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Abstract

Video Instance Segmentation (VIS) faces significant anno-
tation challenges due to its dual requirements of pixel-
level masks and temporal consistency labels. While recent
unsupervised methods like VideoCutLER eliminate optical
flow dependencies through synthetic data, they remain con-
strained by the synthetic-to-real domain gap. We present
AutoQ-VIS, a novel unsupervised framework that bridges
this gap through quality-guided self-training. Our approach
establishes a closed-loop system between pseudo-label gen-
eration and automatic quality assessment, enabling pro-
gressive adaptation from synthetic to real videos. Experi-
ments demonstrate state-of-the-art performance with 52.6
AP50 on YouTubeVIS-2019 val set, surpassing the previ-
ous state-of-the-art VideoCutLER by 4.4%, while requir-
ing no human annotations. This demonstrates the viabil-
ity of quality-aware self-training for unsupervised VIS. The
source code of our method is available at here.

1. Introduction

Video Instance Segmentation (VIS) is the challenging task
of simultaneously detecting, segmenting, and tracking ob-
ject instances across video sequences [8, 11, 16, 17, 20, 23].
This capability is fundamental for scene understanding in
applications ranging from autonomous driving [21] to video
content editing [24]. However, training high-performance
VIS models typically requires pixel-level annotations across
all frames [20]. This process is expensive due to the labor-
intensive nature of annotating temporal consistency and in-
stance identities. As a result, there is an urgent need to
develop unsupervised video instance segmentation frame-
works that can accurately interpret video content and func-
tion effectively across diverse, unlabeled environments.

Prior work [1, 4, 6, 10, 12, 19, 22] in unsupervised
video segmentation predominantly addresses Video Ob-
ject Segmentation (VOS), focusing on separating a single
foreground object via motion or consistency cues. While
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Figure 1. AutoQ-VIS overview. In the initial training stage,
both the VIS model and the mask quality predictor are trained on
synthetic videos with pseudo annotations [15]. During the multi-
round self-training stage, the VIS model generates pseudo masks
on unlabeled videos, which are then scored by the frozen quality
predictor. Pseudo masks with high predicted quality are selected
and added to the training set. The VIS model is subsequently re-
trained on both the synthetic data and the selected pseudo labels,
enabling iterative refinement and progressive performance gains.

OCLR [18] introduces unsupervised VIS that supports mul-
tiple instances, its predefined object count during training
prevents dynamic adaptation to varying instances during in-
ference. Furthermore, prior approaches [4, 10, 12, 18, 19]
rely on optical flow estimators (e.g., RAFT [13]) that are
trained on human-annotated datasets. VideoCutLER [15]
marks a breakthrough in unsupervised VIS and achieves un-
precedented performance by demonstrating multi-instance
segmentation without optical flow dependencies. Its core
innovation lies in synthetic video generation via spatial
augmentations of CutLER [14] pseudo-labels from Ima-
geNet [5]. However, VideoCutLER remains constrained by
synthetic-to-real domain gaps and static instance modeling,
i.e., the synthetic videos lack natural and realistic motion
patterns.

https://github.com/wcbup/AutoQ-VIS


Building upon VideoCutLER’s synthetic data paradigm,
which generates training videos through spatial augmenta-
tions of static image pseudo-labels, we introduce AutoQ-
VIS to address its critical domain gap limitation. While
VideoCutLER’s synthetic videos provide initial instance
awareness, they lack natural motion patterns and real-world
appearance variations, hindering adaptation to authentic
video dynamics. Our framework bridges this synthetic-
to-real domain gap through a self-training loop that pro-
gressively adds quality-filtered pseudo-labels from unla-
beled real videos. Inspired by Mask Scoring R-CNN [9],
which directly predicts mask quality scores via an auxil-
iary branch, we implement a quality assessment module for
pseudo-label filtering of instance masks.

AutoQ-VIS advances unsupervised video instance seg-
mentation through an iterative self-training paradigm with
quality-aware pseudo-label selection (Fig. 1). The sys-
tem initializes using synthetic video data from VideoCut-
LER, which provides pseudo-labels to bootstrap a Video-
Mask2Former [2, 3] VIS model and a specialized mask
quality predictor (Sec. 2.1). The mask quality predictor es-
timates mask IoU quality scores by analyzing frame-level
features and mask predictions. During multi-round opti-
mization, the VIS model generates pseudo-labels on unla-
beled videos, which are then scored by the quality predic-
tor. High-quality pseudo-labels surpassing a fixed thresh-
old are progressively incorporated into the training set, en-
abling dataset augmentation without any human supervision
(Sec. 2.2). To enhance the mask head training, we em-
ploy a DropLoss that zeros out mask losses whose maxi-
mum ground-truth overlap falls below 0.01 (Sec. 2.3). By
alternating rounds of VIS training (with occasional weight
resets) and quality-based dataset expansion, AutoQ-VIS dy-
namically enriches its training dataset and steadily sharpens
segmentation performance.

Our key contributions are threefold: (1) Annotation-
Free VIS Framework: We propose AutoQ-VIS, an un-
supervised framework that overcomes annotation depen-
dency through cyclic pseudo-label refinement with auto-
mated quality control, enabling video instance segmenta-
tion training directly from unlabeled videos. (2) Automatic
Quality Assessment: We propose a simple quality pre-
dictor that reliably filters pseudo labels across self-training
rounds. (3) New State-of-the-art Performance: Our
AutoQ-VIS archives 52.6 AP50 on YouTubeVIS-2019 [20]
val split, surpassing the previous state-of-the-art Video-
CutLER [15] by 4.4 AP50.

2. Method
AutoQ-VIS operates through three stages: (1) Initial
Training (Sec. 2.1): Jointly pretrain VideoMask2Former
and the mask quality predictor on VideoCutLER’s synthetic
videos; (2) Multi-Round Self-Training (Sec. 2.2): Itera-
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Figure 2. Network architecture of VideoMask2Former [2, 3]
and Mask Quality Predictor. Our quality predictor integrates
mask predictions and pixel decoder features following [9], em-
ploying a sequential architecture with four convolution layers
(3×3 kernels, final layer stride of 2 for spatial reduction) followed
by three fully-connected layers that ultimately produce mask IoU
predictions.

tively generate pseudo-labels on real unlabeled videos, filter
via quality scores, and augment training data; (3) DropLoss
(Sec. 2.3): Suppress low-IoU mask predictions to enhance
mask head training. This quality-guided pipeline progres-
sively improves segmentation accuracy without any human
annotations.

2.1. Initial training stage
Video instance segmentation (VIS) model. Following
VideoCutLER [15], we use the VideoMask2Former [2, 3]
with the ResNet-50 [7] backbone as our video instance seg-
mentation (VIS) model.
Quality predictor. For the quality predictor, as shown
in Fig. 2, we use an architecture inspired by Mask Scoring
R-CNN [9]. Our architecture processes individual frame
features and single-object mask predictions per inference
step. Supervision is established through threshold-binarized
(0.5) mask IoU between predictions and matched ground
truths, optimized via ℓ2 regression loss.
Synthetic videos. VideoCutLER [15] provides a high-
quality pseudo-labeled synthetic video dataset that was built
on the unlabeled images from ImageNet [5], which is very
suitable to train and initialize our VIS model and qual-
ity predictor. We also use the trained VideoMask2Former
model [2] from VideoCutLER to initialize our VIS model.



Method AP50 AP75 AP APS APM APL AR10

MotionGroup [19] 0.5 0.0 0.1 0.0 0.4 0.1 1.2
OCLR [18] 5.5 0.3 1.6 0.1 1.6 6.1 11.5
CutLER [14] 36.4 13.5 16.0 3.5 13.9 26.0 29.8
VideoCutLER [15] 48.2 22.9 24.5 6.7 17.7 36.3 42.3
AutoQ-VIS 52.6 28.2 28.1 6.7 21.2 40.7 42.5
vs. previous SOTA +4.4 +5.3 +3.6 +0.0 +3.5 +4.4 +0.2

Table 1. YouTubeVIS-2019 val. We reproduced Motion-
Group [19], OCLR [18], CutLER [14], and VideoCutLER [15]
results with the official code and checkpoints. AutoQ-VIS outper-
forms the state-of-the-art VideoCutLER by 4.4 AP50. We evaluate
results on YouTubeVIS-2019’s val split in a class-agnostic man-
ner.

2.2. Multi-round self-training
As shown in Fig. 1, we optimize the VIS model through iter-
ative self-training and dynamic dataset augmentation. The
training dataset is initialized using the synthetic videos from
VideoCutLER [15]. Empirically, we find that executing
model parameter restoration from the initial model weight
(trained in Sec. 2.1) achieves a better performance.

After training the VIS model, we use the predicted masks
on unlabeled videos with a confidence score over 0.25 as
pseudo-labels. Then we use the quality predictor to predict
the IoU of each pseudo-label predicted mask. Let ˆIoUl de-
note the predicted IoU of label l, sl denotes the confidence
score of label l. We define the quality score of label l as
Ql = ˆIoUl · sl.

We implement quality-based pseudo-label selection us-
ing a fixed quality score threshold τth. For each pseudo-
label l, we select it if Ql ≥ τth. In the end of each round,
we add all the pseudo-labels to the training dataset.

2.3. DropLoss for mask head
We enhance the mask head training by suppressing loss
contributions from low-overlap predictions, following Cut-
LER [14]. For each predicted mask mi, we discard its loss
contribution if its maximum ground truth IoU falls below
the threshold τ IoU:

Ldrop(mi) = 1(IoUmax
i > τ IoU)Lvanilla(mi) (1)

Here, IoUmax
i is the maximum overlap between mi and any

ground truth mask, while Lvanilla denotes the original mask
head loss from VideoMask2Former [2, 3]. We employ a
low threshold (τ IoU = 0.01) to filter only near-zero overlap
predictions.

3. Experiments
Datasets. Our model is trained on synthetic videos from
VideoCutLER [15] and the unlabeled train split of
YouTubeVIS-2019 [20]. We evaluate our model’s perfor-
mance on the val split of YouTubeVIS-2019 in a class-
agnostic manner.

Method AP50 AP75 AP APS APM APL AR10

Theoretical limit 76.8 48.7 46.8 13.5 43.6 62.9 58.0
Practical limit 62.7 33.2 33.9 4.3 27.3 53.2 47.5
AutoQ-VIS 52.6 28.2 28.1 6.7 21.2 40.7 42.5

Table 2. Comparison with the theoretical and practical limit.
Theoretical Limit: Upper-bound performance achieved by train-
ing on ground-truth labels from YouTubeVIS-2019 train split
in class-agnostic mode, representing ideal supervision conditions.
Practical Limit: Best attainable performance when using all
pseudo-labels with IoU ≥ 0.5 against ground truth, simulating
perfect pseudo-label selection.

Evaluation metrics. Following [15], we use Average Pre-
cision (AP) and Average Recall (AR) as evaluation metrics.
We evaluate the models in a class-agnostic manner, treating
all classes as a single one during evaluation.
Implementation details. For the initial training stage, we
use the pretrained VideoMask2Former model [2, 3] from
VideoCutLER [15] to initialize our VIS model. Then we
train the VIS model and quality predictor on synthetic
videos from VideoCutLER for 8,000 iterations using a sin-
gle V100 GPU, with a batch size of 2 and a learning rate
of 2 × 10−5. For each round of multi-round self-training,
we train the VIS model for 10,000 iterations on two V100
GPUs, with a batch size of 4 and a learning rate of 2×10−5.
In practice, we find that two rounds of self-training provide
the best performance.

3.1. Experimental results
Comparison with the-state-of-the-art method. We com-
pare AutoQ-VIS with previous top-performing methods
in Tab. 1. AutoQ-VIS achieves a remarkable improvement
(about 4.4% AP50). Especially for AP75, AutoQ-VIS can
outperform the state-of-the-art VideoCutLER [15] by 5.3%.
Comparison with the theoretical and practical limit.
Tab. 2 reveals a significant performance gap (10.1 AP50)
between AutoQ-VIS and the practical upper bound, indi-
cating substantial potential for improvement through en-
hanced pseudo-label utilization. The theoretical limit repre-
sents a fully supervised training using all ground-truth an-
notations from YouTubeVIS-2019 train set. The prac-
tical limit represents an oracle experiment that simulates
perfect pseudo-label selection by using all predictions with
IoU ≥ 0.5 against ground truth.
Qualitative results. Fig. 3 demonstrates AutoQ-VIS’s
advancements over VideoCutLER [15]. As we observe,
AutoQ-VIS is capable of discovering more objects and pro-
ducing higher-quality segmentation masks.

3.2. Ablation studies
Component ablation analysis. Tab. 3 quantifies individ-
ual component contributions through progressive additions.
The DropLoss provides the most substantial gains (+4.6
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Figure 3. The qualitative results on YouTubeVIS-2019 val
split. AutoQ-VIS demonstrates superior instance discovery ca-
pabilities compared to VideoCutLER [15]: (1) Enhanced multi-
object detection capacity, particularly for semantically distinct in-
stances (e.g., person and bull in Column 2); (2) Improved segmen-
tation fidelity through precise boundary delineation (e.g., the leop-
ard in Column 3). (3) Better comprehensive instance coverage,
eliminating false negatives (e.g., detecting humans in Columns 1
& 4 that VideoCutLER completely misses, even without occlusion
or scale challenges).

Method AP50 AP75 AP APS APM APL AR10

w/o quality predictor 50.5 25.9 27.2 5.7 19.0 40.5 43.3
w/o DropLoss 48.0 23.7 24.6 3.8 16.9 37.8 39.2
w/o resetting each round 51.6 28.0 28.2 6.4 22.8 40.6 42.9
AutoQ-VIS 52.6 28.2 28.1 6.7 21.2 40.7 42.5

Table 3. Ablation study on the contribution of each compo-
nent. Without quality predictor: We remove the quality predictor,
and use the confidence score sl as quality score Ql with threshold
τth = 0.85. Without DropLoss: We use the vanilla loss for the
mask head instead of the DropLoss. Without resetting each round:
The model weights are not reset at the beginning of each round.

Self-training AP50 AP75 AP APS APM APL AR10

1 round 51.3 26.5 26.9 7.0 22.3 38.4 43.2
2 rounds 52.6 28.2 28.1 6.7 21.2 40.7 42.5
3 rounds 52.0 27.0 27.7 6.2 21.8 40.1 42.1

Table 4. Ablation study on the number of self-training rounds.
Our framework achieves peak performance (52.6 AP50) at the sec-
ond round before gradual degradation (-0.6 AP50) from pseudo-
label noise accumulation. This establishes round 2 as the optimal
stopping point to balance accuracy and error propagation risks.

AP50), followed by the quality predictor’s +2.1 AP50 im-
provement. Notably, even the confidence score baseline
surpasses VideoCutLER by +2.3 AP50, demonstrating fun-
damental advantages of our self-training method. While
model resetting yields marginal gains (+1.0 AP50, +0.2
AP75), it maintains baseline AP performance.
Self-training round analysis. Tab. 4 tests how many self-
training rounds work best. The model hits its peak (52.6
AP50) at round 2, then slowly gets worse. This drop oc-
curs because, as we perform more rounds, mistakes in the
pseudo-labels pile up.
Quality score threshold τth analysis. Tab. 5 examines

τth AP50 AP75 AP APS APM APL AR10

0.95 48.7 25.3 26.1 5.9 18.8 38.5 40.7
0.85 48.8 24.6 26.0 5.8 18.6 38.6 41.2
0.75 52.6 28.2 28.1 6.7 21.2 40.7 42.5
0.50 52.4 25.7 27.1 6.5 20.1 39.9 42.2

Table 5. Ablation study on the quality score threshold τth. Op-
timal performance (52.6 AP50) emerges at τth = 0.75, balanc-
ing valid sample retention and noise suppression. Lower thresh-
old (τth = 0.50) degrades results by admitting too many low-
quality predictions, while the higher thresholds (τth = 0.95 and
τth = 0.80) oversuppress valid samples.
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Figure 4. Visualized comparison of quality score Ql and con-
fidence score sl. Here, ρs denotes the Spearman’s rank correla-
tion coefficient. Subplot (a) visualizes quality scores Ql and their
ground truth IoU. Subplot (b) visualizes confidence scores sl and
their ground truth IoU.

the impact of quality score thresholds on pseudo-label se-
lection. We observe a non-monotonic relationship: While
lower thresholds (τth ≤ 0.75) generally yield superior per-
formance by retaining more valid samples, excessively le-
nient selection (τth = 0.50) introduces noisy supervision,
degrading results. The optimal balance occurs at τth =
0.75, achieving peak performance.
Quality score vs. confidence score. As shown in Fig. 4,
our quality score Qs has a higher correlation to the IoU of
the pseudo label and the ground truth label than the confi-
dence score of VideoMask2Former, which proves our qual-
ity predictor’s effectiveness in pseudo-label quality assess-
ment. This results in a significant improvement in the final
VIS model performance (+2.1 AP50) in Tab. 3.

4. Conclusion
We present AutoQ-VIS, a quality-aware self-training
framework that advances unsupervised video instance seg-
mentation through iterative pseudo-label refinement with
automatic quality control. By establishing a closed-loop
system of pseudo-label generation and automatic quality as-
sessment, our method achieves state-of-the-art performance
(52.6 AP50) on YouTubeVIS-2019 val split without re-
quiring any human annotations. The simple quality predic-
tor proves effective in pseudo-label quality assessment.
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