of strategies results in the
highest performance overall, surpassing the best baseline trained from scratch (DcDI-DSF).

On real data from unknown distributions, these two strategies enable the ability to run causal discovery
with different assumptions, which may be coupled with unsupervised methods for model selection (Faller
et al.l 2023)). Table |3|illustrates this idea using the Sachs proteomics dataset. SEA can be run directly with a
different estimation algorithm (FCI with polynomial kernel “Kc1”), or finetuned for around 4-6 hours on 1
A6000 and < 4 GB of GPU memory (correlation “CORR”). In contrast, methods like AvICI must simulate
new datasets based on each new assumption and re-train/finetune on these data (reportedly around 4 days).

5.3 SEA respects identifiability theory

While the identifiability of specific causal models is not a primary focus of this work, we show that SEA still
respects classic identifiability theory. Specifically, while linear Gaussian models are known to be unidentifiable,
Table [1If might suggest that both SEA and DcDI perform quite well on these data — better than would be
expected if graphs were only identifiable up to their Markov equivalence classes. This empirical “identifiability”
may be the consequence of two findings. Common synthetic data generation schemes tend to result in
marginal variances that reflect topological order (Reisach et al., [2021), and in additive noise models, it has
been shown that marginal variances that are the “same or weakly monotone increasing in the [topological]
ordering” result in uniquely identifiable graphs (Park, |2020). Data standardization can eliminate these
artifacts of synthetic data generation. In Table we see that after standardizing linear Gaussian data, our
model performs no better than randomly selecting a graph from the Markov equivalence class (enumerated
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Table 6: SEA respects identifiability theory. Observational setting, standardized (-std) N = 10, E = 10 linear
Gaussian test datasets with > 1 graph in Markov equivalence class (MEC). Top: oracle performance based
on true MEC (see left). Bottom: trained SEA approaches oracle performance, while FCI is very noisy.

mean over Model mAP(T) AUC(T) SHD({) OA(1)
X) adjacency
matrices metric over mean MEC 0.88 £.10 0.98 .03 2.0 &1.0 0.74 +.22

mean metric over MEC 0.74 .21 0.91 +.07 1.2 +.69 0.84 £.13

SEA(Fci)-std 0.83 .16 0.97 +.04 3.3 +2.3 0.69 £.21
! SEA(Fc1)4+CoRR-std ~ 0.84 £.14 0.96 £.03 5.0 £4.5 0.85 .14
"true" \ v 'meicover  Ferstd 049 +.28 0.75 .16 9.3 25 0.49 .20
graph "mean metric over MEC" mean MEC"
Table 7: SEA is generally insensitive to swapping estima- SEA Tiny SEA
tion algorithms at inference time. Results on N =10  1.00 T=50
observational setting, all other parameters default. Fcr 4 0.75 T=10

cannot be used with SEA(G) since it outputs edge types é 0.50
beyond those of GIES.

0.00
Inference Sea (Fcr) SEA (GIES) . . . .
L NN Poly L NN Pol
estimator Lin. NN Sig. Poly. Lin. NN Sig. Poly. n Sig Poly Lin Sig  Poly
FCI 098 0.88 083 062 — — Figure 3: Few-shot learning behavior emerges as train-

ing set increases. “Tiny” SEA trained on 1/4 of the
PC 0.93 0.85 0.86 0.64 0.96 0.89 0.82 0.58 {ata is comparable to the full model on N = 10

GES 0.94 085 0.80 0.60 0.95 0.88 0.81 0.57 3a¢qq0ts when given T" = 50 batches, but is less robust
GRaSP 0.93 0.85 0.80 0.61 0.95 0.88 0.81 0.57 _.
with only 7" = 10.

via pcalg (Kalisch et al.,|2012)). The classic FCI algorithm is unable to reach this upper bound, suggesting
that the amortized inference framework allows us to perform better in finite datasets.

5.4 Ablation studies

In addition to high performance and flexibility, one of the hallmarks of foundation models is their ability to act
as few-shot learners when scaling up (Brown et all|2020). We first confirm that SEA is indeed data-efficient,
requiring only around 300-400 examples for performance to converge on datasets of N = 100 variables, and
outperforms inverse covariance (computed with 500 examples) at only 200 examples (Figure ) To probe
for how this behavior emerges, we trained a “tiny” version of SEA (GIES) on approximately a quarter of the
training data (N = 10, 20 datasets, 64.8 million examples). The tiny model performs nearly as well as the
original on NV = 10 datasets when provided 7" = 50 batches, but exhibits much poorer few-shot behavior with
only T' = 10 batches (Figure [3). This demonstrates that SEA is able to ingest large amounts of data, leading
to promising few-shot behaviorﬂ

We also ablate each parameter of the estimation step to inform best practices. The trade-off between the
number and size of batches may be relevant to estimation algorithms that scale poorly with the number
of examples, e.g. kernel-based methods (Zhang et al., [2011). When given T" = 100 batches, SEA reaches
reasonable performance at around 250-300 examples per batch (Figure ) Figure further illustrates
that on the harder Sigmoid datasets, 5 batches of size b = 500 are roughly equivalent to 100 batches of size
b = 300. Finally, increasing the number of variables in each subset has minimal impact (Figure ), which is
encouraging, as there is no need to incur the exponentially-scaling runtimes associated with larger subsets.

Finally, we analyze the impact of removing marginal estimates or global statistics (Table . First, we take a
fully pretrained SEA (GIES) and set the corresponding hidden representations to 0. Performance drops more
when h* is set to 0, indicating that our pretrained aggregator relies more on global statistics, though a sizable
gap emerges in both situations. Then, we re-train SEA (GIES) on the N = 10 datasets, with and without
global statistics, so that lack of p is in-distribution for the latter model, and the training sets are comparable.

5Due to computational limitations, we were unable to train larger models, as our existing training set requires several hundred
GB in memory, and our file system does not support fast dynamic loading.

11



Under review as submission to TMLR

(A) mAP vs. dataset size (B) mAP vs. batch size (C) mAP vs. # batches (D) mAP vs. subset size
1.0 1.0 1.0 1.0
Ay
<05 0.5 0.5 0.5
g
Linear Linear Linear,b=500 = Sigmoid,b=500 Linear
0.0 Sigmoid (.0 Sigmoid (.0 © Linear,b=300 ¢ Sigmoid,b=300 (.0 Sigmoid
100 200 300 400 1000 2000 50100 150 200 300 500 2 5 10 20 30 40 50 100 3 4 5 6 7 8 910
dataset size (M) batch size (b) number of batches (T) # variables / subset (k)

Figure 4: Ablations with SEA (GIES) for estimation parameters on N = 100, E = 100. Error bars indicate 95%
confidence interval across the 5 datasets of each setting. All parameters are set to the defaults (Section |3.3)
unless otherwise noted. (A) Dashed: inverse covariance at M = 500. (C) Variance is unusually high for
Sigmoid b = 300 until 7" = 100, indicating that larger batches result in more stable results.

Table 8: Ablating marginal and global features on SEA (GIES). Top: We set marginal and global represen-
tations to 0 (lack of E’/p is out-of-distribution) and observe that the pretrained model is more robust to
removing E’, perhaps since we sample varying T during training. Bottom: Re-train SEA (GIES) on N = 10
datasets, with and without global features (lack of p is in-distribution). We observe that global features are
“worth” T' = 40 estimates of k = 5 variables each.

Model Linear NN add. NN. Sigmoid Polynomial
mAP 1+ SHD | mAP1 SHD| mAP{1 SHD| mAP1{1 SHD] mAP {1 SHD |
SEA (GIES) 0.99+.01 1.2+7 0.94+.06 2.6+.8 0.91+.07 3.2+.3 0.85+.12 4.0+5 0.70+.11 5.8+

h? <0 0.30+.17 29.2+.4 0.27+.18 29.4+.8 0.19+.09 29.0+.0 0.35+.17 27.4+.4 0.31+.15 27.1+.9
hE 0 0.85+.09 6.4+.7 0.82+.11 10.2+.9 0.78+.07 13.2+.2 0.63+.21 10.2+.8 0.55+.19 13.4+.6
T=2 0.20+.04 31.2+5 0.25+.06 29.2+.4 0.33+.10 27.8+.1 0.19+.07 30.2+.9 0.24+.00 28.1+.9
T =10 0.62+.16 8.0+.8 0.69+.11 9.6+.6 0.66+.13 11.2+.9 0.62+.20 9.2+.6 0.50+.22 8.9+.2

T =50,n0p 0.63+.13 6.8+.1 0.53+.07 6.2+.9 0.68+.20 6.0+.1 0.58+.15 7.1+1 0.50+.14 7.1+5

Here, we see that the “no p” version with T' = 50 estimates is on par with the original architecture with
T = 10 estimates, so the global statistic is equivalent to ~ 40 estimates. This roughly aligns with the theory
that global statistics can expedite the skeleton discovery process (Section , as the number of estimates
required to discover the skeleton of a N = 10 graph is approximately (120) =45 (Prop. .

6 Conclusion

Interventional experiments have formed the basis of scientific discovery throughout history, and in recent years,
advances in the life sciences have led to datasets of unprecedented scale and resolution (Replogle et al., [2022;
Nadig et al., |2024). The goal of these perturbation experiments is to extract causal relationships between
biological entities, such as genes or proteins. However, the sheer size, sparsity, and noise level of these data
pose significant challenges to existing causal discovery algorithms. Moreover, these real datasets do not fit
cleanly into causal frameworks that are designed around fixed sets of data assumptions, either explicit (Spirtes
et al.l |1995)) or implicit (Lorch et all 2022)). In this work, we approached these challenges through a causal
discovery “foundation model.” Central to this concept were three goals. First, this model should generalize to
unseen datasets whose data-generating mechanisms are unknown, and potentially out-of-distribution. Second,
it should be easy to steer the model’s predictions with inductive biases about the data. Finally, scaling
up the model should lead to data-efficiency. We proposed SEA, a framework that yields causal discovery
foundation models. SEA was motivated by the idea that classical statistics and discovery algorithms provide
powerful descriptors of data that are fast to compute and robust across datasets. Given these statistics, we
trained a deep learning model to reproduce faithful causal graphs. Theoretically, we demonstrated that it is
possible to produce sound causal graphs from marginal estimates, and that our model has the capacity to do
so. Empirically, we implemented two proofs of concept of SEA that perform well across a variety of causal
discovery tasks, easily incorporate inductive biases when they are available, and exhibit excellent few-shot
behavior when scaled up. In summary, we hope that this work will inspire a new avenue of research into
causal discovery algorithms that are applicable to and informed by real applications.
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A Proofs and derivations

Our theoretical contributions focus on two primary directions.

1.

2.

We formalize the notion of marginal estimates used in this paper, and prove that given sufficient
marginal estimates, it is possible to recover a pattern faithful to the global causal graph. We provide
lower bounds on the number of marginal estimates required for such a task, and motivate global
statistics as an efficient means to reduce this bound.

We show that our proposed axial attention has the capacity to recapitulate the reasoning required
for marginal estimate resolution. We provide realistic, finite bounds on the width and depth required
for this task.

Before these formal discussions, we start with a toy example to provide intuition regarding marginal estimates
and constraint-based causal discovery algorithms.

A.1 Toy example: Resolving marginal graphs

Consider the Y-shaped graph with four nodes in Figure[5] Suppose we run the PC algorithm on all subsets of
three nodes, and we would like to recover the result of the PC algorithm on the full graph. We illustrate how
one might resolve the marginal graph estimates. The PC algorithm consists of the following steps (Spirtes

et al., 2001)).

1. Start from the fully connected, undirected graph on N nodes.

2. Remove all edges (7, j) where X; 1L X.

3. For each edge (i,7) and subsets S C [N]\ {44} of increasing size n = 1,2,...,d, where d is the
maximum degree in G, and all k € S are connected to either ¢ or j: if X; 1 X; | S, remove edge
(ir)).

4. For each triplet (4, j, k), such that only edges (i, k) and (j, k) remain, if k¥ was not in the set S that
eliminated edge (4, 7), then orient the “v-structure” as i — k + j.

5. (Orientation propagation) If i — j, edge (j, k) remains, and edge (i, k) has been removed, orient

j — k. If there is a directed path i ~» j and an undirected edge (3, j), then orient i — j.

Ground truth (A) (B) © (D)

R e R N ORI ORC

PC algorithm XN AN X—0 X

output

Figure 5: Resolving marginal graphs. Subsets of nodes revealed to the PC algorithm (circled in row 1) and
its outputs (row 2).

In each of the four cases, the PC algorithm estimates the respective graphs as follows.

(A) We remove edge (X,Y) via (2) and orient the v-structure.
(B) We remove edge (X,Y) via (2) and orient the v-structure.
(C) We remove edge (X, W) via (3) by conditioning on Z. There are no v-structures, so the edges remain

undirected.

(D) We remove edge (Y, W) via (3) by conditioning on Z. There are no v-structures, so the edges remain

undirected.
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The outputs (A-D) admit the full PC algorithm output as the only consistent graph on four nodes.

o X and Y are unconditionally independent, so no subset will reveal an edge between (X,Y).

o There are no edges between (X, W) and (Y, W). Otherwise, (C) and (D) would yield the undirected
triangle.

e X,Y,Z must be oriented as X —+ Z < Y. Paths X - Z - Y and X < Z + Y would induce an
(X,Y) edge in (B). Reversing orientations X < Z — Y would contradict (A).

e (Y,Z) must be oriented as Y — Z. Otherwise, (A) would remain unoriented.

A.2 Resolving marginal estimates into global graphs

Classical results have characterized the Markov equivalency class of directed acyclic graphs. Two graphs are
observationally equivalent if they have the same skeleton and v-structures (Verma & Pearl, |1990)). Thus, a
pattern P is faithful to a graph G if and only if they share the same skeletons and v-structures (Spirtes et al.,
1990).

Definition A.1. Let G = (V, E) be a directed acyclic graph. A pattern P is a set of directed and undirected
edges over V.

Definition A.2 (Theorem 3.4 from |Spirtes et al.| (2001)). If pattern P is faithful to some directed acyclic
graph, then P is faithful to G if and only if

1. for all vertices X,Y of G, X and Y are adjacent if and only if X and Y are dependent conditional
on every set of vertices of G that does not include X or Y; and

2. for all vertices X,Y, Z, such that X is adjacent to Y and Y is adjacent to Z and X and Z are not
adjacent, X — Y < Z is a subgraph of G if and only if X, Z are dependent conditional on every set
containing Y but not X or Z.

Given data faithful to GG, a number of classical constraint-based algorithms produce patterns that are faithful
to G. We denote this set of algorithms as F.

Theorem A.3 (Theorem 5.1 from |Spirtes et al.|(2001))). If the input to the PC, SGS, PC-1, PC-2, PC*,
or IG algorithms faithful to directed acyclic graph G, the output is a pattern that represents the faithful
indistinguishability class of G.

The algorithms in F are sound and complete if there are no unobserved confounders.

Let Py be a probability distribution that is Markov, minimal, and faithful to G. Let D € RM*N ~ Py be a
dataset of M observations over all N = |V| nodes.

Consider a subset S C V. Let D[S] denote the subset of D over S,
D[S] = {z;,, :v € S}, (13)
and let G[S] denote the subgraph of G induced by S
G[S] = (5:{(i,4) - 4,5 € 5, (i, 7) € E}. (14)

If we apply any f € F to D[S], the results are not necessarily faithful to G[S], as now there may be latent
confounders in V' \ S (by construction). We introduce the term marginal estimate to denote the resultant
pattern that, while not faithful to G[S], is still informative.

Definition A.4 (Marginal estimate). A pattern E’ is a marginal estimate of G[S] if and only if
1. for all vertices X,Y of S, X and Y are adjacent if and only if X and Y are dependent conditional
on every set of vertices of S that does not include X or Y; and
2. for all vertices X,Y, Z, such that X is adjacent to Y and Y is adjacent to Z and X and Z are not

adjacent, X — Y <« Z is a subgraph of S if and only if X, 7 are dependent conditional on every set
containing Y but not X or Z.
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Algorithm 1 Resolve marginal estimates of f € F

Input: Data D¢ faithful to G
Initialize E’ < K as the complete undirected graph on N nodes.
for S € S4492 do

Compute Eg = f(Dgs))

for (i,j) ¢ E5 do

Remove (i, ) from E’

end for
end for
for £ € {Es}s,,, do

10:  for v-structure ¢ — j < k in EY do

11: if {i,7},{j,k} € E' and {i,k} ¢ E’ then
12: Assign orientation ¢ — j < k in E’

13: end if

14:  end for

15: end for

16: Propagate orientations in E’ (optional).

Proposition A.5. Let G = (V,E) be a directed acyclic graph with mazimum degree d. For S CV, let EY
denote the marginal estimate over S. Let Sy denote the superset that contains all subsets S CV of size at
most d. Algorz'thm maps {Eg}ses,,, to a pattern E' faithful to G.

On a high level, lines 3-8 recover the undirected “skeleton” graph of E*, lines 9-15 recover the v-structures,
and line 16 references step 5 in Section [A1]

Remark A.6. In the PC algorithm (Spirtes et al.| (2001)), , its derivatives, and Algorithm (1} there is no
need to consider separating sets with cardinality greater than maximum degree d, since the maximum number
of independence tests required to separate any node from the rest of the graph is equal to number of its
parents plus its children (due to the Markov assumption).

Lemma A.7. The undirected skeleton of E* is equivalent to the undirected skeleton of E’
C* ={{i,j} | (4,5) € E* or (j,i) € E*} = {{i,j} | (4,5) € E' or (j,i) € '} =C". (15)
That is, {i,j} € C* < {i,j} €.

Proof. Tt is equivalent to show that {i,j} & C* <— {i,j} &€ C’

= If {i,j} & Cx, then there must exist a separating set S in G of at most size d such that ¢ 1L j | S. Then
SU{i,j} is a set of at most size d + 2, where {i, j} & Cg; ;- Thus, {i,j} would have been removed from
C’ in line 6 of Algorithm

< If {i,j} ¢ ", let S be a separating set in Sqio such that {i,j} ¢ Cgy; ;, and @ 1L j | 5. S is also a
separating set in GG, and conditioning on S removes {7, j} from C*. O

Lemma A.8. A v-structure i — j < k exists in E* if and only if there exists the same v-structure in E’.

Proof. The PCI algorithm orients v-structures ¢ — j < k in E* if there is an edge between {7, j} and {j, k}
but not {4, k}; and if j was not in the conditioning set that removed {i, k}. Algorithm [I| orients v-structures
i — j < k in E' if they are oriented as such in any EY; and if {3, j},{j,k} € E',{i,k} ¢ E’

= Suppose for contradiction that i — j < k is oriented as a v-structure in E*, but not in E’. There are two
cases.

1. No EY contains the undirected path i — j — k. If either ¢ — j or j — k are missing from any E%, then
E* would not contain (i, 5) or (k,j). Otherwise, if all S contain {4, k}, then E* would not be missing

{i,k} (Lemma [A.7)).
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2. In every EY that contains ¢—j—k, j is in the conditioning set that removed {7, k},ie. ¢ 1L k| S,S > j.
This would violate the faithfulness property, as j is neither a parent of ¢ or k in E*, and the outputs
of the PC algorithm are faithful to the equivalence class of G (Theorem 5.1 |Spirtes et al.| (2001))).

< Suppose for contradiction that i — j < k is oriented as a v-structure in E’, but not in £*. By Lemma
the path ¢ — j — k must exist in E*. There are two cases.

1. If i = j — k or i < j < k, then j must be in the conditioning set that removes {i,k}, so no E%
containing {1, j, k} would orient them as v-structures.

2. If j is the root of a fork 7 <— j — k, then as the parent of both ¢ and k, 7 must be in the conditioning
set that removes {7, k}, so no EY containing {7, j, k} would orient them as v-structures.

Therefore, all v-structures in £’ are also v-structures in E*. O

Proof of Proposition[A-5 Given data that is faithful to G, Algorithm [1] produces a pattern E’ with the same
connectivity and v-structures as E*. Any additional orientations in both patterns are propagated using
identical, deterministic procedures, so £/ = E*. O

This proof presents a deterministic but inefficient algorithm for resolving marginal subgraph estimates. In
reality, it is possible to recover the undirected skeleton and the v-structures of G without checking all subsets

S e SdJrQ.

Proposition A.9 (Skeleton bounds). Let G = (V, E) be a directed acyclic graph with mazimum degree d. It
takes O(N?) marginal estimates over subsets of size d + 2 to recover the undirected skeleton of G.

Proof. Following Lemma an edge (i, ) is not present in C' if it is not present in any of the size d + 2
estimates. Therefore, every pair of nodes {i, j} requires only a single estimate of size d + 2, so it is possible
to recover C' in (1; ) estimates. O

Proposition A.10 (V-structures bounds). Let G = (V, E) be a directed acyclic graph with mazimum degree
d and v v-structures. It is possible to identify all v-structures in O(v) estimates over subsets of at most size
d+2.

Proof. Each v-structure ¢ — j < k falls under two cases.

1. 4 1L k unconditionally. Then an estimate over {4, j, k} will identify the v-structure.
2.4 U k]S, where j € S C V. Then an estimate over S U {4, j, k} will identify the v-structure. Note
that |S| < d + 2 since the degree of i is at least |S| + 1.

Therefore, each v-structure only requires one estimate, and it is possible to identify all v-structures in O(v)
estimates. O

There are three takeaways from this section.

1. If we exhaustively run a constraint-based algorithm on all subsets of size d + 2, it is trivial to recover
the estimate of the full graph. However, this is no more efficient than running the causal discovery
algorithm on the full graph.

2. In theory, it is possible to recover the undirected graph in O(IN?) estimates, and the v-structures in
O(v) estimates. However, we may not know the appropriate subsets ahead of time.

3. In practice, if we have a surrogate for connectivity, such as the global statistics used in SEA, then
we can vastly reduce the number of estimates used to eliminate edges from consideration, and more
effectively focus on sampling subsets for orientation determination.

A.3 Computational power of the axial attention model

Existing literature on the universality and computational power of vanilla Transformers (Yun et al 2019;
Pérez et al.l 2019) rely on generous assumptions regarding depth or precision. Here, we show that our axial

20



Under review as submission to TMLR

attention-based model can implement the specific reasoning required to resolve marginal estimates under
realistic conditions. In particular, we show that three blocks can recover the skeleton and v-structures in
O(N) width, and additional blocks have the capacity to propagate orientations. We first formalize the notion
of a neural network architecture’s capacity to “implement” an algorithm. Then we prove Theorem [3.1] by
construction.

Definition A.11. Let f be a map from finite sets Q) to F', and let ¢ be a map from finite sets Q¢ to Fg.
We say ¢ implements f if there exists injection gi, : @@ — Q¢ and surjection gout : Fo — F such that

Vg € Q, gout (¢(gin(9))) = f(q). (16)

Definition A.12. Let Q, F, Qq, Fp be finite sets. Let f be a map from Q to F, and let ® be a finite set
of maps {¢: Qo — Fg}. We say ® has the capacity to implement f if and only if there exists at least one
element ¢ € ® that implements f.

Theorem 3.1. Let G = (V, E) be a directed acyclic graph with mazimum degree d. For S CV, let Ey
denote the marginal estimate over S. Let Sy denote the superset that contains all subsets S CV of size at
most d. Given {Eg}ses, ., o stack of L axial attention blocks has the capacity to recover G'’s skeleton and
v-structures in O(N) width, and propagate orientations on paths of O(L) length.

Proof. We consider axial attention blocks with dot-product attention and omit layer normalization from our
analysis, as is common in the Transformer universality literature [Yun et al|(2019). Our inputs X € R¥*ExC
consist of d-dimension embeddings over R rows and C' columns. Since our axial attention only operates over
one dimension at a time, we use X. . to denote a 1D sequence of length R, given a fixed column ¢, and X.. to
denote a 1D sequence of length C, given a fixed row r. A single axial attention layer (with one head) consists
of two attention layers and a feedforward network,

Atthow (X o) = Xoo+ WoWyX. oo [(WrX. )" WoX. ], (17)
X < Attn,ow(X)

Attneo (X)) = X + WoWv X, 0 [(WkX,.) WX, ], (18)
X + Attneo (X)

FFN(X) = X + Wy - ReLU(W; - X 4 b117) 4+ 0,17, (19)

where Wo € R4 Wy, Wi, Wg € R Wy € R*™ Wy € R™*4 by € RY, by € R™, and m is the hidden
layer size of the feedforward network. For concision, we have omitted the r and ¢ subscripts on the W,
but the row and column attentions use different parameters. Any row or column attention can take on the
identity mapping by setting Wo, Wy, Wk, Wg to d x d matrices of zeros.

A single axial attention block consists of two axial attention layers ¢ and ¢,, connected via messages (Section
3-3)

hE,Z _ ¢E,€(hE,Efl)

hp,Zfl « Wp p [hp,Zfl’ mE%p,Z]

het — ¢M(hp,€71)

hE,E . hE,f +mp~>E,€
where h denote the hidden representations of E and p at layer ¢, and the outputs of the axial attention block
are h?t hEL.
We construct a stack of L > 3 axial attention blocks that implement Algorithm m
Model inputs Consider edge estimate E{] € & in a graph of size N. Let ¢;,e; denote the endpoints of
(i,7). Outputs of the PC algorithm can be expressed by three endpoints: {&, e, »}. A directed edge from

i — j has endpoints (e, »), the reversed edge i + j has endpoints (», ), an undirected edge has endpoints
(e, @), and the lack of any edge between 4, j has endpoints (&, &).
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Let one-hoty (i) denote the N-dimensional one-hot column vector where element ¢ is 1. We define the
embedding of (4,j) as a d = 2N + 6 dimensional vector,

one-hotgz(e;)
one-hots(e;)
one-hot v (4
one-hot y (j)

E,0
—pE0 =

9in (B (i) = hii'y) = .

To recover graph structures from h¥, we simply read off the indices of non-zero entries (gout). We can set h#:°
to any RN XN matrix, as we do not consider its values in this analysis and discard it during the first step.

Claim A.13. (Consistency) The outputs of each step

1. are consistent with (@), and
2. are equivariant to the ordering of nodes in edges.

For example, if (4, j) is oriented as (»,®), then we expect (j,4) to be oriented (e, »).

Step 1: Undirected skeleton We use the first axial attention block to recover the undirected skeleton
C’. We set all attentions to the identity, set W, € R24%d 0 a d x d zeros matrix, stacked on top of a d x d
identity matrix (discard p), and set FFNg to the identity (inputs are positive). This yields

P..(2)
P, (o)

P, (»)
hﬁf = mfjﬁp,l = : )

(21)

one-hot y ()
| one-hoty(j) |

where P, (-) is the frequency that endpoint e; = - within the subsets sampled. FFNs with 1 hidden layer are
universal approximators of continuous functions (Hornik et al. [1989), so we use FFN, to map

0 1<6
FFN, (X u0) =140 i>6, X100 =0 (22)
—Xiuo otherwise,
where i € [2N + 6] indexes into the feature dimension, and u, v index into the rows and columns. This allows
us to remove edges not present in C’ from consideration:
mpP—EL — ppil
0 (i,5) ¢ '
Wt e ht e ml P = ’ 23
- - “J hfj’-o otherwise. (23)
This yields (¢, j) € C" if and only if hf) ’jl # 0. We satisfy since our inputs are valid PC algorithm outputs
for which P., (@) = P..(9).

J

Step 2: V-structures The second and third axial attention blocks recover v-structures. We run the same
procedure twice, once to capture v-structures that point towards the first node in an ordered pair, and one to
capture v-structures that point towards the latter node.

We start with the first row attention over edge estimates, given a fixed subset t. We set the key and query
attention matrices
0 0 1 0 0 1

Wk =k- WQZk‘- (24)
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where k is a large constant, Iy denotes the size NV identity matrix, and all unmarked entries are Os.

Recall that a v-structure is a pair of directed edges that share a target node. We claim that two edges
(4,7), (u,v) form a v-structure in E’, pointing towards ¢ = u, if this inner product takes on the maximum
value

(Wgh®h) 5, (Woh®h),,) = 3. (25)
Suppose both edges (4,7) and (u,v) still remain in C’. There are two components to consider.

1. If i = u, then their shared node contributes +1 to the inner product (prior to scaling by k). If j = v,
then the inner product accrues —1.

2. Nodes that do not share the same endpoint contribute 0 to the inner product. Of edges that share
one node, only endpoints that match » at the starting node, or e at the ending node contribute +1
to the inner product each. We provide some examples below.

(ei,e;) (eu,ey) contribution note
(»,0)  (o,p) 0 no shared node
(o,p)  (o,») 0 wrong endpoints
(o,0) (o,0) 1 one correct endpoint
(»,8) (>0 2 v-structure

All edges with endpoints @ were “removed” in step 1, resulting in an inner product of zero, since their node
embeddings were set to zero. We set k to some large constant (empirically, k2 = 1000 is more than enough)
to ensure that after softmax scaling, o, . > 0 only if e, ¢’ form a v-structure.

Given ordered pair e = (i, ), let V; C V denote the set of nodes that form a v-structure with e with shared
node i. Note that V; excludes j itself, since setting of Wi, Wg exclude edges that share both nodes. We set
Wy to the identity, and we multiply by attention weights o to obtain

(Wyhlo)e—iig) = one-hot y (7) (26)
o - binary 5 (V5)

where binary y(S) denotes the N-dimensional binary vector with ones at elements in S, and the scaling factor
a; = (1/1V;1)) - L{[IV;]l > 0} € [0,1] (27)

results from softmax normalization. We set

_ | Onye
Wo = 0.5 Iy (28)

to preserve the original endpoint values, and to distinguish between the edge’s own node identity and newly
recognized v-structures. To summarize, the output of this row attention layer is

Attnyow(X. o) =X o + WoWy X .- 0,

Yy

which is equal to its input h®>! plus additional positive values € (0,0.5) in the last N positions that indicate
the presence of v-structures that exist in the overall E’.

Our final step is to “copy” newly assigned edge directions into all the edges. We set the ¢ column attention,
FFNEg and the ¢, attentions to the identity mapping. We also set W, > to a d X d zeros matrix, stacked on
top of a d x d identity matrix. This passes the output of the ¢ row attention, aggregated over subsets,
directly to FFNg o.

For endpoint dimensions e = [6], we let FFNy o implement

0,0,1,0,1,0" — Xeww 0< Yo nigXiuw < 0.5

FFN, o(Xe =
p,2( ,u,v) {O otherwise.
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Subtracting Xe ., “erases” the original endpoints and replaces them with (», e) after the update

p—E,1

E1 E1
hij < hij +mg;

The overall operation translates to checking whether any v-structure points towards 4, and if so, assigning
edge directions accordingly. For dimensions ¢ > 6,

_Xi,u,'u Xi,u,v < 0.5

. (30)
0 otherwise,

FFN, 2( X 040) = {

effectively erasing the stored v-structures from the representation and remaining consistent to .

At this point, we have copied all v-structures once. However, our orientations are not necessarily symmetric.
For example, given v-structure ¢ — j < k, our model orients edges (j,4) and (j, k), but not (i, j) or (k, 7).

The simplest way to symmetrize these edges (for the writer and the reader) is to run another axial attention
block, in which we focus on v-structures that point towards the second node of a pair. The only changes are
as follows.

o For Wik and Wy, we swap columns 1-3 with 4-6, and columns 7 to N 4 6 with the last N columns.
o (hF20), ; sees the third and fourth blocks swapped.
e Wpo swaps the N x N blocks that correspond to ¢ and j’s node embeddings.

« FFN, 3 sets the endpoint embedding to [0,1,0,0,0,1]" — X¢,,, if i = 7,..., N + 6 sum to a value
between 0 and 0.5.

The result is A3 with all v-structures oriented symmetrically, satisfying

Step 3: Orientation propagation To propagate orientations, we would like to identify cases (4, j), (i, k) €
E',(j, k) ¢ E' with shared node i and corresponding endpoints (»,e), (e, ). We use ¢ to identify triangles,
and ¢, to identify edges (i, j), (¢, k) € E' with the desired endpoints, while ignoring triangles.

Marginal layer The row attention in ¢p fixes a subset ¢ and varies the edge (4, 7).

Given edge (¢, 7), we want to extract all (i, k) that share node i. We set the key and query attention matrices
to
011 0 11

Wi Wo=Fk | . (31)
Iy
1y

We set Wy, to the identity to obtain

(WyhPo)e—(in) = , (32)

one-hot v ()
ay - binary 5 (V)

where V}, is the set of nodes k that share any edge with i. To distinguish between k and Vj, we again set W,
to the same as in . Finally, we set FFNg to the identity and pass h” directly to ¢,. To summarize, we
have h¥ equal to its input, with values € (0,0.5) in the last N locations indicating 1-hop neighbors of each
edge.
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Global layer Now we would like to identify cases (i, k), (j, k) with corresponding endpoints (e, »), (e, e).
We set the key and query attention matrices

0 01 01 -1 0 1 -1

Wi =k-| : Wo=k-| : . (33
In Q N (33)
IN *IN

The key allows us to check that endpoint i is directed, and the query allows us to check that (i, k) exists in
C’, and does not already point elsewhere. After softmax normalization, for sufficiently large k, we obtain
0(i,j),(i.k) > 0 if and only if (i, k) should be oriented (e,»), and the inner product attains the maximum
possible value

(Wkh?)ij, (Woh?)i ) = 2. (34)
We consider two components.

1. If the endpoints match our desired endpoints, we gain a +1 contribution to the inner product.
2. A match between the first nodes contributes +1. If the second node shares any overlap (either same
edge, or a triangle), then a negative value would be added to the overall inner product.

Therefore, we can only attain the maximal inner product if only one edge is directed, and if there exists no
triangle.

We set W, to the same as in (28)), and we add h” to the input of the next ¢g. To summarize, we have h?
equal to its input, with values € (0,0.5) in the last N locations indicating incoming edges.

Orientation assignment Our final step is to assign our new edge orientations. Let the column attention
take on the identity mapping. For endpoint dimensions e = (4,5, 6), we let FFN, implement

0,0,1]7 — Xewo 0< Y isnie Xiuw < 0.5

. (35)
0 otherwise.

FFN,(Xeuv) = {

This translates to checking whether any incoming edge points towards v, and if so, assigning the new edge
direction accordingly. For dimensions ¢ > 6,

0 Xiww < 0.5

. (36)
Xiuw otherwise,

FFN,(Xju0) = {

effectively erasing the stored assignments from the representation. Thus, we are left with h#»¢ that conforms
to the same format as the initial embedding in .

To symmetrize these edges, we run another axial attention block, in which we focus on paths that point
towards the second node of a pair. The only changes are as follows.

o For ¢p layer Wk and Wg , we swap Iy and £1y.

» For ¢, layer Wg and Wy , we swap Iy and £+1y.

e Wp swaps the N x N blocks that correspond to ¢ and j’s node embeddings.

o For FFN, (35), we let e = (1,2, 3) instead.
The result is h” with symmetric 1-hop orientation propagation, satisfying We may repeat this procedure
k times to capture k-hop paths.

To summarize, we used axial attention block 1 to recover the undirected skeleton C”, blocks 2-3 to identify and
copy v-structures in E’, and all subsequent L — 3 layers to propagate orientations on paths up to | (L — 3)/2]
length. Overall, this particular construction requires O(N) width for O(L) paths.

O
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Final remarks Information theoretically, it should be possible to encode the same information in log N
space, and achieve O(log N') width. For ease of construction, we have allowed for wider networks than optimal.
On the other hand, if we increase the width and encode each edge symmetrically, e.g. (e;,ej,¢ej,¢e; | 4,7, 7,1),
we can reduce the number of blocks by half, since we no longer need to run each operation twice. However,
attention weights scale quadratically, so we opted for an asymmetric construction.

Finally, a strict limitation of our model is that it only considers 1D pairwise interactions. In the graph layer,
we cannot compare different edges’ estimates at different times in a single step. In the feature layer, we cannot
compare (4,7) to (j,4) in a single step either. However, the graph layer does enable us to compare all edges at
once (sparsely), and the feature layer looks at a time-collapsed version of the whole graph. Therefore, though
we opted for this design for computational efficiency, we have shown that it is able to capture significant
graph reasoning.

A.4 Robustness and stability

We discuss the notion of stability informally, in the context of [Spirtes et al.| (2001). There are two cases in
which our framework may receive erroneous inputs: low/noisy data settings, and functionally misspecified
situations. We consider our framework’s empirical robustness to these cases, in terms of recovering the
skeleton and orienting edges.

In the case of noisy data, edges may be erroneously added, removed, or misdirected from marginal estimates
E’. Our framework provides two avenues to mitigating such noise.

1. We observe that global statistics can be estimated reliably in low data scenarios. For example,
Figure [4] suggests that 250 examples suffice to provide a robust estimate over 100 variables in our
synthetic settings. Therefore, even if the marginal estimates are erroneous, the neural network can
learn the skeleton from the global statistics.

2. Most classical causal discovery algorithms are not stable with respect to edge orientation assignment.
That is, an error in a single edge may propagate throughout the graph. Empirically, we observe that
the majority vote of GIES achieves reasonable accuracy even without any training, while Fcr suffers
in this assessment (Table [10). However both SEA (GIES) and SEA (Fcr1) achieve high edge accuracy.
Therefore, while the underlying algorithms may not be stable with respect to edge orientation, our
pretrained aggregator seems to be robust.

It is also possible that our global statistics and marginal estimates make misspecified assumptions regarding
the data generating mechanisms. The degree of misspecification can vary case by case, so it is hard to
provide any broad guarantees about the performance of our algorithm, in general. However, we can make the
following observation.

If two variables are independent, X; 1l X;, they are independent, e.g. under linear Gaussian assumptions.
If X;, X; exhibit more complex functional dependencies, they may be erroneously deemed independent.
Therefore, any systematic errors are necessarily one-sided, and the model can learn to recover the connectivity
based on global statistics.

B Experimental details

B.1 Synthetic data generation

Synthetic datasets were generated using code from DcpD1 (Brouillard et al., [2020]), which extended the Causal
Discovery Toolkit data generators to interventional data (Kalainathan et al.l 2020).

We considered the following causal mechanisms. Let y be the node in question, let X be its parents, let E be
an independent noise variable (details below), and let W be randomly initialized weight matrices.

e Linear: y = XW + E.

o Polynomial: y = Wy + XW; + X2W, + xE
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o Sigmoid: y = Z?:l W; - sigmoid(X;) + xE
o Randomly initialized neural network (NN): y = Tanh((X, E)Wi,)Wout

o Randomly initialized neural network, additive (NN additive): y = Tanh(X Wi, )Wou + E
Root causal mechanisms, noise variables, and interventional distributions maintained the DcDI defaults.

o Root causal mechanisms were set to Uniform(—2, 2).
« Noise was set to E ~ 0.4 - N(0,02) where 02 ~ Uniform(1,2).

o Interventions were applied to all nodes (one at a time) by setting their causal mechanisms to A/(0, 1).

Ablation datasets with N > 100 nodes contained 100,000 points each (same as N = 100). We set random
seeds for each dataset using the hash of the output filename.

B.2 Baseline details

We considered the following baselines. All baselines were run using official implementations published by the
authors.

Decdi (Brouillard et al., 2020) was trained on each of the N = 10,20 datasets using their published
hyperparameters. We denote the Gaussian and Deep Sigmoidal Flow versions as DCDI-G and DCDI-DSF
respectively. DCDI could not scale to graphs with N = 100 due to memory constraints (did not fit on a
32GB V100 GPU).

DCD-FG (Lopez et al., [2022) was trained on all of the test datasets using their published hyperparameters.
We set the number of factors to 5, 10,20 for each of N = 10, 20, 100, based on their ablation studies. Due to
numerical instability on N = 100, we clamped augmented Lagrangian multipliers 1 and v to 10 and stopped
training if elements of the learned adjacency matrix reached NaN values. After discussion with the authors,
we also tried adjusting the g multiplier from 2 to 1.1, but the model did not converge within 48 hours.

DECI (Geffner et al.l [2022) was trained on all of the test datasets using their published hyperparameters.
However, on all N = 100 cases, the model failed to produce any meaningful results (adjacency matrices nearly
all remained 0s with AUCs of 0.5). Thus, we only report results on N = 10, 20.

DiffAN (Sanchez et al., [2023) was trained on the each of the N = 10,20 datasets using their published
hyperparameters. The authors write that “most hyperparameters are hard-coded into [the] constructor of
the DIFFAN class and we verified they work across a wide set of datasets” We used the original, non-
approximation version of their algorithm by maintaining residue=True in their codebase. We were unable
to consistently run DIFFAN with both R and GPU support within a Docker container, and the authors did
not respond to questions regarding reproducibility, so all models were trained on the CPU only. We observed
approximately a 10x speedup in the < 5 cases that were able to complete running on the GPU.

AVICI (Lorch et al. 2022) was run on all test datasets using the authors’ pretrained scm-v0 model,
recommended for “arbitrary real-valued data.” Note that this model is different from the models described in
their paper (denoted AviCl-L and AvICI-R), as it was trained on all of their synthetic data, including test
sets. We sampled 1000 observations per dataset uniformly at random, with their respective interventions (the
maximum number of synthetic samples used in their original paper), except for Sachs, which used the entire
dataset (as in their paper). Though the authors provided separate weights for synthetic mRNA data, we
were unable to use it since we did not preserve the raw gene counts in our simulated mRNA datasets.

InvCov computes inverse covariance over 1000 examples. This does not orient edges, but it is a strong
connectivity baseline. We discretize based on ground truth positive rate.

Corr and D-Corr are computed similarly, using global correlation and distance correlation, respectively

(See for details).
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B.3 Neural network design

Hyperparameters and architectural choices were selected by training the model on 20% of the the training
and validation data for approximately 50k steps (several hours). We considered the following parameters in
sequence.

e learned positional embedding vs. sinusoidal positional embedding
o number of layers x number of heads: {4,8} x {4, 8}

o learning rate n = {le — 4,5e¢ — 5, le — 5}

For our final model, we selected learned positional embeddings, 4 layers, 8 heads, and learning rate n = le — 4.

Some empirical limitations of our implementations include: 1) a hard-coded maximum of 1000 variables
(arbitrary), 2) generalize poorly to synthetic cyclic data, 3) err on the side of sparsity on real data, 4) inverse
covariance can be numerically unstable on larger graphs (recommend models finetuned for correlation here),
and 5) training requires full precision. These are artifacts of our training set and design choices.

B.4 Training and hardware details

The models were trained across 2 NVIDIA RTX A6000 GPUs and 60 CPU cores. We used the GPU exclusively
for running the aggregator, and retained all classical algorithm execution on the CPUs (during data loading).

The total pretraining time took approximately 14 hours for the final FCI model and 16 hours for the final
GIES model.

For finetuning, we used rank r = 2 adapters on the axial attention model’s key, query, and feedforward
weights (Hu et al.| 2022). We trained until convergence on the validation set (no improvement for 100 epochs),
which took 4-6 hours with 40 CPUs and around 10 hours with 20 CPUs. We used a single NVIDIA RTX
A6000 GPU, but the bottleneck was CPU availability.

For the scope of this paper, our models and datasets are fairly small. We did not scale further due to hardware
constraints. Our primary bottlenecks to scaling up lay in availability of CPU cores and networking speed
across nodes, rather than GPU memory or utilization. The optimal CPU:GPU ratio for SEA ranges from 20:1
to 40:1.

We are able to run inference comfortably over N = 500 graphs with 7" = 500 subsets of £ = 5 nodes each, on
a single 32GB V100 GPU. For runtime analysis, we used a batch size of 1, with 1 data worker per dataset.
Our runtime could be further improved if we amortized the GPU utilization across batches.

B.5 Choice of classical causal discovery algorithm

For training, we selected FCI (Spirtes et al., |1995) as the underlying discovery algorithm in the observational
setting over GES (Chickering, [2002), GRaSP (Lam et al., |2022), and LINGAM (Shimizu et al., |2006])
due to its speed and superior downstream performance. We hypothesize this may be due to its richer
output (ancestral graph) providing more signal to the Transformer model. We also tried Causal Additive
Models (Buhlmann et al., [2014)), but its runtime was too slow for consistent GPU utilization. Observational
algorithm implementations were provided by the causal-learn library (Zheng et al., [2023). The code for
running these alternative classical algorithms is available in our codebase.

We selected GIES as the discovery algorithm in the interventional setting because an efficient Python
implementation was readily available at https://github.com/juangamella/gies.

We tried incorporating implementations from the Causal Discovery Toolbox via a Docker image (Kalainathan
et al.| 2020)), but there was excessive overhead associated with calling an R subroutine and reading/writing
the inputs/results from disk.
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Finally, we considered other independence tests for richer characterization, such as kernel-based methods.
However, due to speed, we chose to remain with the default Fisherz conditional independence test for FCI,
and BIC for GIES (Schwarzl, 1978).

B.6 Sampling procedure

Selection scores: We consider three strategies for computing selection scores aw. We include an empirical
comparison of these strategies in Table [0

1. Random selection: « is an N x N matrix of ones.

2. Global-statistic-based selection: a = p.

A

3. Uncertainty-based selection: « = H(E}), where H denotes the information entropy

aij=— Y ple)logp(e). (37)

ec{0,1,2}

Let cﬁyj be the number of times edge (i, ) was selected in Sy ...S;_1, and let o =/, /c;j. We consider two

strategies for selecting S; based on ay.

Greedy selection: Throughout our experiments, we used a greedy algorithm for subset selection. We
normalize probabilities to 1 before the constructing each Categorical. Initialize

Sy« {i :i ~ Categorical(a! ... aky)}. (38)

where of =37,y af ;. While | S| <k, update

Sy = Sy U{j : j ~ Categorical(o] g, ...y g,)) (39)
where
ot idS
aj s, = Zzest az,] J € t . (40)
’ 0 otherwise.

Subset selection: We also considered the following subset-level selection procedure, and observed minor
performance gain for significantly longer runtime (linear program takes around 1 second per batch). Therefore,
we opted for the greedy method instead.

We solve the following integer linear program to select a subset S; of size k that maximizes ), s, aij. Let
v; € {0,1} denote the selection of node ¢, and let €; ; € {0, 1} denote the selection of edge (4, j). Our objective
is to
maximize Zi’j at . €
subject to >, v; =k subset size
€i,j = V; +vj — 1 node-edge consistency
€ SV
€5 < Vj,
v; € {0, 1}
€5 € {O, 1}
fori,j e VxV,ieV. S is the set of non-zero indices in v.
The final algorithm used the greedy selection strategy, with the first half of batches sampled according to
global statistics, and the latter half sampled randomly, with visit counts shared. This strategy was selected
heuristically, and we did not observe significant improvements or drops in performance when switching to

other strategies (e.g. all greedy statistics-based, greedy uncertainty-based, linear program uncertainty-based,
etc.)

Table [0] compares the heuristics-based greedy sampler (inverse covariance + random) with the model
uncertainty-based greedy sampler. Runtimes are plotted in Figure[6] The latter was run on CPU only, since
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Table 9: Comparison between heuristics-based sampler (random and inverse covariance) vs. model confidence-
based sampler. The suffix -L indicates the greedy confidence-based sampler. Each setting encompasses 5
distinct Erd6s-Rényi graphs. The symbol 1 indicates that SEA was not pretrained on this setting. Bold
indicates best of all models considered (including baselines not pictured).

N E Model Linear NN add. NN non-add. Sigmoid? Polynomial
mAP1T OA1 shd] mAPT OA1 shd] mAPT OA1 shd] mAPT OA1 shd] mAPT OA1 shd|

SEA-F 097 092 16 0.950.92 24 0.92 094 28 083 0.6 3.7 0.69 071 6.7
SEA-G 0.990.94 12 094 088 2.6 091 093 3.2 085 084 4.0 0.70 0.79 5.8

SEA-F-L 0.97 0.93 1.0 0.95 0.87 24 0.920.98 34 0.84 0.77 39 0.70 0.79 5.8
SEAa-G-L  0.98 0.93 14 094 091 28 091 094 4.0 0.880.84 3.6 0.700.80 5.8

10 10

SEA-F 0.90 0.87 144 0.91 0.94 11.2 0.87 0.86 16.0 0.81 0.85 22.7 0.81 0.92 33.4
SEA-G 0.94 0.91 12.8 0.91 0.9510.4 0.89 0.89 172 0.810.87 24.5 0.89 0.93 29.5

SEAa-F-L  0.91 0.90 15.6 0.91 0.92 15.8 0.88 0.86 14.2 0.81 0.84 23.2 0.82 0.93 33.8
SEA-G-L  0.93 0.91 13.4 0.91 0.9310.4 0.88 0.85 16.2 0.79 0.83 25.5 0.90 0.94 28.3

10 40

SEA-F 0.97 092 3.2 094 097 32 0.84 093 7.2 0.84 08 7.6 0.710.80 10.2
SEA-G 097 0.89 3.0 0.94 095 34 083 094 78 0.84 083 81 0.69 0.78 10.1

SEA-F-L 0.970.92 28 093 095 3.8 0.85 094 6.8 0.85 0.85 7.5 0.67 0.78 9.9
SEA-G-L  0.97 0.90 2.6 0.940.98 34 0830.97 70 084 084 79 0.67 0.79 10.6

20 20

SEA-F 0.86 0.93 29.6 0.55 0.90 73.6 0.720.93 51.8 0.77 0.85 42.8 0.61 0.89 61.8
SEA-G 0.89 0.9226.8 0.58 0.88 71.4 0.73 0.92 50.6 0.76 0.84 45.0 0.65 0.89 60.1

SEA-F-L  0.86 0.92 32.0 0.550.90 74.0 0.74 0.93 49.2 0.76 0.87 41.8 0.59 0.88 62.3
SEA-G-L  0.89 0.92 284 0.58 0.89 71.6 0.75 0.92 49.4 0.75 0.85 45.7 0.65 0.88 60.6

20 80

it was non-trivial to access the GPU within a PyTorch data loader. We ran a forward pass to obtain an
updated selection score every 10 batches, so this accrued over 10 times the number of forward passes, all
on CPU. With proper engineering, this model-based sampler is expected to be much more efficient than
reported. Still, it is faster than nearly all baselines.

Average runtimes on synthetic datasets
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Figure 6: Runtime for heuristics-based greedy sampler vs. model uncertainty-based greedy sampler (suffix
-L). For sampling, the model was run on CPU only, due to the difficulty of invoking GPU in the PyTorch
data sampler.

B.7 Limitations

There are several aspects of this work that could be further improved in future iterations. First, classical
causal discovery algorithms make different types of errors, and different summary statistics capture distinct
aspects of data. Incorporating this diversity at training time remains unexplored, both from experimental
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and theoretical perspectives. The empirical success of this approach also motivates further theoretical studies
into amortized and supervised causal discovery algorithms, especially with regards to finite data regimes.
Finally, while our synthetic datasets were quite substantial, dynamically generating them during the training
process (as |[Lorch et al.| (2022)) does) may lead to even better generalization, as the model is unlikely to see
the same dataset twice.

C Additional analyses

C.1 Choice of global statistic

We selected inverse covariance as our global feature due to its ease of computation and its relationship to
partial correlation. For context, we also provide the performance analysis of several alternatives. Tables
[1] and [I2] compare the results of different graph-level statistics on our synthetic datasets. Discretization
thresholds for SHD were obtained by computing the p** quantile of the computed values, where p = 1—(E/N).
This is not entirely fair, as no other baseline receives the same calibration, but these ablation studies only seek
to compare state-of-the-art causal discovery methods with the “best” possible (oracle) statistical alternatives.

Corr refers to global correlation,
E(X:X;) - E(Xi)E (X;)

Pij = :
VE(X2) ~E(X)* /B (X2) - E(X,)’

(41)

D-Corr refers to distance correlation, computed between all pairs of variables. Distance correlation captures
both linear and non-linear dependencies, and D-CoRR(X;, X;) = 0 if and only if X; 1L X;. Please refer
to [Sz’ekely et al.| (2007)) for the full derivation. Despite its power to capture non-linear dependencies, we
opted not to use D-CORR because it is quite slow to compute between all pairs of variables.

InvCov refers to inverse covariance, computed globally,

-1

p=E(X-EX)X-EX)T) . (42)
For graphs N < 100, inverse covariance was computed directly using NumPy. For graphs N > 100, inverse
covariance was computed using Ledoit-Wolf shrinkage at inference time [Ledoit & Wolf (2004)). Unfortunately
we only realized this after training our models, so swapping to Ledoit-Wolf leads to some distribution shift
(and drop in performance) on SEA results for large graphs.

C.2 Results on simulated mRNA data

We generated mRNA data using the SERGIO simulator |Dibaeinia & Sinha; (2020). We sampled datasets
with the Hill coefficient set to {0.25,0.5,1,2,4} for training, and 2 for testing (2 was default). We set the
decay rate to the default 0.8, and the noise parameter to the default of 1.0. We sampled 400 graphs for each
of N ={10,20} and E = {N,2N}.

These data distributions are quite different from typical synthetic datasets, as they simulate steady-state
measurements and the data are lower bounded at 0 (gene counts). Thus, we trained a separate model on
these data using the SEA (Fc1) architecture. Table |13|shows that SEA performs best across the board.

C.3 Results and ablation studies on synthetic data

For completeness, we include additional results and analysis on the synthetic datasets. Tables [[7] and [I§]
compare all baselines across all metrics and graph sizes on Erdés-Rényi graphs. Tables [I9 and [20] include the
same evaluation on scale-free graphs. Tables 2I] and [22) assess N = 100 graphs.

Table [15] ablates the contribution of the global and marginal features by setting their hidden representations
to zero. Note that our model has never seen this type of input during training, so drops in performance may
be conflated with input distributional shift. Overall, removing the joint statistics (h? < 0) leads to a higher
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Table 10: Synthetic experiments, edge direction accuracy (higher is better). All standard deviations were
within 0.2. The symbol T indicates that SEA was not pretrained on this setting.

N E Model Linear NN add NN Sig.! Poly."
Dcp1-G 0.74 0.80 0.85 0.41 0.44
DCDI-DSF 0.79 0.62 0.68 0.38 0.39
Dcp-Fa 0.50 0.47 0.70 0.43 0.54
DIFFAN 0.61 0.55 0.26 0.53 0.47

0 10 DECr 0.50 0.43 0.62 0.63 0.75
Avicr 0.80 0.92 0.83 081 0.75
For-Ave 0.52 0.43 0.41 0.55 0.40

GIES-AVG 0.76 0.49 0.69 0.67 0.63

SEA (Far) 0.92 0.92 0.94 0.76 0.71
SEA (GIES) 0.94 0.88 0.93 0.84 0.79

Dcp1-G 0.47 0.43 0.82 0.40 0.24
Dcpi-Dsr 0.50 0.49 0.78 0.41 0.28
Dco-Fa 0.58 0.65 0.75 0.62 0.48
DirrAN 0.46 0.28 0.36 0.45 0.21
20 80 DEct 0.30 0.47 0.35 0.48 0.57
Avicr 0.57 0.67 0.74 0.63 0.62
Fcr-Ava 0.19 0.19 0.22 0.33 0.23

GIES-AVG 0.56 0.73 0.59 0.62 0.61

SEA (Far) 0.93 0.90 0.93 0.85 0.89
SEA (GIES) 0.92 0.88 0.92 0.84 0.89

Dcbp-Fa 0.46 0.60 0.70 0.67 0.53
Aviar 0.61 0.68 0.72 0.54 0.42

SEA (Fcr) 0.93 0.90 091 0.87 0.82
SEA (GIES) 0.94 0.91 0.92 0.87 0.84

100 400

Table 11: Comparison of global statistics (continuous metrics). All standard deviations within 0.1.

N E Model Linear NN add. NN non-add. Sigmoid Polynomial
mAP 1+ AUC T mAP 1 AUC T mAP 1 AUC 1 mAP 1 AUC 1t mAP 1 AUC 1
CORR 0.45 0.87 0.41 0.86 0.41 0.85 0.46 0.86 0.45 0.85

10 10 D-Corr 0.42 0.86 0.41 0.87 0.40 0.87 0.43 0.86 0.45 0.89
InvCov 0.49 0.87 0.45 0.86 0.36 0.81 0.44 0.86 0.45 0.83

CORR 0.47  0.53 0.47 0.52 0.46 0.52 0.48 0.53 0.48 0.54
10 40 D-Corr 0.46 0.53 0.46 0.51 0.46 0.54 0.48 0.53 0.47 0.54
INnvCov 0.50 0.57 0.48 0.52 0.47 0.53 0.47  0.50 0.48 0.52

CORR 0.42 0.99 0.25 0.94 0.25 0.93 0.42 0.98 0.35 0.91
100 100 D-Corr 0.41 0.99 0.25 0.96 0.26 0.96 0.41 0.98 0.37 0.94
InvCov 0.40 0.99 0.22 0.94 0.16 0.87 0.40 0.97 0.36 0.90

CORR 0.19 0.80 0.10 0.63 0.14 0.72 0.27 0.84 0.20 0.72
100 400 D-Corr 0.19 0.80 0.10 0.63 0.14 0.75 0.26 0.84 0.21 0.74
InvCov 0.25 0.91 0.09 0.62 0.14 0.77 0.27 0.86 0.20 0.67

performance drop than removing the marginal estimates (h” < 0). However, the gap between these ablation
studies and our final performance may be quite large in some cases, so both inputs are important to the
prediction.
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Table 12: Comparison of global statistics (SHD). Discretization thresholds for SHD were obtained by
computing the p*® quantile of the computed values, where p =1 — (E/N).

N E Model Linear NN add. NN non-add. Sigmoid Polynomial
CORR 10.6+2.8 10.2+4.6 12.0£1.9 11.1+43 99428
10 10 D-Corr  10.4+2.6 9.8+4.7 12.242.6  10.8+3.3 10.243.2
INnvCov 11.0+2.8 11.4+5.5 13.6+2.9 11.4+4.1 10.9+3.5
CORR 39.242.4  38.0+1.8 38.2+0.7  38.8+3.3 38.242.0
10 40 D-CoRr 38.8+2.0 38.8+1.5 37.0+0.6 38.9+3.2 38.0+2.0
INnvCov 35.8+2.3  39.2+1.5 37.6+2.7  40.7T+2.2 38.4+1.2

CORR 113.0+4.9 132.2+18.0 144.6+5.2 106.5+11.5 110.3+6.1
100 100 D-CoORR 113.8+5.3 133.2+17.9 144.2+6.7 108.5+11.9 109.5+5.7
InvCov  124.44s.1 130.0417.2 158.846.2 112.3+14.8 106.3+4.6

CORR 580.4+24.5 666.0+13.5 626.2+23.4 516.5+18.5 562.5+20.1
100 400 D-CORR 578.2+24.7 665.4+15.4 626.6+21.9 522.3+17.6 557.2+20.4
InvCov 557.0+11.7 667.8+15.4 639.0+9.7 514.7+23.1 539.4+18.4

Table 13: Causal discovery results on simulated mRNA data. Each setting encompasses 5 distinct scale-free
graphs. Data were generated via SERGIO |Dibaeinia & Sinha/ (2020).

N FE Model mAP 1 AUC 1 SHD | OA 7

DcpI1-G 0.48+0.1 0.73+0.1 16.1+3.3 0.59+0.2

Dcpi-Dsr - 0.63+0.1 0.84+0.1 18.5+2.7  0.79+0.2

10 10 Dcp-Fa 0.59+0.2 0.82+40.1 81.0+0.0 0.79+0.2
Avict  0.58+0.2  0.85+0.1 6.4+4.7  0.7220.2

SEA (For)  0.92+0.1  0.98+0.0 1.9+20 0.92+0.1

DcpIi-G 0.32+0.1 0.57+0.1 26.2+1.3 0.47+0.2

Dcpi-Dsr 0.44+0.1 0.64+0.1 25.7+1.3 0.63+0.1

10 20 Dcp-Fa 0.43+0.1 0.69+0.1 73.0+0.0 0.67+0.2
Avict  0.22+01  0.44+o0.2 16.8+1.5  0.27+0.3

SEA (For)  0.76+0.1  0.90+0.1 8.8+15 0.85+0.1

Dcpi-G - 0.48+0.1  0.86+0.1 37.3+2.8  0.65+0.1

Dcbpi-Dsr 0.45+0.1 0.92+0.0 51.9+15.8 0.81+0.1

20 20 Dcp-Fa  0.34+0.2  0.87+0.0 361+0  0.66+0.2
Avic 0.32+0.2 0.78+0.1 18.7+4.9 0.66+0.2

SEA (For)  0.54+0.2 0.94+00 16.6+3.3 0.83+0.1

Dcpi-G - 0.31+0.1 0.65+0.1 54.7+2.7  0.49+0.1

Dcpi-Dsr 0.40+0.1 0.71+0.1 54.6+4.4 0.63+0.1

20 40 Dcp-Fa 0.36+0.1 0.77+0.1 343+0 0.67+0.1
Avict  0.17+0.1  0.54+0.1 37.1+1.9  0.46+0.1

SEA (For)  0.50+0.1  0.85+0.1 31.4+49 0.78+0.1

Table [16| shows that despite omitting the DAG constraint, we find that our predicted graphs (test split) are
nearly all acyclic, with a naive discretization threshold of 0.5. Unlike Lippe et al, (2022)), which also omits
the acyclicity constraint during training but optionally enforces it at inference time, we do not require any
post-processing to achieve high performance. Empirically, we found existing DAG constraints to be unstable
(Lagrangian) and slow to optimize (Zheng et al.| [2018} Brouillard et al.| [2020). DAG behavior would not
emerge until late in training, when the regularization term is of le-8 scale or smaller.
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Table 14: Scaling to synthetic graphs, larger than those seen in training. Each setting encompasses 5 distinct
FErdés-Rényi graphs. All SEA runs in this table used T' = 500 subsets of nodes, with b = 500 examples per
batch. For Avict, we took M = 2000 samples per dataset (higher than maximum analyzed in their paper),
since it performed better than M = 1000. Here, the mean AUC values are artificially high due to the high
negative rates, as actual edges scale linearly as IV, while the number of possible edges scales quadratically.

N Model Linear, E = N Linear, £ = 4N
mAP 1 AUC1t SHD | OA 7t mAP 1t AUC1T SHD | OA 1
InvCov 0.434+0.0 0.99+0.0 11747 — 0.30+0.0 0.93+0.0 512+11 —
CORR 0.42+40.0 0.99+0.0 11345 — 0.1940.0 0.80+0.0 579+25 —
100 Avier 0.03£0.0 0.43z01 10946 0.49+00  0.11xoo 0.55t0. 394414 0.58£0.0

SEA (Fcr)  0.97+0.0 1.00+0.0 11.6+4.3 0.93+0.0 0.88+0.0 0.98+0.0 129410 0.94+0.0
SEA (GIES) 0.97+0.0 1.00+0.0 12.844.7 0.91+00  0.91+0.0 0.99+0.0 10546 0.95+0.0

InvCov 0.45+0.0 1.00+0.0 218+11 — 0.3340.0 0.96+0.0 100023 —
CORR 0.42+0.0 0.99+0.0 223+8 — 0.18+0.0 0.86+0.0 1184+25 —
200 Avicr 0.00:0.0 036401 20710 041401  0.05400 0.53z0.1 827437 0.54+0.1
SEA (Fcr)  0.9140.0 1.00+0.0 49.9+5.4 0.87+0.0 0.82+0.0 0.97+0.0 327452 0.92+0.0
SEA (GIES) 0.95+0.0 1.00+0.0 35.4+45.7 0.91+00  0.86+0.0 0.98+00 272+50 0.92+0.0
InvCov 0.46+0.0 1.00=+0.0 308+20 — 0.35+0.0 0.98+0.0 1445+56 —
CORR 0.42+0.0 1.00+0.0 326+21 — 0.20+0.0 0.89+0.0 1710+s2 —
300 Avier 0.0120.0 0.70400  298+19 0.64+00  0.02400 0.50=0.0 1214+6s 0.51=0.
SEA (Fcr)  0.80+0.0 1.00+0.0 121414 0.78%0.0 0.70+0.0 0.95+0.0  693+67 0.86+0.0
SEA (GIES) 0.88+0.0 1.00+0.0 88.9+11.3 0.84+00  0.78+0.0 0.96+t00 556+71 0.87+0.0
InvCov 0.47+0.0 1.00+0.0 41847 — 0.36+0.0 0.98+0.0 1883+28 —
CORR 0.42+0.0 1.00+0.0 445+14 — 0.20+0.0 0.91+0.0 2269+52 —
400 Ay 0.01400 0.68+400 41147 0.62:00  0.01+0.0 04600 1614421 0.47+0.0
SEA (Fcr) 049402 0.93+0.1 3144107 0.61+0.1 0.56+0.1 0.904+0.1 1103+190 0.75+0.1
SEA (GIES) 0.70+0.1 0.99+0.0 226457 0.71+0.1 0.70+0.0 0.94+0.0 872144 0.80+0.0
InvCov 0.47+0.0 1.00+0.0 504+19 — 0.38+0.0 0.99+0.0 2300+34 —
CORR 0.42+0.0 1.00+0.0 543+18 — 0.21+0.0 0.93+0.0 2790+78 —
500 Avicr 0.0040.0 0.7040.0 497419 0.63400  0.0l+0.0 0.48400 2004425 0.48£0.0

SEA (Fcr)  0.27+0.1 0.90+0.1  758+297 0.5140.0 0.29+0.1 0.86+0.1 1824+273 0.56+0.1
SEA (GIES) 0.41+0.2 0.98+0.0 485+170 0.57+0.1 0.48+0.1 0.92+0.0 1654+505 0.67+0.0

Alternatively, we could quantify the raw information content provided by these two features through the
InvCov, Fcr*, and GIEs™ baselines (Tables R20). Overall, INvCov and Fcr* are comparable
to worse-performing baselines. GIES* performs very well, sometimes approaching the strongest baselines.
However, there remains a large gap in performance between these ablations and our method, highlighting the
value of learning non-linear transformations of these inputs.

Table and Figure [§| show that the current implementations of SEA can generalize to graphs up to 4x
larger than those seen during training. During training, we did not initially anticipate testing on much larger
graphs. As a result, there are two minor issues with the current implementation with respect to scaling. First,
we set an insufficient maximum subset positional embedding size of 500, so it was impossible to encode more
subsets. Second, we did not sample random starting subset indices to ensure that higher-order embeddings
are updated equally. Since we never sampled up to 500 subsets during training, these higher-order embeddings
were essentially random. We anticipate that increasing the limit on the number of subsets and ensuring that
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Table 15: Causal discovery ablations by setting hidden representations to zero. Each setting encompasses 5
distinct Erdés-Rényi graphs. The symbol t indicates that SEA was not pretrained on this setting. We set
T = 100.

N E Model Linear NN add. NN non-add. Sigmoid? Polynomial
mAP 1+ SHD | mAP 1 SHD | mAP 1 SHD | mAP 1+ SHD | mAP 1 SHD |
SEA (Far) 0.97 1.6 0.95 24 0.92 2.8 0.83 3.7 0.69 6.7

10 10 h”«+0 0.20  29.8 0.27 224 0.34 24.2 0.26 22.6 0.24 26.0
hE <0 0.61 24.0 0.71 28.8 0.76 27.8 0.49 26.7 0.51 26.7
SEA (GIES) 0.99 1.2 0.94 2.6 0.91 3.2 0.85 4.0 0.70 5.8
h*? <0 0.30  29.2 0.27 294 0.19 29.0 0.35 27.4 0.31 27.1
h¥ <0 0.85 6.4 0.82 10.2 0.78 13.2 0.63 10.2 0.55 13.4
SEA (Fcr) 0.86 29.6 0.55 73.6 0.72 51.8 0.77  42.8 0.61 61.8
20 80 AP «+0 0.23 1284 0.27 110.6 0.22 119.6 0.23 110.7 0.23 111.1
R 0 0.79 504 0.52  99.6 0.71 76.4 0.58  93.6 0.59 875
SEA (GIES) 0.89  26.8 0.58 71.4 0.73 50.6 0.76  45.0 0.65  60.1
h*? <0 0.25 125.2 0.21 123.0 0.24 113.6 0.27 118.0 0.24 129.8
h¥ <0 0.86  35.2 0.55 76.8 0.70 53.4 0.69 47.1 0.59  63.5
SEA (Far) 0.90 122.0 0.28 361.2 0.60 273.2 0.69 226.9 0.38 327.0
100 400 h” <0 0.06 726.4 0.04 639.4 0.05 637.0 0.05 760.2 0.04 658.3
R 0 0.82 1674 0.04 4034 0.51 3524 0.64 263.8 0.33  366.1
SEA (GIES) 0.91 116.6 0.27 364.4 0.61 266.8 0.69 218.3 0.38 328.0
h*? <0 0.05 780.0 0.04 846.0 0.05 7154 0.04 7444 0.04 769.8
R 0 0.86 134.8 0.03 403.4 0.52 357.8 0.67 224.1 0.32  359.6

Table 16: Our predicted graphs are highly acyclic, on synthetic ER test sets.

N Acyclic Total Proportion

10 434 440 0.99
20 431 440 0.98
100 433 440 0.98

all embeddings are sufficiently learned will improve the generalization capacity on larger graphs. Nonetheless,
our current model already obtains reasonable performance on larger graphs, out of the box.

Finally, we note that AVICI scales very poorly to graphs significantly beyond the scope of their training
set. For example, N = 100 is only 2x their largest training graphs, but the performance already drops
dramatically.

Figure [7] depicts the model runtimes. SEA continues to run quickly on much larger graphs, while AviCI
runtimes increase significantly with graph size.

Dcp1 learns a new generative model over each dataset, and its more powerful, deep sigmoidal flow variant
seems to perform well in some (but not all) of these harder cases.

C.4 Results on real datasets

The Sachs flow cytometry dataset (Sachs et al., |2005) measured the expression of phosphoproteins and
phospholipids at the single cell level. We use the subset proposed by Wang et al.| (2017)). The ground truth
“consensus graph” consists of 11 nodes and 17 edges over 5,845 samples, of which 1,755 are observational
and 4,091 are interventional. The observational data were generated by a “general perturbation” which
activated signaling pathways, and the interventional data were generated by perturbations intended to target
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Figure 7: SEA scales very well in terms of runtime on much larger graphs, while AVICI runtimes suffer as
graph sizes increase.
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Figure 8: mAP on graphs larger than seen during training. During training, we only sampled a maximum of
100 subsets, so performance drop may be due to extrapolation beyond trained embeddings. We did not have
time to finetune these embeddings for more samples. These values correspond to the numbers in Table @

individual proteins. Despite the popularity of this dataset in causal discovery literature (due to lack of better
alternatives), biological networks are known to be time-resolved and cyclic, so the validity of the ground
truth “consensus” graph has been questioned by experts [Mooij et al| (2020). Nonetheless, we benchmark all
methods on this dataset in Table
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Table 17: Full results on synthetic datasets (continuous metrics). Mean/std over 5 distinct Erdds-Rényi
graphs.  indicates 0.0.d. setting. * indicates non-parametric bootstrapping. All standard deviations within
0.03 (most within 0.01).

N E Model Linear NN add. NN non-add. Sigmoid? Polynomial’
mAP 1 AUC 1 mAP 1+ AUC T mAP 1 AUC T mAP 1t AUC 1T mAP 1t AUC 1
Dcpr-G 0.74 0.88 0.79 0.91 0.89 0.95 0.46 0.72 0.41 0.68
Dcpi-Dsr 0.82 0.92 0.57 0.83 0.50 0.81 0.38 0.69 0.29 0.64
Dcp-Fa 0.45 0.68 0.41 0.67 0.59 0.79 0.40 0.64 0.50 0.72
DIFFAN 0.25 0.73 0.32 0.70 0.12 0.51 0.24 0.70 0.20 0.65
DEec1 0.18 0.63 0.16 0.63 0.23 0.71 0.29 0.72 0.46 0.83
10 10 Avict 0.45 0.80 0.81 0.97 0.65 0.89 0.52 0.81 0.31 0.70
VARSORT* 0.70 0.84 0.76 0.90 0.83 0.93 0.52 0.72 0.40 0.71
InvCov 0.46 0.88 0.43 0.86 0.34 0.81 0.43 0.86 0.43 0.83
For* 0.52 0.78 0.38 0.71 0.40 0.70 0.56 0.79 0.41 0.71
GIES* 0.81 0.96 0.61 0.93 0.71 0.92 0.70 0.95 0.61 0.87

SEA (For) 0.98 1.00 0.88 0.98 0.88 0.97 0.83 0.97 0.62 0.88
SEA (GIES) 0.99 1.00 0.94 099 091 0.98 0.85 097 0.70 0.89

Dopr-G 065 072 065 074 084 088 054 059 056 061
Dopr-Dse 065 072 059 067 084 090 052 058 057  0.62
Dop-Fa 051 057 057 063 053 059 065 068 065 0.68
DIFFAN 040 049 036 037 041 053 040 045 037 040
DEc 045 049 050 058 044 052 053 061 063  0.72
10 40 Avicr 046 047 063 065 079 086 049 053 047 055
VARSORT*  0.81 083 087 089 071 073 069 072 056  0.62
INvCov 049 057 046 050 046 053 047 050 048 053
For 043 050 050 053 046 052 050 051 045 050
Gies* 049 053 056 064 049 053 044 046  0.61  0.62
Sea (Fcr) 083 0.8 085 089 08 090 074 075 069  0.67
Sea (Gies) 0.94 0.95 0.91 094 0.89 092 081 0.85 0.89 0.92
Dopi-G 059 087 078 094 075 091 036 081 042 0.74
Dopr-Dse 066 089 069 091 041 083 037 082 026 071
Dop-Fa 048 085 058 091 051 087 050 078 044 076
DIFFAN 019 073 016 069 020 072 029 079 009 065
DEcr 014 070 014 072 016 073 024 079 035 084
00 oo AViCI 048 087 059 091 067 090 042 084 024  0.69
VARSORT* 081 091 081 092 057 083 050 076 033  0.69
InvCov 040 090 031 090 031 084 042 092 041 087
For 0.66 086 042 074 040 077 056 080 041  0.76
Gies* 084 099 079 097 056 093 071 097 062 091
Sea (Fcr) 096 1.00 091 099 082 0.97 0.85 0.98 0.69 091
Sea (Gies)  0.97 1.00 0.94 0.99 0.83 097 084 097 069 0.92
Dopi-G 046 073 041 071 0.82 0.93 048 071 037 062
Dopr-Dse 048 075 044 074 074 092 048 071 038  0.63
Dep-Fa 032 061 033 064 04l 073 047 074 049  0.69
DIFFAN 021 053 019 041 018 046 022 055 018 037
DEcI 025 057 029 061 026 059 031 066 043 0.73
50 g0 AVICI 034 063 046 073 049 074 034 064 030 059
VARSORT* 076 0.86 050 081 047 069 059 076 038  0.63
InvCov 036 072 026 054 030 064 035 072 032 061
For* 030 059 031 057 030 059 041 066 034 061
Gies* 041 075 044 074 046 073 050 078 049  0.69

SEA (Far) 0.80 0.92 0.55 0.81 0.70 0.89 0.74 0.85 0.55 0.67
SEA (GIES) 0.89 0.95 0.58 0.84 0.73 090 0.76 0.90 0.65 0.84
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Table 18: Full results on synthetic datasets (discrete metrics). Mean/std over 5 distinct Erdés-Rényi graphs.
t indicates 0.0.d. setting. * indicates non-parametric bootstrapping. All OA standard deviations within 0.2.

N E Model Linear NN add. NN non-add. Sigmoid? Polynomial’
OA1t SHD | OA1t SHD| OA1t SHDJ| OA1 SHD | OA 1 SHD |
Dcpi-G 0.73 28+2 0.84 2.2+3 0.88 1.0+1 046 58+3 0.33 89+s6

Dcpi-Dsr 0.81 2.0+3 0.73 3.0+3  0.60 4.2+1 043 6.3+3 0.24 11.2+5
Dcp-Fa 0.50 20.4+3 0.47 21244 0.70 19.2+4 043 19.844 0.54 18.5+5

DIFFAN 0.61 14.0+5 0.55 13.6+14 0.26 21.848 0.53 12.04#5 0.47 15.046
DEcr 0.50 19445 0.43 13.846¢ 0.62 16.2+3 0.63 13.9+7 0.75  7.8+4
10 10 Avict 0.58 82+4 0.79 4243 0.65 5.6+3 054 83+3 0.35 9.6+4
VARSORT*  0.70 6.0+2 0.74 4.0+2 0.90 4.2+3 052 T7.6+3 048 9.3+3
InvCov — 10.6£3 — 10.2+6 —  13.6+3 — 11.1+4 — 10.4+3
For* 0.52 10.0+3 043  82+4 041 9.8+2 0.55 9.1+3 0.40 10.0+4
GIES* 0.76 3.6+2 049 6.0&5 0.69 48+2 0.67 59+3 0.63 7.1+3
SEA (For) 0.93 1.0+1 0.82 3.0£4 090  3.8+t2 0.73 3.9+2 0.70 6.1+s3
SEA (GIES) 0.94 1.2+1 0.88 2.6+« 0.93 3.2+1 0.84 4.0+3 0.79 5.8+3
Dcepi-G 0.50 19.8+2 0.64 17.4+3 0.82  8.0+2 0.25 30.8+4 0.23 31.0+2
Dcpi-Dsr 0.48 19.843 0.55 21.6+7 0.87 6.0+3 0.25 31.4+3 0.25 30.043
Dcp-Fa 0.35 28.6+4 0.40 26.0+1 0.36 26.8+4 0.45 24.4+5 0.41 25.5+4
DIFrFAN 041 27.6+4 0.29 33.4+4 0.49 264+4 0.38 29.4+6 0.32 31.8+4
DEec1t 0.43 27.6+5 0.55 224+4 050 25.4+3 0.54 21.5+3 0.57 18.443
10 40 Avict 0.44 33.0+5 0.68 28.4+7 0.85 20.0+4 0.50 35.0+3 0.50 38.8+2
VARSORT*  0.76 21.8+5 0.81 15.4+4 0.61 24.044 0.67 33.6+5 0.46 37.6+2
InvCov —  40.2+2 —  44.6+2 —  41.0+3 —  44.243 —  42.3+2
For* 0.16 39.2+2 0.24 38.843 0.22 36.2+43 0.22 38.842 0.16 39.9+2
GIES* 044 334+4 060 33.045 0.51 32.043 0.38 36.7+2 0.63 34.6+3
SEA (Fcr) 0.80 18.6+2 0.89 15.4+4 0.87 188+4 0.78 24446 0.69 26.944
SEA (GIES) 0.91 12.8+4 0.95 10.4+¢ 0.89 17.2+3 0.87 24.5+3 0.93 29.5+3
Dopi-G 0.75 6.4+2 090 3.0+2 0.84 4.4+2 0.39 42.7+¢ 048 10.4+3
Dcp1-DsrF 0.77  52+3 0.85 4244 064 11.6+3 041 43.2+¢ 045 15.7+s5
Dcp-Fa 0.76 51.2+12 0.88 177+s57 0.85 193+27 0.65 251+35 0.60 52.7+19
DIFFAN 0.56 40.2+27 0.47 38.6+26 0.53 35.0+26 0.63 19.24+8 0.42 49.7+15
DEec1 0.54 52.0+17 0.56 41.0+14 0.56 39.0+s 0.65 30.0+o 0.73 18.9+6
20 20 Avicr 0.56 17.2+5 0.69 10.8+2 0.79 11.2+3 0.53 17.2+5 0.37 18.4+4
VARSORT*  0.84 10.0+3 0.88 6.6+¢ 0.74 14.6+s 0.50 16.1+4 0.40 17.1+4
InvCov —  23.6+6 —  24.6+5 —  24.6+6 — 22945 —  20.0+s
Fer* 0.70 19.0¢5 0.45 17.4+2 0.50 19.4+6¢ 0.57 18.5+4 0.44 18.9+5
GIES* 0.80 7.4+2 077 9.045 0.71 14.043 0.75 12.544 0.68 13.7+4
SEA (Fcr)  0.92  3.2+3  0.93 5.043 0.94 8.8+3 0.79 6.7+3 0.76 9.8+4
SEA (GieEs) 0.89 3.0+1 0.95 3.4+2 0.94 7.8+3 0.83 8.1+3 0.78 10.1+4
Dopi-G 0.54 44.0+¢ 0.53 61.6+11 0.89 37.4+34 0.46 44.2+5 0.26 59.7+5
Dcpi-Dsr 0.57 41.243  0.61 60.0+12 0.85 28.4+26 0.47 43.6+6 0.30 57.645
Dcp-Fa 0.58 172+27 0.65 156+41 0.75 162+40 0.62 80.1+13 0.48 79.847
DirrAN 0.46 127+5 0.28 154+10 0.36  145+7 0.45 117+21 0.21 157+7
DEec1 0.30 87.2+3 047 10447 0.35 79.6+9 0.48 71.0+7 0.57 58.9+11
20 80 Avict 0.51 75.6+10 0.69 72.8+6 0.69 61.2+10 0.50 70.6x6 0.50 75.5+7
VARSORT*  0.82 44.8+4 0.84 73.6+13 0.61 65.2+10 0.67 63.4+5 0.39 75.6+5
InvCov — 97.6+6 — 12144 —  104+0 —  95.6+7 —  97.8+4
Fer* 0.19 75.8+11 0.19 80.2+5 0.22 7T4.4+8 0.33 72346 0.23 76.645
GIES* 0.56 70.0411 0.73 75244 0.59 67.4+7 0.62 65.6+7 0.61 68.1+5

SEA (Fcr)  0.86 39.8+12 0.87 73.8+12 0.92 52.0+9 0.82 42.946 0.69 57.0+s5
SEA (GiES) 0.92 26.8+s 0.88 71.4+s 0.92 50.6+7 0.84 45.047 0.89 60.1+6
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Table 19: Full results on synthetic datasets (continuous metrics). Mean over 5 distinct scale-free graphs. |
indicates 0.0.d setting. * indicates non-parametric bootstrapping. All standard deviations were within 0.02.

N FE Model Linear NN add. NN non-add. Sigmoid? Polynomial
mAP 1+ AUC T mAP 1 AUC 1t mAP 1t AUC T mAP 1t AUC 1t mAP 1 AUC 1t
Dcoi-G 0.54 0.90 0.59 0.88 0.69 0.89 0.48 0.77 0.50 0.73
Dcpi-DsF 0.70 0.92 0.71 0.88 0.36 0.83 0.46 0.75 0.49 0.76
Dcp-Fa 0.56 0.76 0.47 0.72 0.50 0.73 0.44 0.68 0.57 0.75
DIrrFAN 0.25 0.73 0.15 0.66 0.16 0.62 0.31 0.75 0.24 0.63
DEcI 0.17 0.65 0.17 0.67 0.20 0.72 0.27 0.73 0.49 0.82
10 10 Avict 0.51 0.87 0.55 0.85 0.76 0.95 0.44 0.81 0.27 0.71
VARSORT* 0.67 0.84 0.69 0.86 0.76 0.88 0.45 0.69 0.46 0.73
InvCov 0.50 0.92 0.41 0.87 0.38 0.84 0.47 0.90 0.45 0.86
Fer* 0.56 0.80 0.51 0.80 0.43 0.74 0.60 0.82 0.34 0.68
GIES* 0.87 0.98 0.61 0.94 0.69 0.94 0.75 0.96 0.71 0.91

SEA (Fcr) 0.96 0.99 0.88 0.98 0.88 0.97 0.79 0.96 0.73 0.90
SEA (GIES) 095 0.99 0.94 0.98 0.92 0.98 0.85 0.98 0.74 0.90

Dcpr-G 0.70 0.85 0.74 0.85 0.88 0.91 0.56 0.66 0.53 0.64
Dcpi-Dsr 0.74 0.87 0.73 0.84 0.71 0.90 0.56 0.69 0.51 0.63
Dcp-Fa 0.37 0.58 0.45 0.61 0.45 0.58 0.49 0.63 0.63 0.73
DIFrAN 0.29 0.50 0.25 0.38 0.28 0.46 0.31 0.53 0.27 0.44
DEec1 0.30 0.51 0.41 0.65 0.33 0.51 0.38 0.60 0.59 0.77
10 40 Avict 0.41 0.57 0.65 0.81 0.55 0.67 0.41 0.59 0.40 0.61
VARSORT* 0.77 0.83 0.74 0.87 0.59 0.71 0.66 0.76 0.50 0.66
InvCov 0.44 0.71 0.38 0.59 0.42 0.62 0.44 0.67 0.42 0.62
For* 0.47 0.64 0.41 0.60 0.40 0.58 0.48 0.64 0.41 0.59
GIES* 0.43 0.68 0.43 0.63 0.44 0.61 0.49 0.69 0.59 0.71
SEA (Fcr) 0.85 0.91 0.80 0.90 0.77 0.88 0.76 0.83 0.66 0.71
SEA (GIES) 0.92 0.96 0.84 0.93 0.83 090 0.79 0.88 0.78 0.87
Dcpr-G 0.41 0.95 0.50 0.94 0.69 0.96 0.37 0.83 0.37 0.77
Dcpi-Dsr 0.48 0.95 0.55 0.93 0.33 0.90 0.37 0.79 0.35 0.82
Dcp-Fa 0.51 0.87 0.39 0.83 0.48 0.84 0.56 0.84 0.50 0.84
DIFFAN 0.27 0.80 0.11 0.65 0.11 0.66 0.26 0.77 0.12 0.69
DEecr 0.13 0.69 0.15 0.71 0.15 0.73 0.15 0.71 0.25 0.79
20 20 Avict 0.53 0.88 0.66 0.89 0.74 0.92 0.46 0.87 0.32 0.77
VARSORT* 0.67 0.85 0.84 0.93 0.59 0.86 0.45 0.72 0.44 0.73
InvCov 0.44 0.94 0.35 0.91 0.30 0.89 0.43 0.93 0.41 0.87
For* 0.63 0.84 0.44 0.78 0.43 0.79 0.60 0.86 0.47 0.78
GIES* 0.82 0.99 0.58 0.95 0.57 0.96 0.75 0.98 0.61 0.90
SEA (Fcr) 0.94 1.00 0.87 0.98 0.83 097 0.82 0.98 0.72 0.92
SEA (GIES) 093 1.00 0.91 098 0.88 0.98 0.82 0.98 0.70 0.91
Dcpr-G 0.62 0.88 0.61 0.89 0.76 0.94 0.44 0.76 0.36 0.60
Dcpr-Dsr 0.58 0.87 0.55 0.86 0.58 0.92 0.43 0.78 0.35 0.66
Dcp-Fa 0.38 0.70 0.30 0.69 0.48 0.80 0.48 0.75 0.53 0.73
DiFrAN 0.18 0.55 0.15 0.44 0.16 0.53 0.19 0.56 0.15 0.38
Decr 0.21 0.58 0.24 0.64 0.26 0.66 0.30 0.68 0.41 0.75
20 80 Avict 0.29 0.61 0.54 0.80 0.60 0.85 0.35 0.65 0.28 0.63
VARSORT* 0.79 0.90 0.57 0.83 0.62 0.81 0.57 0.77 0.38 0.64
InvCov 0.38 0.81 0.22 0.56 0.32 0.73 0.38 0.78 0.33 0.67
For* 0.31 0.63 0.30 0.62 0.30 0.62 0.41 0.68 0.32 0.62
GIES* 0.51 0.87 0.43 0.78 0.47 0.81 0.52 0.82 0.47 0.73

SEA (Far) 0.87 0.96 0.59 0.87 0.70 0.90 0.73 0.87 0.53 0.71
SEA (GIES) 0.92 0.98 0.63 0.89 0.73 0.91 0.77 0.92 0.62 0.84
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Table 20: Full results on synthetic datasets (discrete metrics). Mean/std over 5 distinct scale-free graphs. |
indicates 0.0.d. setting. * indicates non-parametric bootstrapping. All OA standard deviations within 0.2.

N FE Model Linear NN add. NN non-add. Sigmoid! Polynomial’
OA 1t SHD | OA1 SHD | OAt SHD | OA 1 SHD | OA 1 SHD |

Dcp1-G 0.51 16.6+1 0.61 17.4+2 0.71 16.2+2 0.59 16.9+5 0.63 16.6+3
Dcpi-Dsr 0.70 16.2+2 0.75 15.4+3 0.36 16.8+2 0.48 18.1+3 0.67 18.0+2
Dcp-Fa 0.60 16.4+5 0.57 22.2+4 0.57 20.0+4 047 17.9+4 0.59 16.8+5
DIrFrAN 0.55 9.2+4 049 14.6+4 0.36 11.6+4 0.59 7.7+a2 0.42 14.8+6

DEc1 0.51 17.4+5 0.55 17.4+5 0.58 12.0+2 0.62 12.6+5 0.74 8.2+s6
10 10 Avict 0.64 6.8+3 0.59 5.4+3 0.77 3.6+1 048 7.8+3 0.35 9.5+3
VARSORT* 0.82 4.4+1 0.78 4.8+2 0.80 3.4+2 0.47 7.3+3 055 8.1+3
InvCov —  8.8+3 —  9.2+2 —  9.8+1 — 9.7+s3 — 10.2+2
For* 0.62 84+2 0.51 7.8+2 045 8.0+2 0.61 9.2+3 0.34 9.6+2
GIES* 0.83 2.2+2 0.60 6.0+2 0.75 4.2+2 0.72 4.9+3 0.73 5.7+2

SEa (For) 0.89 1.4+2 090 2.6+2 093 22+1 071 4.043 0.72 5.2+2
SEA (GIES) 0.85 1.4+1 0.96 1.8+1 0.94 2.0+1 0.86 3.4+3 0.83 5.0+2

Dcp1-G 0.82 24.0+4 0.85 27.8+5 0.87 19.6+2 0.62 31.4+3 0.52 32.6+4
Dcpi-Dsr 0.79 22.8+5 0.79 24.444 0.82 20.4+2 0.64 31.6+2 0.58 33.3+3
Dcbp-Fa 0.36 24.844 0.41 25.2+5 0.38 25.6+8 0.41 23.2+6 0.54 18.5+3
DIrFFAN 0.40 29.8+s8 0.28 37.0+2 0.38 32.6+2 0.45 28.0+6 0.33 32.7+5

DEec1 0.43 27.8+3 0.66 22.6+3 0.48 28.6+3 0.52 22.2+4 0.66 13.3+3
10 40 Avict 0.43 20.2+4 0.84 17.2+4 0.61 20.4+s 0.52 24.8+43 0.49 26.5+2
VARSORT* 0.75 13.4+2 0.89 12.6+2 0.60 20.6+3 0.65 20.8+4 0.50 26.4+2
InvCov — 31.4+3 — 37.2+4 — 36.0+4 — 32.3+5 — 34.8+3
For* 0.33 23.8+2 0.28 27.2+2 0.25 27.6+4 0.36 26.1+2 0.24 27.3+2
GIES* 0.46 21.8+3 0.50 24.4+2 0.48 25.2+5 0.52 22.7+3 0.64 22.5+2

SEA (Fcr)  0.80 10.0+4 0.88 14.0+2 0.87 15.843 0.79 15.6+3 0.64 18.5+3
SEA (GIES) 0.88 6.6+3 0.98 14.0+5 0.88 14.4+3 0.87 14.1+3 0.93 19.143

Dcp1-G 0.54 40.4+2 0.70 44.8+8 0.88 39.8+6 0.47 41.1+4 0.53 38.4+s6
Dcpi-Dsr 0.64 40.4+3 0.65 42.4+s 0.40 42.2+8 0.37 41.1+4 0.45 49.3+18
Dcp-Fa 0.68 252+23 0.77 183+s52 0.78 181427 0.70 251+45 0.69 278+6s
DIFFAN 0.67 23.6+13 0.40 42.2122 0.42 34.0+11 0.59 22.6+12 0.50 46.8+13

DEec1 0.50 42.0+5 0.54 43.0+11 0.57 40.0413 0.51 34.7+7 0.65 25.3+6
20 20 Avicr 0.68 11.843 0.79 9.2+2 080 7.842 0.60 15.3+4 0.45 18.3+5
VARSORT*  0.74 10.4+3 0.91 6.2+2 0.76 13.0+¢ 0.49 13.7+4 0.51 16.7+¢
InvCov — 20.2+3 — 24445 — 23.8%5 — 21.2+44 — 20.8+s5
Fcr* 0.67 13.8+2 0.52 17.4+1 0.53 17845 0.65 16.7+4 0.50 18.9+5
GIES* 0.82 6.4+3 0.71 12.6+2 0.68 13.243 0.75 11.4+5 0.73 13.4+4

SEA (Fcr) 090 2.8+1 0.87 7.0+2 091 82+5 0.73 7.7+3 0.71 9.5+4
SEA (GIES) 0.85 4.0+2 0.95 3.6+2 0.93 6.2+4 0.80 7.9+4 0.82 9.9+3

Dcpi-G 0.81 93.0+10 0.73 104+7 0.91 67.8+8 0.61 82.5+8 0.53 79.7+5
Dcpi-DsrF 0.75 103+7 0.73 94.8+11 0.77 63.8+7 0.65 84.4+8 0.52 82.6+5
Dcp-Fa 0.63 188+24 0.70 187+14 0.78 190+26 0.71 217+38 0.71 235x32
DIFrFAN 0.42 111+18 0.30 145+11 0.40 119413 0.41 100+22 0.21 149+11

DEcrt 0.33 72.2+10 0.48 81.4+10 0.48 67.0+9 0.50 60.4+12 0.58 47.2+7
20 80 Avicy 0.45 56.0+5 0.77 47.6+s 0.76 42.6+3 0.50 54.0+6¢ 0.47 62.2+5
VARSORT*  0.85 32.4+5 0.84 54.8+8 0.75 40.2+¢ 0.64 54.0+6¢ 0.37 60.1+5
InvCov — 794+ — 106=5 — 87.4+2 — 78.8+9 — 86.2+4
For* 0.26 58.2+6¢ 0.22 58.4+4 0.26 55.0+7 0.37 59.3+6¢ 0.23 62.9+4
GIES* 0.65 48.4+5 0.71 53.6+3 0.68 48.0+4 0.64 53.6+6 0.61 54.9+5

SEA (For) 091 25.646 0.88 51.646 0.89 42.2+4 0.83 36.146 0.71 47.445
SEA (GIES) 0.92 17.6+3 0.93 49.2+9 0.89 37.2+5 0.88 35.1+7 0.89 48.1+s
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Table 21: Causal discovery results on synthetic datasets with 100 nodes, continuous metrics. Each setting
encompasses b distinct Erdés-Rényi graphs. The symbol 1 indicates that the model was not trained on this
setting. All standard deviations were within 0.1.

N E Model Linear NN add. NN non-add. Sigmoid Polynomial
mAP 1+ AUC 1T mAP 1 AUC 1T mAP 1T AUC 1T mAP 1 AUC 1 mAP 1T AUC 1t
Dco-Fa 0.11 0.75 0.12 0.71 0.18 0.73 0.20 0.72 0.06 0.60
100 100 InvCov 0.40 0.99 0.22 0.94 0.16 0.87 0.40 0.97 0.36 0.90

SEA (Far) 0.96 1.00 0.83 0.97 0.75 0.97 0.79 0.97 0.56 0.88
SEA (GIES) 0.97 1.00 0.82 0.98 0.74 0.96 0.80 0.97 0.54 0.85

Dcp-Fa 0.05 0.59 0.07 0.64 0.10 0.72 0.13 0.72 0.12 0.64
100 400 InvCov 0.25 0.91 0.09 0.62 0.14 0.77 0.27 0.86 0.20 0.67

SEA (Far) 0.90 0.99 0.28 0.82 0.60 0.92 0.69 0.92 0.38 0.80
SEA (GIES) 0.91 0.99 0.27 0.82 0.61 0.92 0.69 0.91 0.38 0.78

Table 22: Causal discovery results on synthetic datasets with 100 nodes, discrete metrics. Each setting
encompasses 5 distinct Erdés-Rényi graphs. The symbol { indicates that the model was not trained on this
setting.

N E Model Linear NN add. NN non-add. Sigmoid ' Polynomial’
OA1 SHD | OAt SHD | OA1t SHD | OA+ SHD | OA 1 SHD |

Dcp-Fa 0.63 3075.8 0.58 2965.0 0.60 2544.4 0.59 3808.0 0.34 1927.9

100 100 InvCov — 1244 — 130.0 — 158.8 — 1123 — 106.3

SEA (Far) 0.91 13.4 0.90 344 091 472 0.78 40.3  0.69 59.2
SEA (GIES) 0.91 13.6  0.93 32.8 091 45.8 0.78 38.6 0.68 60.3

Dcp-Fa 0.46 3068.2 0.60 3428.8 0.70 3510.8 0.67 3601.8 0.53 3316.7
100 400 InvCov — 557.0 — 6678 —  639.0 — 5l14.7 — 5394

SEA (Fcr) 0.93 122.0 090 361.2 091 2732 0.87 2269 0.82 3270
SEA (GIES) 0.94 116.6 091 3644 0.92 266.8 0.87 2183 0.84 328.0
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Table 23: Complete results on Sachs flow cytometry dataset (Sachs et al., [2005), using the subset proposed
by (Wang et al., [2017).

Model mAP 1t AUC 1 SHD |
Dcpi-G 0.17 0.55 21
Dcpi-DsrF 0.20 0.59 20
Dcp-Fa 0.32 0.59 27
DIFFAN 0.14 0.45 37
DEc1 0.21 0.62 28
Avici-L 0.35 0.78 20
Avici-R 0.29 0.65 18
Avicl-L+R 0.59 0.83 14
For* 0.27 0.59 18
GIES* 0.21 0.59 17
Sea (Far) 023  0.54 24
+Kci 0.33 0.63 14
+CORR 0.41 0.70 15
+Kci+CoRrR 0.49 0.71 13
SEA (GIES) 0.23  0.60 14
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