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Abstract

We propose a novel method for density estimation that leverages an estimated score
function to debias kernel density estimation (SD-KDE). In our approach, each data
point is adjusted by taking a single step along the score function with a specific
choice of step size, followed by standard KDE with a modified bandwidth. The
step size and modified bandwidth are chosen to remove the leading order bias in the
KDE, improving the asymptotic convergence rate. Our experiments on synthetic
tasks in 1D, 2D and on MNIST, demonstrate that our proposed SD-KDE method
significantly reduces the mean integrated squared error compared to the standard
Silverman KDE, even with noisy estimates in the score function. These results
underscore the potential of integrating score-based corrections into nonparametric
density estimation.

1 Introduction

Kernel density estimation (KDE) (Rosenblatt, |1956; Parzen, [1962) is a widely used nonparametric
method for estimating an unknown probability density function from a finite set of data points.
The classical KDE effectively smooths the data by convolving with a kernel function, such as the
Gaussian kernel, and then normalizing the result to obtain a density estimate. KDE finds application in
diverse fields such as anomaly detection, clustering (Campello et al.l 2013)), data visualization (Scottl
2012), nonparametric statistical inference (Guerre et al.,2000; |[Zhang et al.,|2008)), and dynamical
systems (Hang et al., 2018)).

The classical KDE suffers from a well-known bias-variance trade-off, controlled by the choice of ker-
nel bandwidth (Silverman, |1986). Larger bandwidths lead to smoother estimates with lower variance
but higher bias, while smaller bandwidths yield more variable estimates with lower bias (Rosenblatt,
1956; [Parzen, |1962). This trade-off is particularly damaging in cases with highly variable density
functions, where the bias can dominate the estimation error.

Recent advances in score-based generative modeling and diffusion processes have demonstrated the
power of using the score function—the gradient of the log-density—to reverse a forward process of
noise injection, effectively reconstructing the underlying data distribution (Ho et al.,|2020). Notably,
methods such as score matching (Hyvirinen & Dayan, [2005) and its deep learning extensions,
diffusion models, (Song & Ermon 2019) provide robust estimates of the score function even in
complex, high-dimensional settings, without requiring density estimation.

In this work, we investigate whether incorporating knowledge of the score function into the KDE
framework allows us to push the Pareto frontier of the bias-variance trade-off. We propose a method
to debias the KDE using the score function to improve density estimation accuracy. Specifically, our
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method adjusts each data point by taking a small step in the direction of the estimated score, and then
performs KDE with a modified bandwidth, as illustrated in Figure|l| Intuitively, taking a step along
the score sharpens the sample distribution, which counteracts the smoothening effect of applying the
KDE. We find that with a carefully chosen combination of step size and KDE bandwidth, we remove
the leading order bias in the KDE, resulting in a more accurate, debiased density estimate. Crucially,
SD-KDE also works with empirical scores obtained directly from a vanilla KDE (via the gradient of
the log of the KDE density estimate); no learned diffusion model is required.

In summary, our contributions are the following:
1. We propose Algorithm [T} our method for score-debiased kernel density estimation (SD-

KDE).

2. We provide asymptotically optimal bandwidth and step size selection for Algorithm [I]
(Theorem [I), achieving the asymptotic mean integral square error (AMISE) of order
O (n=8/(4+8)) 'instead of the O (n=%/(?*4)) achieved by a standard KDE (Silverman,
1986).

3. In Section[3] we numerically corroborate our theoretical results on 1D and 2D synthetic
datasets and observe strong agreement with the asymptotic scaling identified in Theorem T}

2 Method and Theoretical Results

Algorithm 1 Score-Debiased Kernel Density Estimation

Require: Data {z;}? ,, score estimator §, kernel K, KDE bandwidth h, score step size §
1: Take a single step along the score function: T; < x; + 05(z;) fori =1,...,n
2: Compute the debiased kernel density estimate: p(z) = —5 S0 | K (£55)

Theorem 1 (Optimal Bandwidth and Step Size selection for Algorithm . Let {z;},_, bei.id.
samples from a smooth density p in R%. Let § be the exact score function of p. Let K be a symmetric
kernel with mean 0, covariance | uu' K(u)du = I, and a convergent Taylor series. The debiased

kernel density estimate p obtained by running Algorithm[I|with bandwidth h and step size ¢ is given
by

o) = 3 (E e

The asymptotically optimal bandwidth and step size for Algorithm|l|are given by

h2

opt

5

hopl =0 (n_l/(d+8)) ’ 60pr =
The resulting debiased kernel density estimate p satisfies
MISE := E [/ (p(x) —p(:v))%lx} -0 (n—8/<d+8>) .
We include the detailed proof of Theorem|[T]in Section

Corollary 1. If the estimate score §(-) is not equal to the actual score s(+), the bandwidth is h, and
the stepsize is %2 asin Theorem then the bias is given by

E[p(z) - p(2)] = =5 [(3(z) = s(x)) Vp(z) + p(2)V (3(z) — s(x))] + O(h*).

The proof for this corollary directly follows the proof for Theorem I}
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Figure 1: First schematic diagram on SD-KDE. The estimation objective is to estimate the target
distribution pdf. In the conventional setting, we have finite samples from the distribution (blue
box). Using only this information, we can perform KDE to estimate the probability density function.
However, if we have access to the score function, we can combine the data points and score function
to get SD-KDE. By fixing the kernel bandwidth to be h, we will get that the vanilla KDE and SD-KDE
have a pointwise variance of order O (#) However, SD-KDE reduces the pointwise bias from

O(h?) to O(h*) per the theorem

Discussion. Theorem demonstrates that, when a score oracle is available, one can eliminate the
asymptotically dominant term, thereby reducing the bias from the conventional order of O (h*) to
@ h8) . Although a higher-order kernel—such as the effective spline kernel described by

—can similarly achieve a similar bias reduction, it typically introduces regions where the
estimated density assumes negative values. This drawback poses a significant practical challenge,
as the numerical normalization of the resulting probability density function is computationally

intractable (Song & Ermon|, [2019).

We note that our method flexibly allows a variety of kernels to be used for KDE, since the only require-
ment for the kernel is in symmetricity and covariance structure, both of which can be conveniently

satisfied (Chenl [2017).

Although Theorem [I] requires the knowledge of the score function, we observe empirically that a
small discrepancy of the estimated score function and the underlying score function under some level
may only have minimal effect on the performance. See Section [3|for more details.

3 Experiments

3.1 1D Synthetics

Experimental setup. We test the empirical performance of the SD-KDE method on density
estimation of 1D Gaussian mixture models, and include a similar analysis for Laplace mixture models
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Figure 2: MISE error as a function of n for the three Gaussian mixtures for Silverman vs. SD-KDE.
Each point is the average MISE over 50 random seeds. The slopes inside each subplot are fitted
regression lines in log—log scale, indicating how quickly each method’s error decays as n increases.

in Appendix |Al We sample data from three mixtures, where
px) = 7N (x| p1,07) + (1—7)N(z| p2,03)

and each mixture’s parameters (7, (11, 01, fi2, 02) are outlined in Table We compare the SD-
KDE method with a baseline based on the classical Silverman KDE, using Silverman’s bandwidth
formula (Silverman! |1986), given by h = 0.9 - min(6, IQR/1.34) - n~1/% where IQR is the inter-
quartile range. To investigate how sensitive our method is to the estimation accuracy of the score
function, we test the performance of our method when only given access to a noisy score function
estimate, e.g. we observe S(z) = S(x) + €, where S(z) is the score function and € ~ N (0, o2) for a
given standard deviation o. Performance is evaluated with mean integrated squared error (MISE).

Most of the experiments in the paper were conducted on a Linux cluster with 5 NVIDIA RTX A6000
GPUs, each with 49140 MB memory, running on CUDA Version 12.5. The cluster has 256 AMD
EPYC 7763 64-Core Processor CPUs. Some experiments were also conducted on a MacBook Air
(2022) equipped with an Apple M2 chip and 16 GB of unified memory. All experiments took less
than 1 hour to run.

SD-KDE is robust to noisy score function estimate. In Figure 2| we show the MISE of the
SD-KDE (as a function of the number of observed samples, n), with varying degree of added noise
and compare to the Silverman KDE. Each point in the plot represents an average over 50 seeds. We
see that the SD-KDE method has a significantly better asymptotic scaling than the Silverman baseline,
up to a score function noise level with o = 4. Even in the presence of a highly noisy score function,
we find the SD-KDE method provides a significant gain. We also display the fitted regression slope
associated with each line, along with the theoretical asympototic convergence rate of n~5/9. We
note the close tracking between the SD-KDE asymptotic decay (—0.85 for mixture 1, and —0.93 for
mixture 3) compared with the theoretical predicted decay (= —8/9 = —0.86). For mixture 2, all
models have weaker performance due to the challenging mixture shape, indicating that larger n is
needed to reach the theoretical decay rate. For n = 5 x 10, the SD-KDE has an order of magnitude
smaller MISE error on average across 50 seeds compared with the Silverman method.

SD-KDE consistently beats Silverman baseline. In Figure[3] we examine the consistency of the
performance gains across multiple data seeds for n = 100. We observe that the SD-KDE method is
consistently better than the Silverman baseline; for mixtures 1 and 2, SD-KDE method outperforms
for all 100 samples, and for the third mixture, it is better in 95% of samples.

SD-KDE with the Empirical Score We now relax the assumption that the Score function is given,
rather, we use Silverman KDE to approximate the score function, and then apply SD-KDE based on
this estimated score. We call this method Emp-SD-KDE. Figure @4f shows that Emp-SD-KDE method
greatly improves on the standard Silverman KDE, without any assumptions on knowing the true
score function. Figure[5]shows how the empirical score is used.
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Figure 3: Histogram of MISE difference of the SD-KDE method and the Silverman method, for
n = 100 samples and 50 random seeds per mixture. The SD-KDE method is consistently having
lower MISE than the Silverman baseline; for mixtures 1 and 2, SD-KDE method outperforms for all
100 samples, and for the third mixture, it is better in 95% of samples.
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Figure 4: MISE error as a function of n for each of the three gaussian mixtures. For each point,
we compute the MISE with 50 random seeds per mixture. Each subplot plots the mean integrated
squared error as a function of n. The legend compares Silverman KDE, Emp-SD-KDE (estimating
the score from the data), and SD-KDE (ground truth score). The slopes inside each subplot are fitted
regression lines in log—log scale indicating how quickly each method’s error decays as n increases.

3.2 2D Synthetics

We present preliminary results on 2D synthetic tasks, a spiral distribution (Figure[6) and a mixture of
Gaussians (Figure[I3)), following [Liu et al.| (2020); |Grathwohl et al.| 2019).

In Figure[6] we compare the 2D Silverman method to SD-KDE for the spiral distribution. We compare
the accuracy of our method using the true score function to using an estimate of the score function
obtained by training a denoising diffusion probabilistic model (DDPM) from scratch on the training
data. For the diffusion model architecture, we use a 3-layer MLP with hidden dimension 512, and
we train the model with Adam for 1500 steps. We use 1000 diffusion steps during training. Using
the true score function, our proposed method outperforms the Silverman method both qualitatively
(via visual assessment) and quantitatively, as measured by the MISE. When employing the score
estimated from the diffusion model, our method achieves performance comparable to that of the
Silverman method. We attribute this discrepancy with the method under the true score parameter
primarily to challenges encountered during the training of the diffusion model rather than to any
inherent limitations of the method itself, particularly given the accuracy observed when using the true
score.

3.3 Iterated SD-KDE: Incremental Improvements to KDE

In a 1D Gaussian mixture experiment, we examine an iterative application of SD-KDE to further
improve the density estimate. We work with a gaussian mixture centered at 0.5, each with standard
deviation 0.2, 0.3 with weights 0.7 and 0.3. For this experiment, we will sample 1000 points and
hold the bandwidth constant at 0.15. We start with a vanilla Gaussian-kernel KDE fit to the mixture
data and compute its the closed form solution or approximation of its score, then apply SD-KDE (one
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Figure 5: Second schematic diagram on SD-KDE. In the case where a score function is not available.
We can use a proxy score function from a proxy distribution. In the example, this is the mixture of
the original distribution with some Gaussian distribution. We can also estimate the score from data
points. If the estimated score and the actual score are close enough as in the corollary [T} then one can
attain a better result with SD-KDE compared to vanilla KDE.

Silverman SD-KDE (True) SD-KDE (Diffusion)
True Density n=1000, h=0.144 n=1000, h=0.116 n=1000, h=0.116
n=1000 MISE=0.000670 MISE=0.000459 MISE=0.000593

Figure 6: Comparison of the true 2D spiral density vs. Silverman and SD-KDE. For SD-KDE, we
evaluate with both the true and learned (diffusion model) score. SD-KDE outperforms Silverman
with the oracle score function, and achieves comparable performance even using a noisy score.

score-based correction step, with scale 0.015 decaying at a rate of 0.15 at each iteration) to generate
surrogate points that remove the leading-order bias. The resulting debiased KDE serves as the baseline
for the next iteration, where we recompute the score and apply SD-KDE again; each successive
iteration thus leverages a more accurate score estimate to correct residual higher-order biases. Figure[]
shows the method when one iteration is taken. Intuitively, since the first SD-KDE step cancels the
dominant bias term, subsequent iterations can target smaller remaining discrepancies, progressively
aligning the estimated density more closely with the true distribution. As shown in Figure[7] repeated
application of SD-KDE yields a closer alignment between the estimated and true probability densities
and a corresponding reduction in KL divergence and mean integrated squared error (MISE) with each
iteration. Notably, while a single SD-KDE iteration often captures the majority of the improvement in
simpler mixture scenarios (additional iterations confer negligible benefit), more complex multi-modal
cases or smaller sample regimes benefit from multiple iterations, albeit with diminishing returns.
These results illustrate how SD-KDE could be used to directly improve upon KDE without training
a separate score oracle (which can often be difficult to train). Similar to the previous sections, we
include a similar analysis for Laplace mixture models in Appendix [A]



Table 1: Parameters for the three univariate Gaussian mixtures used in our experiments. Each mixture
follows the generic form p(z) = 7 N'(z | p1,0%) + (1 — 1) N (2 | p2, 03).

Mixture 7 1 o1 p2 09

1 04 -20 05 20 10
2 03 -20 04 40 15
3 05 00 04 15 15

3.4 MNIST Dataset

In this study, we follow a similar experimental setup to |Liu et al.| (2020) and explore the relation-
ship between generated image quality and estimated density using the MNIST dataset—a widely
recognized benchmark comprising 70,000 grayscale images (28 x 28 pixels) of handwritten digits
(LeCun & Cortes| [2010). We trained a DDPM on this dataset and, by selecting the lowest diffusion
timestep (¢t = 1), obtained an estimate of the score function for individual images. Using this score,
we apply SD-KDE in latent space to assess the realism of generated images. We ranked generated
images from highest to lowest estimated probability density, visualized in Figure[T6 The images
with higher density appear more realistic and are correlated with higher quality.

Density Evolution (Ga Kernel) Score Evolution KL Divergence: KL(p|[p) MISE vs Iteration

MISE

Figure 7: Left to right: (a) Density estimates obtained by vanilla KDE (blue) and by SD-KDE
after one to four score-debiased iterations (warm colors). The surrogate samples produced by the
final iteration (red, n = 1000) visibly sharpen the bimodal structure relative to the raw data (blue,
n = 1000). (b) The corresponding score functions converge toward the analytic score (black dashed),
illustrating progressive removal of higher-order bias. (c) Kullback-Leibler divergence falls by
more than a factor of three after the first correction and attains its minimum at the second iteration
before mild over-correction appears. (d) Monte-Carlo MISE (mean integrated square error over 200
replicates) mirrors the KL trend, confirming that a small number of SD-KDE steps yields the best
bias—variance trade-off for this 1D Gaussian mixture.

4 Proof of Theorem (1l

Proof. First, we decompose the MISE into the bias and the variance terms as
MISE = / (E [H(z)] — p(x))” dz + / (]E [h(z)?] —E [ﬁ(m)]Q) dx
= / Bias [p(x)]” da + / Var [p(z)] dz,

where the variance term Var [p(z)] = E [p(z)?] — E[p(z)]” and the bias term Bias [p(z)] =
p(z) — E[p(x)].
The variance term is given by
) 1 1 r— (X +05(X))
V. =—Var | =K
ar [p(x)] - ar(hd ( .
since p(x) is a sum of n i.i.d. terms. Using Taylor expansion at the kernel K around mzx yields

K (x_ (X;Zé‘g(X))> - K (x_hX> - %é(X)TVK (x_hX> +0 (f;) .




The variance is dominated by the leading order term, which gives

R 1 z—X 52 1 5?2
Var [p(z)] = fVar (th (h)) +0 (nhQ“‘d) =0 (nhd+ nhd+2>

where we used the standard KDE variance result for the leading term.

Now, we analyze the bias term.
Bias[p(z)] = E[p(x)] — p(z).
We write the expectation of p(z) as

E[p(z)] = th [K (x_ (X;;éé(X))ﬂ =/%K (W) p(y)dy.

We substitute u = “3¥ to obtain

E [j(z)] = /K <u - %é(m - hu)> p(z — hu)du. )

Taylor expansion will yield that

2
p(z — hu) = p(z) — hu' Vp(z) + %UTV2p(x)u +0 (%),

2 2 3
3(2) TVK (u) + 0uTV5(z) VK (u) + ;ﬁﬁ(x)TVQK(u)S’(w) +0 (5h + % + ,is) :

Substitute these expansions into Equation (I)), and expand the product. We consider each term
separately.

l. K(u)p(x) integrates to p(x) by the definition of K.
2. —23(z) T VK (u)p(x) integrates to 0 since K is symmetric and decays to 0 at infinity.

3. K(u hu Vp(z ) integrates to 0 by the symmetry of K.

) (=
4. K(u ( u V2p( ) integrates to 2°Tr (V2p(x) [ wu” K (u)du) = &-V2p(z).
5. —24(2) TVK (u) - (—hu Vp(z)). Integrate by parts on VK (u) to obtain

53(z)" / T Vp(2) VK (u)du = 05(z) T (— / K(u)Vp(x)du) — —54(2)TVp(a).
Using §(z) = V log p(x), we have

Vel

—653(x) " Vp(z) = —6Vlog p(x) ' Vp(z) = (@)

Using a standard multivariable calculus identity, we have

_sIvp@)|” )II”

(@) —6(V?p(z) — p(x)V*(log p())).

6. p(x)ou’ V3(x)V K (u). Again, after integration by parts, we obtain

5/ ut'Vi(z) VK (u)p(z)du = 5/ u)tr (V3(z)) du = dp(z)tr (V3(x)) = 6p(x)V?(log p(x)).



7. p(m)%é(w)TVQK(u)é(x) integrates to 0.
Using smoothness, we then have that

2 2 3
E [p(x)] ~ plx) = = Vp(r) ~ 7p(a) + O (hs rone 2 g)

%2, we make the leading term zero, and the bias E [p(x)] — p(z) =
@] (h3 +0h + % + %) = O (h3). Using the standard KDE argument (symmetry of K and

decay to 0 at infinity), we can show that h3 terms in the bias also vanish. Thus, the bias is O (h4).

Now, by choosing § =

Moreover, note that 6 = %, so the variance term Var [p(z)] = O (572 ).

For optimal error scaling, we balance the bias and the leading variance terms. The error due to bias is
O (h®), and the leading error due to variance is O (7).

Balancing these terms, we obtain fgy = O (nil/ (‘”8)).

Finally, the MISE is O (h8) = O (n=8/(4+8)), 0

5 Additional Discussion

Connections to Langevin dynamics. We note that the algorithm is an analog to the continuous
time Langevin dynamics, which uses the score function s and yields that the stochastic differential
equation

1

will have the stationary distribution according to the probability distribution function p, which
corresponds to the score function s (Song & Ermon, 2019} Song et al.| [2020). Our work can be
viewed as a one-step Euler—-Maruyama discretization of the Langevin dynamics to estimate the
location-shifted kernel from the sample points. This ensures both tractability as well as the benefit of
bias-reduction as seen in the main theorem (Theorem [I)). To our knowledge, this is the first approach
that employs Langevin dynamics to inform a position-based debiased kernel density estimator.

Bridging Score-Based and Sample-Based Density Estimation. While the paper (Song et al.,
2020) suggests a formulation of the flow ODE as an evolution of the density function from an
approximate posterior. This approach is prior-free and the flow maps a scaled Gaussian distribution
to the data distribution. However, this process does not utilize the availability of samples and relies
solely on the score estimate. Since this scheme requires spatial and temporal discretization for density
estimation, it is computationally less feasible due to the curse of dimensionality.

Many works in non-parametric methods (ie. KDE, histogram) (Silverman, |1986; |Rosenblatt, |1956;
Parzen, [1962; Scott, [1979; Lugosi & Nobell, [1996)) and neural-based density estimation (Liu et al.,
2021; [Magdon-Ismail & Atiya, [1998; Rezende & Mohamed, [2015}; Dinh et al., 2016; Berg et al.,
2018)) use the sample points for the density estimation, but do not incorporate score function in the
density estimation framework.

A promising future direction is to consider a multi-step discretization of the Langevin dynamics
to obtain asymptotically superior debiasing. Using higher order discretization schemes is also
an interesting avenue that we are currently exploring. The multi-step approach introduces more
challenges, including non-Gaussianity of the final kernel, since it will be a convolution of multiple
Gaussian kernels with different score-dependent shifts.

6 Conclusion

In this work, we demonstrate that incorporating score information can asymptotically improve density
estimation accuracy. We propose a method for score-debiased kernel density estimation that achieves
@) (n_s/ (d+8)) convergence rate in mean integrated squared error, improving upon the classical
O (n=4(4+9) rate of standard KDE. Our experiments on a variety of synthetic datasets validate
these theoretical predictions and show that the method remains effective even when using noisy score
estimates, suggesting practical applicability beyond settings where the true score is known.



Limitations. A key limitation of our proposed method is that the theoretical performance guaran-
tees for SD-KDE require access to an exact score oracle, which is typically unavailable in practical
scenarios. Although our empirical results demonstrate that accurate score estimates obtained from
state-of-the-art methods (such as score matching or diffusion models) still provide significant per-
formance improvements, these estimation methods themselves can be computationally expensive,
particularly in high-dimensional settings or with large datasets. Future work might explore more
efficient score estimation techniques or approximate methods that retain the benefits of SD-KDE
while reducing the associated computational overhead.
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A Synthetic 1D experiments

Figure 8] and Figure [I0]shows the fitted densities for different noise levels of the SD-KDE method,
as well as the Silverman baseline, for n = 200 samples for three different Gaussian (and Laplace
respectively) mixture models, with parameters outlined in Table[I] In Figure [IT} we examine the
consistency of the performance gains for the SD-KDE method over the Silverman baseline for a
mixture of Laplace densities. The Laplace mixtures use the same location and scale parameters as the
Gaussian Mixture, given in Table[I]

Next, we show the scaling in n for a density estimation task for Laplace Mixtures. Figure 9] shows
the results. In Figure[I2] and[T3] we show a visualization of the score function and the densities for
both the Gaussian and Laplace Mixtures.
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Figure 8: Drawing n = 200 samples from each of the three Gaussian mixtures in equation[3.1] The
dashed black line is the true PDF, while the colored lines represent the estimated PDFs.
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Figure 9: MISE error as a function of n for each of the three gaussian mixtures. For each point,
we compute the MISE with 50 random seeds per mixture. Each subplot plots the mean integrated
squared error as a function of n. The legend compares Silverman KDE to SD-KDE at multiple noise
settings. The slopes inside each subplot are fitted regression lines in log—log scale indicating how
quickly each method’s error decays as n increases.

B Synthetic 2D mixture of Gaussians

In Figure[T3] on a mixture of Gaussians ground-truth density, we compare the Silverman method
with SD-KDE.

C MNIST Dataset Image

The following figure depicts the ordering of generated images based on estimated probability density
values.
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Figure 10: Drawing n =
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200 samples from each of the three Laplace mixtures in equation [3.1]

The dashed black line is the true probability density function, while the colored lines represent the
estimated probability density functions.
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Figure 11: Histogram of MISE difference of the SD-KDE method and the Silverman method, for
n = 100 samples and 50 random seeds per mixture. A positive value in the plot indicates that the
SD-KDE method performed better for that seed. We observe that SD-KDE consistently performs
better than the Silverman method over multiple random seeds.
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In each subplot, we plot the Gaussian mixture’s density (blue, left axis) and the log-density
derivative (score) in red (right axis).
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Figure 13: In each subplot, we plot the Laplace mixture’s density (blue, left axis) and the log-density
derivative (score) in red (right axis).
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Density Evolution (Laplace Kernel)

KL Divergence: KL(p|[) i MISE vs Iteration

MISE

Viogp(x)

Figure 14: Left to right: (a) Density estimates obtained by vanilla KDE (blue) and by SD-KDE
after one to four score-debiased iterations (warm colours). The surrogate samples produced by
the final iteration (red, n = 1000) visibly sharpen the bimodal structure relative to the raw data
(blue, n = 1000). (b) The corresponding score functions converge toward the analytic score (black
dashed), illustrating progressive removal of higher-order bias. (c) Kullback—Leibler divergence falls
by more than a factor of three after the first correction and attains its minimum at the second iteration
before mild over-correction appears. (d) Monte-Carlo MISE (mean integrated square error over 200
replicates) mirrors the KL trend, confirming that a small number of SD-KDE steps yields the best
bias—variance trade-off for this 1D Laplacian mixture.

Silverman KDE Score-Debiased KDE
True Density n=1000, h=0.382 n=1000, h=0.365
n=1000 MISE=0.002877 MISE=0.000570

Figure 15: Comparison of a true 2D mixture of Gaussians density vs. the Silverman method and
our SD-KDE method using the true score. Given the oracle score function, SD-KDE outperforms
Silverman in MISE by nearly an order of magnitude.
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Figure 16: Generated MNIST images of digits 2, 3, and 7 are displayed in descending order of
estimated probability density as determined by score-based KDE. The ordering illustrates that images
with higher probability density estimates exhibit more realistic features.
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