
Sampling-Based MPC Using a GPU-parallelizable Physics Simulator as
Dynamic Model: an Open Source Implementation with IsaacGym

Corrado Pezzato*, Chadi Salmi*, Elia Trevisan*, Javier Alonso-Mora, Carlos Hernández Corbato

Abstract— We present a method for solving finite horizon
optimal control problems using a generic physics simulator as
the dynamical model. In particular, we present an open-source
implementation of a model predictive path integral controller
(MPPI), that uses the GPU-parallelizable IsaacGym simulator
as the dynamical model to compute the forward dynamics of the
system. This allows one to effortlessly solve complex contact-
rich tasks such as for example, non-prehensile manipulation
of a variety of objects, or picking with a mobile manipulator.
Since there is no explicit dynamic modeling required from a
user, the repository is easily extendable to different objects
and robots, as we show in the experiments section. This
makes this method a powerful and accessible tool to solve
a large variety of contact-rich tasks. The code available at
https://github.com/tud-airlab/mppi-isaac [REPO
WILL BE MADE PUBLIC UPON ACCEPTANCE]

I. INTRODUCTION AND RELATED WORKS

As robots become increasingly integrated into our daily
lives, their ability to interact with the environment is becom-
ing more important than ever. From moving obstacles out
of the way to picking up objects, robots must be able to
plan their motions while accounting for contact with their
surroundings. Model Predictive Control (MPC) is a popular
approach for robot motion planning. However, contact-rich
manipulation poses a challenge due to its non-smooth and
hybrid nature, such as transitioning from sticking to slid-
ing motion or entering a contact. Given that most MPC
algorithms are based on constrained optimization techniques
that assume smooth dynamics to solve the motion planning
problem, one has to come up with clever ways to solve the
optimization in real-time and rely on extensive modeling
to complete an otherwise simple pushing task [1], [2]. In
contrast, Model Predictive Path Integral (MPPI) control [3]
and its information-theoretic counterpart [4] are sampling-
based MPCs, a class of algorithms that rely on parallel sam-
pling of input sequences to approximate the optimal control.
This characteristic makes these algorithms gradient-free and
therefore suitable for systems with non-linear discontinuous
dynamics and cost functions. MPPI has been shown to be
capable of controlling a high-degrees of freedom manipulator
in real-time [5], albeit still requiring extensive modeling. In
recent work [6], a simple sampling-based MPC has been

∗ Equal contribution, in alphabetical order.
This research was supported by Ahold Delhaize and the “Sustainable

Transportation and Logistics over Water: Electrification, Automation and
Optimization (TRiLOGy)” project of the Netherlands Organization for
Scientific Research (NWO), domain Science (ENW).

The authors are with the Cognitive Robotics Department, TU Delft,
2628 CD Delft, The Netherlands {c.pezzato, c.salmi,
e.trevisan, j.alonsomora, c.h.corbato
}@tudelft.nl

Fig. 1. Scheme of the proposed approach, using IsaacGym as the dynamic
model for MPPI. At each time step, IsaacGym is reset to the current world’s
state q, and random input sequences Ū are applied for the horizon T , to
every environment. The resulting rolled out trajectories from IsaacGym are
used by the MPPI to approximate the optimal control u∗

0 given a cost C.

proposed which relies on a physics engine, namely Mu-
JoCo [7], as a dynamic model of the environment for rolling
out the sampled input sequences. By doing so, the motion
planner offloads all of the modeling efforts to the physics
engine, vastly simplifying the controller design. Despite its
fast computation, MuJoCo’s parallelization capabilities are
bounded by the number of threads of the CPU, which limits
the number of environments one can sample in parallel to
achieve real-time performances.

In this paper, we present an open-source implementation
of MPPI that uses IsaacGym [8] as a dynamic model
of the environment. Thanks to its GPU parallelization we
can take hundreds of samples, thus allowing for real-time
control of high-degrees of freedom systems such as a mobile
manipulator in contact-rich tasks. We explain the algorithm
and the code structure. Then, we show how one can use
this method for non-prehensile manipulation and whole-body
control for mobile manipulation picking, demonstrating how
easy it is to extend to new tasks and robots.

II. METHOD AND SOFTWARE

A. Algorithm

In this section, we give an overview of our implementation
of MPPI. For more theoretical insights, please refer to the
original publications [3], [4]. Our approach, outlined in
Algorithm 1, starts by initializing a previous input sequence
Uprev to a vector of zeroes of length T , where T is the
time horizon in steps. We then sample K sequences of
additive input noise Ek which we will use to explore the input
space around Uprev . Instead of sampling randomly from a

https://github.com/tud-airlab/mppi-isaac

Gaussian distribution, we sample Halton Splines [5]. Once
the task begins, we initialize our K simulation environments
on IsaacGym to the current observed world state q, where
the world can either be another simulation on IsaacGym or
PyBullet, or the real world. In parallel, we can now roll out
the sampled input sequences Ūk into state trajectories Qk

using K simulation environments on IsaacGym and compute
their corresponding cost Ck using the desired objective
function. The cost is discounted over the planning horizon
T by a factor γ [5]. To improve numerical stability, the
minimum sampled cost is subtracted from each Ck, so that
there is always at least one trajectory of cost zero. Next, we
can compute the importance sampling weights wk through an
inverse exponential of the cost Ck normalized by η, so that∑K

k=1 wk = 1. The normalization factor η is a useful metric
to monitor, as it gives an idea of how many samples are
assigned significant weights. We then update the parameter
β, also known as inverse temperature, to maintain η between
an upper and lower bound. An approximation of the optimal
control sequence U∗ can now be computed via a weighted
average of the sampled inputs. Uprev is now updated with
U∗, time-shifted backward of one timestep so that it can be
used as a warm-start for the next iteration. Out of the entire
sequence U∗, only the first input u∗0 is applied to the system,
and the next iteration can start.

Algorithm 1 Proposed Approach
1: Initialize:

Uprev = [0, . . . , 0] ▷ Uprev ∈ RT

Ek ← sampleHaltonSplines() ▷ k = 1...K
2: while taskNotDone do
3: q ← observeEnvironment()
4: initializeSimulations(q)
5: for k = 1 . . .K do ▷ in parallel
6: Ūk = Uprev + Ek
7: [Qk, Ck]← computeRolloutCost(Ūk, γ)
8: Ck = Ck − minSampled(Ck)
9: wk = 1/η exp (−(1/β)Ck) ▷ η normalization

10: β ← updateBeta(β, η)
11: U∗ =

∑K
k=1 wkŪk

12: Uprev ← timeShift(U∗)
13: applyInput(u∗0)

B. Implementation

In this subsection, we describe the main components of
our open-source implementation, designed to be modular and
flexible.

1) MPPI Class: The MPPI class implements the MPPI
algorithm and has access to the handle of a function called
dynamics. This class is agnostic to this function: By
default, IsaacGym is responsible for computing the forward
dynamics, however, one can also define other custom ana-
lytical models for simple problems.

2) IsaacGym Wrapper Class: An IsaacGym wrapper class
facilitates interaction with the IsaacGym. This class contains

helpful methods for instance to initialize the parallel environ-
ments from a list of configurations of actors. Actors can be
either robots or other assets such as boxes or spheres. The
wrapper class ensures the separation of concerns between
IsaacGym and MPPI.

3) Objective class: Our implementation includes a sep-
arate objective class that defines how to calculate the
cost to be used in MPPI. This class has access to a handle
of the IsaacGym wrapper class to calculate the cost. It is
therefore straightforward to implement custom costs based
on e.g. robot and obstacle states or even contact forces.

4) MPPIisaacPlanner class: Finally, the MPPIisaacPlan-
ner class initializes instances of all the aforementioned
classes and ensures that the handle of the dynamics and
the objective function is passed to the MPPI class. This
modular approach is flexible and it allows to include different
cost functions, robot models, and simulation environments.
Through the compute action function, the control action
u∗0 is computed based on the state of the world q that is
passed as a parameter. Thanks to a dedicated ROS wrapper,
one can also forward the commands to real robots.

C. User Guide

To use our method, the user has to provide some config-
uration files, an objective function, and define a world, see
Figure 2.

Fig. 2. Simplified system overview from a user perspective. A user has to
provide the Configuration files for 1) the actors (robot types, URDF,
etc.), 2) IsaacGym (integration steps, etc.), and 3) the MPPI (robot-specific
tuning and parameters). Then, the user specifies an objective to be
minimized and the world, i.e. the environment and robot for the task.

1) Configuration files: Configuration files are re-
quired for the actors in the environment, the IsaacGym
simulation, and the MPPI planner. These files must specify
the relevant parameters for each component, such as the
number of rollouts, the MPPI tuning, and the robot’s URDF
file. Our repository provides example configuration files that
one can use as a starting point for different applications.

2) Objective class and world: The objective de-
fines how to calculate the cost of the rollouts for the
MPPI planner in each environment. This involves writing
a compute cost function that takes as input a handle

to the instance of IsaacGymWrapper and returns a scalar
cost for every environment. The world specifies what objects
and robots to populate the environment with, based on the
configuration files.

Once provided the configuration, objective, and
world, the MPPIisaacPlanner class takes care of setting up
the necessary connections between the different components.
The resulting object from the MPPIisaacPlanner class allows
you to generate control action for your robot.

Overall, this results in a flexible approach where one
can adapt the MPPI planner to their own robotic system,
without having to worry about the details of the underlying
physics simulation or the control algorithm. With our open-
source implementation and example files, one can quickly
get started with solving complex control tasks in a variety
of environments.

III. EXPERIMENTS

In this section, we present a number of use cases with
two main purposes. First, we showcase how one can use
the repository for non-prehensile manipulation (III-A), and
how one can extend it to include different objects (III-
A.2) and robots (III-A.3). Second, in III-B we show how
complex motions such as picking an object with a mobile
manipulator emerge naturally from a simple cost function
if one samples all the DOF at once, including the gripper.
All the simulations and experiments are carried out on an
Alienware m15 R2 laptop, with Intel Core i7-9750H, and
Nvidia GeForce RTX 2070.

In each experiment run, the world simulation is ran-
domized. Starting from nominal physics properties, objects
are actually spawned with 30% uncertainty on mass and
friction sampled uniformly, while object size is randomized
with Gaussian noise with a standard deviation of 5mm for
pushing and 1mm for grasping. To demonstrate robustness
to model uncertainties, also the parallel simulations, i.e. our
dynamic models, are randomised with the same principle.
Therefore, every simulation is different from the others, and
all simulations are different from the world such that there
is always model mismatch. In a sense, we perform a sort of
domain randomization in real-time.

Collision avoidance is achieved by heavily penalizing
the contact forces between rigid bodies. IsaacGym provides
these contacts directly, thus a robot can perform collision
avoidance with arbitrarily complex shapes without assuming
convex constraints. Additionally, by lowering collision costs,
one can allow for contact with a reasonably small exerted
force. The simulations and a real-world execution are avail-
able in the accompanying video1.

A. Non-prehensile mobile pushing

1) Omnidirectional base: The first task is the non-
prehensile pushing of a box with an omnidirectional base,
see Figure 3. Success is defined when the box is placed at
the goal within 5cm in the x − y direction and within 0.17
radians in rotation. The robot cannot touch obstacles.

1https://youtu.be/I8YKkPTIIZA

We designed the following cost function:

Cpush = Cdist + Calign + Ccoll, (1)

where Cdist contains the weighted distance robot-object, and
object-goal:

Cdist = ωt||pR − pO||+ ωOp ||pG − pO||+ ωOr ||ψO −ψG||.

The cost Calign is an incentive for the robot to keep the
object between itself and the goal. We achieve this by
considering cos(θ)+1, with θ being the angle between robot-
object and object-goal vectors:

Calign = ωa

(∑
(pR − pO)(pG − pO)
||pR − pO||||pG − pO||

+ 1

)
Finally, in the collision cost Ccoll we consider the contact
forces CF exerted on the obstacles:

Ccoll = ωc

∑
CFobst

Fig. 3. Non-prehensile task using an omnidirectional base. ωt = 0.2,
ωOp = 2, ωOr = 3, ωa = 0.6, ωc = 10, T = 8, dt = 0.04, K = 300

2) Extension to other objects: One can easily extend
the example above to different objects with very different
dynamics. We chose a sphere instead of a box, and we simply
change the object spawned in the simulation. For this task,
we want to put the ball in between the two walls, Figure 4.

Fig. 4. Non-prehensile pushing of a rolling ball. The goal is to place
the ball in between the two obstacles. ωt = 0.2, ωOp = 0.1, ωOr = 0,
ωa = 0.1, ωc = 0.001, T = 8, dt = 0.04, K = 300

The cost function is the same, with a slightly different
tuning since there is no orientation goal, and contacts of

TABLE I
RESULTS OF OMNIDIRECTIONAL BASE NON-PREHENSILE PUSHING

Obj Env. Runs Time [s]

Box Pose 1 5 9.66 ± 0.84
Pose 2 5 12.84 ± 0.564

Sphere Pose 1 5 8.76 ± 0.38
Pose 2 5 7.45 ± 0.59

https://youtu.be/I8YKkPTIIZA

small entities are allowed in order to complete the task.
Results are reported in Table I for a total of 20 runs, with
Pose 1 and 2 being different problem configurations. In every
run, objects are randomized.

3) Extension to other robots: Finally, one can also change
the robot for the task by simply changing the URDF,
neglecting all the additional contact modeling that would
be required in a classical model-based MPC. We perform
differential drive non-prehensile pushing with the same cost
function but re-tuned, see Figure 5. The time taken to push
the box to the goal was 18.31s.

Fig. 5. Non-prehensile pushing with differential drive. The task is the same
as for the omnidirectional base. ωt = 0.1, ωOp = 2, ωOr = 3, ωa = 0.6,
ωc = 100, T = 12, dt = 0.04, K = 400

B. Whole-body control

Our approach scales well with the complexity of the robot.
In Figure 6, the task is to relocate an object from a table to an
[x, y, z] location using a mobile manipulator with 12 DOF.

Fig. 6. Whole body motions with a mobile manipulator to bring the cube
from an initial location to a final desired one. ωt = 8, ωOp = 2, ωee = 1,
ωc = 0.1, T = 6, dt = 0.04, K = 500

Although this is arguably a complex task for a robot,
which usually requires manual engineering of a sequence
of movements, such as navigation to a specific base goal,
and pre-post grasps, the solution is rather simple with our
method. In fact, we specify the following cost for the task:

Cpick = Cdist + Cee + Ccoll, (2)

where we only consider the Euclidean distance of the end-
effector to the object, and the object to the goal:

Cdist = ωt||pEE − pO||+ ωOp
||pG − pO||,

and we give the incentive to keep the end-effector pointing
downwards, using pitch θ and roll ϕ, with Cee = ωee||[ϕ, θ]−
[0, 0]||. By sampling all the DOF at once, including the base
and the gripper, we achieve a fluid motion from start to end

with no added heuristics for pick positions. We performed 5
pick-and-deliver tasks, and the time taken was 8.19 ± 1.51s.

We noticed that for smooth whole-body motions of high
DOF systems, like this one, one requires a high number
of samples (i.e. a few hundred). Empirically, when the
number of samples is greater than 50, a GPU pipeline
is computationally cheaper than a CPU and scales better.
By using IsaacGym, we can compute all the 500 samples
required for mobile manipulation in parallel, achieving 25Hz
real-time control.

IV. CONCLUSIONS

In this paper, we presented an open-source implementa-
tion of a sampling-based MPC which uses a parallelizable
physics simulator, IsaacGym, as the dynamic model for the
rollouts. Using this simple but powerful idea, we showed
how one could solve complex contact rich tasks such as
non-prehensile pushing and whole-body mobile manipulation
for picking. This happens in real-time, without learning, and
without requiring additional task-specific dynamical model-
ing, thanks to the general physics simulator used. Finally, we
showed how one can extend the code repository with new
robots to perform new tasks with new objects, making this
method available to a plurality of researchers. Future work
will focus on more real-world experiments, with additional
benchmarks against more established baselines for motion
planning, non-prehensile manipulation, and whole-body con-
trol. Auto-tuning and the addition of global planning to avoid
local minima would make this method even more robust.

REFERENCES

[1] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile manip-
ulation with hybrid model predictive control,” The International Journal
of Robotics Research, vol. 39, no. 7, pp. 755–773, Jun. 2020, publisher:
SAGE Publications Ltd STM.

[2] J. Moura, T. Stouraitis, and S. Vijayakumar, “Non-prehensile Planar
Manipulation via Trajectory Optimization with Complementarity Con-
straints,” in 2022 International Conference on Robotics and Automation
(ICRA), May 2022, pp. 970–976.

[3] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, Feb.
2017, publisher: American Institute of Aeronautics and Astronautics
Inc.

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and I. A. Theodorou,
“Information-Theoretic Model Predictive Control: Theory and Applica-
tions to Autonomous Driving,” IEEE Transactions on Robotics, vol. 34,
no. 6, pp. 1603–1622, Dec. 2018.

[5] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “STORM: An Integrated Framework for Fast
Joint-Space Model-Predictive Control for Reactive Manipulation,” in
5th Annual Conference on Robot Learning, Jun. 2021.

[6] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive Sampling: Real-time Behaviour Synthesis with
MuJoCo,” Dec. 2022, number: arXiv:2212.00541 arXiv:2212.00541
[cs, eess]. [Online]. Available: http://arxiv.org/abs/2212.00541

[7] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct. 2012, pp. 5026–5033, iSSN: 2153-
0866.

[8] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac
Gym: High Performance GPU Based Physics Simulation For Robot
Learning,” in Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), Nov. 2021.

http://arxiv.org/abs/2212.00541

	INTRODUCTION AND RELATED WORKS
	METHOD AND SOFTWARE
	Algorithm
	Implementation
	MPPI Class
	IsaacGym Wrapper Class
	Objective class
	MPPIisaacPlanner class

	User Guide
	Configuration files
	Objective class and world

	EXPERIMENTS
	Non-prehensile mobile pushing
	Omnidirectional base
	Extension to other objects
	Extension to other robots

	Whole-body control

	CONCLUSIONS
	References

