
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

CBF-LLM: SAFE CONTROL FOR LLM ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes a control-based framework for aligning large language models (LLMs)
by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The
presented framework applies the CBF safety filter to the predicted token generated from the
baseline LLM, to intervene in the generated text. The safety filter includes two significant
advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes
without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired
alignment, it can be directly applied to the filter design. The overall text-generation system
is implemented with Llama 3 and a BERT model, aiming to generate positive text. Finally,
further applications and limitations of the CBF-LLM for other alignment tasks, including topic-
keeping and hallucination mitigating, are discussed.

1 INTRODUCTION

While large language models (LLMs) are known to have strong language understanding and generation abilities,
they can also generate harmful, biased, or toxic content (Shen et al., 2023; Minaee et al., 2024). Alignment of
LLMs ensures that they generate content that is “desirable” for the user, typically meaning content that is safe
and ethical. Various approaches for LLM alignment have been presented (see the works by Shen et al. (2023);
Minaee et al. (2024); Wang et al. (2023) and reference therein).

The major approach to the alignment is reinforcement learning from human feedback (RLHF, Ouyang et al.
(2022)), where a reward model is constructed by human feedback and used for the training of LLMs. Variants of
RLHF architectures are also proposed, such as Safe-RLHF by Dai et al. (2024), SENSEI by Liu et al. (2022), and
f-DPG by Go et al. (2023), and their implementations are presented, such as training pre-trained LLMs (Bai et al.,
2022a; Zhou et al., 2023), and applications like information-seeking chatbot (Glaese et al., 2022). Collecting
human feedback with data is time-consuming and expensive. To overcome the drawback, RL from AI Feedback
(RLAIF) is presented instead of using human labels (Bai et al., 2022b). In addition, the method to construct the
training data automatically is proposed (Kim et al., 2023). Furthermore, to reduce the computational cost, direct
preference optimization (DPO) is proposed (Rafailov et al., 2023), where the training data is directly used for
training LLMs without accessing the reward model. A common feature of alignment methods like RLHF and
SFT is that they modify LLMs’ model parameters.

An alternative approach for LLM alignment is to directly intervene in the input prompt or output of LLMs,
rather than modifying the model parameters. In-context learning (ICL, Dong et al. (2024)) is a major approach
for intervening in the input prompt. In ICL, a few demonstrations are provided in prompt to instruct the LLMs
on the task, including few-shot learning (Brown et al., 2020; Zhao et al., 2024). As the methods for intervening
in the output, the work by Cao et al. (2021) proposes a method to format output for retrieval application, and
the work by Keskar et al. (2019) proposes a repetition penalty to prevent LLMs from repeating the same words
and expressions. In addition, the Transformers module provides some functions to modify the output, such as
NoBadWordsLogitsProcessor and MinLengthLogitsProcessor (HuggingFace).

One can view the intervention approach to alignment, which avoids undesirable output, as analogous to “col-
lision avoidance”, the most fundamental problem in control engineering. In control engineering, various stud-
ies are conducted for safety assurance, including collision avoidance (Isaly et al., 2024; Dawson et al., 2023;
Nishimura & Hoshino, 2024). A promising approach for collision avoidance is the control barrier function
(CBF), as studied in theoretical works by Ames et al. (2019); Taylor & Ames (2020); Lopez et al. (2021) and
in real-world applications by Hu et al. (2023). Just as a vehicle’s trajectory is intervened to avoid collisions,
LLM’s output can be intervened to prevent undesirable content. This paper draws an analogy between vehicle
and LLM, as illustrated in 1.

1

053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105

Obstacle

Undesirable

Desirable
Vehicle LLM

Everyone says you are genius, but this is not true

I

think you already are !

Control

Obstacle

Unsafe

Safe

Control

Figure 1: Concept of CBF-LLM. Left: Collision avoidance in a vehicle control system, Right: Collision avoid-
ance in text-generation by LLMs. Analogy and differences are discussed in Appendix B.

This paper proposes a framework for control-based LLM alignment by applying a safety filter that intervenes in
the LLM output to generate user-desirable outcomes. To this end, we leverage the idea of the CBF to improve the
safety and controllability of the outputs of LLMs. We aim to design a CBF-based safety filter that intervenes in
the output of LLMs into the user’s desired content. The CBF filter and the baseline LLM constitute a novel text
generation system, which we call “CBF-LLM”. This paper also conducts the text-generation experiment on CBF-
LLM. In the experiment, the CBF control enabled the alignment task to be completed with fewer interventions.

CBF-LLM is one of the controlled decoding alignment methods. Controlled decoding alignment has been ad-
dressed in the literature, including works such as Mudgal et al. (2024), Zingale & Kalita (2024), Safedecoding
(Xu et al., 2024), FUDGE (Yang & Klein, 2021), and DeAL (Huang et al., 2024). The common feature is to in-
tervene in the token probability based on a reward of generated text. On the other hand, our CBF-LLM intervenes
in the token probability based on the change in reward caused by adding a token, rather than just the generated
text. Moreover, CBF-LLM is distinct from previous research in that CBF-LLM considers the constraint of
preventing undesirable text from being generated. This paper also attempts to bridge the gap between control
engineering and natural language processing. While the theoretical analysis of LLMs, such as reachability, has
been studied in the works by Bhargava et al. (2024) and Soatto et al. (2023), this paper presents a design method
of LLM-based text-generation systems.

The other contributions of this paper are as follows: 1. The proposed CBF-LLM is realized in an add-on manner
to a baseline LLM: an external filter is simply added to the LLMs without accessing their model parameters.
In this sense, CBF-LLM is broadly applicable to various LLMs, as is designed independently of the underlying
LLM. 2. CBF-LLM is implemented with Llama 3 and a RoBERTa model in Section 4. The result shows that
CBF-LLM is more reliable compared with the previous approaches, in the sense of output alignment.

“Safe Control” addressed in this paper reflects a broader interpretation of “safety”. We mean safe control as
the ability to regulate LLM output to produce text that not only adheres to ethical standards but also aligns with
user-specific objectives.

The rest of this paper is organized as follows. In Section 2, the basic theory of CBF is provided, and the structure
of nominal LLM is reviewed. In Section 3, the concept and design of CBF-LLM are proposed. In Section 4, the
experiment of CBF-LLM is conducted. Finally, in Section 5, the conclusion of this paper is presented.

Notation: symbol V [i] represents the i-th element of the vector V .

2 PRELIMINARY

2.1 CONTROL BARRIER FUNCTION FOR SAFE CONTROL

Control barrier function (CBF), developed in the control community, provides safety assurance in control systems
(Ames et al., 2019). This section briefly reviews CBF and CBF-based safety control.

Consider the following dynamical system to be controlled:

ẋ = g(x, u), (1)

where x ∈ Rn is the state variable of the object being controlled, and u ∈ Rm is the action applied to the object.
The function g represents the system dynamics; how this object is affected by the current state x and action u. A
typical example of the system (1) includes a vehicle dynamics, where the state x is coordinate, velocity, angle,
etc, and the action u is accelerator pedal depression, steering angle, etc.

2

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

We aim to design the assisted control system with safety assurance. As for safety, we let the safe and unsafe sets
be denoted by S ⊆ Rn, S̄ ⊆ Rn, respectively. Then, the safety means to constrain x within the safe set S , i.e.,
x ∈ S . Consider that the nominal action unom ∈ Rm is provided which might violate the safety, i.e., the driver
unom might generate the unsafe state x ∈ S̄ on a car. Then, we address the problem of designing “safety filter”
F : Rm → Rm, as follows:
Problem 1 (Safety Filter). Find the safety filter F : Rm → Rm such that the system (1) with u = F (unom)
generates x(t) ∈ S for all nominal actions unom for all time t.

As a preliminary, we design a continuously differentiable function h : Rn → R, called a “constraint function”,
such that h(x) ≥ 0 if x ∈ S , and h(x) < 0 if x ∈ S̄ hold. The safety is equivalent to the constraint: h(x) ≥ 0.
In the assisted driving example, the nominal action unom is a manual action by the driver, and the unsafe set S̄
includes the positions of obstacles like pedestrians. The function h can be the distance between the vehicle and
the obstacle. With the manual action by the driver unom, the vehicle may enter the unsafe set, such as colliding
with obstacles. The safety filter F needs to modify unom to output u such that h(x) ≥ 0 holds, meaning that the
vehicle never collides with obstacles.

To construct the safety filter F that keeps the safety constraint h(x) ≥ 0, the control barrier function filter (CBF
filter, Gurriet et al. (2018); Ames et al. (2019)) is presented. The CBF filter intervenes in the nominal action
value unom to introduce a safe state of the object by finding u as follows:

min
u

(unom − u)2, (2)

s.t. ḣ(x) ≥ −α(h(x)), (3)

where α : R→ R is a class-K function which holds α(0) = 0 and monotonically increasing, i.e., dα(x)
dx > 0. In

the assisted driving example, when the manual action unom is expected to cause a collision with an obstacle, the
CBF filter intervenes in unom to provide safe driving. To constrain the action u by the CBF filter, the following
theorem on the safety assurance holds.
Theorem 1. Suppose that the CBF constraint (3) holds for all time. Then, the state x ∈ S holds for all time.
Remark 1. The objective function (2) ensures that the filtered action u remains as close as possible to the
nominal action unom. In this sense, the CBF filter archives safety by the “minimum” intervention.

The CBF filter is capable of applying in discrete-time systems by re-formulating the CBF constraint (3) as follows
(Zeng et al., 2021):

∆h(k) = h(k + 1)− h(k) ≥ −α(h(k)), (4)

where k is a discrete time.

2.2 TEXT GENERATION BY LARGE LANGUAGE MODELS

This section reviews and analyses the text generation by large language models (LLMs) while particularly fo-
cusing on their structure. In this paper, “text” means the sequence of tokens and X denotes the set of the texts.
The text corresponding to a specific expression in natural language is displayed as x = x(“<text>”). For
example, the text x ∈ X for “Have a nice day.” is displayed as x(“Have a nice day.”). Each token t is
identified by a positive integer, i.e. t ∈ {1, . . . , N} =: T , and N is the number of tokens the LLM has. The
token corresponding to a specific expression in natural language is displayed as a numerical constant t<token>.
For example, the token for “dog” is displayed as tdog. The function concat : X × T → X concatenates text
and token to output a text. For example, concat(x(“Have a nice”), tday) = x(“Have a nice day”).

Text generation is performed by iteratively adding a new token, starting from the initial text. Let x0 ∈ X be the
initial text, and k ∈ {0, 1, . . .} be the “time”, which counts the number of tokens added during the generation.
Then, the text generation from the initial text x(0) = x0 is expressed by a discrete-time dynamical system as

P (k) = G(x(k)),

t∗(k) = C(P (k)),

x(k + 1) = concat(x(k), t∗(k)).

(5)

In the expression, the symbol G : X → RN represents the token predictor, which drives the input text x to
output the probability vector P ∈ RN , where P [t], t ∈ T displays how probable that the token t ∈ T would

3

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

follow by the text x. The symbol C is the token selector, which selects the next token t∗ which follows x based
on the probability vector P . The examples of C includes greedy algorithm. Finally, the symbol concat is
the concatenator, which concatenates the new token t∗ with the text x to derive a new text. The symbol Z−1

represents the time delay, playing as the memory for the text x. The overall structure of the text generation,
described by (5), is drawn in Appendix A.

The token predictor G plays a central role in the text generation and is typically realized by LLMs such as GPT-2,
and Llama 3. Let the text-generation LLM decoder as fLLM : X → RN and T ≥ 0 be the temperature. Further,
recall that P [t], t ∈ T display how probable the token t would be followed by the text x. Then, the probability
P is calculated as follows:

P [i] = softmax(fLLM(x)[i]/T) =
exp(fLLM(x)[i]/T)∑N
j=1 exp(fLLM(x)[j]/T)

, (6)

3 CBF-LLM

This section presents the control-based alignment of text-generation systems and their detailed implementation.
Symbols and their meanings used in this paper are summarized in Table 1.

Table 1: Symbols and their meanings

Symbols Meaning in CBF Meaning in LLM Alignment (CBF-LLM)
x State of the controlled object, x ∈ Rn. Generated text, x ∈ X .

h Constraint function, h : Rn → R. Language-constraint function (L-CF),
h : X → R.

S Safe state set. Desirable text set.
S̄ Unsafe state set. Undesirable text set.

The alignment discussed in this paper aims to ensure desirable text generation by weak intervention to the output
of LLMs. To clarify the meaning of “desirable”, we let the desirable and undesirable text sets be S ⊆ X and
S̄ ⊆ X , respectively, based on the respective alignment goals.
Example 1. Suppose that the alignment goal is set to generate non-toxic content. Then, S is the set of non-
toxic text, and S̄ is the set of toxic texts. For mathematical procedures, we consider S and S̄ to represent “all”
non-toxic and toxic text samples. More examples of S and S̄ are seen in Section 4.

One simple idea of achieving the alignment goal is to force the text generation to stop when the generated text x
turns undesirable, i.e., x ∈ S̄ . However, this method involves a strong intervention in the baseline LLM, which
renders the original capabilities of the baseline LLM meaningless. To overcome the drawback, we make the
intervention strength adjustable, which enables the text-generation system to achieve the alignment goal with a
weak intervention.

The presented text-generation system, including an LLM and a safety filter, is constructed based on the CBF
described in Subsection 2.1. The overall system is called CBF-LLM and its structure is shown in Fig. 2. CBF-
LLM extends the nominal text-generation system shown in (5) by adding the safety filter (yellow box) between
the token predictor G and the token selector C. The safety filter manipulates the probability P to satisfy the
specified alignment task. The safety filter is composed of filter F and normalizer R. In the same manner as
(5), the blocks of G, C, concat, and Z−1 represent the token predictor, token selector, concatenator, and time
delay, respectively. The components of CBF-LLM are described in detail as follows.

Recall that the token predictor G mainly implies a generative language model such as LLM. It retrieves the
current text x ∈ X and outputs the probability of the next token, P ∈ RN . For each token t ∈ T , the probability
P [t] indicates how probable each token t is followed after the text x.

The defining feature of the CBF-LLM is the presence of filter F , which filters P to generate the modified
probability Q ∈ RN . The filter F is designed to ensure the desirable text generation, i.e., x ∈ S . To this end, we
design the CBF filter in F by using the function h : X → R such satisfying{

h(x) ≥ 0, x ∈ S,
h(x) < 0, x ∈ S̄. (7)

4

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

𝑍!"

Token Predictor
𝐺

Token Selector
𝐶

Next Token 𝑡∗

𝑃

concat

Text 𝑥

𝑄
Filter
𝐹

Normalizer
𝑅

Text 𝑥

Language-Constraint Function (L-CF) ℎLLM

Figure 2: Structure of presented text-generation system, named CBF-LLM

The function h is called the “language-constraint function” (L-CF). Note that the L-CF h needs to be designed
to distinguish between the desired and undesired texts accurately. We also assume that the value of L-CF h(x)
changes depending on the content of the text x. Suppose that the alignment goal is set to generate non-toxic
content. Then, prepare multiple samples of non-toxic text and toxic text and train a classification language model
to prepare the L-CF h. Specifically, the model needs to learn the relationship between non-toxic text and toxic
text. We use L-CF h(x) to determine whether the text x is toxic. Furthermore, the value of L-CF is expected to
indicate how toxic the text is.

Generally, building the L-CF that perfectly distinguishes between S and S̄ is challenging. However, the L-CF
can be constructed using existing text classification models. An example of constructing the L-CF is provided as
follows.
Example 2. To construct L-CF, we apply a sentiment analysis RoBERTa model1 as the internal model. The
RoBERTa model is originally trained to classify sentences into 3 labels: negative, neutral, or positive. Let
M : X → R3 denote the RoBERTa model, and s ∈ [0, 1]3 denotes the softmax output of the M respect to a
text x, i.e., s = softmax(M(x)). It follows that s[1], s[2], and s[3] represent the score of negative, neutral, and
positive, respectively. Then, L-CF is constructed as follows:

h(x) = s[3]−max(s[1], s[2]). (8)

The function h outputs a positive value when the positive score is greater than both negative and neutral scores,
while it outputs a negative value when either the negative or neutral score is greater than the positive score. In
other words, the sets S and S̄ , which correspond to the L-CF constructed above, render the positive and non-
positive texts, respectively. Finally, we note the limitation of the L-CF with the RoBERTa model. The model is
originally trained for evaluating whole sentences, while it is used with midway sentences in this example. This
may deteriorate the accuracy of the evaluation.

The filter F : RN → RN allows only tokens that meet its conditions to pass through and does not allow tokens
that do not. In this paper, the CBF filter discussed in Subsection 2.1 is employed in F and is denoted by FCBF.
The detailed realization of the CBF filter is given as follows:

FCBF(P ;x) : P ′[t] =

{
P [t], h(concat(x, t))− h(x) ≤ −αh(x),
0, else,

t ∈ T , (9)

where α is a hyperparameter. This formulation is a modified form of the discrete-time CBF inequality, as shown
in (4). In (9), the probability of the token is set to 0 unless the token satisfies the CBF inequality, which guarantees
that the generated text x always satisfies that x ∈ S .
Remark 2. The hyperparameter in the CBF filter, α ∈ [0, 1] implies the strictness of the safety constraint (4).
In other words, the value determines the degree to which the generated text is allowed to approach the boundary

1cardiffnlp/twitter roberta base sentiment latest (Loureiro et al., 2022)

5

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

of the safety constraint, x ∈ S . The CBF filter with α = 1 is the mildest: it always allows the text unless the
given text is in the undesirable set, i.e., x ∈ S̄ , while the CBF filter with α = 0 is the most strict: it only allows
if the text x(k) is more desirable than the one in the previous time x(k − 1). In the CBF filter-based control in
the assisted vehicle, the value of α affects the safety margin from an obstacle.

Top-k sampling is applied in the filter F to improve the computational efficiency. The top-k sampling only
processes fewer elements than N elements of the target P . The algorithm of the CBF filter with top-k sampling
is provided in Appendix C. In the algorithm, we call that the token t is allowed (disallowed) if the CBF inequality
(4) holds (does not hold) at the current text x.

The CBF-LLM given in Fig. 2 with the identity filter F (P) = P instead of the CBF filter FCBF reduces the
nominal text-generation system. See Appendix A for more detail. The algorithm of the nominal text-generation
system with top-k sampling is stated in Appendix D, and it is implemented in Section 4 for comparison with
CBF-LLM.

The normalizer R adjusts the output of the filter P ′ to ensure that it is normalized, such that the sum of the output
Q equals 1. In addition, the probability of disallowed token t needs to be kept at 0. The following normalizer R
satisfies these requirements:

R : Q[t] =
P ′[t]∑N
i=1 P

′[i]
, t ∈ {1, . . . , N}. (10)

It is notable that this normalizer has the following properties:
Proposition 1. The output distribution Q provided by (10) minimizes the Kullback-Leibler divergence between
Q and P ′, i.e., DKL(Q||P ′).

The proof is given in Appendix E.
Remark 3 (Difference with FUDGE (Yang & Klein, 2021)). CBF-LLM shares similarities with FUDGE
(Yang & Klein, 2021). FUDGE aims to modify the token probability given from a baseline LLM according
to a specified objective. To this end, FUDGE employs an additional language model r : X → [0, 1], in which the
preference based on the objective is involved, to modify the token probability, as follows:

Q[t] ∝ r(concat(x, t))P [t], (11)

where P ∈ RN is the probability given from the baseline LLM, and Q ∈ RN is the modified probability. The
modified probability is derivered by multiplying P by the additional language model r. FUDGE seeks to align
the generated text with a target distribution. Here, we recall the structure of CBF-LLM algorithm. In CBF-LLM,
the token probability is modified as the follows:

Q[t] ∝
{
P [t], concat(x, t) satisfies the CBF inequality (4),
0, concat(x, t) does not satisfy the CBF inequality (4).

(12)

We can see that CBF-LLM aims to constrain the generated text to avoid certain undesirable regions.

Further discussion on the analogy of CBF-LLM with RL-based approaches, such as RLHF by Ouyang et al.
(2022) and DPO by Rafailov et al. (2023), is presented in Appendix F.

4 EXPERIMENT

In this section, we implement the CBF-LLM with Llama 3 and a RoBERTa model and analyze the CBF-LLM’s
alignment ability, the number of interventions, generation time, and output quality.

4.1 SETTINGS

We employ Llama 3 8b Dubey et al. (2024), a pre-trained LLM, as the model for the token predictor G, and each
of the following filters as F .

CBF(α) Filter with the control barrier function. This filter is defined in (9). Recall that CBF has the hyperpa-
rameter α ∈ [0, 1], indicating the strictness of the safety constraint (4). The CBF filter with α = 1 is the
mildest, while that with α = 0 is the most strict.

6

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

Blocklist The Blocklist filter disallows tokens such that the L-CF h for concatenated text concat(x, t) indicates
a negative value. This method can be seen as a special case of FUDGE (Yang & Klein, 2021), where
the FUDGE’s reward function r(x) is a binary function that takes 0 if the text x is undesirable and 1 if
the text x is desirable.

NoControl No filtering is applied to probabilities P is performed, i.e., F is the identity map and the proposed
text-generation system as shown in Fig. 2 is reduced to the traditional one, as shown in Fig. 7. The
system is expected to be operated only by the baseline LLM. The algorithm is shown in Appendix D.

4.2 CBF-LLM FOR POSITIVE TEXT GENERATION

The alignment goal is to ensure that the text-generation system, illustrated as in Fig. 2, produces “positive” text
output. To this end, we let S and S̄ denote the set of positive texts and non-positive texts, respectively. We
employ a RoBERTa model as the language-constraint function (L-CF) h.

We employ cardiffnlp/twitter roberta base sentiment latest, a RoBERTa model, in the L-
CF h. The RoBERTa model was originally trained to classify sentences into three labels: negative, neutral, or
positive. In this experiment, we apply the L-CF constructed in Example 2, meaning that it outputs a positive
value when the sentiment of the text x is positive. The resulting text-generation system by CBF-LLM would be
controlled to generate positive content.

We use the Reddit dataset, reddit-corpus-small (ConvoKit, 2018) to collect the initial texts to be input
for the CBF-LLM text generation. From the Reddit dataset, we randomly chose 50 utterance texts that satisfy
the following three conditions: 1. The text has more than 10 tokens. 2. The text in which the L-CF h indicates
positive for the first 5-token text. 3. the text in which the L-CF h indicates negative for the generated text by the
original Llama 3 model without any control gives the first 5-token text. In other words, the text of the first 5-token
potentially results in a non-positive generation. We extract only the first 5 tokens from the selected utterance texts
and use them as the initial texts x0. We set the temperature as T = 1, the top-k value as ktop = 30, and the
maximum number of new tokens as 30.

In the NoControl case, where no alignment is applied in the text-generation system, some texts are going non-
positive content. This implies that the baseline LLM, Llama 3, can generate non-positive texts. On the other
hand, with the Blocklist filter and the CBF filter, all texts have positive content. The examples of generated texts
by each filter are listed in Appendix G.

Fig. 3 shows the trajectory of L-CF h(x(k)), k ∈ {1, 2, . . .} for a generated text sample. In the NC, no-control
case (black line), the generated text does not keep the positive L-CF value, implying the extent to which the
generated text is undesirable. On the other hand, in CBF filters (red line and orange line), the L-CF values are
kept positive during the generation, implying that the text generation system generates desirable content. The
Blocklist filter (blue line) also maintains a positive L-CF value, but it frequently selects tokens near h = 0.

Fig. 4 shows the predicted possible trajectories of the CBF filter FCBF(α = 0.3). In CBF-LLM, the CBF filter
sorts tokens into those that satisfy the CBF inequality and those that do not. It is shown that the CBF filter
prevents L-CF values from becoming negative or decreasing more rapidly than the current value. Note that we
do not show the trajectories for all tokens, but only for tokens investigated by the top-k sampling (see Algorithm 2
in Appendix C) are displayed.

0 5 10 15 20 25 30
Time k

0.50

0.25

0.00

0.25

0.50

0.75

1.00

L-
CF

 v
al

ue
 h

(x
(k

))

 was able to
 pull this off. I don" ??

t
 think anyone should

 be

 surprised at all
 by the

 fact that he did.
 He's a good pitcher was able to get to

 bed and he
's

 having a normal
 day at the studio and

 everything is

 great. I just went back to a 5 : 40 was able to
 come back. It

 wasn
't

 so

 long." She had been
 worried about

 his leg
 for months

 now. His
 g ait

 was slightly

 off when he

 was

 wrong about

 her

,
 though

," said Mrs. D ab ney
 firmly.

 "
This place is

 not

 right

 for
 him, and we all know it , but

CBF (= 0.3) CBF (= 0.8) Blocklist NoControl

Figure 3: L-CF trajectory of each filter

0 5 10 15 20 25 30
Time k

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

L-
CF

 v
al

ue
 h

(x
(k

))

Allowed Token
Disallowed Token
Actual Trajectory

Figure 4: Predicted L-CF trajectories

7

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Recall that this paper aims to ensure positive text generation by weak intervention to the output of LLMs. Align-
ing LLMs has a tradeoff between two indicators: task quality and intervention weakness. The task quality
indicates how the generated text is aligned with the specified objective. To measure the task quality, we used G-
Eval (Liu et al., 2023), a framework for evaluating any texts by LLMs, to assess the positiveness of the generated
texts. The intervention weakness indicates how the CBF-LLM text-generation system is close to the baseline
LLM. We use the number of disallowed tokens per generation, naturalness, and generation time per token. The
average naturalness of texts generated by each filter is evaluated by G-Eval.

The results are shown in Fig. 5 and Fig. 6. In Fig. 5, the black points show the number of disallowed tokens
per generation, and the red bars show the generation time per token. The horizontal axis is the α value and
recall that CBF-LLM with α = 1 equals the Blocklist. We can see that as the number of disallowed tokens
increases, generation time tends to increase. The generation time with CBF(α = 0.8) is less than that with
Blocklist, and the numbers of disallowed tokens with CBF(α = 0.4) and CBF(α = 0.8) are less than that with
Blocklist. In Fig. 6, the black points show the average naturalness scores and the red bars show the average
positiveness scores. The naturalness score was the highest at α = 0.6, and the positiveness score was the highest
at α = 0.2. These results reveal a trade-off between task quality, displayed by positiveness, and intervention
weakness, displayed by disallowed tokens and naturalness, and the trade-off is calibrated by the hyperparameter
α. Generation time is also affected by α, and it can be shorter than that with Blocklist in some α values. Based
on the results on naturalness, positiveness, the number of disallowed tokens, and the generation time, we see
that the hyperparameter α should be chosen from within (0, 1) rather than choosing 1, which is equivalent to the
Blocklist. The detailed scores related to Fig. 5 and Fig. 6 are summarised in Table 3 in Appendix G.1.

0.2 0.4 0.6 0.8 Blocklist
Hyperparameter

100

200

300

400

500

Di
sa

llo
we

d
To

ke
ns

 p
er

 G
en

er
at

io
n

0.100

0.105

0.110

0.115

0.120

Ge
ne

ra
tio

n
Ti

m
e

pe
r T

ok
en

 [s
][Left] Disallowed Tokens

[Right] Generation Time

Figure 5: # of disallowed tokens and generation time.

0.2 0.4 0.6 0.8 Blocklist NoControl
Hyperparameter

0.58

0.60

0.62

0.64

0.66

0.68

Na
tu

ra
ln

es
s

0.30

0.35

0.40

0.45

0.50

0.55

Po
sit

iv
en

es
s

[Left] Naturalness
[Right] Positiveness

Figure 6: Naturalness and positiveness.

The CBF filter effectively reduced interventions and generation time compared to the Blocklist method. This
phenomenon can be described by “attractors”, the concept of dynamical systems (Guckenheimer & Holmes,
1983). To verify this observation, we conduct a supplemental experiment of studying the distribution of the value
of h with respect to each filter. The details of the result are given in Appendix G.1.1. In the Blocklist case, the
L-CF values tend to cluster around the boundary at h(x) = 0, indicating frequent interventions for alignment.
In contrast, in the CBF case with α = 0.3, the cluster is further from the boundary, indicating less frequent
interventions and potentially more natural text generation.

4.3 CBF-LLM FOR MAINTAINING SPECIFIC TOPIC

This experiment focuses on maintaining the text output on a specific topic, instead of avoiding undesirable text
as studied in Subsection 4.2. We note that the CBF-LLM approach can be applied to aligning the maintenance
of a specific topic in the same way as avoiding undesirable text.

In this experiment, we set the regulation goal to maintain generating texts related to food and dining. To this end,
we apply a topic classification model 2, which classifies the input into 19 different topics, to the design of the
L-CF h. Let s ∈ R19 be the output of this model, described as s = softmax(M(x)). Then, the probability that
the text is related to food and dining is shown in s[9]. The L-CF is constructed as follows:

h(x) = s[9]−max(s[1], s[2], . . . , s[8], s[10], s[11], . . . , s[19]). (13)

2cardiffnlp/twitter-topic-21-multi (Antypas et al., 2022)

8

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

Under the setup above, we conduct the text-generation experiment by CBF-LLM with the initial text as “It’s time
for lunch, but”.

The example of the generated texts are “It’s time for lunch, but I forgot how to write an email.” for the NoControl
case, and “It’s time for lunch, but I forgot iced tea. The other kids all have one already. ” for the CBF case. The
initial text focused on food, but the NoControl case’s generated texts shifted to unrelated food and dining topics.
In contrast, the Blocklist and CBF cases’ generated texts remained on topic and did not stray from the food and
dining topic. The other examples are listed in Appendix G.2.

4.4 FURTHER APPLICATIONS AND LIMITATIONS OF CBF-LLM

To explore further applications and limitations of CBF-LLM, we conducted an experiment focusing on mitigating
hallucinations generated by the baseline LLM. According to the works by Kadavath et al. (2022); Farquhar et al.
(2024), the high entropy of token probabilities indicates the uncertainty of the output text, implying that it may
be used as the detector of incorrect generation, while it is not fully sophisticated.

We set the control goal to reduce hallucination. To this end, we construct the L-CF as follows:

h(x) = 2.5−H(P), H(P) = −
N∑
t=1

P [t] lnP [t], (14)

where P is the output of token predictor G in CBF-LLM, and H denotes the entropy. This L-CF shows positive
when the entropy of P is less than 2.5. In this sense, this filter chooses tokens that produce lower entropy of the
next token probabilities during generations, aiming to avoid hallucinations. Note that the model used in L-CF
and the token predictor G are the same in this experiment.

In this experiment, we employ Llama 3 8b Instruct, which is fine-tuned to respond to user instructions
(Dubey et al., 2024), as the model for the token predictor G. We conduct the text-generation experiment by
CBF-LLM with the input prompt as “Write a unique fizz buzz python in a single row. Just output the code.” and
all other settings remain the same as in the previous experiment, in Subsection 4.2.

We evaluate the output text by determining the generated code by following three labels: [OK]Success: the
code has no syntax errors and outputs fizz buzz properly; [TE]Task Error: the code has no syntax errors but
does not output fizz buzz properly; [SE]Syntax Error: The code has syntax errors and is non-executable. We
hypothesize that as the hallucination is suppressed the number of errors ([SE]and [TE]) decreases and the
number of success ([OK]) increases.

The result shows that the CBF filter does not significantly reduce syntax error ([SE]) rates or improve the success
([OK]) rates. The generated codes and their evaluations are listed in Appendix G.3. It should be emphasized
that in CBF-LLM, task accuracy heavily relies on the design of L-CF h(x). In particular, as in the case of this
experiment, where the formulation of L-CF is based on underlying evaluation methods, the impact on the task
accuracy is even greater. Although the CBF-LLM designed in this experiment requires further updates, we find
that it is broadly applicable to formulate a wide range of control objects of LLM.

4.5 EXTENSION TO MULTI-STEP AHEAD CBF-LLM

The CBF filter, formulated in (9), compares the current text x(k) with the text after adding only one token
concat(x(k), ti) to output the modified probabilities Q as illustrated in Fig. 2. The filter prevents the text from
becoming undesirable for all time. A drawback of CBF-LLM is that it may filter out text that appears undesirable
initially but becomes desirable when read to the last, e.g., “You are clumsy, but you have high aspirations!”.
To overcome the drawback of the CBF filter with one-step ahead token prediction, we extend the filter with
multi-step ahead token prediction. Let H ∈ {1, 2, . . .} denote “prediction horizon”, and further let y denote the
sequence composed of H tokens, i.e.,y = [t1, t2, . . . , tH]. At each time, the method collects K ∈ {1, 2, . . .}
candidates of H-token sequences y1, y2, . . . , yK generated from the baseline LLM that continues from x(k) such
that the CBF inequality holds, i.e., (4) with h(k) = h(x(k)) and h(k + 1) = h(concat(x(k), y)). The next
H-token sequence is selected from these candidates according to the probability distribution P (y|x(k)) derived
by the baseline LLM.

The controlled decoding with multi-step ahead prediction is also presented as the Blockwise best-of-K method
in the work (Mudgal et al., 2024). The method selects the best of K candidates of H-token sequences generated
from the baseline LLM without imposing any constraints.

9

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

Table 2: Undesirable-Generation Rate / Naturalness

Sample Size
K

Multi-Step Ahead CBF-LLM
(H = 3, α = 0.8)

Blockwise best-of-K (Mudgal et al., 2024)
(H = 3)

2 0.00/0.722 0.30/0.592
4 0.00/0.718 0.02/0.695
5 0.00/0.727 0.00/0.701

To demonstrate the reliability of controlled decoding, we conduct a text generation experiment using both the
multi-step ahead CBF-LLM and the Blockwise best-of-K (Mudgal et al., 2024). The baseline LLM, the model
for L-CF, and the initial texts used in this experiment are the same as those in Subsection 4.2.

We evaluated the naturalness by G-Eval and the proportion of generated texts that were undesirable, i.e., the
generated text x where h(x) < 0 holds, for each method. The results are shown in Table 2. At each element, the
left-side value and the right-side value display the undesirable generation rate and the naturalness, respectively.
We can see that the naturalness is higher in the multi-step ahead CBF-LLM compared to the Blockwise best-of-K
method. Notably, when the sample size K is small, the Blockwise best-of-K had a relatively high rate of unde-
sirable text generation. The Blockwise best-of-K method does not disallow the user-undesired outputs, which
may lead to user-undesired results. In contrast, the multi-step ahead CBF-LLM did not produce any undesirable
text for any value of K due to the safety filter. Given the practical need to reduce K due to some reason, such as
computational efficiency, the multi-step ahead CBF-LLM has potential in scenarios where avoiding undesirable
text is guaranteed.

5 CONCLUDING REMARKS

This paper proposed the control-based LLM alignment framework, called CBF-LLM. This framework utilizes
the control barrier function (CBF), commonly used in control engineering to ensure the safety of physical objects,
such as the collision avoidance function in assisted driving vehicles. Based on an analogy between the control
theory and the LLM alignment task, we employed the CBF-based safety filter to ensure that the text-generation
system generates desirable content. The key feature of CBF-LLM is that the CBF filter can be attached to the
baseline LLM in an add-on manner: it intervenes in the output of the baseline LLM without any additional train-
ing of LLMs. This paper also presented the implementation of CBF-LLM by Llama 3 and a sentiment analysis
RoBERTa model to ensure that the text-generation system generates positive content. The text-generation exper-
iment showed that CBF-LLM outperforms the baseline method in terms of naturalness, positiveness, generation
time, and the reliability of controlled decoding.

In CBF-LLM, the key challenge is to effectively incorporate human feedback and existing evaluation models to
reflect human preferences into the L-CF. The design of L-CF is similarly challenging to construct a high-quality
reward model in RLHF approaches. The value of CBF filters lies in their ability to facilitate easy modifications.
To illustrate this, we show two scenarios: In a scenario, consider that an aligned LLM is developed and integrated
into a service system. Suppose that an ethical or other critical issue is discovered with the original data used
for alignment. Then, it becomes challenging to remove the influence of the data from the LLM using RLHF-
based methods, such as unlearning (Isonuma & Titov, 2024). This can lead to the suspension of the service
system. In contrast, in CBF-LLM, an add-on type alignment method, we can simply disable the CBF filter
to maintain the service operation while modifying the specifications. In the other scenario, consider an LLM
initially trained or controlled to produce positive text. Later, suppose that an additional requirement is added
such as ensuring that the generated text is easy for children to comprehend. In CBF-LLM, we can independently
design a readability CBF filter without modifying the existing positivity CBF filter, allowing the system to meet
the updated requirements without having to retrain the entire LLM. This approach enables us to easily adapt
to changing specifications and requirements. In these scenarios, the CBF-LLM approach offers a significant
advantage.

REFERENCES

Aaron D. Ames et al. Control Barrier Functions: Theory and Applications. In 2019 18th European Control
Conference (ECC), pp. 3420–3431, 2019. doi: 10.23919/ECC.2019.8796030.

10

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

Dimosthenis Antypas et al. Twitter Topic Classification. In Proceedings of the 29th International Conference on
Computational Linguistics, pp. 3386–3400, Gyeongju, Republic of Korea, October 2022. International Com-
mittee on Computational Linguistics. URL https://aclanthology.org/2022.coling-1.299.

Yuntao Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feed-
back. arXiv preprint arXiv:2204.05862, 2022a. URL https://arxiv.org/abs/2204.05862.

Yuntao Bai et al. Constitutional AI: Harmlessness from AI Feedback. arXiv preprint arXiv:2212.08073, 2022b.
URL https://arxiv.org/abs/2212.08073.

Aman Bhargava et al. What’s the Magic Word? A Control Theory of LLM Prompting. arXiv preprint
arXiv:2310.04444, 2024. URL https://arxiv.org/abs/2310.04444.

Tom Brown et al. Language Models are Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020.

Nicola De Cao et al. Autoregressive Entity Retrieval. arXiv preprint arXiv:2010.00904, 2021. URL
https://arxiv.org/abs/2010.00904.

ConvoKit. Reddit Corpus (small), 2018. https://convokit.cornell.edu/documentation/reddit-small.html.

Josef Dai et al. Safe RLHF: Safe Reinforcement Learning from Human Feedback.
In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=TyFrPOKYXw.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe Control With Learned Certificates: A Survey of Neural
Lyapunov, Barrier, and Contraction Methods for Robotics and Control. IEEE Transactions on Robotics, 39
(3):1749–1767, 2023. doi: 10.1109/TRO.2022.3232542.

Qingxiu Dong et al. A Survey on In-context Learning. arXiv preprint arXiv:2301.00234, 2024. URL
https://arxiv.org/abs/2301.00234.

Abhimanyu Dubey et al. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783, 2024. URL
https://arxiv.org/abs/2407.21783.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large language
models using semantic entropy. Nature, 630(8017), 2024. doi: 10.1038/s41586-024-07421-0. URL
https://doi.org/10.1038/s41586-024-07421-0.

Amelia Glaese et al. Improving Alignment of Dialogue Agents via Targeted Human Judgements. arXiv preprint
arXiv:2209.14375, 2022. URL https://arxiv.org/abs/2209.14375.

Dongyoung Go et al. Aligning Language Models with Preferences through f-divergence Minimization. arXiv
preprint arXiv:2302.08215, 2023. URL https://arxiv.org/abs/2302.08215.

John M. Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems,
and bifurcations of vector fields. In Applied Mathematical Sciences, 1983. URL
https://api.semanticscholar.org/CorpusID:119542869.

Thomas Gurriet et al. Towards a Framework for Realizable Safety Critical Control through Active Set Invariance.
In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), pp. 98–106, 2018. doi:
10.1109/ICCPS.2018.00018.

Juqi Hu, Caini Wang, and Hejia Gao. An Adaptive Collision Avoidance Decision Method for Various Driving
Conditions. In 2023 6th International Conference on Robotics, Control and Automation Engineering (RCAE),
pp. 152–157, 2023. doi: 10.1109/RCAE59706.2023.10398787.

James Y. Huang, Sailik Sengupta, Daniele Bonadiman, Yi an Lai, Arshit Gupta, Nikolaos Pappas, Saab Mansour,
Katrin Kirchhoff, and Dan Roth. DeAL: Decoding-time Alignment for Large Language Models. arXiv preprint
arXiv:2402.06147, 2024. URL https://arxiv.org/abs/2402.06147.

HuggingFace. Generation Utils - Transformers. URL https://huggingface.co/docs/transformers/internal/generation_utils.

11

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

Axton Isaly et al. On the Feasibility and Continuity of Feedback Controllers Defined by Multiple Control Barrier
Functions. IEEE Transactions on Automatic Control, pp. 1–15, 2024. doi: 10.1109/TAC.2024.3383069.

Masaru Isonuma and Ivan Titov. Unlearning Traces the Influential Training Data of Language Models. arXiv
preprint arXiv:2401.15241, 2024. URL https://arxiv.org/abs/2401.15241.

Natasha Jaques et al. Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-
control. arXiv preprint arXiv:1611.02796, 2017. URL https://arxiv.org/abs/1611.02796.

Saurav Kadavath et al. Language Models (Mostly) Know What They Know. arXiv preprint arXiv:2207.05221,
2022. URL https://arxiv.org/abs/2207.05221.

Nitish Shirish Keskar et al. CTRL: A Conditional Transformer Language Model for Controllable Generation.
arXiv preprint arXiv:1909.05858, 2019. URL https://arxiv.org/abs/1909.05858.

Sungdong Kim et al. Aligning Large Language Models through Synthetic Feedback. arXiv preprint
arXiv:2305.13735, 2023. URL https://arxiv.org/abs/2305.13735.

Ruibo Liu et al. Aligning Generative Language Models with Human Values. In Marine
Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Findings of the As-
sociation for Computational Linguistics: NAACL 2022, pp. 241–252, Seattle, United States, July
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.18. URL
https://aclanthology.org/2022.findings-naacl.18.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-Eval: NLG Evaluation
using Gpt-4 with Better Human Alignment. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 2511–2522, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.153. URL
https://aclanthology.org/2023.emnlp-main.153.

Brett T. Lopez, Jean-Jacques E. Slotine, and Jonathan P. How. Robust Adaptive Control Barrier Functions: An
Adaptive and Data-Driven Approach to Safety. IEEE Control Systems Letters, 5(3):1031–1036, 2021. doi:
10.1109/LCSYS.2020.3005923.

Daniel Loureiro et al. TimeLMs: Diachronic language models from Twitter. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 251–260, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-demo.25. URL
https://aclanthology.org/2022.acl-demo.25.

Shervin Minaee et al. Large Language Models: A Survey. arXiv preprint arXiv:2402.06196, 2024. URL
https://arxiv.org/abs/2402.06196.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled Decoding from Language Models. arXiv preprint arXiv:2310.17022, 2024. URL
https://arxiv.org/abs/2310.17022.

Yûki Nishimura and Kenta Hoshino. Control Barrier Functions for Stochastic Systems and Safety-Critical Con-
trol Designs. IEEE Transactions on Automatic Control, pp. 1–8, 2024. doi: 10.1109/TAC.2024.3415456.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training Language Models to Follow Instructions with
Human Feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

Xue Bin Peng et al. Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning.
arXiv preprint arXiv:1910.00177, 2019. URL https://arxiv.org/abs/1910.00177.

Rafael Rafailov et al. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 53728–53741. Curran Associates, Inc., 2023.

Tianhao Shen et al. Large Language Model Alignment: A Survey. arXiv preprint arXiv:2309.15025, 2023. URL
https://arxiv.org/abs/2309.15025.

12

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

Stefano Soatto et al. Taming AI Bots: Controllability of Neural States in Large Language Models. arXiv preprint
arXiv:2305.18449, 2023. URL https://arxiv.org/abs/2305.18449.

Andrew J. Taylor and Aaron D. Ames. Adaptive Safety with Control Barrier Functions. In 2020 American
Control Conference (ACC), pp. 1399–1405, 2020. doi: 10.23919/ACC45564.2020.9147463.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang, Xin Jiang,
and Qun Liu. Aligning Large Language Models with Human: A Survey. arXiv preprint arXiv:2307.12966,
2023. URL https://arxiv.org/abs/2307.12966.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Poovendran.
SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 5587–5605, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.303. URL
https://aclanthology.org/2024.acl-long.303.

Kevin Yang and Dan Klein. FUDGE: Controlled Text Generation With Future Discriminators. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
naacl-main.276. URL http://dx.doi.org/10.18653/v1/2021.naacl-main.276.

Jun Zeng, Bike Zhang, and Koushil Sreenath. Safety-Critical Model Predictive Control with Discrete-Time
Control Barrier Function. In 2021 American Control Conference (ACC), pp. 3882–3889, 2021. doi: 10.23919/
ACC50511.2021.9483029.

Hao Zhao et al. Is In-Context Learning Sufficient for Instruction Following in LLMs? arXiv preprint
arXiv:2405.19874, 2024. URL https://arxiv.org/abs/2405.19874.

Chunting Zhou et al. LIMA: Less Is More for Alignment. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 55006–
55021. Curran Associates, Inc., 2023.

Joshua Zingale and Jugal Kalita. Language Model Sentence Completion with a Parser-Driven Rhetori-
cal Control Method. In Yvette Graham and Matthew Purver (eds.), Proceedings of the 18th Confer-
ence of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Pa-
pers), pp. 193–203, St. Julian’s, Malta, March 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.eacl-short.18.

13

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

Appendix

A NOMINAL TEXT-GENERATION SYSTEM

The structure of the nominal text-generation system presented in Subsection 2.2 is shown in Fig. 7.

𝑍!"

Token Predictor
𝐺

Token Selector
𝐶

Text 𝑥

Next Token 𝑡∗

Probability 𝑃

concat

Text 𝑥

LLM

Figure 7: Nominal structure for text generation

The algorithm of the nominal text-generation system is presented in Algorithm 1

Algorithm 1 Nominal text generation

Require: x0 ∈ X : initial text.
Require: T ≥ 0 : temperature, hyperparametes of the token predictor G.

1: k ← 0
2: x(0)← x0

3: while true do
4: P ← softmax(fLLM(x)/T)
5: t∗ ← randomly choose the token according to the P .
6: x(k + 1)← concat(x(k), t∗)
7: k ← k + 1
8: end while

B VEHICLE CONTROL AND LLM CONTROL

An analogy between vehicle collision avoidance and intervention-based LLM alignment can be drawn as illus-
trated in Fig. 1 in Section 1. Consider the LLM as an analogy to a vehicle, and the generated text as an analogy to
the vehicle’s trajectory. Both vehicle collision avoidance and LLM alignment aim to guide the complex system
away from undesirable states by designing proper control strategies. The goal of vehicle collision avoidance is
to prevent collisions with obstacles by intervening in the vehicle’s trajectory. For example, if there are obsta-
cles ahead of the vehicle, it is necessary to operate the steering or use the brakes to avoid colliding with them.

14

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

Similarly, LLM alignment aims to prevent undesirable outputs, such as harmful content. To this end, CBF-LLM
intervenes in the token probabilities at each step during the generation to generate the desirable “trajectory” of
the token sequence.

However, there is a key difference between the two systems: while vehicle collision avoidance involves direct
access to physical quantities such as steering angle and brake pedal position, intervention-based LLM alignment
involves access to the probability distribution of generated tokens. This difference will be taken into account in
the development of our control strategy.

C ALGORITHM OF THE CBF FILTER WITH TOP-K SAMPLING

The algorithm of the text-generation system with CBF filter, introduced in Section 3, is presented in Algorithm 2.

Algorithm 2 CBF filter FCBF with top-k sampling

Require: P ∈ RN : token probabilities from the token predictor G.
Require: x ∈ X : current text.
Require: α ∈ [0, 1] : CBF’s hyperparameter.
Require: h : X → R : the language-constraint function.
Require: ktop : the top-k parameter.

1: P ′ ∈ RN ← 0N
2: I ∈ {1, . . . , N}N ← argsort(P) {Sort the indexes of P in descending order, i.e., P [I[i]] ≥ P [I[i + 1]]

holds for every i ∈ {1, . . . , N − 1}.}
3: j ← 1
4: k ← 0 {Counter of allowed token}
5: while k < ktop do
6: x+ ← concat(x, I[j])
7: if h(x+)− h(x) ≥ −αh(x) then
8: {This token I[j] is allowed: it satisfies the CBF constraint (4).}
9: P ′[I[j]]← P [I[j]]

10: k ← k + 1
11: else
12: {Do nothing; this token I[j] is disallowed.}
13: end if
14: j ← j + 1
15: end while
16: return P ′

D ALGORITHM OF NOMINAL TEXT GENERATION WITH TOP-K SAMPLING

Recall that Fig. 2 shows the text-generation system and intervention procedure in block diagram format. To rep-
resent general top-k sampling with no control in this figure, the filter FNC is provided, as shown in Algorithm 3.

E THE NORMALIZER’S KL MINIMALITY

We analyze the performace of normalizer presented in Proposition 1. To this end, we let allowed and disallowed
set are written in A and D, respectively.

15

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

Algorithm 3 No-control filter FNC with top-k sampling

Require: P ∈ RN : token probabilities from the token predictor G.
Require: x ∈ X : current text.
Require: ktop : the top-k parameter.

1: P ′ ∈ RN ← 0N
2: I ∈ {1, . . . , N}N ← argsort(P)
3: k ← 1
4: while k < ktop do
5: P ′[I[k]]← P [I[k]]
6: k ← k + 1
7: end while
8: return P ′

Given P ′, consider the following optimization problem:

min
Q

DKL(Q||P ′), (15a)

s.t. Q[t] > 0, ∀t ∈ A (15b)
Q[t] = 0, ∀t ∈ D, (15c)
N∑
t=1

Q[t] = 1. (15d)

(15e)

The constraint (15c) requires that the probability of disallowed token t needs to be kept at 0.

The KL divergence (15a) is rewritten as DKL(Q||P ′) =
∑N

t=1 Q[t] ln Q[t]
P ′[t] . Recalling P ′[t] > 0, ∀t ∈ A, we

express the KL divergence as ∑
t∈A

Q[t] ln
Q[t]

P ′[t]
. (16)

Now, we are focusing only on allowed tokens, t ∈ A, and the optimization problem (15) is simplified as:

min
{Q[t]},t∈A

∑
t∈A

Q[t] ln
Q[t]

P ′[t]
, (17a)

s.t. Q[t] ≥ 0, ∀t ∈ A (17b)∑
t∈A

Q[t] = 1. (17c)

The objective function (17a) is convex to Q[t], t ∈ A and has the minimum values, since the Hessian matrix is
positive semi-definite, i.e.,

H(Q[t], t ∈ A) = diag

{
1

QA[1]
+ 1, . . . ,

1

QA[|A|]
+ 1

}
⪰ 0, (18)

where QA[t] denotes the probability of t-th allowed token.

Now, we formulate the Lagrange function L as follows:

L :=
∑
t∈A

Q[t] ln
Q[t]

P ′[t]
+ λ

(∑
t∈A

Q[t]− 1

)
, (19)

where λ is the Lagrange multiplier. The minimum of the problem (17) should satisfy the following equation:

∂L

∂Q[t]
= 0, ∀t ∈ A. (20)

16

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

For token t, it follows that:

∂L

∂Q[t]
=

∂

∂Q[t]

∑
i∈A

Q[t](lnQ[t]− lnP ′[t]) + λ

(∑
i∈A

Q[t]− 1

)
(21)

= lnQ[t] + 1− lnP ′[t] + λ (22)
=0. (23)

This implies that, Q[t], t ∈ A is

Q[t] = e−(1+λ)P ′[t], ∀t ∈ A. (24)

Note that the coefficient e−(1+λ) is common for all t ∈ A. Then, we see that (17c) holds for λ = ln
∑

i∈A P ′[i]−
1, Q[t] and this reduces e−(1+λ) to

Q[t] =
P ′[t]∑
i∈A P ′[i]

, ∀t ∈ A. (25)

Finally, recalling P ′[t] = 0, t ∈ D, we have the expression (25) extended to a form that includes up to disallowed
tokens D, as follows:

Q[t] =
P ′[t]∑N
i=1 P

′[i]
, ∀t ∈ {1, . . . , N}, (26)

which is equivalent to (10).

It concludes that the normalizer (10) has the KL minimality under the constraint that the probability of each
disallowed token t is 0.

F CBF-LLM AND RL-BASED APPROACHES

In RLHF and DPO, the work by Jaques et al. (2017) shows that the optimization problem of LLM alignment is
formulated as

max
π

Ex∼D,y∼π(y|x)[r(x, y)]− βDKL[π(y|x)||πref(y|x)], (27)

where π is the LLM to be trained, x is the input text, D is the set of input text, y is the output text, r is the reward
function, πref is the baseline LLM, and β is a parameter adjusting the deviation from πref . As studied in prior
works such as (Peng et al., 2019), the optimization problem (27) has the optimum π∗ as follows:

π∗(y|x) = 1

Φ(x)
πref(y|x) exp

(
1

β
r(x, y)

)
, (28)

where Φ(x) is the partition function and its inversion serves as the normalizer. It can be seen that the optimum
π∗ is derived by multiplying the baseline LLM πref by exp

(
1
β r(x, y)

)
, in which human preference is involved.

Here, we recall the structure of CBF-LLM algorithm. For comparison, let πCBF(t|x) denote a CBF-filtered
probability Q[t] given the text x. Then, the CBF-filtered probability is described as follows:

πCBF(t|x) = R(x)πref(t|x)F (t|x), (29)

where t is a predicted token, πref(t|x) equals to the baseline probability P [t], F (t|x) is the CBF filter defined
in (9), and R(x) is the normalizer defined in (10). Notably, the CBF-filtered probability πCBF(y|x) is derived
by multiplying the baseline probability πref by R(x) and F (t|x). The CBF-filter F (t|x) incorporates the user
preferences into the inference results of the baseline LLM, while R(x) performs the normalization of probabil-
ities. This setup follows a similar structure to the RL-based approaches. However, the CBF filter F (t|x) takes
either 0 or constant value, which is different from the optimal policy of RL-based approaches. This justifies the
alignment approach by CBF-LLM.

17

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

G EXPERIMENT RESULTS

G.1 CBF-LLM FOR POSITIVE TEXT GENERATION

The following are examples of generated texts by each filter designed in Subsection 4.2. The red slash / indicates
the line break.

Initial Text: Yeah this is the biggest

CBF(α = 0.3) : Yeah this is the biggest release of any kind in the 2 weeks i ’ve been a member! It ’s
amazing! Thank you!/What about making the new theme available for
CBF(α = 0.8) : Yeah this is the biggest, and best reason why your life may change for the better./5) You
are ready to meet a girl, or girl, who will be able
Blocklist : Yeah this is the biggest of the ones you posted./As you can see, this one is bigger by far, the
most detailed and the most expensive for those who want a
NoControl : Yeah this is the biggest mistake we make, thinking we can ’t do it. It isn ’t really our fault
though, it is because of society ’s expectations; we are told

G.1.1 ATTRACTOR ANALYSIS ON POSITIVE TEXT GENERATION

Fig. 8 shows the distribution of L-CF value h(x) during the generation of each filter. In the figures, the horizontal
axis is the value of h, and the vertical axis is the difference in h from the previous time step. The figures show the
results of analyzing all tokens processed by the filter during the generation process. Their plots are the value of
h and its difference for each token when it is selected. The dotted lines represent the CBF constraint, and tokens
with ∆h value lower than them are disallowed by the filters.

The values of h tend to remain within a close range. In the NoControl and the Blocklist cases, the values of
h tend to cluster around two distinct attractors. Especially, in the Blocklist case, the value of h tend to cluster
around the boundary h(x) = 0. However, in the CBF with α = 0.8 case, the values of h tend to cluster around
strong mode and shallow attractor, and in the CBF with α = 0.3 case, the values of h tend to cluster around a
single attractor. In Fig. 8a, some tokens cluster in the negative range of h, implying that the baseline LLM tends
to generate the non-positive content. These results imply that the attractor of the L-CF value h gets influenced
by the CBF filter and its hyperparameter value, α.

G.1.2 EVALUATION DETAIL

In the naturalness and positiveness evaluation by G-Eval framework Liu et al. (2023), we used GPT-4 and the
following prompt. The scores are normalized by dividing the response values by 10.

18

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

1.0 0.5 0.0 0.5 1.0
Current L-CF value h(x)

0.4

0.2

0.0

0.2

0.4

h(
x

+
)

(a) NoControl

1.0 0.5 0.0 0.5 1.0
Current L-CF value h(x)

0.4

0.2

0.0

0.2

0.4

h(
x

+
)

Constraint

(b) Blocklist

1.0 0.5 0.0 0.5 1.0
Current L-CF value h(x)

0.4

0.2

0.0

0.2

0.4

h(
x

+
)

Constraint

(c) CBF(α = 0.8)

1.0 0.5 0.0 0.5 1.0
Current L-CF value h(x)

0.4

0.2

0.0

0.2

0.4

h(
x

+
)

Constraint

(d) CBF(α = 0.3)

Figure 8: Attractors: 2D histogram of (h,∆h)

Naturalness

Given the evaluation steps, return a JSON with two keys: 1) a ‘score‘ key ranging from 0 - 10, with 10 being that it
follows the criteria outlined in the steps and 0 being that it does not, and 2) a ‘reason‘ key, a reason for the given
score, but DO NOT QUOTE THE SCORE in your reason. Please mention specific information from actual output
in your reason, but be very concise with it! Evaluation Steps: 1. Compare the actual output with a standard set of
naturally written texts.
2. Look for the presence of normal conversational phrases and expressions in the actual output.
3. Check if the actual output follows a logical and coherent sequence of ideas.
4. Evaluate if the actual output uses appropriate and varied vocabulary that fits the context.

actual output : Output text

**
IMPORTANT: Please make sure to only return in JSON format, with the ”score” and ”reason” key. No words or
explanation is needed.

Example JSON:
{{
”score”: 0,
”reason”: ”The text does not follow the evaluation steps provided.”
}}
**

JSON:
”””

19

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

Table 3: Evaluation Results

of Disallowed Tokens
per Generation

Generation Time
per Token [s]

Naturalness Positiveness

CBF(α = 0.2) 575 0.118 0.605 0.585
CBF(α = 0.4) 335 0.110 0.627 0.657
CBF(α = 0.6) 469 0.114 0.679 0.564
CBF(α = 0.8) 299 0.108 0.660 0.535
Blocklist 368 0.110 0.653 0.547
NoControl 0 0.0995 0.647 0.359

Positiveness

Given the evaluation steps, return a JSON with two keys: 1) a ‘score‘ key ranging from 0 - 10, with 10 being that it
follows the criteria outlined in the steps and 0 being that it does not, and 2) a ‘reason‘ key, a reason for the given
score, but DO NOT QUOTE THE SCORE in your reason. Please mention specific information from actual output
in your reason, but be very concise with it! Evaluation Steps: 1. Identify and note down all the positive words and
phrases used in the given text.
2. Evaluate the frequency and distribution of these positive words/phrases throughout the text.
3. Assess the context in which these positive words/phrases are used, to ensure they are indeed contributing to a
positive sentiment.
4. Compare the frequency, distribution, and context of positive words/phrases in the given text with those in other
texts to determine its positivity level.

actual output : Output text

**
IMPORTANT: Please make sure to only return in JSON format, with the ”score” and ”reason” key. No words or
explanation is needed.

Example JSON:
{{
”score”: 0,
”reason”: ”The text does not follow the evaluation steps provided.”
}}
**

JSON:
”””

The whole results for evaluation are shown in Table 3.

G.2 CBF-LLM FOR MAINTAINING SPECIFIC TOPIC

The following are examples of generated texts by each filter designed in Subsection 4.3. The red slash / indicates
the line break.

20

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

Initial Text: It’s time for lunch, but

CBF(α = 0.3) : It’s time for lunch, but I forgot 57 chicken bones. I can’t start without them.” /”Then
I’ll be off for 57 chicken bones,” his mother told him and handed him
CBF(α = 0.8) : It’s time for lunch, but I forgot 99 steak tips! What to do? I’ll whip together a quick
salad. What do I have on hand? Spinach leaves
Blocklist : It’s time for lunch, but I forgot 32 forks. Can you help me by picking some up? 6 forks can
be picked at a time, and I want to know how many ways
NoControl : It’s time for lunch, but I forgot 32 forks. Can you help me by picking some up? 6 forks can
be picked at a time, and I want to know how many ways

G.3 HALLUCINATION MITIGATING

The following are examples of generated codes by each filter designed in Subsection 4.4 and their evaluations.
The red slash / indicates the line break.

NoControl

• [TE]0 print(*[”Buzz” if i%5==0 else ”Fizz” if i%3==0 else ”FizzBuzz” if i%15==0 else str(i) for i in
range(1,101)],sep=”\n”)

• [TE]1 print([f”i ’FizzBuzz’ if i % 15 == 0 else ’Fizz’ if i % 3 == 0 else ’Buzz’ if i % 5 == 0 else i” for i in range(1,
101)])

• [TE]2 ‘for s in range(1,101):print(f”sfizz”if s%3==0 else f”sbuzz”if s%5==0 else f”s”)‘
• [TE]3 print(*[f”iF”B”*(not i%3 or not i%5)” for i in range(1,101)])
• [OK]4 print(”\n”.join([”Fizz” if n%3==0 and n%5!=0 else ”Buzz” if n%5==0 and n%3!=0 else ”FizzBuzz” if

n%15==0 else str(n) for n in range(1,101)]))
• [TE]5 ‘print(*[f”Fizz” if i%3==0 else ”Buzz” if i%5==0 else i for i in range(1,101)],sep=”\n”)‘
• [OK]6 print(”\n”.join([”FizzBuzz” if i%15==0 else ”Fizz” if i%3==0 else ”Buzz” if i%5==0 else str(i) for i in

range(1,101)]))
• [SE]7 print(*[(i+’ Fizz’) if i%3==0 else (i+’ Buzz’) if i%5==0 else i for i in range(1,101) if i%3!=0 or i%5!=0])
• [TE]8 ‘for i in range(1,101):print(”Fizz” if i%3==0 else”Buzz” if i%5==0 else i)‘
• [TE]9 ‘print(*[x if x%3 else ”Fizz”*((x%5)//2+1) if x%5 else ”Buzz” if x%5 else ”FizzBuzz” for x in

range(1,101)], sep=’\n’)‘

CBF(α = 0.8)

• [SE]0 f(n: int)=’FizzBuzz’*(n//n)+(’Fizz’*(n//int(n/3)))+’Buzz’*(n//int(n/5))+str(n)[n//int(n/5)%5:]or str(n)
• [SE]1 ‘for i in range(1,101):print(’Fizz’if i%3==0else’Buzz’if i%5==0 else i) if name ==” main ”:‘
• [TE]2 print(*[f”Buzz” if i%5==0 else f”Fizz” if i%3==0 else f”{i}” if i%15!=0 else ”FizzBuzz” for i in

range(1,101)], sep=’\n’)
• [TE]3 print(*[f”Fizz”*(n%3==0)+f”Buzz”*(n%5==0) or ” ” for n in range(1,101)],sep=”\n”)
• [OK]4 Here is a unique FizzBuzz implementation in a single row in Python:

‘for x in range(1,101):print(’FizzBuzz’if x%15==0else’Fizz’if x%3==0else’Buzz’if x%5==0else x)‘
Let me know if you’d like me to explain how it works!

• [SE]5 print(*[f”{str(int(f”\{str(1+(i%4== 202)+ i%4== i%4%i”).lower().count(’fizzbuzzfizziiz’)).replace(’”’,”).ljust}”
for i in range(101)], sep=”\n”)

• [SE]6 f=lambda z:”FizzBuzz”[z%8::”FizzBuzz”.index(z%2*”fizz”[z%2::-1]+”uzz”[z%4::-::-::-::-::-::-1])]and
f(z-1)or None

• [SE]7 print(*[i*’Fizz’ or ”+’, ’+’if i%3 else ” for i in range(1,101)][:-3]+[’Buzz’for i in range(1,101) if i%5==])
• [TE]8 ‘for i in range(1,101):print(”FizzBuzz”*(i%15==0)+(”fizz”*(i%3==0))+(”buzz”*(i%5==0)) or i)‘
• [SE]9 print(*[f”{f’FizzBuzz’{(i%(”Fizz”.count(”iz”)+(”Buzz”.count(”uz”)+not((not

i%(”Fizz”.count(”iz”)+not((not i%(”Buzz”.count(”uz”)+ (not i%(”Fizz”.count(”iz))+not(i%(”Buzz”.count(”z)))))+((not
i%(”Fizz”.count(”z))+not(i%(”Buzz”.count(”z”))))-(((not i%((”Buzz”.count(”z”)+1)+((not
i%(”Fizz”.count(”z))+not(i%(”Buzz”.count(”z)+(not i%(”Fizz”.count(”iz))+not(i%(”Buzz”.count(”z)))))))))))))-
((not i%((”Buzz”.count(”z’)+1)+((not i%(”Fizz”.count(”z’)+not(i%(”Buzz”.count(”z”)+((not
i%(”Fizz”.count(”iz))+not(i%

21

