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ABSTRACT

The generalization problem presents a major obstacle to the practical applica-
tion of reinforcement learning (RL) in real-world scenarios, primarily due to the
prohibitively high cost of retraining policies. The environmental generalization,
which involves the ability to generalize RL agents to different environments with
distinct generative models but the same task semantics, remains an unsolved chal-
lenge that directly affects real-world deployment. In this paper, we build a struc-
tured mathematical framework to describe environmental generalization and show
that the difficulty comes from a non-optimizable gap without learning in all en-
vironments. Accordingly, we propose a kind of non-parameterized randomiza-
tion method to augment the training environments. We theoretically demonstrate
that training in these environments will give an approximately optimizable lower
bound for this gap. Through empirical evaluation, we demonstrate the effective-
ness of our method in zero-shot environmental generalization tasks spanning a
wide range of diverse environments. Comparisons with existing advanced meth-
ods designed for generalization tasks demonstrate that our method has significant
superiority in these challenging tasks. 1

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a promising approach for addressing real-world ap-
plication problems (Mnih et al., 2013; Sutton & Barto, 2018), however, suffers from poor sample
efficiency and poor generalization abilities Ghosh et al. (2021); Malik et al. (2021); Huang et al.
(2021). This stems from the inherent nature of RL frameworks, where training and testing are tightly
integrated. Consequently, RL policies are highly task-specific, and their applicability to analogous
tasks is limited. This challenge increases with the growth in task numbers, leading to an exponential
explosion in sample requirements and corresponding costs. Thus, improving the generalizing ability
of the agent can enhance sample efficiency and make RL more practicable in real-world scenarios.

In practical scenarios, RL agents frequently need to adapt to diverse environmental conditions,
necessitating policy adaptations to changes in state space, action space, and transition functions.
This requirement, termed ”environmental generalization” in RL, remains a complex challenge. Re-
cent works focus on addressing generalization problems, such as Epistemic MDPs (Ghosh et al.,
2021), Block-MDPs (Zhang et al., 2020; Han et al., 2021), and the work by Malik et al. (2021),
attempt to model generalization problems and formulate corresponding learning algorithms. How-
ever, these approaches are limited by the assumption of shared state space across tasks, contradicting
the premise of environmental generalization. As solving the environmental generalization problem
holds significant potential for enabling more complex real-world applications, our work focuses on
this specific challenge within RL policies and aims to make progress in solving it.

The difficulty of achieving environmental generalization within RL has not been adequately an-
alyzed in prior work. In this research, we aim to solve this difficulty by introducing a frame-
work explicitly designed for handling the environmental generalization problem. Our framework
involves utilizing a decoupled structurized state space, which allows us to explicitly model the com-
mon components and task-agnostic backgrounds. This framework can homogeneously depict both

1The code is available in the Supplemental Materials.
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Figure 1: Illustration of Zero-shot environmental generalization tasks. The generalizing tasks are
intrinsically different from the training tasks, hence are extremely difficult to solve in zero-shot.

the similarities and differences of tasks across various environments. We observe that successful
decision-making in unseen tasks requires the agent to accurately identify the invariant components
that represent the task goals, while concurrently ignoring task-agnostic changes in the environment.
However, achieving this goal necessitates an exhaustive exploration of all environments, which is
impractical. This is because the conventional objective function commonly used in RL methods,
i.e., maximizing the return, motivates the agent to overfit the specific dynamics and observations of
the environment. It conflicts with the generalization setting, leading to a non-optimizable gap that
hinders environmental generalization. We refer to this gap as the adaption gap.

Addressing the non-optimizable gap involves enhancing the agent’s adaptive capability without ex-
haustive environmental traversal. This requires refining the objective function. Existing randomiza-
tion methods like Automatic Data Augmentation (ADA)(Raileanu et al., 2021) and Domain Ran-
domization (DR) methods (Tobin et al., 2017), which generate multiple training environments to
boost the RL agent’s adaptability, offer a promising approach. However, methods like DR are re-
liant on the parameterized dynamics model of the environment for parameter randomization. This
reliance restricts the breadth of generalization across diverse environments and introduces addi-
tional modeling errors. Thus, we propose a non-parameterized randomization (NPR) method. Our
approach diverges from previous methods by randomizing task-agnostic components and adding
disturbances without the requirement for parameterized models. This divergence implies that our
method is not limited to any specific environmental model, thus allowing for adaptation to a broader
range of environmental changes. Our theory shows that such intrinsic non-parameterized random-
ization is equal to introducing an alternative objective function. This objective function serves as an
optimizable lower bound for the non-optimizable adaption gap, thereby significantly enhancing the
generalization ability towards unseen environments without retraining.

To demonstrate the superiority of our method, we propose challenging environmental generalization
tasks by modifying existing complex benchmarks. These tasks are in environments that are intrin-
sically different, even having different observing views and transition dynamics. To the best of our
knowledge, we are the first to achieve generalization tasks with environmental change in zero-shot.

In summary, our contributions are as follows:

1. To the best of our knowledge, our work is the first to introduce a structured framework that
uniformly describe the environmental generalization problem. This framework enables the
analysis of the inherent challenges in accomplishing such generalization tasks.

2. We propose a novel non-parameterized randomization (NPR) method to tackle environ-
mental generalization. Our theoretical analysis substantiates that this approach can enhance
generalization capabilities across unseen environments without necessitating retraining.

3. We have designed challenging experiments for environmental generalization across a broad
range of prevailing environments. The empirical results, compared with advanced baselines
in intricate zero-shot tasks, demonstrate the superiority of our method.

2 RELATED WORK

Background of Generalization Works in RL. Building generalizable policies that can be reused
in new tasks is a long-standing challenge. There are many RL and HRL works that focus on gener-
alization tasks. Theoretically, there are works like Wang et al. (2019) describing a common gap of
different tasks in the RL domain, Ghosh et al. (2021) giving the tractable generalizing conditions in
meta-RL and modeling the generalization tasks as POMDPs (Ghosh et al., 2021). Methodologically,
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there are some methods utilizing injected noise in the observation space (Raileanu et al., 2021) or
in the dynamics model of the environment (Tobin et al., 2017), and introducing additional input of
shared languages or symbols (Jiang et al., 2019; Vaezipoor et al., 2021) to improve the generalization
ability of the agent. Among them, the most related works are as follows:

Context-Conditioned MDPs. Some RL works model the generalization tasks as utilizing learned
shared knowledge to deal with new similar tasks. As a result, they leverage shared prior as additional
input like language (Chen et al., 2020), or build context (Levy & Mansour, 2023) or meta-learning
process (Kirsch et al., 2019b;a) to make the policies more adaptable. However, all the existing works
have an assumption that these tasks should be similar in the environmental aspect. That means
these works are limited. In this paper, our work focuses on generalization tasks with environmental
changes, which attempts to improve the existing assumption and build more generalizable policies.

Randomization as Augmentation. Some RL works utilize injected noise in the learning process
to improve the adaptive capability of the agent (Gur et al., 2021; Fan et al., 2021), such as observa-
tion augmentation (Raileanu et al., 2021) and domain randomization (DR) (Tobin et al., 2017). The
former methods inject noise in the observation space after sampling, which we call external ran-
domization, and can hardly cover the change of environment structures. The latter methods, making
intrinsic noise in environments including visual and dynamic randomization, usually require a pa-
rameterized model to describe the change in the target environments. It cannot solve the OOD
change that cannot be described by the parameterized models. Different from previous methods,
our work intrinsically randomizes the environment to build task-level augmentations and does not
require a specific parameterized model.

Learning Invariable Representation. Some works try to learn shared representation and build
reusable policies, like learning causal invariant representation in Block MDPs (Zhang et al., 2020;
Han et al., 2021), or learning representations as reusable subgoals in HRL works (Liu et al., 2020).
This works based on the assumption that there exists some shared states or a whole shared state
space. The differences in different tasks are just caused by different views of partial observation.
Thus, if the shared states are extracted, they can build reusable policies. However, this assumption
does not hold in generalization tasks that possess significant change caused by the intrinsic differ-
ence of the environments. That means the shared parts in different environments cannot directly be
aligned for executing the learned decision. In this work, we aim to extend the setting of previous
works and focus on more widely generalizing tasks, hence loosening the existing assumption.

3 MODEL AND ANALYSIS FOR ENVIRONMENTAL GENERALIZATION

3.1 STRUCTURIZED MODEL FOR ENVIRONMENTAL GENERALIZATION

In this section, we will introduce the setting of environmental generalization problems. To model
such generalization tasks, we propose a structurized model to uniformly describe the state space in
different environments. Thus we can discuss the tasks in different environments uniformly. Here we
mainly focus on the change of state space and assume the action spaces are the same. All the proof
can be seen in Appendix A.

Preliminary. We formulate the task in this paper as a goal-conditioned Markov decision process
(MDP) in multiple environments, defined as a tupleMe(I) =< Se,A, P e, Re, γ >, e ∈ E , I ∈ I.
Here E is the set of existing environments. Se is the state space of environment e and A is the
action space. I is the shared representation space, where the representation I stays invariable
and represents the common points of the same task in different environments. P e is the transi-
tion probabilities, Re is the reward function. The goal of the agent is to learn a goal-conditioned
policy π(at|set , Î) to maximize the cumulative return in any tasks of every environment, i.e.,
maxπ EI∈I,e∈E [

∑
t≥0 γ

tRe(set , at|I)]. Here Î is the given representation to distinguish the task.
When generalizing, the environments e are not all available in the training process.

Existed Modeling Challenge. In environmental generalization tasks, there is a challenge that the
existing problem modeling methods do not help deal with such tasks. That is because the states
in different environments are quite different, leading to significant discrepancies in the input to
the agent. Thus, how to measure the similarity and difference of a task in different environments
becomes a challenge. In this paper, we propose a structurized model to give a decoupled expression

3



Under review as a conference paper at ICLR 2024

of the common parts and differences as follows. By this model, we can accordingly explain why
this problem is so difficult and how we are inspired to mitigate it.

Structurized Model. Consider that in MDPs in different environments, the observations are quite
different. Here we will focus on the tasks that have intrinsic common points, which have different
forms. We first give a new modeling form of observation to represent the similarities and differences
of different tasks by structuring the state space. The definition is as follows:
Definition 3.1. (Structurized State Space) Consider ∀e ∈ E , the structurized state can be written
as:

set = ψt(I)⊕ ξet (1)
where ψt is a reversible function depending on the current step in the environment, I ∈ I is the
shared representation among all the environments of in any task, ξet is a task-agnostic background
which only depends on the environment.

This definition is utilized to describe the state in different complex scenes. Consider that in real-
world problems, the states are usually structured and can be composed of task-dependent objects or
goals and task-independent backgrounds. This formulation can represent almost all kinds of state
spaces, where previous works can be seen as special cases of ours with fixed backgrounds in specific
tasks. Meanwhile, the function ψt means that the invariant of the task is not always observable in all
the steps, which can also describe the situations of partial observation tasks.

Difference with Previous Models. Some works also utilize a structured state space like Block-
MDPs (Zhang et al., 2020). In previous works, the observation space is a part of the shared state
space caused by partial observation. That means their observation can naturally be aligned with
different tasks. But in more complex generalization tasks, especially in real-world applications, the
common parts of tasks are usually embedded in the environment and not always observable. So
the environmental generalization tasks have diverse state space and cannot be easily aligned. As
a result, in environmental generalization tasks, there is extra difficulty in extracting the common
parts and aligning them. Thus, different from existing works, our model describes states in different
environments with a decoupled model to describe the similarity parts (the ψt(I)) and changing
background (the ξet ) of state space in Def 3.1, where the similarity parts (the I) are embellished by
the environment (the ψt(·)) but invariable.

3.2 ANALYSIS OF CHALLENGES IN ENVIRONMENTAL GENERALIZATION

In this section, we will analyze why environmental generalization problems are so difficult. Accord-
ing to our mathematical model, there is a non-optimizable gap between different environments. All
the proof can be seen in Appendix A.

As said above, learning to extract invariable representation to build a generalization policy is diffi-
cult. In this section, we will give an analysis of why it is difficult and how to deal with it.

Error Analysis towards Generalization. To describe the difficulty of generalizing to different
environment, without loss of generality, firstly we consider the error of two value functions of the
same task in different environments, i.e., |V e1t (se1t |I1) − V

e2
t (se2t |I1)| for any e1, e2 ∈ E , where

V e1t (se1t |I1) =
∑
se1t+1

∑
at
P e1(se1t+1|s

e1
t , at)π(at|s

e1
t , Î1)(R(s

e1
t , at|I1) + γV e1t+1(s

e1
t+1|I1)).

In the components of the value function, there are naturally two important parts, the transition
P e1(se1t+1|s

e1
t , at) depend on the environment and the policy π(at|se1t , Î1).

Considering humankind’s decisions in real-world tasks, we will always make similar decisions in
similar tasks, ignoring the task-agnostic background. Inspired by this phenomenon, we consider it
reasonable to measure the similarity of policies in the invariant representation space:
Assumption 3.2. (Invariant Metric) For two well-learned policies from two environments, the dif-
ference can be measured in the representation space as:

|πe1(at|se1t , I1)− πe2(at|s
e2
t , I2)| ≤ Lψ∥I1 − I2∥ (2)

By this metric, there is a natural corollary that if the tasks in different environment are the same,
the policy should also be same, i.e., πe1(at|se1t , I1) = πe2(at|se2t , I2) when I1 = I2. It satisfies the
common sense said above.
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Different from existing works that make policy metrics in original state space like (Wang et al.,
2019), our metric can cover more situations with more complex states, where the distances in the
original state space are usually inaccessible or meaningless. For instance, in a high-dimension state
space that represents the parameters of joints of a robot like MuJoCo (Todorov et al., 2012), the
highly non-linearity makes the distance in the original state space helpless to measure the difference
of different policies.

By assumption 3.2, we can give a generalization error bound which can be used in any generalizing
scenes with environmental changes:
Proposition 3.3. (Environmental Generalization Error) With discounted factor γ and bounded
reward function maxs,a,e,I R(s

e, ae|I) = Rmax, Lipschitz constant Lψ , for any environments
e1, e2 ∈ E , there is:

max
e1,e2∈E

|V e1t (se1t |Î1)− V
e2
t (se2t |Î2)| ≤

Rmax
(1− γ)2

· Lψ|A| · ∥Î1 − Î2∥︸ ︷︷ ︸
invariant learning error

+ max
e1,e2,e

|Se|2
∣∣∣∣P (se1t+1|s

e1
t , at)

|Se2 |
−
P (se2t+1|s

e2
t , at)

|Se1 |

∣∣∣∣︸ ︷︷ ︸
adaption gap

+
Rmax
1− γ

(3)

where | · | is the cardinality, Î1 and Î2 is the learned representation from the same representation I
in different environments.

This theorem shows that there are two independent parts when generalizing from one environment
to another. However, they are quite different, because one of them is optimizable but the other is not.
Shown as the following proposition, the invariant learning can be solved by providing an instruction
Î and making it consistent with the reward that represents the goal of the task. By this, training the
policy in tasks with an invariable instruction depending on the invariant representation will implicitly
build a mapping policy from the given instruction to the states that represent the task. After that, the
agent can identify the task by the given instruction, instead of requiring the real representations.
Proposition 3.4. (Implicit Invariant Learning) With sparse reward 1 of the final state representing
completing the task, maximizing the expected training return of π(Î), is equal to maximizing the
occurrence of the invariable shared part of the same task in a different environment.

max
π(Î)

Ee∈E,τe∼πe [
∑
t≥0

γtRe(set , at|I)] = max
π(Î)

Pπ(I|Î) (4)

Non-optimizable Gap. Attention that the adaption gap can not be directly optimized, because it
only depends on the distribution of the background of the environments which are unseen when
generalizing. Even building a transition predicting model by model-base RL methods is not enough,
due to the uncertainty of the unseen generalization environment with out-of-distribution data.

Our analysis and framework highlight the extreme difficulty of achieving environmental general-
ization in complex RL tasks. Although existing methods have successfully obtained generalizing
capability in some specific tasks, they cannot deal with this problem. A more effective method is
necessary for learning policies that perform well in environmental generalization tasks.

4 NON-PARAMETERIZED RANDOMIZATION FOR ENVIRONMENTAL
GENERALIZATION

4.1 THE NON-PARAMETERIZED RANDOMIZATION (NPR) METHOD

Feasibility of NPR. With the analysis above, we can see that the key to solving environmental
generalization tasks is to deal with the adaption gap that is unable to be directly optimized. In this
paper, we propose a novel idea that introduces random noise into the task-agnostic components in
the training environments to approximate the change in the environment.

Specifically, the state set = ψt(I) ⊕ ξet are not available for all the environment e in generalization
tasks, meaning that ξet cannot be exhaustively explored. We will replace the task-agnostic part ξet
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Figure 2: Comparison of our method and existing augmentation methods.

with the randomized background ξ̂t. Here ξ̂t is not parameterized, hence is not limited to the pa-
rameterized model of the environment. Training with tasks in randomized environments is utilized
to motivate the agent to overcome the task-agnostic disturbances focus on the invariable task rep-
resentation and make similar decisions. It can be seen as a kind of task-level data augmentation
that generates more tasks in different approximated environments by randomization. To prove the
feasibility, we give the theorem as follows. The proof can be seen in Appendix A.

Theorem 4.1. (Approximating Feasibility) For a set of backgrounds with injected noise denoted as
ξ̂t ∈ Ξ and corresponding generated state denoted as ŝt, with bounded reward functions R̂max =
maxe,ξ̂t,at,I{R(s

e
t , at|I), R(ŝt, at|I)} , there is:

Ee∈E,τe∼πe [
∑
t≥0

γtR(set , at|I)] ≥ Eξ̂∈Ξ,τ̂∼π̂[
∑
t≥0

γtR(ŝt, at|I)]− α (5)

where α = 1
1−γ (R̂max

√
2DKL(ρ(e)||ρ(ξ̂t)) + δmax) is a constant depending on the similar-

ity of the augmented environments and the unseen environments. Here ρ(e) and ρ(ξ̂) repre-
sent the distributions of the unseen environments and the randomized environments. δmax =
maxe,ξ̂t |R(s

e
t , at|I)−R(ŝt, at|I)|

This theorem gives an exciting result that, if the injected noise conforms to the change of the en-
vironments, α will be a little constant and can be ignored, meaning that learning in randomized
environments can be seen as approximately maximizing the lower bound of the original return. It
shows that training the agent in the randomized environment will also improve the generalization
ability, even if the generalizing environments are unseen and the trained environments are different
from the generalizing ones. This theorem indicates that we can leverage injected noise as a substitute
for training in real environments and save the cost of sampling.

Remark 4.2. In the proving process, we found that if utilizing a parameterized model to generate
the environments, the lower bound of 4.1 will add another term caused by the discrepancy of the
models of the generalizing environments and the original environments. Meanwhile, δmax depends
on a one-step return due to our problem setting. If utilizing a parameterized model different from
the generalizing environment, δmax will be larger in another form. This fact supports our claim that
existing randomization methods relying on the parameterized models will perform poorly in dealing
with environmental change.

4.2 IMPLEMENTATION OF NPR IN RL ENVIRONMENTS

Implementation of NPR method. We design an intrinsic model-free randomization method to
build training tasks. Specifically, we randomize the existing components in the environments (in-
trinsic randomization), instead of injecting noise in the color of the observation like ADA or in
the parameters of the environment model like DR-like methods (external noises) (See in Figure 2).
External augmentations usually cannot represent the change in environments, and DR-like meth-
ods are always limited to the parameterized model. To make our idea more general, we propose to
improve DR methods. That is, to randomize the non-parameterized task-agnostic parts of the train-
ing environments, like randomizing the structure of the environment, randomizing the background
by adding additional task-agnostic disturbance and randomizing the spatial relationship of all the
existing objects.

For instance, in a kitchen, if the robot should find an apple, we can randomize all the task-agnostic
elements in the kitchen like the microwave oven, the refrigerator, the structure of the room, the
position of the apple, and add some unrelated objects as a disturbance. With the various disturbances
and the apple staying invariable, the agent is forced to learn to overcome the environmental change
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and obtain the apple. Then it will also obtain the apple in an unseen environment by seeing the
background as noise. Similarly, training a car agent to race on roads with changeable shapes will
force it to learn to keep on the road, which will significantly improve the adaptability to unseen roads
with different but similar dynamics.

It can be seen that our method aims to randomize the non-parameterized elements in the environ-
ments. It will encourage the agent not to limit to the parameter spaces. The advantage is that in any
environment it is effective because it does not require the parameterized model of the environment.
The disadvantage is that it needs expert priors. But we consider that if the policy can be reused in
many unseen new tasks, the disadvantage is acceptable in real-world deployment.

Soft Randomizing and Parallel Learning Algorithm. As we know, training the agent in dynamic
environments usually causes learning instability. Because compared with fixed environments, the
unacceptable large variance in the dynamic learning process will disturb the gradient convergence
direction. Therefore, for stable learning, the random noise should not be arbitrary. Thus, to make
the learning process stable, we utilize soft randomizing with a continuous and slow episodic change
to reduce the variance of learning, which accords with the analysis above. We also utilize parallel
online learning algorithms to reduce learning instability because there are some works that show the
potential of parallel algorithms to adapt to dynamic environments (Hou et al., 2022). We use actor-
critic-like algorithms with our randomization method for tasks in discrete environments and PPO
algorithms for tasks in continuous environments. Details of the algorithm can be seen in Appendix
C.

5 EXPERIMENTS

5.1 EXPERIMENTS SETTINGS

Generalization Experiments. As there are no works that have solved environmental generalization
tasks, we utilize several prevailing environments to build generalization experiments across different
environments, including MuJoCo (Todorov et al., 2012), gym (Towers et al., 2023), Torcs (Loiacono
et al., 2013), and BabyAI (Chevalier-Boisvert et al., 2018). In these tasks, the training tasks and
testing tasks are in different environments and do not allow retraining, to show the zero-shot gener-
alization capabilities. The training tasks are evaluated by reward curves and the generalizing tasks
are evaluated by zero-shot success rates and zero-shot rewards. The details of the environments and
randomization can be seen in Appendix B.

1. The agent is trained in the MuJoCo environment and then generalizes to the new mazes of
BabyAI in zero-shot. The goals of the tasks are all to navigate or to find an object. The dif-
ferences are disparate observation space and different motion dynamics. The action space
is discrete and executed by the simulator. The randomized components are the structure of
the room, relative position, and unrelated objects. Such environmental generalizing tasks
have not been solved by existing works.

2. Training in a simple 2D car racing game in the gymnasium, the agent should generalize
to a new complex 3D car racing game close to the real-world scene in Torcs in zero-shot.
The differences are disparate observation space and different motion dynamics. The agent
should keep on the roads with different shapes and go forward to obtain more rewards. The
randomized components are the shape of the track, the zoomed viewpoints, and the back-
ground. Such environmental generalizing tasks have not been solved by existing works.

Baselines. As the generalization tasks in this paper have significant changes in the environment,
they can be hardly reflected in the vectorized observation space. As a result, we choose the most
advanced pixel-based RL methods as baselines for a fair comparison.

1. Classical RL method like PPO (Schulman et al., 2017) and advanced RL method like Droq
(Hiraoka et al., 2021) with pixel observation by CNN. Comparing these universal advanced
methods will show the superiority of our method in generalization tasks.

2. Pixel-based RL SOTA augmentations method in observation for generalization like DrAC
(Raileanu et al., 2021) and intrinsic randomization like DR (Tobin et al., 2017). These
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Figure 3: Comparative Experiment Results. The results are averaged by three random seeds with ±
a standard deviation. The legend bar in (a) is shared.

methods also focus on generalization tasks. Comparing this method will directly show the
differences between augmenting methods and show the superiority of our method.

5.2 RESULTS

Stable Learning. Firstly, we will show the reward curves in the learning process to show the
learning stability. We emphasize again that training stably in randomized environments with noise
is not easy. The results of learning in randomized tasks are shown in Figure 3. Especially, compared
with learning in tasks with randomization (Figure 3b) and the task without randomization (Figure
3c), we can see that the baselines perform well in common tasks but perform poor in tasks with
randomization, sometimes even worse than a random policy (The yellow curve in 3a). That means
they cannot adapt to the randomness of environmental changes well. On the contrary, our method
can learn stably in randomized tasks. It shows the superiority of our method to build adaptable
policy in a stable learning process.

Table 1: Generalization Task for Navigation and Object Interaction (Zero-shot Success Rate %).

Trained Trained Envs Unseen Unseen Envs Unseen Tasks
Randomized Tasks Tasks Generalization Environmental Generalization

Method Maze FindObj Maze-g1 Interaction1 Maze-g2 Interaction2

Ours 70.8± 4.2 74.8± 6.3 38.0± 8.3 68.4± 5.1 30.4± 4.2 34.2± 7.1
DrAC 12.8± 6.4 35.4± 4.6 0.8± 1.3 15.6± 12.1 3.4± 2.1 9.3± 2.8
PPO 18.6± 4.2 31.8± 4.6 1.2± 0.8 28.2± 4.5 7.6± 2.9 23.4± 4.0
Droq 18.8± 3.1 37.4± 3.7 0.6± 0.9 36.8± 3.6 12.8± 4.2 0.2± 0.5

No-Rand — — 0.0± 0.0 2.6± 1.8 0.2± 0.5 2.8± 3.0

Generalization in Zero-Shot. To sufficiently show the generalization capability of these methods,
we divide the generalization task into two parts, i.e., in-domain generalization for unseen tasks in the
same environment, and out-of-distribution generalization for tasks in different unseen environments.
We utilize the agent trained in ‘Random-Square’,‘ Find-Obj’, and ‘Random-Track’ to generalize to
unseen tasks in different environments without retraining. Results in Table 1 are tested in 500
episodes, and results in Table 2 are tested with 5 seeds. The details of these tasks can be seen in the
Appendix B.
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The results can be seen in Table 1 and Table 2. All the generalization tasks are significantly different
from the training tasks. We can see that, in these generalization tasks, even in unseen new environ-
ments, our agent can still complete the tasks with the highest success rates and rewards. However,
the baselines cannot adapt to the change in the environment and perform poorly. Including the DR
method with visual randomization (Table 2), it performs poorly in environmental generalizations
due to the dependence on learned environment models. It shows the superiority of our method in
building environmental generalizable policies.

Table 2: Generalization Task for Car Racing (Zero-Shot Average Reward).

Generalization in Unseen Environments

Method/Racing CG-Track2 Street1 Alpine1

Ours 597.7± 31.4 1108.9± 653.0 1651.1± 1037.8
No-Rand 233.9± 170.7 353.9± 409.8 834.6± 664.3

DrAC 281.5± 134.9 35.25± 0.52 162.5± 11.1
PPO 254.46± 100.5 217.5± 324.6 71.8± 14.2

PPO + DR 455.0± 91.1 601.3± 245.0 1001.0± 612.7

5.3 ABLATION STUDY

Poor Generalization without Randomization. To show the effects of randomization, we add a
comparison in generalization experiments with direct learning in original training tasks without ran-
domization of our agent (the baseline ‘No-Rand’). These tasks are fixed without randomness like
the common RL setting. As the training tasks are different from the randomized tasks, we only
show the results in generalization tasks. It can be seen that the agent trained without randomiza-
tion completely cannot generalize to the new tasks, both in the same environment and in different
environments.

5.4 CHALLENGING ENVIRONMENTAL GENERALIZATION VERIFICATION

Table 3: Challenging Generalization Task (Zero-shot
Success Rate %)

Method Ours No-Rand

Training-2D-maze 71.9± 4.5 100.0± 0.0
Generalizing-3D-maze 66.6± 5.3 0.6± 0.6

We argue that our method has the poten-
tial to be utilized in real-world applications
due to its strong generalization ability. To
show it, we design an extremely challeng-
ing generalization task, i.e., training in the
2D room of 3rd personal view (MuJoCo)
and generalize to the 3D room of the 1st
personal view (MiniWorld) in zero-shot.
We design this task as an identification task to let the agent make a one-step decision to find the
correct object. It can be seen in Table 3 that our agent has the probability to identify the goal cor-
rectly. That means our method can be used to help build a general initial policy to make a high-level
decision without retraining.

6 CONCLUSION

In this paper, we propose a novel framework that tries to describe and solve the generalization RL
tasks that have intrinsic environmental change. To the best of our knowledge, we are the first to
discuss and attempt to deal with this problem. We believe that, in the future, our ideas will be
helpful in building a general RL large model for real-world application as a task-level augmentation
method, just like LLM in the NLP domain.

Limitations and Future Work. This work focuses on environmental generalization, which is
mainly shown in the observation space. In real-world applications, there are many tasks that require
significant change in the action space, which will be our future work. Besides, another direction is to
leverage more complex semantic representations like nature language from LLM to achieve higher-
level generalizations, including long-horizon strategy transferring. This paper provides a scalable
port to combine with more modules.
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A THEORETICAL ANALYSIS AND PROOF

A.1 PROOF OF PROPOSITION 3.3

Proof. We recall the setting in that we focus on environmental generalization with structurized goal-
conditioned MDPs.

Firstly, we consider the error between two value functions learned in two arbitrarily different envi-
ronments e1 and e2 with the same task representation I . That is:

|V e1(se1t |I)− V e2(s
e2
t |I)| (6)

Consider that, the real representations of the task may not always be obtained, the RL agent will fre-
quently receive given instructions Î1 and Î2 that represent task I in different environments. Thus, the
value function should be the corresponding policy should be V e1(se1t |Î1) and V e2(se2t |Î2), and the
corresponding policies are πe1(at|se1t , Î1) and πe2(at|se2t , Î2). Then we expend the value function:

|V e1(se1t |Î1)− V e2(s
e2
t |Î2)|

=|
∑
s
e1
t+1

P (se1t+1|s
e1
t , at)

∑
at

πe1(at|se1t , Î1)
[
Re1(se1t , at|I) + γV e1(se1t+1|Î1)

]
−

∑
s
e2
t+1

P (se2t+1|s
e2
t , at)

∑
at

πe2(at|se2t , Î2)
[
Re2(se2t , at|I) + γV e2(se2t+1|Î2)

]
|

(7)

Here we temporally denote [Re1(se1t , at|I) + γV e1(se1t+1|Î1)] as Ge1(Î1). Notice that the state
spaces in different environments may be different, here we consider the more complex case that
|Se1 | ̸= |Se2 |. Then Equation 7 cannot be directly dealt with. We treat them by aligning the
distribution as follows:

|V e1(se1t |Î1)− V e2(s
e2
t |Î2)|

=|
∑
s
e1
t+1

P (se1t+1|s
e1
t , at)

∑
at

πe1(at|se1t , Î1)Ge1(Î1)

−
∑
s
e2
t+1

P (se2t+1|s
e2
t , at)

∑
at

πe2(at|se2t , Î2)Ge2(Î2)|

=|
∑
Se2

|Se2 |
∑
s
e1
t+1

P (se1t+1|s
e1
t , at)

∑
at

πe1(at|se1t , Î1)Ge1(Î1)

−
∑
Se1

|Se1 |
∑
s
e2
t+1

P (se2t+1|s
e2
t , at)

∑
at

πe2(at|se2t , Î2)Ge2(Î2)|

(8)

Then there is:

(8) =|
∑
Se2

∑
Se1

∑
at

1

|Se2 |
P (se1t+1|s

e1
t , at)π

e1(at|se1t , Î1)Ge1(Î1)

− 1

|Se1 |
P (se2t+1|s

e2
t , at)π

e2(at|se2t , Î2)Ge2(Î2)|
(9)

By introducing a virtual combined term 1
|Se1 |P (s

e2
t+1|s

e2
t , at)π

e2(at|se2t , Î2)Ge1(Î1)in to Equation
9, there is:

12



Under review as a conference paper at ICLR 2024

(8) ≤ a⃝+ b⃝ (10)

where

a⃝ =|
∑
Se2

∑
Se1

∑
at

1

|Se2 |
P (se1t+1|s

e1
t , at)π

e1(at|se1t , Î1)Ge1(Î1)

− 1

|Se1 |
P (se2t+1|s

e2
t , at)π

e2(at|se2t , Î2)Ge1(Î1)|
(11)

b⃝ =|
∑
Se1

∑
Se1

∑
at

1

|Se1 |
P (se2t+1|s

e2
t , at)π

e2(at|se2t , Î1)Ge1(Î1)

− 1

|Se1 |
P (se2t+1|s

e2
t , at)π

e2(at|se2t , Î2)Ge2(Î2)|
(12)

Here we deal with them separately. Consider that all the rewards R > 0 holds, then G > 0. There
is:

a⃝ ≤
∑
Se2

∑
Se1

∑
at

Ge1(Î1)·∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)π

e1(at|se1t , Î1)−
1

|Se1 |
P (se2t+1|s

e2
t , at)π

e2(at|se2t , Î2)
∣∣∣∣︸ ︷︷ ︸

c⃝

(13)

Similarly consider c⃝:

c⃝ ≤
∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)π

e1(at|se1t , Î1)−
1

|Se2 |
P (se1t+1|s

e1
t , at)π

e2(at|se2t , Î2)
∣∣∣∣

+

∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)π

e2(at|se2t , Î2)−
1

|Se1 |
P (se2t+1|s

e2
t , at)π

e2(at|se2t , Î2)
∣∣∣∣

=
1

|Se2 |
P (se1t+1|s

e1
t , at)

∣∣∣πe1(at|se1t , Î1)− πe2(at|se2t , Î2)∣∣∣
+πe2(at|se2t , Î2)

∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)−

1

|Se1 |
P (se2t+1|s

e2
t , at)

∣∣∣∣
(14)

With Equation 13 and Equation 14, since that

|Ge1(Î1)| = |Re1(se1t , at|I) + γV e1(se1t+1|Î1)| ≤
Rmax
1− γ

(15)

where Rmax = maxs,a,e,I R(s
e, ae|I), there is:

a⃝ ≤ Rmax
1− γ

·[∑
at

∣∣∣πe1(at|se1t , Î1)− πe2(at|se2t , Î2)∣∣∣+∑
Se2

∑
Se1

∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)−

1

|Se1 |
P (se2t+1|s

e2
t , at)

∣∣∣∣
]

(16)
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As for b⃝, there is:

b⃝ ≤ max
e1,e2
|Ge1(Î1)−Ge2(Î2)|

≤ Rmax + γ max
e1,e2,t

|V e1(se1t+1|Î1)− V e2(s
e2
t+1|Î2)|

(17)

Then we rewrite Equation 8:

|V e1(se1t |Î1)− V e2(s
e2
t |Î2)| ≤

Rmax
1− γ

·[∑
at

∣∣∣πe1(at|se1t , Î1)− πe2(at|se2t , Î2)∣∣∣+∑
Se2

∑
Se1

∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)−

1

|Se1 |
P (se2t+1|s

e2
t , at)

∣∣∣∣
]

+Rmax + γ max
e1,e2,t

|V e1(se1t+1|Î1)− V e2(s
e2
t+1|Î2)|

(18)

As Equation 18 always holds for any se1t , s
e2
t , there is:

|V e1(se1t |Î1)− V e2(s
e2
t |Î2)| ≤ max

e1,e2,t
|V e1(se1t |Î1)− V e2(s

e2
t |Î2)| ≤

Rmax
(1− γ)2

·[∑
at

∣∣∣πe1(at|se1t , Î1)− πe2(at|se2t , Î2)∣∣∣+∑
Se2

∑
Se1

∣∣∣∣ 1

|Se2 |
P (se1t+1|s

e1
t , at)−

1

|Se1 |
P (se2t+1|s

e2
t , at)

∣∣∣∣
]

+
Rmax
1− γ

(19)

With Assumption 3.2, there is:

max
e1,e2
|V e1(se1t |Î1)− V e2(s

e2
t |Î2)| ≤

Rmax
(1− γ)2

·
[
Lψ|A|

∥∥∥Î1 − Î2∥∥∥+max
e1,e2
|S|2

∣∣∣∣P (se1t+1|s
e1
t , at)

|Se2 |
−
P (se2t+1|s

e2
t , at)

|Se1 |

∣∣∣∣]+
Rmax
1− γ

(20)

A.2 PROOF OF PROPOSITION 3.4

Proof. With Definition 3.1, we can find an interesting property of learning in such MDPs of multiple
environments. That is, with the correct reward setting, maximizing the return is equal to finding the
common point of training tasks. It is shown as follows.

Consider the optimizing objective function of reinforcement learning, i.e.,

max
π(Î)

Ee∈E [
∑
t≥0

Re(set , at|I)] (21)

We consider the agent is trained with sparse reward as follows:

R(set , at|I) =
{
1, if I ∈ set
0, otherwise

(22)
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Here I ∈ set means that set is the final goal state of the task and the component ψt(I) of representa-
tion I in this environment can be observed in set . For a common example, if a task is to pick up a red
ball, only when the agent observes the red ball and correctly interacts with it, will it obtain a reward.

With Equation 22, there is:

Ee∈E,τe∼πe [
∑
t≥0

Re(set , at|I)]

=
1

|E|
∑
e∈E

∑
τe

πe(τe|Î)
∑
t≥0

γtR(set , at|I)

=
1

|E|
∑
e∈E

∑
τe:I∈seT

γTπe(τe : I ∈ seT |Î)

(23)

where T is the terminate time and seT is the final state.

In reinforcement learning, the policy πe(τe : I ∈ seT |Î) can be seen as the probability of given Î , e,
and τe then I occurs. Thus πe(τe : I ∈ seT |Î) can be seen as Pπ(I, τe|e, Î). Then there is:

1

|E|
∑
e∈E

∑
τe:I∈seT

γTπe(τe : I ∈ seT |Î)

=
1

|E|
∑
e∈E

∑
τe:I∈seT

γTPπ(I, τe|e, Î)

≤ 1

|E|
∑
e∈E

∑
τe

Pπ(I, τe|e, Î)

=
1

|E|
∑
e∈E

Pπ(I|e, Î)

=
∑
e∈E

Pπ(I|e, Î)P (e)

=Pπ(I|Î)

(24)

Then maximizing Ee∈E,τe∼πe [
∑
t≥0R

e(set , at|I)] will also maximizing Pπ(I|Î). They are equal
objective functions when optimizing.

It means that, ideally, if the agent can learn successfully in the same task in different environments,
training in similar tasks in multiple environments will be motivated to find the final states that have
the shared task representation. This process in RL can be seen as extracting shared representation
I by aligning the given one Î and ignoring the change of the backgrounds of environments. After
correctly learning the shared invariant representation, the agent can correctly complete the identified
tasks by the goal-conditioned policy with correct Î .

However, this ideal situation holds when the agent can learn successfully and all the environments
can be obtained when training. In generalization tasks, especially in real-world complex tasks, the
environments and tasks are usually inaccessible. Thus, in this paper, we will focus on how to deal
with the problem in finite training environments and generalize to unseen new ones.

A.3 PROOF OF THEOREM 4.1

Proof. We will begin with the error between the original objective expectation and the objective
after randomization. Here we consider a more complex case in the distributions of the original
environments and the randomized environments are different, which will be more practical.
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∣∣∣∣∣∣Ee∈E,τe∼πe [
∑
t≥0

Re(set , at|I)]− Eξ̂t∈Ξ,τ̂∼π̂[
∑
t≥0

γtR(ŝt, at|I)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
e∈E

ρ(e)
∑
τe

πe(τe|Î)
∑
t≥0

γtR(set , at|I)−
∑
ξ̂∈Ξ

ρ(ξ̂)
∑
τ̂

π̂(τ̂ |Î)
∑
t≥0

γtR(ŝt, at|I)

∣∣∣∣∣∣
(25)

where ρ(·) is the distribution function.

Denoting
∑
τe πe(τe|Î)

∑
t≥0 γ

tR(set , at|I) as J(e) and
∑
τ̂ π̂(τ̂ |Î)

∑
t≥0 γ

tR(ŝt, at|I) as J(ξ̂),
Equation 25 can be rewritten as inner product form as follows:

(25) =
∣∣∣〈ρ⃗e, J⃗e〉− 〈

ρ⃗ξ̂, J⃗ξ̂

〉∣∣∣ (26)

where ρ⃗e, J⃗e, ρ⃗ξ̂, J⃗ξ̂ are all vectors of |E|-dimension. Subsequently, similar with Equation 9 there is:

∣∣∣〈ρ⃗e, J⃗e〉− 〈
ρ⃗ξ̂, J⃗ξ̂

〉∣∣∣
=
∣∣∣〈ρ⃗e, J⃗e〉− 〈

ρ⃗e, J⃗ξ̂

〉
+
〈
ρ⃗e, J⃗ξ̂

〉
−

〈
ρ⃗ξ̂, J⃗ξ̂

〉∣∣∣
≤
∣∣∣〈ρ⃗e, J⃗e〉− 〈

ρ⃗e, J⃗ξ̂

〉∣∣∣+ ∣∣∣〈ρ⃗e, J⃗ξ̂〉− 〈
ρ⃗ξ̂, J⃗ξ̂

〉∣∣∣
=
∣∣∣〈ρ⃗e, J⃗e − J⃗ξ̂〉∣∣∣︸ ︷︷ ︸

1⃝

+
∣∣∣〈ρ⃗e − ρ⃗ξ̂, J⃗ξ̂〉∣∣∣︸ ︷︷ ︸

2⃝

(27)

With Hold’s inequality, there is:

2⃝ ≤
∥∥∥ρ⃗e − ρ⃗ξ̂∥∥∥

1
·
∥∥∥J⃗ξ̂∥∥∥∞ (28)

As
∑
τ̂ π̂(τ̂ |Î)

∑
t≥0 γ

tR(ŝt, at|I) ≤ R̂max

1−γ , where R̂max = maxe,ξ̂t,at,I{R(s
e
t , at|I), R(ŝt, at|I)}

with Pinsker’s inequality, there is:

2⃝ ≤
∥∥∥ρ⃗e − ρ⃗ξ̂∥∥∥

1
·
∥∥∥J⃗ξ̂∥∥∥∞

≤ R̂max
1− γ

DTV (ρ(e), ρ(ξ̂))

≤ R̂max
1− γ

√
2DKL(ρ(e)||ρ(ξ̂))

(29)

Similarly, for 1⃝ there is:

1⃝ ≤∥ρ⃗e∥1 ·
∥∥∥J⃗e − J⃗ξ̂∥∥∥∞

≤max
e,ξ̂
|J(e)− J(ξ̂)|

(30)

By our non-parameterized randomization setting, |J(e)−J(ξ̂)| can be aligned, hence can calculated
inner the summation, i.e.,
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max
e,ξ̂
|J(e)− J(ξ̂)| ≤ δmax

1− γ (31)

where δmax = maxe,ξ̂ |R(s
e
t , at|I)−R(ŝt, at|I)|

Then there is:

∣∣∣∣∣∣Ee∈E,τe∼πe [
∑
t≥0

Re(set , at|I)]− Eξ̂t∈Ξ,τ̂∼π̂[
∑
t≥0

γtR(ŝt, at|I)]

∣∣∣∣∣∣
≤ 1

1− γ

(
R̂max

√
2DKL(ρ(e)||ρ(ξ̂)) + δmax

) (32)

i.e.,

Ee∈E,τe∼πe [
∑
t≥0

Re(set , at|I)] ≥

Eξ̂t∈Ξ,τ̂∼π̂[
∑
t≥0

γtR(ŝt, at|I)]−
1

1− γ

(
R̂max

√
2DKL(ρ(e)||ρ(ξ̂)) + δmax

) (33)

Notice that Equation 31 does not hold in this form if the randomization is executed by randomizing
a parameterized environment model. If the environment model cannot align with the generalizing
environments, it should introduce an additional virtual term like Equation 27, meaning that the
error bound will be an additional term. It indicates that utilizing a parameterized model to make
randomization may cause additional risks in environmental generalization tasks, explaining why
DR-like methods perform poorly in such tasks.

B DETAILS OF EXPERIMENT SETTING

B.1 TRAINING TASKS FOR STABLE LEARNING

(a) Maze-Random-
Square

(b) Maze-square-
blocked

(c) Maze-find-obj (d) Maze-blocked-
obj

(e) Car-racing

Figure 4: Training Tasks in MuJoCo and Gym.

In MuJoCo tasks, the agent moves discretely by the oracle movement by the simulator. Ev-
ery step will move the scaling of size 3 in the game. The action space is 4-dimension with
’up,left,right,down’. The size of the room is 5×5

Maze-Random-Square. It is a square maze. The agent and the goal door will initiate with random-
ized relative distance. The door has a random initial position according to the structure of the whole
wall. The agent has a random initial position in the whole room.

Maze-square-blocked. It is a square maze with a blocked wall. The agent and the goal door will
initiate with randomized relative distance. The door has a random initial position on the left and
right walls. The agent has a random initial position in the whole room.
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Maze-find-obj. It is a square maze. The agent should go to the correct object according to the given
instructions. There is a door and an unrelated object as a disturbance. The relative position and
viewpoint are randomized. The goal object will only occur near the wall.

Maze-blocked-obj. Same with ’Maze-find-obj’ with a blocked wall in the middle.

Random-Track. CarRacing game with a randomized structure of the track. The color of the grass
(background) and the zoom of the viewpoint are randomized.

Inverse-Track. CarRacing game with a randomized structure of the track. But it is different from
the ’Random-Track’. This track will generate more irregular roads with the environment generator.
The color of the grass (background) and the zoom of the viewpoint are randomized.

Circle-No-Rand. CarRacing game with big circle track. None of the components is randomized. It
is used to show that the baselines can learn well in tasks without randomization but fail in general-
ization tasks.

B.2 GENERALIZATION TASKS

(a) Maze-g1 (b) Interaction1 (c) Maze-g2 (d) Interaction2

Figure 5: Generalization Tasks in MuJoCo and BabyAI.

Maze-g1. An unseen blocked maze. The initial positions are fixed. The structure of this generaliza-
tion maze is different from all the seen mazes. The agent should overcome the unseen blocks and
reach the door.

Interaction1. An unseen blocked maze when training to interact with objects. The agent should
overcome the unseen blocks and find the correct object.

Maze-g2. An OOD environmental generalization task in the BabyAI platform. The form of the
agent and the dynamics are all different. The relative positions are randomly initiated. The agent
should overcome not only the difference of observation and dynamics, and the randomness to
achieve the goal door.

Interaction1. An OOD environmental generalization task in the BabyAI platform. The form of the
agent and the dynamics are all different. The distribution of the goal object is also different from the
training tasks.

(a) Alpine1 (b) Street1 (c) CG-Track2

Figure 6: OOD Environmental Generalization Racing Tasks in Torcs.

18



Under review as a conference paper at ICLR 2024

Tracks In Torcs. This racing game is quite different from the training environment of the Gym,
including the dynamics, the structure of the track, the background, and the viewpoint. We utilize the
overhead perspective to obtain pixel observation as input. It is extremely hard to control the car by
pixel input, where the action space is not perfectly aligned with the training tasks. Thus, neither the
baselines nor our method can complete the racing in zero-shot. Here we utilize the racing distance
as a reward and ignore the loss caused by the collision. These zero-shot agents can slowly drive
along the fence of the road. The more adaptable the policy, the further it drives. The non-adaptable
policy will get stuck on the side of the road and cannot drive too far.

C ALGORITHM

C.1 ALGORITHM FOR DISCRETE TASKS

Algorithm 1 Algorithm for Discrete Tasks

1: Initialize main actor parameters θa
2: Initialize main value parameters θv
3: Initialize multi-process actor parameters θia for i ∈ [1, n]
4: Initialize multi-process value parameters θiv for i ∈ [1, n]
5: for episodes in 1,M do
6: Reset gradients: dθa and dθv
7: for i ∈ [1, n] do
8: Synchronize thread-specific parameters θia = θa
9: Synchronize thread-specific parameters θiv = θv

10: repeat
11: Perform at according to policy πi(at|sit)
12: Receive reward rit and new state sit+k
13: t← t+ k
14: until terminal siT or t == tmax
15: Set R = rit
16: for j ∈ {t− k, t− 2k, . . . , 0} do
17: R← rij + γR
18: Accumulate gradients w.r.t. θa

dθa ← dθa +
1

n

k

t
∇θa log πi(at|sij ; θa)(R− V (sij ; θv))

19: Accumulate gradients w.r.t. θv

dθv ← dθv +
1

n

k

t

∂

∂θv
(R− V (sij ; θv))

2

20: end for
21: end for
22: Update parameters θv and θa
23: end for
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C.2 ALGORITHM FOR CONTINUOUS TASKS

Algorithm 2 Parallel PPO Algorithm for Continuous Tasks

1: Initialize main parameters θ
2: Initialize multi-process parameters θi for i ∈ [1, n]
3: for episodes in 1,M do
4: Reset gradients: dθa and dθv
5: for Parallel processes i ∈ [1, n] do
6: Synchronize thread-specific parameters θi = θ
7: repeat
8: Perform at according to policy πi(at|sit)
9: Receive reward rit and new state sit+k

10: t← t+ k
11: until terminal siT or t == tmax
12: Set R = rit
13: for j ∈ {t− k, t− 2k, . . . , 0} do
14: R← rij + γR
15: Accumulate gradients by loss of PPO JPPO

dθ ← dθ +
1

n
JPPO(θ

i)

16: end for
17: end for
18: Update parameters θ
19: end for

D NETWORK AND HYPE-PARAMETERS

The network is mainly a CNN with an existing actor-critic structure. The details can be seen in the
code.

The main hype-parameters and details of tasks are as follows:

Table 4: Steps of every episode of different tasks

Hyper-parameters Value and Details

Step of discrete tasks 30
Step of continuous tasks 300

Action space of discrete tasks ↑, ↓,←,→
Action space of continuous tasks 3-dimension, 1st of [-1,1] for steering, 2nd of [0,1] for gas, 3rd of [0,1] for break

Room size 7*7, grids of MuJoCo and BabyAI
Grid size 3*3, size in coordinates system of MuJoCo

Reward of discrete tasks Sparse ’1’ for achieving the goal
Reward of continuous tasks -0.1 for staying and 1000*racing distance/checkpoints
Generalizing test episodes 500 for discrete tasks, 5 for continuous tasks
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