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Abstract

Theory of Mind (ToM), the ability to under-001
stand people’s mental variables based on their002
behavior, is key to developing socially intel-003
ligent agents. Current approaches to Theory004
of Mind reasoning either rely on prompting005
Large Language Models (LLMs), which are006
prone to systematic errors, or use rigid, hand-007
crafted Bayesian Theory of Mind (BToM) mod-008
els, which are more robust but cannot general-009
ize across different domains. In this work, we010
introduce AutoToM , an automated Bayesian011
Theory of Mind method for achieving open-012
ended machine Theory of Mind. AutoToM013
can operate in any domain, infer any mental014
variable, and conduct robust Theory of Mind015
reasoning of any order. Given a Theory of016
Mind inference problem, AutoToM first pro-017
poses an initial BToM model. It then conducts018
automated Bayesian inverse planning based on019
the proposed model, leveraging an LLM as the020
backend. Based on the uncertainty of the infer-021
ence, it iteratively refines the model, by intro-022
ducing additional mental variables and/or incor-023
porating more timesteps in the context. Empiri-024
cal evaluations across multiple Theory of Mind025
benchmarks demonstrate that AutoToM con-026
sistently achieves state-of-the-art performance,027
offering a scalable, robust, and interpretable028
approach to machine Theory of Mind.029

1 Introduction030

To successfully engage in rich and complex social031

interactions such as cooperation, communication,032

and social learning, humans must adequately un-033

derstand one another’s mental states (e.g., goals,034

beliefs, desires). This ability is termed Theory of035

Mind (ToM) (Wimmer and Perner, 1983). Prior036

works have demonstrated that like human interac-037

tions, Theory of Mind is also crucial for the success038

of human-AI interactions (e.g., Dautenhahn, 2007;039

Hadfield-Menell et al., 2016; Liu et al., 2018). In040

particular, to safely and productively interact with041

humans in an open-ended manner, AI systems need 042

to interpret humans’ mental states from observed 043

human behavior (e.g., Chandra et al., 2020; Wang 044

et al., 2021; Wan et al., 2022; Patel and Chernova, 045

2022; Puig et al., 2023; Zhi-Xuan et al., 2024; Ying 046

et al., 2024). 047

There are two primary approaches to developing 048

machine Theory of Mind in recent works. First, 049

with the rapid progress of large language models 050

(LLMs), there has been an increasing interest in 051

directly applying LLMs to reason about people’s 052

mental states with prompting strategies such as 053

perspective-taking (Wilf et al., 2023; Sclar et al., 054

2023; Jung et al., 2024), change-tracking (Huang 055

et al., 2024), and temporal-spatial reasoning (Hou 056

et al., 2024). However, even with these advanced 057

prompting techniques, state-of-the-art LLMs still 058

make systematic errors in complex scenarios (Jin 059

et al., 2024). Second, cognitive studies have demon- 060

strated that model-based inference, in particular, 061

Bayesian inverse planning (BIP), can reverse engi- 062

neer human-like theory of Mind reasoning (Baker 063

et al., 2009; Ullman et al., 2009; Baker et al., 2017; 064

Zhi-Xuan et al., 2020). BIP relies on Bayesian The- 065

ory of Mind (BToM) models (Baker et al., 2017) to 066

approximate rational agent behaviors. Inspired by 067

this, recent works have proposed to combine BIP 068

and LLMs to achieve scalable yet robust model- 069

based ToM inference (Jin et al., 2024; Shi et al., 070

2024). While these methods significantly outper- 071

form LLMs in specific domains, they typically re- 072

quire manual specification of BToM models, in- 073

cluding necessary mental variables (e.g., goals, be- 074

liefs) for answering a given ToM question. There- 075

fore, they lack the required generalizability for 076

open-ended Theory of Mind. 077

In this work, we aim to develop a fully auto- 078

mated and open-ended Theory of Mind reasoning 079

method. That is a unified method that can be ap- 080

plied to robustly infer any given mental variable in 081

any domain. Achieving this aim requires address- 082
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Question: … Sally hides an 
apple inside a box … Where does 

Anne think the apple is?
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Figure 1: An overview of AutoToM . Xts:t are observable variables, V ts:t are latent mental variables, and q is
the query (in this case, a mental variable vti ∈ V t). ts : t denotes timesteps from ts to t in the context that are
considered for inference. Variables st, ot, bt, at, gt represent state, observation, belief, action, and goal, respectively,
with solid arrows indicating dependencies defined in the models. Given a question, we extract the observable
variables (information extraction) and propose an initial BToM model. This is followed by automated Bayesian
inverse planning and iterative model adjustment. When the model utility is high enough, we will produce the final
answer based on the inference result.

ing two critical questions: (1) How can we ensure083

that our approach is flexible enough to adapt across084

contexts, robust enough to model diverse human085

behaviors, and scalable enough to tackle increas-086

ingly complex scenarios? (2) How can we avoid087

manually defining model structures and instead088

autonomously discover the appropriate model for089

mental inference?090

To address these challenges, we introduce Auto-091

ToM , a general framework for open-ended Theory092

of Mind. It automates every aspect of Bayesian093

inverse planning, including the proposal and adjust-094

ment of model structures, the identification of rele-095

vant timesteps, the generation of hypotheses, and096

the execution of Bayesian inference. It is designed097

to operate in any context, infer any mental state,098

reason about any number of agents, and support099

any order of recursive reasoning, which represents100

our vision of an open-ended and robust machine101

Theory of Mind.102

Figure 1 provides an overview of AutoToM ,103

which consists of two main components:104

First, Automated Bayesian Inverse Planning.105

AutoToM is capable of flexibly modeling various106

mental variables and their dependencies for any107

specified BToM model (in the form of a Bayesian108

network). The construction, information flow, and109

computations within a given BToM model are en-110

tirely automated, leveraging the adaptability of the111

LLM backend. Specifically, conditioned on observ-112

able variables and their values extracted from the 113

context (by an LLM), AutoToM samples a small 114

set of hypotheses for each latent mental variable 115

using an LLM. Given the hypotheses, AutoToM 116

then conducts Bayesian inference to produce the 117

posterior distribution of the target mental variable 118

in the question. To achieve this, AutoToM lever- 119

ages an LLM to estimate each local conditional in 120

the BToM model. (Section 3.3) 121

Second, Automated Model Discovery. In a 122

given scenario, AutoToM performs automated 123

model proposals and iteratively adjusts variables 124

and the timesteps of observable variables. We 125

ground the BToM model proposals in cognitive 126

models of human decision-making (e.g., Baker 127

et al., 2017; Ullman et al., 2009). The goal is to 128

include the relevant mental variables and timesteps 129

necessary for the inference, optimizing based on 130

model utility, which balances the certainty of the 131

inference and the complexity of the model. This 132

approach eliminates the need for manual effort in 133

defining model structures and enhances generaliza- 134

tion by enabling automatic adaptation to diverse 135

scenarios. Furthermore, AutoToM can select a dif- 136

ferent suitable model for each timestep, enabling 137

it to adapt dynamically to changing circumstances. 138

(Section 3.4) 139

AutoToM is the first model-based ToM method 140

that extends beyond domain-specific applications 141

and addresses open-ended scenarios. It integrates 142
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the flexibility of LLMs with the robustness of143

Bayesian inverse planning. We evaluate AutoToM144

in multiple ToM benchmarks. The results consis-145

tently show that AutoToM achieves state-of-the-art146

performance, establishing a scalable, robust, and147

interpretable framework for machine ToM.148

2 Related Works149

Enhancing LLMs’ Theory of Mind. There has150

been systematic evaluation that revealed LLMs’151

limitations in achieving robust Theory of Mind in-152

ference (Ullman, 2023; Shapira et al., 2023). To153

enhance LLMs’ Theory of Mind capacity, recent154

works have proposed various prompting techniques.155

For instance, SimToM (Wilf et al., 2023) encour-156

ages LLMs to adopt perspective-taking, Percep-157

ToM (Jung et al., 2024) improves perception-to-158

belief inference by extracting relevant contextual159

details, and Huang et al. (2024) utilize an LLM as160

a world model to track environmental changes and161

refine prompts. Explicit symbolic modules also162

seem to improve LLM’s accuracy through dynamic163

updates based on inputs. Specifically, TimeToM164

(Hou et al., 2024) constructs a temporal reasoning165

framework to support inference, while Symbolic-166

ToM (Sclar et al., 2023) uses graphical represen-167

tations to track characters’ beliefs. Additionally,168

Wagner et al. (2024) investigates ToM’s necessity169

and the level of recursion required for specific tasks.170

However, these approaches continue to exhibit sys-171

tematic errors in long contexts, complex behaviors,172

and recursive reasoning due to inherent limitations173

in inference and modeling (Jin et al., 2024; Shi174

et al., 2024). Most of them rely on domain-specific175

designs, lacking open-endedness.176

Model-based Theory of Mind inference.177

Model-based Theory of Mind inference, in par-178

ticular, Bayesian inverse planning (BIP) (Baker179

et al., 2009; Ullman et al., 2009; Baker et al., 2017;180

Zhi-Xuan et al., 2020), explicitly constructs repre-181

sentations of agents’ mental states and how mental182

states guide agents’ behavior via Bayesian The-183

ory of Mind (BToM) models. These methods can184

reverse engineer human ToM inference in simple185

domains (e.g., Baker et al., 2017; Netanyahu et al.,186

2021; Shu et al., 2021). Recent works have pro-187

posed to combine BIP with LLMs to achieve robust188

ToM inference in more realistic settings (Jin et al.,189

2024; Shi et al., 2024). However, these methods190

require manual specification of the BToM models191

as well as rigid, domain-specific implementations192

of Bayesian inference, limiting their adaptability to 193

open-ended scenarios. To overcome this limitation, 194

we propose AutoToM , a method capable of auto- 195

matically modeling mental variables across diverse 196

conditions and conducting automated BIP without 197

domain-specific knowledge or implementations. 198

Automated Modeling with LLMs. There has 199

been an increasing interest in integrating LLMs 200

with inductive reasoning and probabilistic infer- 201

ence for automated modeling. Piriyakulkij et al. 202

(2024) combine LLMs with Sequential Monte 203

Carlo to perform probabilistic inference about un- 204

derlying rules. Iterative hypothesis refinement tech- 205

niques (Qiu et al., 2023) further enhance LLM- 206

based inductive reasoning by iteratively propos- 207

ing, selecting, and refining textual hypotheses of 208

rules. Beyond rule-based hypotheses, Wang et al. 209

(2023) prompt LLMs to generate natural language 210

hypotheses that are then implemented as verifiable 211

programs, while Li et al. (2024) propose a method 212

in which LLMs construct, critique, and refine statis- 213

tical models represented as probabilistic programs 214

for data modeling. Cross et al. (2024) leverage 215

LLMs to propose and evaluate agent strategies for 216

multi-agent planning but do not specifically infer 217

individual mental variables. Our method also aims 218

to achieve automated modeling with LLMs. Unlike 219

prior works, we propose a novel automated model 220

discovery approach for Bayesian inverse planning, 221

where the objective is to confidently infer any men- 222

tal variable given any context via constructing a 223

suitable Bayesian Theory of Mind model. 224

3 AutoToM 225

3.1 Preliminaries 226

Bayesian Inverse Planning (BIP) is a computa- 227

tional framework that models how observers in- 228

fer unobservable mental states—such as beliefs 229

and goals—from an agent’s behavior (Baker et al., 230

2009). It assumes that the agent acts rationally ac- 231

cording to a generative model, a Bayesian Theory 232

of Mind (BToM) model (Baker et al., 2017), which 233

specifies how internal variables lead to observable 234

actions in a Bayesian network (e.g., the example 235

models on the bottom panels in Figure 2). Using 236

inverse inference, BIP inverts this generative pro- 237

cess to assess what latent mental variables can lead 238

to observed agent behavior. This probabilistic in- 239

ference reasons about how agents make decisions, 240

serving as a robust solution to ToM challenges. 241

There have been different instantiations of BIP 242
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Story: Mei is a pearl diver in a small 
coastal village in Japan. Mei wants to 
find a perfect pearl to give to her
grandmother for her birthday. Mei
spots an oyster at the bottom of the
sea that looks to be the right size and
age to contain a pearl. Mei believes
that the oyster she spotted contains a
pearl. A curious octopus opens the
oyster, revealing that there is no pearl
inside, and then swims away. Mei
dives down to collect the oyster. 
Question: Does Mei believe the 
oyster she spotted contains a pearl
or that it is empty?

…

Scene: … The first cabinet, from left 
to right, contains a bag of chips. 
Actions: Mary… walks towards the 
cabinet, opens it, and then closes it.
Question: Which one of the following 
statements is more likely to be true?
(a) Mary has been trying to get a bag 
of chips.
(b) Mary has been trying to get a 
condiment bottle.

Story: Mila entered the basement.
Isla entered the basement.
The orange is in the box.
The box is in the basement.
Isla dislikes the box.
Mila moved the orange to the blue 
container.
Phone rang.
Isla exited the basement.
Mila moved the orange to the suitcase.
Question: Where does Isla think that 
Mila searches for the orange?

Model

Have you seen 
the magazine?

It’s in the cabinet 
in the bedroom.

Kevin closes the cabinet 
without grabbing anything.

⋮

Question: If Jessica knows what is 
inside the cabinet in the bedroom, 
which of the following is MOST likely?
(a) Jessica is trying to help Kevin.
(b) Jessica is trying to hinder Kevin.

Story: The milk is on the table.
Sally exited the room.
Anne transferred the milk onto the 
box.
Alex exited the room, then Anne 
exited the room.
Outside the room, the three 
interacted with each other —
Alex lied to all: The milk is in
the fridge!
Sally secretly told Anne: The milk is 
on the table!
Question: Where does Alex think 
Sally thinks Anne thinks the milk is?

BigToMToMi MMToM-QA MuMA-ToM Hi-ToM

ModelModelModelModel

Figure 2: Examples questions (top panels) and the necessary Bayesian Theory of Mind (BToM) model for Bayesian
inverse planning (bottom panels) in diverse Theory of Mind benchmarks. AutoToM aims to answer any Theory of
Mind question in a variety of benchmarks, encompassing different mental variables, observable contexts, numbers
of agents, the presence or absence of utterances, wording styles, and modalities. It proposes and iteratively adjusts
an appropriate BToM and conducts automated Bayesian inverse planning based on the model. There can be more
types of questions/models in each benchmark beyond the examples shown in this figure.

in prior works (e.g., Baker et al., 2009; Ullman243

et al., 2009; Ong et al., 2019; Jha et al., 2024).244

Here we formally define BIP in a unified way. We245

denote the observable variables at time t describ-246

ing the environment and an agent’s behaviors as247

Xt = {xti}i∈NX
, where NX is the set of observ-248

able variables and xti is a particular variable (state,249

action, or utterance) at t. We can extract the val-250

ues of these observable variables from the context251

provided in a ToM problem. We denote an agent’s252

latent mental variables at time t as V t = {vti}i∈NV
,253

where NV is the set of mental variables and vti is a254

particular mental variable (e.g., goal, desire, belief)255

at t. BIP formulates a BToM model as a Bayesian256

network that defines P (V t, Xt), which indicates257

how the mental variables drive an agent’s behav-258

ior. Given this model, BIP infers the latent mental259

variables for the current step t:260

P (V t|Xt) =
P (V t, Xt)∑
V P (V,Xt)

∝ P (V t, Xt). (1)261

In many real-world scenarios, past observations262

(such as actions taken at the previous steps) are263

often valuable for inferring the mental variables at264

the current step. Suppose the context from step ts265

to step t is relevant for the current mental variable266

inference, then the inference becomes:267

P (V ts:t|Xts:t) ∝ P (V ts:t, Xts:t). (2)268

In a ToM problem, there is a query concerning a269

specific target variable q to be inferred. We can an-270

swer the query via P (q|Xts:t). Typically, the query 271

asks about a latent mental variable q = vti ∈ V t, 272

the posterior probability is obtained by marginal- 273

izing over other latent variables V ts:t
−i which is the 274

subset of V ts:t excluding vti : 275

P (vti |Xts:t) ∝
∑
V ts:t
−i

P (vti , V
ts:t
−i , Xts:t). (3) 276

This can also be extended to predicting a future 277

observable variable q = xt+1
i given observations 278

from ts to t: 279

P (xt+1
i |Xts:t) ∝

∑
V ts:t

P (V ts:t, xt+1
i , Xts:t). (4) 280

To conduct BIP in different scenarios, we must 281

formulate the mental variables and their causal rela- 282

tionships with agent behavior using suitable BToM 283

models. Each model M is uniquely defined by the 284

observable variables and the latent mental variables, 285

i.e., M = (V ts:t, Xts:t). Let st ∈ S be the state 286

at time t, and at ∈ A be the action taken by the 287

agent at time t. The current state and action deter- 288

mines the next state st+1. When the agent has an 289

explicit goal g ∈ G, this setup constitutes a Markov 290

Decision Process (MDP). If the agent only has a 291

partial observation of the state, the model becomes 292

a Partially Observable Markov Decision Process 293

(POMDP) (Kaelbling et al., 1998). In POMDP, 294

the agent receives a partial observation ot of the 295

true state st, maintains a belief bt over the possi- 296

ble states, and selects its action at based on this 297
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belief and goal. When there is high-order recursive298

reasoning between two agents (i and j), we can299

adopt an Interactive POMDP (I-POMDP) (Gmy-300

trasiewicz and Doshi, 2005), where the belief of301

state at level l > 0 for agent i will become the be-302

lief of interactive state ist = (s, bj,l−1, gj), where303

bj,l−1 is the belief of agent j at the lower level l−1304

and gj is agent j’s goal.305

For instance, given a POMDP model, we can306

conduct the following Bayesian inference to infer307

the agent’s belief bt at time t from the observed308

state st and at:309

P (bt | st, at) ∝
∑
bt−1

∑
ot

∑
g

P (at | bt, g)

· P (bt | bt−1, ot)P (ot | st)
· P (bt−1)P (g).

(5)310

3.2 Overview of AutoToM311

As shown in Figure 1, AutoToM aim to construct312

a suitable BToM model for Bayesian inverse plan-313

ning to confidently infer any target variable. There314

are several key challenges in achieving this: First,315

different ToM inference problems require differ-316

ent BToM models (as illustrated in Figure 2); our317

model does not know which is most suitable a pri-318

ori. Second, in a given context, our method must319

determine which time steps are relevant. Third,320

there is no predefined hypothesis space for each321

mental variable, and each space could be infinite.322

Last, to infer mental variables in any context, our323

method must flexibly represent them without as-324

suming specific types of representations.325

AutoToM addresses these challenges in the two326

key components: (1) automated Bayesian inverse327

planning which conducted Bayesian inverse plan-328

ning given a specified BToM model and (2) au-329

tomated model discovery which proposes and ad-330

justs the BToM model based on the question and331

the inference results. These two components form332

a self-improvement loop to iteratively update the333

BToM model and corresponding inference result as334

summarized in Algorithm 1. We discuss these two335

components in Section 3.3 and Section 3.4 respec-336

tively. More details are provided in Appendix B.337

3.3 Automated Bayesian Inverse Planning338

Given a BToM model, M , including the necessary339

latent mental variables V ts:t and the observable340

variables Xts:t, we integrate LLMs as the com-341

putational backend to implement every aspect of342

Algorithm 1 AutoToM
Require: Question Q, terminate threshold Umin

1: ▷ Automated Bayesian inverse planning
2: function BIP(M = (V ts:t, Xts:t), q)
3: Sample hypotheses for latent variables V ts:t

4: Conduct Bayesian inference via LLMs to compute
P (q |ts:t) ▷ Based on Eqn. (3) or Eqn. (4)

5: return P (q | Xts:t)
6: end function
7: ▷ Automated Model Discovery
8: Extract query q from Q
9: Extract observable variables X1:t from Q

10: ts ← t
11: while ts ≥ 1 do
12: Propose initial V ts

13: M ← (V ts:t, Xts:t)
14: P (q | Xts:t)← BIP(M, q)
15: Compute the model utility U(M, q)
16: while V ts does not contain all mental variables do
17: vtsnew = argmaxv/∈V ts U(M + v, q) ▷ Based on

results from BIP(M + v, q)
18: if U(M + vtsnew, q) > U(M, q) then
19: M ←M + vtsnew
20: P (q | Xts:t)← BIP(M, q)
21: else
22: Exit loop
23: end if
24: end while
25: if U(M, q) ≥ Umin then
26: Exit loop
27: else
28: ts ← ts − 1
29: end if
30: end while
31: Return the answer A← argmaxq P (q | Xts:t)

the Bayesian inverse planning (Line 2-6 in Algo- 343

rithm 1). In particular, the hypothesis sampling 344

module suggests a small set of possible values of la- 345

tent variables. The Bayesian inference module then 346

computes the posterior distribution of the target 347

variable in the query based on Eqn. (3) or Eqn.( 4). 348

Hypothesis Sampling. Conventional BIP as- 349

sumes a manually defined hypothesis space and 350

hypothesis representation for each latent mental 351

variable. Our hypothesis sampling module instead 352

leverages an LLM to propose only a small set of 353

quality hypotheses for each latent variable in V ts:t. 354

This is similar to amortized inference (Ritchie et al., 355

2016; Jha et al., 2024) but does not require learning 356

a data-driven proposal distribution. To ensure that 357

the sampled hypotheses are relevant to the ToM 358

inference problem, we guide the sampling process 359

with both the question and the observable variables 360

Xts:t. To remove spurious hypotheses generated 361

by the LLM, we further apply hypothesis reduction 362

to eliminate unlikely hypotheses and reduce the hy- 363

pothesis space. Unlikely hypotheses are identified 364

by evaluating the local conditionals. For instance, 365
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Final probability:
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Hypothesis Sampling

Figure 3: Illustration of automated Bayesian inverse
planning given a BToM model. We sample hypotheses
for each latent variable (ot and bt in this example), re-
move spurious hypotheses, and finally conduct Bayesian
inference based on estimated local conditionals.

we discard observation hypotheses with low likeli-366

hood conditioned on the state as shown in Figure 3.367

Bayesian Inference. As shown in Figure 3, we368

estimate each local conditional in P (V ts:t, Xts:t)369

using an LLM. After marginalizing the joint dis-370

tribution over non-target latent variables, we then371

produce the posterior probabilities of the target vari-372

able, i.e., Eqn. (3). This also applies to predicting373

a future observable variable, i.e., Eqn. (4).374

Our automated Bayesian inverse planning375

greatly generalizes prior methods that combine BIP376

and LLMs, such as BIP-ALM (Jin et al., 2024) and377

LIMP (Shi et al., 2024). Specifically, prior methods378

assume a fixed model structure for a few specific379

ToM inference problems. They also cannot pro-380

pose hypotheses for non-target latent variables. In381

contrast, AutoToM can conduct any ToM inference382

based on any BToM model structure and consider383

multiple non-target latent variables simultaneously.384

Additionally, unlike prior methods, our Bayesian385

inference can work with arbitrary levels of recur-386

sive for high-order ToM inference.387

3.4 Automated Model Discovery388

Prior works on Bayesian inverse planning rely on389

manually designed BToM models, which limits390

their applicability to domain-specific scenarios. In391

contrast, the Automated Model Discovery compo-392

nent automatically proposes a model and dynami-393

cally adjusts it to ensure both the effectiveness of394

the model—confidently inferring agents’ mental395

states—and the efficiency of the inference by min-396

imizing model complexity. To achieve this, we397

formulate the utility of a model M = (V ts:t, Xts:t)398

used for answering a given query q as 399

U(M, q) = R(M, q)− C(M), (6) 400

where R(M, q) assesses the model’s confidence 401

in answering the query, and C(M) is its computa- 402

tional cost. In this work, the reward is defined as 403

R(M, q) = −H(P (q|Xts:t)), where P (q|Xts:t) 404

is the probability distribution of the target variable 405

based on Eqn. (3) or Eqn. (4), and H(·) is its en- 406

tropy. This is designed to decrease the uncertainty 407

in the inference. To minimize the compute needed 408

for the inference, we define the cost of the model 409

as C(M) = α|M |, where |M | denotes the model’s 410

complexity, measured by the number of latent men- 411

tal variables, and α > 0 is a weighting factor. The 412

cost increases with complexity, encouraging parsi- 413

monious models with lower compute. 414

There are three modules for Automated Model 415

Discovery: 416

Information Extraction. The information ex- 417

traction module (Line 9 in Algorithm 1) processes 418

the context to identify the values of observable 419

variables X1:t, including states (st), actions (at), 420

and utterances (ut), organized along a timeline (the 421

number of timesteps is determined by the number 422

of actions and utterances). When there are mul- 423

tiple agents, we identify whose mental state the 424

question is asking about (i.e., the target agent), and 425

then construct the timesteps based on the target 426

agent’s actions and/or utterances. The extraction is 427

performed once using an LLM and used for model 428

proposal and Bayesian inverse planning. 429

Initial Model Proposal. We employ an LLM to 430

propose an initial BToM model based on X1:t and 431

the query (Line 12-15 in Algorithm 1). This initial 432

model represents a minimal model, containing only 433

the essential mental variables needed to answer the 434

question. This initial proposal also includes assess- 435

ing the level of recursive reasoning necessary for 436

higher-order ToM inference. Note that we always 437

begin with only considering the last timestep in 438

context, i.e., ts = t. Following this model, we 439

conduct automated Bayesian inverse planning, as 440

described in Section 3.3. If the model utility ex- 441

ceeds a threshold Umin, we accept the inference 442

result as the final answer. Otherwise, we use the 443

model utility to guide model adjustments. 444

Model Adjustment. We iteratively adjust the 445

proposed model to maximize the utility (Line 11-30 446

in Algorithm 1) by considering two types of model 447

adjustments: variable adjustment (Figure 4A) and 448

timestep adjustment (Figure 4B): 449
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Figure 4: Given any ToM inference problem, we auto-
matically refine the BToM model by alternating between
(A) variable adjustment (introducing belief in this ex-
ample) and (B) timestep adjustment.

Variable Adjustment. We refine the model struc-450

ture at a specific timestep by iteratively introducing451

new, relevant latent variables into the model to ad-452

dress uncertainty in the inference. These variables453

include goal, belief, observation, and interactive454

state as summarized in Table 10 in Appendix B.455

This follows the typical causal structures intro-456

duced in prior decision-making models (e.g., Kael-457

bling et al., 1998; Baker et al., 2017; Ullman et al.,458

2009; Gmytrasiewicz and Doshi, 2005). Such re-459

stricted variable adjustment helps reduce the model460

space and ensures the proposed models can explain461

human behavior. For each adjustment, we compute462

the updated model utility and accept the modifica-463

tion that offers the biggest increase in utility. This464

iterative process continues until no further signif-465

icant improvements are possible. Note that our466

method can still propose diverse models beyond467

standard MDP, POMDP, and I-POMDP even with468

this restricted model adjustment. Appendix B.5469

provides more details on the model space.470

Timestep Adjustment. If model utility re-471

mains low and no significant improvement can be472

achieved via variable adjustment within the current473

timesteps ts : t, we incorporate an additional step,474

ts − 1, to enhance context for inference. Upon475

adding a timestep, we first apply the initial model476

structure and then adjust variables accordingly.477

We iterate the variable and timestep adjustments,478

as outlined in Algorithm 1, until either the model479

utility exceeds the desired threshold or no further480

meaningful improvement is possible.481

4 Experiments482

4.1 Experimental Settings483

We evaluated our method on multiple Theory of484

Mind benchmarks, including ToMi (Le et al., 2019),485

BigToM (Gandhi et al., 2024), MMToM-QA (Jin486

et al., 2024), MuMA-ToM (Shi et al., 2024), and 487

Hi-ToM (He et al., 2023). The diversity and com- 488

plexity of these benchmarks pose significant rea- 489

soning challenges. For instance, MMToM-QA 490

and MuMA-ToM incorporate both visual and tex- 491

tual input, while MuMA-ToM and Hi-ToM require 492

higher-order inference. Additionally, MMToM-QA 493

features exceptionally long contexts, and BigToM 494

presents open-ended scenarios. 495

Besides the full AutoToM method, we addition- 496

ally evaluated AutoToM given manually specified 497

models (AutoToM w/ Model Spec.). 498

We compared AutoToM against state-of-the-art 499

baselines: 500

LLMs: Llama 3.1 70B (Dubey et al., 2024), 501

Gemini 2.0 Flash, Gemini 2.0 Pro (Team et al., 502

2023) and GPT-4o (Achiam et al., 2023); 503

ToM prompting for LLMs: SymbolicToM 504

(Sclar et al., 2023), SimToM (Wilf et al., 2023), 505

TimeToM (Hou et al., 2024), and PercepToM (Jung 506

et al., 2024); 507

Model-based inference: BIP-ALM (Jin et al., 508

2024) and LIMP (Shi et al., 2024). 509

For multimodal benchmarks, MMToM-QA and 510

MuMA-ToM, we adopt the information fusion 511

methods proposed by Jin et al. (2024) and Shi et al. 512

(2024) to fuse information from visual and text in- 513

puts respectively. The fused information is in text 514

form. We ensure that all methods use the same 515

fused information as their input. 516

We use GPT-4o as the LLM backend for Au- 517

toToM and all ToM prompting and model-based 518

inference baselines to ensure a fair compari- 519

son—except for TimeToM, which relies on GPT-4 520

and is not open-sourced. 521

4.2 Results 522

The main results are summarized in Table 1. Un- 523

like AutoToM , many recent ToM baselines can 524

only be applied to specific benchmarks. Among 525

general methods, AutoToM achieves state-of-the- 526

art results across all benchmarks. In particular, it 527

outperforms its LLM backend, GPT-4o, by a large 528

margin. This is because Bayesian inverse planning 529

is more robust for inferring mental states given long 530

contexts with complex environments and agent be- 531

havior. It is also more adept at recursive reasoning 532

which is key to higher-order inference. Notably, 533

AutoToM performs comparably to manually speci- 534

fied models, showing that automatic model discov- 535

ery without domain knowledge is as effective as 536

human-provided models. We provide additional 537
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Method Type ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

SymbolicToM Specific 98.60 - - - - -
TimeToM Specific 87.80 - - - - -
PercepToM Specific 82.90 - - - - -
BIP-ALM Specific - - 76.70 33.90 - -
LIMP Specific - - - 76.60 - -
AutoToM w/ Model Spec. Specific 88.80 86.75 79.83 84.00 74.00 82.68

Llama 3.1 70B General 72.00 77.83 43.83 55.78 35.00 47.41
Gemini 2.0 Flash General 66.70 82.00 48.00 55.33 52.50 60.91
Gemini 2.0 Pro General 71.90 86.33 50.84 62.22 57.50 65.76
GPT-4o General 77.00 82.42 44.00 63.55 50.00 63.39
SimToM General 79.90 77.50 51.00 47.63 71.00 65.41
AutoToM General 88.30 86.92 75.50 81.44 72.50 80.93

Table 1: Results of AutoToM and baselines on all benchmarks. There are two groups of methods: methods that
require domain-specific knowledge (e.g., AutoToM w/ Model Spec.) or implementations (e.g., SymbolicToM) and
methods that can be generally applied to any domain. “-” indicates that the domain-specific method is not applicable
to the benchmark. The best results for each method type are highlighted in bold.
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Figure 5: Averaged performance and compute of the
full AutoToM method (star) and the ablated methods
(circles) on all benchmarks.

results and qualitative examples in Appendix A.538

4.3 Ablated Study539

We evaluated the following variants of AutoToM540

for an ablation study: no hypothesis reduction541

(w/o hypo. reduction); always using POMDP542

(w/ POMDP); always using the initial model pro-543

posal without variable adjustment (w/o variable544

adj.); only considering the last timestep (w/ last545

timestep); and considering all timesteps without546

timestep adjustment (w/ all timesteps).547

The results in Figure 5 show that the full Auto-548

ToM method constructs a suitable BToM model,549

enabling rich ToM inferences while reducing com-550

pute. We analyze key model components below:551

Hypothesis reduction. Compared to the full552

method, AutoToM w/o hypo. reduction has a simi-553

lar accuracy but consumes 53% more tokens on av-554

erage, demonstrating that hypothesis reduction op-555

timizes efficiency without sacrificing performance.556

Variable adjustment. AutoToM dynamically557

identifies relevant variables for ToM inference, gen-558

eralizing domain-specific BIP approaches to open-559

ended scenarios. Compared to its variant without 560

variable adjustment, AutoToM improves perfor- 561

mance with minimal additional compute. The vari- 562

ant that always uses POMDP performs well in sce- 563

narios aligned with the POMDP assumption (e.g., 564

MMToM-QA) but generalizes poorly elsewhere 565

and incurs much higher computational costs. 566

Timestep adjustment. By selecting relevant 567

steps for inference, timestep adjustment enhances 568

performance by focusing on essential information. 569

In contrast, the variant using only the last timestep 570

misses crucial details, significantly lowering perfor- 571

mance. The variant incorporating all timesteps suf- 572

fers from higher computational costs and reduced 573

accuracy due to conditioning on unnecessary, po- 574

tentially distracting information. 575

Full ablation results are provided in Ap- 576

pendix A.3. 577

5 Conclusion 578

We have proposed AutoToM , a novel framework 579

for open-ended Theory of Mind. Given any ToM 580

inference problem, AutoToM can automatically 581

construct a suitable BToM model and conduct au- 582

tomated Bayesian inverse planning with an LLM 583

backend. Our experimental results demonstrated 584

that AutoToM can answer different Theory of Mind 585

questions in diverse scenarios, significantly outper- 586

forming baselines. AutoToM suggests a promising 587

direction toward cognitively grounded Theory of 588

Mind modeling that is scalable, robust, and open- 589

ended. In the future, we intend to further improve 590

the robustness of AutoToM while reducing its in- 591

ference cost by exploring the possibility of implicit 592

model proposal and Bayesian inference. 593
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Limitations594

AutoToM still makes mistakes in several aspects595

of the inference and model discovery. First, it596

sometimes proposes hypotheses unrelated to the597

ToM inference problem, particularly in questions598

where the definitions of certain mental variables599

are more ambiguous. Second, the LLM backend600

may also produce inaccurate likelihood estimation601

when there are multiple similar hypotheses for a602

latent variable. Last, model adjustment may fail603

to recognize the relevance of certain mental vari-604

ables, resulting in an insufficient model. In addi-605

tion, while AutoToM can balance accuracy and606

cost to a certain degree, it still requires multiple607

API calls. For applications with a strict computa-608

tional budget, there is a need for further reducing609

the cost.610

Ethics Statement611

Engineering machine Theory of Mind is an impor-612

tant step toward building socially intelligent AI613

systems that can safely and productively interact614

with humans in the real world. Our work provides a615

novel framework for achieving open-ended and reli-616

able machine Theory of Mind, which may serve as617

a component of any AI systems designed to interact618

with humans. The explicit BToM model discovered619

by AutoToM offers an interpretable explanation of620

the model results, enabling human users to exam-621

ine and diagnose the model inference. While we do622

not foresee any negative impact or risk of our work,623

we acknowledge the importance of robust and trust-624

worthy machine Theory of Mind. Interpretable625

and cognitively grounded machine Theory of Mind626

methods such as AutoToM may help mitigate the627

negative effects of LLMs, including hallucinations628

and biases. Additionally, current Theory of Mind629

benchmarks are typically constructed using proce-630

durally generated stories and questions. There is631

a need to carefully examine the potential biases in632

these benchmarks, to ensure that the models evalu-633

ated on these benchmarks are fair and unbiased.634
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A More Results848

A.1 Qualitative Results849

Among general methods, AutoToM achieves state-850

of-the-art results across all benchmarks. We pro-851

vide two qualitative examples to illustrate the effect852

of variable adjustment (example 1) and timestep853

adjustment (example 2). These examples also854

demonstrate the interpretability of AutoToM , as855

the constructed model offers us insights into how856

the method is modeling the agent behavior for the 857

inference. 858

Example 1: BigToM (Backward Belief Infer- 859

ence) 860

Story: Kavya is a florist in a vibrant Indian
market. Kavya wants to create a beautiful
bouquet of fresh roses for a customer’s
anniversary celebration. Kavya sees a
batch of roses in her shop that appear to
be fresh and vibrant. Unbeknownst to
her a mischievous monkey sneaks into
the shop and nibbles on the rose petals
leaving them damaged and unsuitable
for the bouquet. Kavya starts arranging
the bouquet using the roses she initially saw.

Question: Does Kavya believe the roses
are fresh and perfect for the bouquet or
damaged by the monkey?
(a) Kavya believes the roses are fresh and
perfect for the bouquet. (Correct Answer)
(b) Kavya believes the roses are damaged
by the monkey.

861

Variables in the Initial Model Proposal: State, 862

Observation, Belief 863

Since the scenario involves only one timestep, a 864

single model suffices. In the initial model, the state 865

of the world indicates that the flowers are damaged 866

after the monkey nibbles on them. However, it 867

remains unclear whether Kavya observes the true 868

condition of the flowers. The model lacks crucial 869

information about Kavya’s actions, which are 870

observable and influenced by her beliefs about 871

the flowers’ state. These actions can help infer 872

her true belief. Initially, the probability that 873

Kavya believes the flowers are fresh is moderate, 874

P (Kavya believes the roses are fresh and perfect 875

for the bouquet|X1) = 0.50. Without variable 876

adjustment, the model cannot answer the question. 877

Variables in the Adjusted Model: State, Ob- 878

servation, Belief, Action, Goal 879

For the initial model, the reward is 880

R(M, q) = −H(P (q|Xts:t)) = −0.693 and 881

the model cost is C(M) = α|M | = 0.04, result- 882

ing in a utility U(M, q) = −0.733, which does 883

not exceed the utility threshold Umin = −0.693. 884

To address the insufficiency of the initial model’s 885

utility relative to our termination threshold, we 886

propose an enhanced model incorporating state, 887

11



observation, belief, action, and goal. In this revised888

model, Kavya’s actions—specifically arranging the889

bouquet using the roses—align with her goal of890

creating a beautiful bouquet. These observations891

allow us to infer with high probability that Kavya892

believes the roses are fresh and suitable for the893

bouquet, increasing the belief probability to894

P (Kavya believes the roses are fresh and perfect895

for the bouquet|X1) = 0.97. With this re-896

vised model, the reward is R(M, q) =897

−H(P (q|Xts:t)) = −0.135 and the model898

cost is C(M) = α|M | = 0.06, resulting in a899

utility U(M, q) = −0.195, which exceeds our900

utility threshold Umin = −0.693. Based on901

the adjusted model, AutoToM can confidently902

determine the correct answer: (a) Kavya believes903

the roses are fresh and perfect for the bouquet.904

905

Example 2: MMToM-QA (Belief Inference)906

Video input:

What’s inside the apartment: The
apartment consists of a bedroom, kitchen,
living room, and bathroom. In the bedroom,
there is a coffee table and a desk. The
kitchen is equipped with four cabinets, a
fridge, a kitchen table, a microwave, and
a stove. The 3rd kitchen cabinet from the
left houses a water glass and a dish bowl.
Inside the fridge, there are two apples, a
salmon, a plate, and a dish bowl. The 2nd
kitchen cabinet from the left contains a
water glass, a chips, a condiment bottle,
and a dish bowl. The 1st kitchen cabinet
from the left holds a wineglass, a wine,
and a condiment bottle. The microwave
contains a salmon, and there is a cupcake
in the stove. The 4th kitchen cabinet
from the left has a plate. The living room
features a cabinet, a sofa, a coffee table,
and a desk. Inside the cabinet, there are
two apples and four books. A plate and
a remote control are placed on the coffee
table. The bathroom is furnished with a
bathroom cabinet, which is currently empty.

907

Actions taken by Mark: Mark is situated
in the bathroom. He proceeds towards the
kitchen, making his way to the stove. He
opens and then closes the stove. Subse-
quently, he strides towards the 4th kitchen
cabinet, opens it, and then shuts it. He then
moves to the 2nd kitchen cabinet, opens
and closes it, before doing the same with
the 3rd kitchen cabinet. Finally, he heads
towards the 1st kitchen cabinet, opens
and closes it, and is about to open the
microwave.

Question: If Mark has been trying to get
a salmon, which one of the following state-
ments is more likely to be true?
(a) Mark thinks that the salmon is not inside
the microwave.
(b) Mark thinks that the salmon is inside the
microwave. (Correct Answer)

908

In this problem, we first fuse the information 909

from text and video following Jin et al. (2024). The 910

fused information is structured into 23 timesteps, 911

each corresponding to an action of Mark at the 912

time. We then propose the initial model: State, 913

Observation, Belief, Action, Goal. 914

Without timestep adjustment. Bayesian in- 915

ference must be performed sequentially from the 916

first timestep, even though most actions do not con- 917

tribute to answering the final question. The model 918

will compute across all timesteps, while the most 919

informative action is actually the last one: if Mark 920

wants to get a salmon but does not believe there is 921

one inside the microwave, he will not open it. 922

With timestep adjustment. We begin inference 923

from the last timestep, where the action likelihood 924

P (a|b, g) is low when b = Mark thinks that the 925

salmon is not inside the microwave, and high when 926

b = Mark thinks that the salmon is inside the mi- 927

crowave. After performing inference at the last 928

timestep, the belief probabilities corresponding to 929

the choices are 0.998 and 0.002. The reward is 930

given by R(M, q) = −H(P (q|Xts:t)) = −0.014, 931

while the model cost is C(M) = α|M | = 0.06. 932

This results in a utility of U(M, q) = −0.074, 933

which exceeds the threshold Umin = −0.693, al- 934

lowing our model to determine the final answer 935

without considering earlier timesteps. 936
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Figure 6: Comparison of accuracy between AutoToM
and GPT-4o on the HiToM dataset across different rea-
soning orders. Order 0 refers to questions about an
object’s actual location; order 1 questions are about
an agent’s belief about an object’s location; order 2
involves questions about an agent’s belief regarding an-
other agent’s belief, and so forth.

A.2 Results for Higher Order Inference937

Higher-order Theory of Mind (ToM) involves re-938

cursive reasoning about others’ mental states across939

multiple levels. The Hi-ToM benchmark (He et al.,940

2023) includes questions ranging from Order 0,941

which involves no agents and asks about the actual942

location of objects, up to Order 4, which requires re-943

cursive reasoning among four agents. Figure 6 com-944

pares the performance of GPT-4o and AutoToM945

across these different question orders. While GPT-946

4o experiences a significant decline in accuracy947

as the ToM order increases, AutoToM maintains948

a smaller performance drop and achieves substan-949

tially higher accuracy on higher-order questions.950

This demonstrates that our model-based approach951

is more robust and scalable, effectively handling952

complex scenarios involving multiple agents and953

various levels of recursive reasoning.954

A.3 Full Results of the Ablation Study955

Table 2 shows the performance of ablated meth-956

ods compared to the full AutoToM method on all957

benchmarks.958

In Table 3 and 4, we compare the ablated meth-959

ods and the full model on the averaged number of960

tokens per question (in thousands) and the averaged961

number of API calls at inference per question.962

A.4 Per-type Accuracy on All Benchmarks963

In Tables 5 - 9, we present the results of AutoToM964

and baselines on each question type of all bench-965

marks. Here we compare general methods that can 966

be applied to all benchmarks. 967

B AutoToM Implementation Details 968

B.1 Variable Adjustments 969

Table 10 summarizes possible variable adjustments 970

at each timestep. 971

B.2 Automated Bayesian Inverse Planning 972

Hypothesis Sampling. At each timestep, hypothe- 973

ses for the latent variables are generated using a 974

Large Language Model (LLM) as the backend, 975

guided by the observed variables. Specifically, 976

when the state is not explicitly provided, the LLM 977

acts as a world model, tracking state changes in 978

the story based on the previous state and current 979

actions. For an agent’s observation, the LLM is 980

prompted to adopt the perspective of a character, 981

simulating what that character might see, know, 982

or hear in the given environment (e.g., inside a 983

closed room). If no new observation is available 984

at a specific timestep, we neither generate new ob- 985

servations nor update the belief. Additionally, the 986

LLM proposes plausible hypotheses for the agent’s 987

belief and goal based on the available information. 988

Hypothesis reduction. We examine all local 989

conditional probabilities involving a single uncer- 990

tain variable with multiple hypotheses and elim- 991

inate those hypotheses that result in significantly 992

low likelihood values. For example, in P (ot | st), 993

where st represents a determined state, any observa- 994

tion hypothesis that yields a low likelihood for this 995

term is discarded. This approach reduces the com- 996

putational cost of estimating P (bt | ot, bt−1). Sim- 997

ilarly, the same principle is applied to P (at | bt, gt) 998

and P (ut | bt, gt), where unlikely belief hypothe- 999

ses are removed to further reduce computational 1000

complexity. 1001

B.3 Automated Model Discovery 1002

When exploring different models during the model 1003

discovery, AutoToM can reuse the hypothesis pro- 1004

posals of variables and local conditionals from pre- 1005

viously computed models to avoid repeated com- 1006

putation. 1007

We configure the hyperparameters in Automated 1008

Model Discovery as follows: α = 0.02, Umin = 1009

−0.693. 1010

13



Method ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

w/o hypo. reduction 87.60 86.17 75.83 81.67 69.50 80.15
w/ POMDP 76.00 86.50 79.83 50.78 67.00 72.02

w/o variable adj. 85.80 78.25 76.17 77.89 66.50 76.92
w/ last timestep 68.40 77.83 74.33 78.33 44.50 68.68
w/ all timesteps 86.00 79.09 76.50 79.33 69.00 77.98

AutoToM 88.30 86.92 75.50 81.44 72.50 80.93

Table 2: Results of ablated methods compared to the full AutoToM method.

Method ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

w/o hypo. reduction 15.8 6.8 19.2 24.4 20.4 17.3
w/ POMDP 14.9 5.5 15.6 20.0 18.8 15.0

w/o variable adj. 8.5 6.1 16.4 14.0 10.0 11.0
w/ last timestep 7.8 6.1 6.4 11.6 4.0 7.2
w/ all timesteps 14.2 7.7 57.2 16.4 12.4 21.6

AutoToM 9.8 6.5 14.4 13.6 12.0 11.3

Table 3: Comparison of ablated models and the full model on the averaged number of tokens per question (in
thousands). Lower is better.

Method ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

w/o hypo. reduction 38.91 13.99 45.97 70.73 72.58 48.44
w/ POMDP 36.25 8.32 41.18 42.10 51.73 35.92

w/o variable adj. 22.91 12.99 35.46 35.76 29.81 27.39
w/ last timestep 21.60 12.76 12.75 28.39 9.39 16.98
w/ all timesteps 39.83 15.95 116.81 43.25 36.27 50.42

AutoToM 32.23 13.81 31.36 35.08 36.45 29.79

Table 4: Comparison of ablated models and the full model on the averaged number of API calls at inference per
question. Lower is better.

Question Type First order Second order Reality Memory All

Llama 3.1 70B 73.75 56.25 100.00 100.00 72.00
Gemini 2.0 Flash 58.50 58.25 100.00 100.00 66.70
Gemini 2.0 Pro 75.00 54.75 100.00 100.00 71.90

GPT-4o 80.25 62.25 100.00 100.00 77.00
SimToM 84.75 65.00 100.00 100.00 79.90
AutoToM 95.00 77.50 93.00 100.00 88.30

Table 5: Detailed accuracy for ToMi.

Question Type Forward TB Forward FB Backward TB Backward FB All

Llama 3.1 70B 93.75 81.00 57.00 60.50 77.83
Gemini 2.0 Flash 94.25 87.50 77.50 51.00 82.00
Gemini 2.0 Pro 96.00 93.75 70.00 68.50 86.33

GPT-4o 96.00 88.50 63.50 62.00 82.42
SimToM 92.50 90.00 25.00 75.00 77.50
AutoToM 91.25 93.75 73.00 78.50 86.92

Table 6: Detailed accuracy for BigToM.

B.4 Recursive Reasoning1011

Interactive Partially Observable Markov Decision1012

Process (I-POMDP) extends POMDP to multi-1013

agent settings by introducing the concept of in-1014

teractive states, which include agent models into1015

the state space to capture the recursive reasoning 1016

process (Gmytrasiewicz and Doshi, 2005). We de- 1017

note isi,l as the interactive state of agent i at level l. 1018

For two agents i and j, where agent i is interacting 1019

with agent j, the interactive states at each level are 1020
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Question Type Belief Goal All

Llama 3.1 70B 51.33 36.33 43.83
Gemini 2.0 Flash 62.67 33.33 48.00
Gemini 2.0 Pro 57.00 44.67 50.84

GPT-4o 55.67 32.33 44.00
SimToM 75.67 26.33 51.00
AutoToM 88.67 62.33 75.50

Table 7: Detailed accuracy for MMToM-QA.

Question Type Belief Goal Belief of Goal All

Llama 3.1 70B 68.67 51.33 47.33 55.78
Gemini 2.0 Flash 68.33 50.67 47.00 55.33
Gemini 2.0 Pro 63.00 66.67 57.00 62.22

GPT-4o 85.33 57.00 48.33 63.55
SimToM 54.60 43.50 44.80 47.63
AutoToM 88.33 77.00 79.00 81.44

Table 8: Detailed accuracy for MuMA-ToM.

Question Type Order 0 Order 1 Order 2 Order 3 Order 4 All

Llama 3.1 70B 65.00 47.50 22.50 20.00 20.00 35.00
Gemini 2.0 Flash 95.00 70.00 50.00 27.50 20.00 52.50
Gemini 2.0 Pro 100.00 62.50 50.00 37.50 37.50 57.50

GPT-4o 92.50 65.00 40.00 27.50 25.00 50.00
SimToM 100 77.50 60.00 60.00 57.50 71.00
AutoToM 95.00 75.00 70.00 67.50 55.00 72.50

Table 9: Detailed accuracy for HiToM.

New Var. Before After

Goal

P (at | st) P (at | st, g)P (g)
P (at | bt) P (at | bt, g)P (g)
P (at) P (at | st, g)P (g)
P (at) P (at | bt, g)P (g)

Belief
P (at | st) P (at | bt)P (bt | st, bt−1)
P (at | st, g) P (at | bt, g)P (bt | st, bt−1)

Observ. P (bt | st, bt−1) P (bt | ot, bt−1)P (ot | st)

Int. State b(st) b(ist)

Table 10: Potential variable adjustments, including in-
troducing goal, belief, observation, and interactive state
(for high-order ToM). We show the corresponding local
conditionals before and after introducing the new vari-
ables.

defined as:1021

• Level 0: isi,1 = s1022

• Level 1: isi,1 = (s, bj,0, gj) where bj,0 is a1023

distribution over j’s interactive state at level1024

0, isj,01025

• ...1026

The framework provides a generative model for1027

agents: given agent i’s belief of interactive state1028

b(isi,l), its action policy will be π(ai|isi,l, gi), and 1029

its utterance policy will be π(ui|isi,l, gi). 1030

In our implementation, we sample one possible 1031

state based on b(s) at level l to approximate the 1032

state at level l − 1 as imagined by the agent at 1033

level l. We can recursively apply this process until 1034

reaching level 0. Based on the state sampled for 1035

level 0, we can then conduct the typical automated 1036

BIP based on the model structure at that level. This 1037

approach can be conveniently applied to arbitrary 1038

levels of recursive reasoning, allowing us to answer 1039

higher-order Theory of Mind questions using the 1040

same method. 1041

B.5 BToM Model Space 1042

To apply Bayesian Inverse Planning (BIP) across 1043

various scenarios, we define the mental variables 1044

and their causal relationships with agent behavior 1045

using a family of Bayesian Theory of Mind (BToM) 1046

models. These models accommodate different lev- 1047

els of complexity in how agents behave and reason 1048

about their environment. 1049

At each timestep t, the observable variables are
represented by:

Xt = {xti}i∈NX
, where NX = {st, at, ut}
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Here, the state st always appear in Xt, while either1050

at (action) or ut (utterance) is included at timestep1051

t, depending on whether physical motion or verbal1052

communication is presented. In some cases, at is1053

only used to update the state and does not affect1054

the inference of beliefs or goals, while in other sce-1055

narios it can be crucial for inferring hidden mental1056

states (e.g., an agent’s belief or goal).1057

The latent variables are denoted by

V t = {vti}i∈NV
, where NV = {ot, bt, gt}

Here, the observation ot is only included when1058

the agent’s belief bt is part of the model, as it up-1059

dates bt. The goal gt is included only if it influ-1060

ences action and is relevant to inference. In cases1061

of higher-order recursive reasoning among multi-1062

ple agents, the belief over the state bt(st) extends1063

to belief over an interactive state bt(ist).1064

Combining these choices at each timestep yields1065

a model space with 30 possible configurations:1066

• Action/Utterance: which one is included (21067

options).1068

• Belief/Observation: no belief, belief of state,1069

belief of interactive state, belief of state, or1070

belief of interactive state + observation (5 op-1071

tions).1072

• Action(Utterance)/Goal: no goal (ac-1073

tion(utterance) irrelevant), action(utterance)1074

only, or action(utterance) + goal (3 options).1075

Over a time interval from ts to t, this scales to1076

30t−ts+1 possible models.1077

Examples. In addition to the Markov Decision1078

Process (MDP), Partially Observable Markov De-1079

cision Process (POMDP), and Interactive POMDP1080

(I-POMDP) models introduced in Section 3.1, we1081

present additional examples of models from the1082

BToM model space:1083

• Observation Update Model: Used in the ToMi1084

benchmark (see Figure 2), this model focuses1085

on how observations update beliefs. Actions1086

are present but only serve to update states1087

and are irrelevant to the inference questions.1088

This model is well-suited for passive scenarios1089

where the focus is on understanding how hid-1090

den states produce observable evidence and1091

how the agent updates its beliefs about the1092

world.1093

• POMDP Variant without Goal: A partially ob-1094

servable scenario in which goals are trivial or1095

irrelevant. This variant emphasizes how par- 1096

tial observability affects belief formation and 1097

action selection, without explicit goal-driven 1098

behavior. 1099

C Baseline Implementation Details 1100

For the baselines, we use gpt-4o-2024-08-06 1101

for GPT-4o, meta-llama/Llama-3.1-70B-Inst- 1102

ruct from Hugging Face for Llama 3.1 70B, 1103

gemini-2.0-flash for Gemini 2.0 Flash, and 1104

gemini-2.0-pro-exp-02-05 for Gemini 2.0 Pro. 1105

Among the ToM prompting for LLM benchmarks 1106

previously tested on the BigToM dataset, e.g., 1107

TimeToM and SimToM, they only tested the sub- 1108

set of the entire dataset with questions for forward 1109

action and forward belief and did not test on back- 1110

ward belief questions. With the available SimToM 1111

code, we tested it on the full BigToM dataset with 1112

GPT-4o, while TimeToM does not have its code 1113

available. 1114

SymbolicToM maps out the agents’ beliefs 1115

throughout stories of different levels of reasoning 1116

via symbolic graphs. However, the construction of 1117

these graphs is specifically designed for the ToMi 1118

dataset, where there are fixed actions and sentence 1119

formats in the story. Thus it is difficult to general- 1120

ize to more open-ended scenarios (e.g., BigToM) or 1121

stories with multiple agents acting simultaneously 1122

(e.g., Hi-ToM). Therefore, we can only evaluate 1123

SymbolicToM on ToMi (tested with GPT-4o on the 1124

full dataset), for which it was designed. 1125

TimeToM is not open-source. We rely on its 1126

self-reported accuracy on ToMi. However, since 1127

it was only evaluated on a subset of BigToM with 1128

forward inference questions, its accuracy on the full 1129

BigToM benchmark remains unknown. Similarly, 1130

PercepToM is not open-source, and we rely on its 1131

self-reported accuracy on ToMi. 1132

BIP-ALM and LIMP are both models that com- 1133

bine BIP and LLMs to solve ToM problems. BIP- 1134

ALM manually defines symbolic representations 1135

of observable and latent variables and assumes 1136

POMDP. LIMP is designed to only solve two-level 1137

reasoning problems. It uses natural language to 1138

represent variables. Both methods assume that the 1139

goals are about finding an object and the beliefs are 1140

about the locations of that object in a household 1141

environment. 1142
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Benchmark Agent num-
ber

Tested concepts Size Modality Communication Generation Evaluation

ToMi (Le et al.,
2019)

Multi
agents

First & Second Or-
der belief, Reality,
Memory

1000 Text No Templates Multiple choice
Q&A

BigToM
(Gandhi et al.,
2024)

Single
agent

Belief, Action 1200 Text No Procedural gen-
eration

Question an-
swering

MMTOM-QA
(Jin et al.,
2024)

Single
agent

Belief & Goal 600 Text &
Video

No Procedural gen-
eration

Multiple choice
Q&A

MuMA-ToM
(Shi et al.,
2024)

Multi
agents

Belief, social goal
and belief of other’s
goal

900 Text &
Video

Yes Procedural gen-
eration

Multiple choice
Q&A

Hi-ToM (He
et al., 2023)

Multi
agents

High-order beliefs 200 Text Yes Procedural Gen-
eration

Multiple choice
Q&A

Table 11: Summary of the ToM benchmarks used in the experiments.

D Benchmark Details1143

In our evaluation, we test AutoToM on BigToM1144

(Gandhi et al., 2024), MMToM-QA (Jin et al.,1145

2024), MuMA-ToM (Shi et al., 2024), ToMi (Le1146

et al., 2019) and Hi-ToM (He et al., 2023). For1147

ToMi, we use the ToMi dataset that has disam-1148

biguated container locations in the story and cor-1149

rectly labeled order of reasoning (Arodi and Che-1150

ung, 2021; Sap et al., 2022). For Hi-ToM, we1151

choose the length 1 subset consisting of 200 ques-1152

tions across all orders (0-4) due to the high cost of1153

testing the full dataset.1154

Table 11 summarizes the benchmarks used to1155

evaluate AutoToM against baselines, detailing key1156

features such as test concepts, input modalities,1157

and the number of agents. The results demonstrate1158

that AutoToM operates across diverse contexts, in-1159

fers any mental state, reasons about any number of1160

agents, and supports any level of recursive reason-1161

ing.1162

E Prompts used in AutoToM1163

E.1 Information Extraction1164

We use the following prompts to extract informa-1165

tion for each variable in a given question.1166

Identifying the main agent

Find the name of the character that we need
to infer about in the question and choices.
Only output the name. Do not answer the
question.

Question: [Question]
1167

Choices: [Choices]
Character name:

1168

Identifying all the agents

Extract the names of all the characters from
the story and question. Provide only the
names or roles, without any additional in-
formation. Do not answer the question.
Your response should be a list containing
the names, like [“name1”, “name2”].

Story: [Story]
Response:

1169

Identifying the mental variable to be in-
ferred

Choose the variable that best summarizes
the information about the differences
that the choices contain. Only output the
variable.

Variables include: [Variables]
Choices: [Choices]
Variable:

1170

Identifying extra information in the ques-
tion

If there is any assumed information in the
question given (a conditional clause starting
with specific words like “if” is contained),
rewrite it as a declarative sentence. Do not
include any questions in the extra informa-

1171
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tion. Do not make up details for the infor-
mation. Use the original wording.
Otherwise, output “NONE”.

Question: [Question]
Extra Information:

1172

Extracting actions of the main agent

Extract the actions of [Inferred_agent] in
the story verbatim without changing any of
the original words, pluralizing the words,
adding in [Inferred_agent] or any other
name, replacing any of the words, re-
placing pronouns with names or replac-
ing any names with pronouns. Actions
of [Inferred_agent] are defined as events
that will change the world state, e.g., [In-
ferred_agent] moving to a new location is
an action but [Inferred_agent] being at a lo-
cation is not an action. If [Inferred_agent]
says something, the whole sentence (with
“replied”, “said”) is seen as an action.
Do not change the names of any of the
agents, if there is not a name and only a
pronoun then just leave the pronoun. There
can be more than one agent or more than
just the inferred agent.
If there are multiple actions in a sentence
then they should be extracted as one single
action, without changing any of the original
words, such as pluralizing the words, replac-
ing any of the words, replacing pronouns
with names, or replacing any names with
pronouns, and do not add any words.
Do not insert actions, pronouns, or other
words that are not explicitly stated in the
text. Do not separate the objects in the same
action.
Do not add any pronouns. Keep the com-
mas, if any.
Only actions that have already occurred at
the time can be considered clearly stated.
Again, only extract actions performed by
[Inferred_agent].
The output format should be: [“aaa.”,
“bbb.”, ...]. Output only this list.

Story: [Story]
Extraction:

1173

Extracting actions

Determine if [Character]’s action(s) is
clearly stated in the story.
The action(s) cannot be the character’s inner
thoughts.
Only actions of [Character] that have al-
ready occurred, or are currently taking place
can be considered clearly stated.
If it’s more like [Character]’s desire or goal,
it does not count as an action. [Character]’s
utterance is considered as an action (include
the verb like “said” or “replied” in the evi-
dence sentence, if any). Do not change any
of the original wording.
Answer in the form of a list. The first el-
ement of the list contains the option A or
B. A means clearly stated, and B means not
clearly stated.
If the answer is A, include sentence(s) from
the original story that serves as evidence,
and place it in the second element of the list,
without any kind of formatting. Note that
there could be multiple action sentences.
Otherwise, the second element can be an
empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”]
Example 2: [“B”, “”]

Story: [Story]
Answer:

1174

Extracting beliefs

Determine if the belief of [Character] is
clearly stated in the story.
Usually, belief is one’s understanding of the
state of the world or the state of others. A
subjective attitude towards things does not
count as belief. An action or utterance of
the agent does not count as a belief. Words
like “know” or “believe” could be hints for
belief.
Answer in the form of a list. The first el-
ement of the list contains the option A or
B. A means clearly stated, and B means not
clearly stated.
If the answer is A, include sentence(s) from
the original story that serves as evidence,
and place it in the second element of the list,
without any kind of formatting.

1175
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Otherwise, the second element can be an
empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”]
Example 2: [“B”, “”]

Story: [Story]
Answer:

1176

Extracting goals

Determine if the goal of [Character] is
clearly stated in the story.
Usually, goals refer to a person’s goals or in-
tentions regarding a particular event. More-
over, a sentence that shows a person has
been trying to do something, or summarizes
their efforts of doing something should al-
ways be considered a goal. Helping others
to achieve their goals also counts as a per-
son’s goal.
Answer in the form of a list. The first el-
ement of the list contains the option A or
B. A means clearly stated, and B means not
clearly stated.
If the answer is A, include sentence(s) from
the original story that serves as evidence,
and place it in the second element of the list,
without any kind of formatting.
Otherwise, the second element can be an
empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”]
Example 2: [“B”, “”]

Story: [Story]
Answer:

1177

Extracting observations

Determine if the observation of [Character]
is clearly stated in the story.
Observation refers to the main character’s
perception of an event; it is only consid-
ered clearly stated when the protagonist’s
perception is explicitly mentioned, like if
they visually see something, visually notice
something, or hear something, or any other
state that can be perceived by the agent with
but not limited to their 5 senses.
A character’s utterance does not mean that
their observation is clearly stated, because
they might lie.

1178

Answer in the form of a list. The first el-
ement of the list contains the option A or
B. A means clearly stated, and B means not
clearly stated.
If the answer is A, include sentence(s) from
the original story that serves as evidence,
and place it in the second element of the list,
without any kind of formatting.
Otherwise, the second element can be an
empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence.”]
Example 2: [“B”, “”]

Story: [Story]
Answer:

1179

Extracting states

Determine if the story contains the objective
state(s) of an object or an event.
State refers to the physical condition of
something or the state of the world.
No actions of agents should be involved in
the state but it can be the result of an action
of an agent. For example, “A entered B” is
not a state, while “A is in B” is a state.
An objective state statement should not in-
clude personal perspectives but should be
objective. If a person’s perception is in-
volved, it is no longer considered an objec-
tive state.
Answer in the form of a list. The first el-
ement of the list contains the option A or
B. A means clearly stated, and B means not
clearly stated.
If the answer is A, include sentence(s) from
the original story that serves as evidence,
and place it in the second element of the list,
without any kind of formatting.
If there are multiple sentences, include them
all in the second element of the list.
Otherwise, the second element can be an
empty string. Do not write anything else.
Example 1: [“A”, “evidence sentence(s).”]
Example 2: [“B”, “”]

Story: [Story]
Answer:

1180
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E.2 Hypothesis Sampling1181

We use the following prompts to sample hypotheses1182

for the latent variables in the BToM models.1183

Sampling beliefs

Propose [num] hypotheses for the belief of
[Character] in the story aligned with the con-
text of: [Context]. Make sure that it is not
any of the hypotheses in [Wrong Hypothe-
ses], if it is then propose new hypotheses
that are very different.
It should be related to [Information] and the
context described above.
The hypotheses do not require reasoning
or consideration of whether they are likely
to occur. The only limitation is that they
must be relevant to the information already
provided. You cannot return nothing. Usu-
ally, belief is one’s view or perspective on a
matter, and it represents an understanding
of the state of the world or the state of
others. The emotional attitudes toward a
specific thing do not count as belief. Do
not state any reason for the hypotheses. Do
not contain any form of explanation in the
hypotheses. Output a list of hypotheses of
length [num] in the following form: [“aaa.”,
“bbb.”, ...]

Context: [Context]
Belief Hypotheses:

1184

Sampling goals

Propose [num] hypotheses for the goal of
[Character].
The goal refers to [Character]’s intentions.
Do not provide any explanation for the hy-
potheses. Do not propose any sentence
that’s not depicting the goal, like the action
or belief of [Character].
The wording for hypotheses cannot be spec-
ulative.
The proposed goal does not have to be too
specific, e.g., Andy wants to help others;
Andy wants to hinder others; Andy is indif-
ferent towards other’s goals, etc.
Given information: [Information]
Ensure that the hypotheses align with the
given information perfectly. It means that

1185

the proposed [Character]’s goal matches
what’s contained in the information.
Output the hypotheses in the following
form: [“aaa.”]

Goal Hypotheses: []
1186

Sampling observations

Propose [num] hypotheses for [Character]’s
observation of the world.
The observation refers to [Character]’s cur-
rent perception of events or the world state.
It is only considered clearly stated when
[Character]’s perception is explicitly men-
tioned, like if [Character] sees something or
perceives something through other senses.
Do not be speculative.
Do not provide any explanation for the hy-
potheses. Do not propose any sentence
that’s not depicting the observation, like the
action or belief of [Character].
The wording for hypotheses cannot be spec-
ulative.
If the information contains “not”, make sure
the verb for perception (e.g., “see”, ’per-
ceives’) goes before “not” in the hypotheses.
e.g., use ’sees that A is not in B’ instead of
’does not see that A is in B’ Otherwise, do
not include “not” in your hypotheses, and
make sure the verb for perception goes first,
e.g., ’sees that A is in B’.
Given information: [Information]
Ensure that the hypotheses align with the
given information perfectly. It means that
when the person has the observation the per-
son will act according to the given informa-
tion.
First, list all entities in the given informa-
tion. Then, formulate hypotheses using all
entities. Make sure the hypothesis starts
with [Character].
Output the hypotheses in the following
form: [“aaa.”]

Observation Hypotheses: []
1187

E.3 Likelihood Estimation 1188

We use the following prompts to estimate the like- 1189

lihood of different variables. 1190
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Estimating the likelihood of the observa-
tion given the state

Determine if the statement is likely, and
respond with only either A or B.
State: {state}
Here is a statement of {inf_agent}’s
current observation. Only evaluate current
observation of {inf_agent} based on the
state. Do not imagine anything else. Think
about {inf_agent}’s location. {inf_agent} is
quite likely to observe all objects and events
in {inf_agent}’s location, and is unlikely
to observe states in another location. If
{inf_agent} does not appear in the state,
{inf_agent} can’t observe anything. Note
that the statement has to be precise in
wording to be likely. For example, the
treasure chest and container are different in
wording and they’re different objects.

Determine if the following statement is
likely: {statement}
A) Likely.
B) Unlikely.

1191

Estimating the likelihood of the action
given the goal and belief and belief of
goal

Determine if the statement is likely, and
respond with only either A or B.
{inf_agent}’s goal: {goal}
{inf_agent}’s belief: {belief}
{inf_agent}’s belief of other’s goal: {belief
of goal}
{inf_agent}’s action: {action}
When {inf_agent} wants to help,
{inf_agent} is likely to bring an ob-
ject to other’s desired location, and unlikely
to grab an object away from other’s desired
location.
When {inf_agent} wants to hinder,
{inf_agent} is likely to grab an object
away from other’s desired location, and
unlikely to bring an object to other’s desired
location.
When {inf_agent} doesn’t know other’s
goal, {inf_agent} is likely to act according
to {inf_agent}’s belief.

1192

If {inf_agent} wants to help and {inf_agent}
believes the object is placed at other’s de-
sired location, it’s unlikely {inf_agent} will
move the object.
If {inf_agent}’s goal, {inf_agent}’s belief
of goal, and {inf_agent}’s action do not
align in any way, the action is unlikely.

Determine if {inf_agent}’s action is likely.
A) Likely.
B) Unlikely.

1193

Estimating the likelihood of the action
given the goal and belief

Determine if the statement is likely, and
respond with only either A or B. If it’s not
certain but it’s possible, it’s likely.
{inf_agent}’s goal: {goal}
{inf_agent}’s belief: {belief}
Here is a statement of {inf_agent}’s action.
Think about {inf_agent}’s goal.
{inf_agent} will perform actions according
to {inf_agent}’s belief, and any action
that does not align with the belief is very
unlikely, except when {inf_agent}’s goal is
to hinder or to prevent others. In this case
(goal is hindering others) {inf_agent}’s
action is only likely when it’s different
from {inf_agent}’s belief. If {inf_agent}’s
mental states contain conditions like “When
giving information” and the action is not
giving information, it’s unlikely.

Determine if the following statement is
likely: {statement}
A) Likely.
B) Unlikely.

1194

Estimating the likelihood of the best ac-
tion among choices given the goal and
belief

Determine if the statement is likely, and
respond with only either A or B. If it’s not
certain but it’s possible, it’s likely.
{inf_agent}’s belief: {belief}
{inf_agent}’s goal: {goal}
If the next immediate actions possible are:
{actions}
Determine which immediate action is

1195
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most possible given the information about
{inf_agent}’s goal and belief.

Determine if the following statement is
likely: {action_a} is a better immediate ac-
tion than {action_b}.
A) Likely.
B) Unlikely.

1196

Estimating the likelihood of the initial
belief

Determine if the statement is likely, and
respond with only either A or B. If it’s not
certain but it’s possible, it’s considered
likely.
Here is a statement of the story and
{inf_agent}’ initial belief.
There is an action that causes the state
of the main object to change. Based on
{inf_agent}’s observations determine if
{inf_agent} perceives the state of the object
change.
If it is not clearly stated that {inf_agent}
perceives it then we do not assume that
{inf_agent} perceived the change of state.
If {inf_agent} perceives this change then
it is highly likely that {inf_agent}’s belief
aligns with the change of state of the object.
If {inf_agent} does not perceive this change
or if it is unknown if {inf_agent} perceives
this change then it is highly likely that
{inf_agent}’s belief does not align with the
change of state of the object.
Story: {story}
Think about the state of the world and
others actions. {inf_agent}’ belief can
change throughout time through other’s
actions and what {inf_agent} can observe.
It is also important to think about if
{inf_agent} can observe other’s actions.
If {inf_agent} can observe the same then
their belief will change and if not then their
belief will remain constant. Use this to
determine {inf_agent}’s beliefs.

Determine if the following statement is
likely: {statement}
A) Likely.
B) Unlikely.

1197

Estimating the likelihood of the belief
given the observation and previous belief

Determine if the statement is likely, respond
with only either A or B.
{inf_agent}’s previous belief: {previ-
ous_belief}
{inf_agent}’s observation: {observation}
Here is a statement of {inf_agent}’s current
belief. If {inf_agent}’s current belief is not
aligned with {inf_agent}’s observation, it is
very unlikely.

Determine if the following statement is
likely: {statement}
A) Likely.
B) Unlikely.

1198

Estimating the likelihood of the belief
given the state and previous belief

Determine if the statement is likely, respond
with only either A or B.
{inf_agent}’s previous belief: {belief}
State: {state}
Here is a statement of {inf_agent}’s current
belief. If {inf_agent}’s current belief is
not aligned with the state, it is very unlikely.

Determine if the following statement is
likely: {statement}
A) Likely.
B) Unlikely.

1199

Estimating the likelihood of the utterance

Determine if {inf_agent}’s utterance is
likely, and respond with only either A or B.
{inf_agent}’s belief: {belief}
{inf_agent}’s goal: {goal}
{inf_agent}’s utterance: {utterance}
When {inf_agent}’s goal is to help others,
{inf_agent}’s utterance is likely when it
strictly reflects {inf_agent}’s belief, and
unlikely if it does not reflect {inf_agent}’s
belief.
When {inf_agent}’s goal is to hinder or to
prevent others from achieving their goals,
{inf_agent}’s utterance is likely when it’s
different from {inf_agent}’s belief, and
unlikely if it reflects {inf_agent}’s belief.

1200
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Determine if {inf_agent}’s utterance is
likely.
A) Likely.
B) Unlikely.

1201

E.4 Initial Model Proposal1202

We use the following prompts to propose an initial1203

model for a question and determine if the question1204

has higher-order beliefs.1205

Proposing the initial model

What variables are necessary to solve
this question? Please provide the answer
without an explanation.
Please select from the following: [“State”,
“Observation”, “Belief”, “Action”, “Goal”]
State: The true condition of the environ-
ment. This should always be included.
Observation: The observed information
about the state. Include this when the agent
has partial observations of the state.
Belief: The agent’s current estimation of
the true state is based on the state or its
observation.
Action: A move made by the agent,
informed by the state or belief. Include
this only when it is directly relevant to
answering the question.
Goal: The objective the agent is trying to
achieve. Include this only if “Action” is
included.

Question:{example_question}
Variables: {example_answer}
Question: {question}
Variables:

1206

Determining if the question contains a
higher-order belief

Determine whether the question is about a
higher-order belief.
A higher-order belief refers to a belief about
another person’s belief, goal, or action.
It is not a high-order belief if it only asks
about one agent’s belief.
Please respond with “Yes” or “No”.
If the answer is “Yes”, the question often
ends with “Where does A think that B ...?”

1207

Otherwise, respond “No”.

Question: [A story involving several peo-
ple.] Where will Jack look for the celery?
Higher-order belief: No
Question: [A story involving several peo-
ple.] Where does Jack think that Chloe
searches for the hat?
Higher-order belief: Yes
Question: {question}
Higher-order belief:

1208
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