
Under review as submission to TMLR

The Initialization Determines Whether In-Context Learning
Is Gradient Descent

Anonymous authors
Paper under double-blind review

Abstract

In-context learning (ICL) in large language models (LLMs) is a striking phenomenon,
yet its underlying mechanisms remain only partially understood. Previous work connects
linear self-attention (LSA) to gradient descent (GD), this connection has primarily been
established under simplified conditions with zero-mean Gaussian priors and zero initialization
for GD. However, subsequent studies have challenged this simplified view by highlighting
its overly restrictive assumptions, demonstrating instead that under conditions such as
multi-layer or nonlinear attention, self-attention performs optimization-like inference, akin
to but distinct from GD. We investigate how multi-head LSA approximates GD under
more realistic conditions—specifically when incorporating non-zero Gaussian prior means in
linear regression formulations of ICL. We first extend multi-head LSA embedding matrix by
introducing an initial estimation of the query, referred to as the initial guess. We prove an
upper bound on the number of heads needed for ICL linear regression setup. Our experiments
confirm this result and further observe that a performance gap between one-step GD and
multi-head LSA persists. To address this gap, we introduce yq-LSA, a simple generalization
of single-head LSA with a trainable initial guess yq. We theoretically establish the capabilities
of yq-LSA and provide experimental validation on linear regression tasks, thereby extending
the theory that bridges ICL and GD. Finally, inspired by our findings in the case of linear
regression, we consider widespread LLMs augmented with initial guess capabilities, and show
that their performance is improved on a semantic similarity task.

1 Introduction

Figure 1: Training and evalua-
tion loss curves of LSA with a
non-zero prior mean. The dashed
red line denotes the baseline loss
achieved by one-step GD.

Large language models (LLMs) exhibit the interesting phenomenon of
in-context learning (ICL), whereby models adapt to new tasks from a few
input-label pairs presented in the context, without parameter updates
(Brown et al., 2020; Dong et al., 2024). This capability has motivated
extensive efforts to clarify the underlying mechanisms. A prominent line
of work interprets ICL in simplified linear regression settings as implicitly
performing gradient descent (GD) within a forward pass of linear self-
attention (LSA) (Garg et al., 2022; Von Oswald et al., 2023).

However, this equivalence has mostly been established under restrictive
assumptions, notably zero-mean Gaussian priors for regression weights and
zero initialization for GD. Recent work indicates that these conditions are
fragile: Zhang et al. (2024b) showed that introducing a non-zero mean prior
produces a persistent gap between LSA and GD, undermining previous
guarantees (see Fig. 1). These findings raise a fundamental question:
“under what conditions can LSA faithfully recover GD, and when does it
fundamentally fail?”

In this paper, we revisit the ICL-GD connection under more realistic
assumptions, explicitly incorporating non-zero prior means and systemati-

1

Under review as submission to TMLR

cally analyzing the role of attention heads and initialization. Our study reveals that the decisive factor is the
initialization of the query’s prediction, which we term the initial guess yq. Misalignment between yq and the
prior induces a persistent gap that cannot be resolved by simply increasing the number of heads. Motivated
by this observation, we propose yq-LSA, an architectural extension that incorporates a trainable initialization
mechanism, thereby restoring equivalence with GD even in the non-zero mean setting.

Contributions. This work makes the following contributions:

1. We prove that when regression weights have a non-zero mean, multi-head LSA cannot in general
replicate one-step GD, even with arbitrarily many heads, establishing a fundamental limitation of
the ICL-GD correspondence.

2. We show that the query initialization yq is the decisive factor: misalignment induces a persistent gap,
while correcting yq suffices to recover GD even with a single head.

3. We propose yq-LSA, an extension of LSA with a trainable initialization vector, and demonstrate
both theoretically and empirically that it restores equivalence with GD in the non-zero mean setting.

4. We provide proof-of-concept experiments showing that introducing explicit initial guesses improves
ICL performance in LLMs, thereby linking our theoretical results with practical prompting strategies.

Scope. Our analysis focuses on linear regression with linear self-attention, a simplified but analytically
tractable setting. Within this framework, we identify precise conditions under which LSA diverges from
gradient descent and propose yq-LSA as a principled correction. These results provide a foundation for
extending analysis to richer transformer architectures, including softmax attention and multi-layer models.

1.1 Related Work

Theoretical studies on ICL have analyzed its mechanisms to understand how LLMs effectively learn from
contextual examples (Brown et al., 2020). ICL can be framed as an implicit Bayesian process where the model
performs posterior inference over a latent task structure based on contextual examples, performing a form of
posterior updating (Xie et al., 2022; Falck et al., 2024; Panwar et al., 2024; Ye et al., 2024). Alternatively, a
more recent perspective suggests that ICL in transformers is akin to gradient-based optimization occurring
within their forward pass. Von Oswald et al. (2023) demonstrate that self-attention layers can approximate
gradient descent by constructing task-specific updates to token representations. They provide a mechanistic
explanation by showing how optimized transformers can implement gradient descent dynamics with a given
learning rate (Rossi et al., 2024; Zhang et al., 2025). While this work provides a new perspective on ICL, it
limits the analysis to simple regression tasks and it simplifies the transformer architecture by considering a
single-head self-attention layer without applying the sfmx(·) function on the attention weights (also known as
linear attention). Ahn et al. (2023) extend the work of Von Oswald et al. (2023) by showing how the in-context
dynamics can learn to implement preconditioned gradient descent, where the preconditioner is implicitly
optimized during pretraining. More recently, Mahankali et al. (2024) prove that a single self-attention layer
converges to the global minimum of the squared error loss. Zhang et al. (2024b); Wang et al. (2025) also
analyze a more complex transformer architecture with a (linear) multi-layer perceptron (MLP) or softmax
after the linear self-attention layer, showing the importance of such block when pretraining for more complex
tasks.

Recent works have also raised important critiques of the ICL to GD hypothesis, questioning both its theoretical
assumptions and empirical applicability. For example, Shen et al. (2023; 2024) point out that many theoretical
results—such as those in Von Oswald et al. (2023)—rely on overly simplified settings, including linearized
attention mechanisms, handcrafted weights, or order-invariant assumptions not satisfied in real models.
Giannou et al. (2024); Fu et al. (2024) demonstrated that in a multi-layer self-attention setting, the internal
iterations of the Transformer conform more closely to the second-order convergence speed of Newton’s Method.
Therefore, the interpretation of ICL needs to be examined under more realistic assumptions.

2

Under review as submission to TMLR

In this work, we extend the above lines of research by emphasizing more realistic priors, specifically, non-zero
prior means. While Zhang et al. (2024a); Mahdavi et al. (2024) explore broader prior distributions by
analyzing covariate structures or modify the distribution of input feature, our focus instead lies on the
interplay between a non-zero prior mean and the capacity of LSA to emulate GD. We note that while Ahn
et al. (2023); Mahankali et al. (2024); Zhang et al. (2024b) provide compelling theoretical analyses, their work
does not include experimental validations. In doing so, our study builds upon and generalizes the prior-zero
analyses found in Von Oswald et al. (2023); Ahn et al. (2023), illuminating new challenges and insights that
arise when priors deviate from zero, both theoretically and empirically.

2 Preliminaries

We use x ∈ Rd and y ∈ R to denote a feature vector and its label, respectively. We consider a fixed number
of context examples, denoted by C > 0. We denote the context examples as (X, y) ∈ RC×d × RC , where
each row represents a context example, denoted by (x⊤

i , yi), i ∈ [C]. That is,

X
def=

x⊤
1
...

x⊤
C

 ∈ RC×d and y def=

y1
...

yC

 ∈ RC . (1)

To formalize an in-context learning (ICL) problem, the input of a model is an embedding matrix given by

E
def=

[
X⊤ xq

y⊤ yq

]
∈ R(d+1)×(C+1), (2)

where xq ∈ Rd is a new query input and yq ∈ R is an initial guess of the prediction for the query xq. The
model’s output corresponds to a prediction of y ∈ R. Notice that the embedding matrix in equation 2 is a
slight extension to the commonly used embedding matrix, e.g. presented in Von Oswald et al. (2023), where
yq is set to be zero by default. Its interpretation will be clearer in the next two sections.

Linear regression tasks. We formalize the linear regression tasks as follows. Assume that (X, y, xq, y)
are generated by:

• First, a task parameter is independently generated by ŵ ∼ N (w⋆, Id) , where N (w⋆, Id) is the prior, and
w⋆ is called the prior mean.

• The feature vectors are independently generated by xq, x1, . . . xC
i.i.d.∼ N (0, Id).

• Then, the labels are generated by y = ⟨ŵ, xq⟩, and yi = ⟨ŵ, xi⟩ , i ∈ [C], with no noise.

Here, w⋆ ∈ Rd is fixed but unknown and governs the data distribution.

A linear self-attention. We consider a linear self-attention (LSA) defined as
fLSA : R(d+1)×(C+1) → R,

E 7→
[
E + 1

C WP WV EWM (E⊤(WK)⊤WQE)
]

−1,−1, (3)

where WK , WQ, WP , WV ∈ R(d+1)×(d+1) are trainable parameters, [·]−1,−1 refers to the bottom right

entry of a matrix, and WM def=
[
IC 0
0 0

]
is a mask matrix. Our linearized self-attention removes softmax,

LayerNorm, and nonlinear activations. Consequently, the update is an affine function of low-order context
aggregates (e.g., X⊤X, X⊤y), which enables closed-form analysis of initialization effects while preserving the
in-context learning setup.

ICL risk. We measure the ICL risk of a model f by the mean squared error,

R(f) def= E[(f(E) − y)2], (4)

where the input E is defined in equation 2 and the expectation is over E (equivalent to over X, y, and xq)
and y. The performance of different models are characterized by the ICL risk.

3

Under review as submission to TMLR

3 Multi-Head Linear Self-Attention

In order to improve the performance of linear self-attention (LSA), we consider the multi-head extension. Let
H ∈ N be the number of heads. Similar to equation 3, we define the output of each transformer head as

headh(E) def= 1
C

WP
h WV

h EWM
(

E⊤(WK
h)⊤WQ

h E
)

, h ∈ [H], (5)

where WK
h , WQ

h , WP
h and WV

h are trainable parameters specific to the h-th head. The multi-head LSA
function is defined as

fH−LSA(E) def=
[
E +

∑H

h=1
headh(E)

]
−1,−1

. (6)

Standard multi-head attention concatenates head outputs and applies a linear projection W O. Algebraically,
Concat(head1, . . . , headH)W O equals

∑H
h=1 W P

h headh after absorbing W O into per-head projections {W P
h }.

We therefore use a sum without loss of generality, keep the model dimension (d+1), and retain per-head
contribution after reparameterization.

We emphasize that both the single-head LSA fLSA and the multi-head LSA fH−LSA share a common structural
property: the bottom-right entry of the output matrix corresponds to the prediction for the query point xq,
which can be interpreted as an initial guess yq refined by an attention-based update. In the special case of
linear regression with zero prior mean, i.e., w⋆ = 0, the choice yq = 0 introduces a non-trivial prior for the
initial guess, as already observed by Von Oswald et al. (2023). The empirical role of this initial guess in the
multi-head setting will be further analyzed in Section 5.1.3.

We denote by
FH−LSA

def=
{

fH−LSA

∣∣∣∣ {WK
h , WQ

h , WV
h , WP

h

}H

h=1

}
the hypothesis class associated with multi-head LSA models with H heads. Our first theoretical result
establishes an invariance of the optimal in-context learning risk with respect to the number of heads once it
exceeds the feature dimension.
Theorem 1. Let d ∈ N, and consider the hypothesis classes F(d+1)−LSA and F(d+2)−LSA corresponding to
multi-head LSA models with H = d + 1 and H = d + 2 attention heads, respectively. Then

inf
f∈F(d+1)−LSA

R(f) = inf
f∈F(d+2)−LSA

R(f) ,

where R(f) is the ICL risk defined in Eq. (4).

While the full proof of Theorem 1 is provided in Appendix A.1, we outline the key intuition here. Each
attention head contributes a rank-one update to a set of (d + 1) matrices that fully describe the model.
Collectively, these matrices live in a space of dimension (d + 1)3. A single head provides (d + 1)(d + 2) degrees
of freedom, so once the number of heads reaches d + 1, the parameter space already has enough capacity to
span the entire target space. In fact, with d + 1 heads one can explicitly construct any target configuration,
which means the model is already maximally expressive. Since adding further heads simply amounts to
appending zero-contributing heads, the hypothesis class does not grow beyond d + 1 heads, and the achievable
risk remains unchanged. In Section 5, we provide empirical evidence supporting this theoretical result across
a variety of model configurations.

Relation to concurrent work. Theorem 1 is a capacity statement for linear self-attention (LSA): once
the number of heads reaches H = d+1, the hypothesis class and the attainable ICL risk no longer improve
by adding heads. This contrasts with results for softmax attention, where (Cui et al., 2024) give exact risk
formulas for single/multi-head ICL and show that as the number of in-context examples C grows, both risks
scale as O(1/C) but multi-head achieves a smaller multiplicative constant when the embedding dimension
is large—an improvement in performance constants rather than capacity. Complementarily, (Chen et al.,
2024) study trained multi-layer transformers and find that multiple heads matter primarily in the first layer,
proposing a preprocess-then-optimize mechanism; their conclusions concern learned utilization patterns (with

4

Under review as submission to TMLR

softmax and multi-layer architectures), whereas Theorem 1 isolates an expressivity saturation specific to
single-layer LSA.

Next, we explore the convergence of multi-head LSA. Inspired by the analysis of Ahn et al. (2023), we analyze
the stationary point of the ICL risk for multi-head LSA functions.
Theorem 2. Let H ∈ N and consider the hypothesis class FH−LSA of multi-head LSA models with context
size C → ∞. Then the in-context learning risk R(f) admits no non-trivial stationary point in parameter
space. More precisely,

∇R(f) ̸= 0 for all f ∈ FH−LSA

for every choice of parameters {WK
h , WQ

h , WV
h , WP

h }H
h=1, except in the case where the prior mean vector

vanishes, w⋆ = 0.

Theorem 2 states that when the context size C → ∞, the gradient of the multi-head LSA’s ICL risk R(fH−LSA)
remains non-zero for the entire parameters space as long as w⋆ ̸= 0. This result highlights a fundamental
limitation of multi-head LSA under non-zero priors: no choice of weights WK

h , WQ
h , WP

h and WV
h with h ∈

[H] can minimize the ICL risk in the infinite-context limit.

Relation to concurrent work. Although previous works such as Ahn et al. (2023) and Mahankali et al.
(2024) provide analytical solutions corresponding to stationary points of the ICL risk, these results are derived
under the assumption that the prior mean w⋆ = 0. In this special case, the gradient of the ICL risk can
vanish, allowing the existence of a stationary point. Our analysis generalizes this observation: we prove
that when w⋆ ̸= 0, the gradient of the ICL risk remains strictly non-zero for all weights as context size
C → ∞, thus precluding the existence of stationary points. We adopt C → ∞ as an asymptotic approach,
as done by Zhang et al. (2024a); Huang & Ge (2024). Our analysis targets the asymptotic regime C → ∞,
where finite-sample correlation terms vanish and the gradient remains strictly non-zero for w⋆ ̸= 0, hence
no non-trivial stationary points exist. For fixed, finite C, an additional finite-sample correction—decaying
inversely with C—can partially cancel the leading gradient, producing apparent stationary points or plateaus
in practice. As C grows, these effects fade and the behavior converges to the asymptotic prediction, matching
our experiments.

Finally, even though such a stationary point exists with finite context size, we still cannot imply that the
stationary point is the global optimum, as the ICL risk of multi-head LSA R(fH−LSA) is not convex, presented
in the following lemma.
Lemma 1. For any H ∈ N, the in-context learning risk

R(f), f ∈ FH−LSA,

is not convex in the parameters {WK
h , WQ

h , WV
h , WP

h }H
h=1.

Because R(fH−LSA) is non-convex, any stationary point that arises, even at finite context sizes, does not
guarantee a global optimum. In other words, one may encounter local minima or saddle points that satisfy
the stationary condition without minimizing the overall ICL risk.

4 yq-Linear Self-Attention

To address the performance gap between one-step GD and multi-head LSA, we introduce yq-LSA, a general-
ization of single-head LSA.

4.1 Formulation of yq-LSA

Our approach builds upon the GD-transformer developed by Von Oswald et al. (2023); Rossi et al. (2024),
which implements one-step GD in a linear regression setup when the prior mean w⋆ is zero. The original
formulation is defined by the weight matrices

WV =
[

0 0
w⊤

⋆ −1

]
, WK = WQ =

[
Id 0
0 0

]
, WP = − η

C
Id+1, (7)

5

Under review as submission to TMLR

where η represents the GD step size. From the standard LSA formulation equation 3 with the given embedding
equation 2, we derive

fLSA(E) = yq − η

C
(w⊤

⋆ X⊤ − y⊤)Xxq, (8)

where the initial guess yq = 0 = w⊤
⋆ xq is fixed for any query xq, and the prior mean w⋆ is zero. See the

derivation of equation 8 in Appendix B for the completeness. Notably, we retain the terms for yq and w⋆ to
facilitate future extension to non-zero scenarios. Rewriting the equation equation 8 with yq = w⊤

⋆ xq yields

fLSA(E) =
(

w⋆ − η

C
X⊤(Xw⋆ − y)

)
⊤xq. (9)

The red term represents the gradient of the least-squares loss in linear regression. Consequently, fLSA(E)
becomes equivalent to a linear function f(xq) = w⊤xq, where w is the one-step GD update initialized at
the prior mean w⋆.

For the more general case with a non-zero prior mean w⋆, we relax the condition on the initial guess yq.
By allowing yq to be a linear function of xq, specifically yq = w⊤

⋆ xq, we obtain the prediction of the linear
regression task with a given query xq (

w⋆ − η

C
X⊤(Xw⋆ − y)

)⊤
xq, (10)

which still implements the one-step GD update. Given this, we can now define yq-LSA.
Definition 3 (yq-LSA). We define yq-LSA with a flexible initial guess embedding matrix

Ew
def=

[
X⊤ xq

y⊤ yq

]
∈ R(d+1)×(C+1), with yq = w⊤xq, (11)

where w ∈ Rd is a trainable parameter and yq is the initial guess. The yq-LSA function is defined as

fyq−LSA(X, y, xq) def= fLSA(Ew). (12)

The yq-LSA extends the standard LSA by introducing an additional parameter w in the embedding,
enabling better alignment with the query’s initial guess. The trainable parameters of yq -LSA now include
WK , WQ, WP , WV and w, with inputs X, y and xq.

4.2 Analysis of yq-LSA

Similar to the analysis of multi-head LSA, we first examine the stationary point of yq-LSA.
Theorem 4. For a yq-LSA function in equation 12 with a non-zero prior mean w⋆ and contetxt size C → ∞,
the weights (WK , WQ, WP , WV , w⋆) in equation 7 with w = w⋆ constitute a stationary point of R(fyq−LSA).

Theorem 4 is asymptotic in the context length C: when C → ∞, the gradient vanishes at the weights in
Eq. (7) with w = w⋆. For finite C, each gradient component differs from its infinite-C value by a correction
of order 1/C. Thus w = w⋆ behaves as an approximate stationary point whose residual gradient (and the
resulting bias) decays as C grows, explaining the small plateaus occasionally observed at finite C. Similar to
multi-head LSA, we cannot conclusively determine that this stationary point represents the global optimum.
This uncertainty comes from the non-convex nature of the yq-LSA ICL risk, as established in the following
lemma.

Relation to concurrent work. Unlike Ahn et al. (2023)—who show that single-layer LSA attains one-step
preconditioned GD under a zero-mean prior—Theorem 4 establishes that with a non-zero prior mean, one-step
GD is still recovered without an MLP by introducing a trainable query initialization yq = w⊤xq. In contrast
to Zhang et al. (2024b), where an LTB (LSA+MLP) realizes GD-β/near-Newton via the MLP, our result
identifies input-side initialization as the minimal mechanism that closes the ICL–GD gap within LSA.
Lemma 2. The ICL risk of yq-LSA R(fyq−LSA) is not convex.

6

Under review as submission to TMLR

While the non-convexity prevents a definitive proof of global optimality, our empirical investigations in
Section 5.2 suggest an intriguing hypothesis. Notably, we conjecture that the stationary point identified
in Theorem 4 may indeed be the global optimum. Empirical evidence indicates that the performance of
one-step gradient descent serves as a lower bound for yq-LSA.

An additional noteworthy observation is yq-LSA’s relationship to the linear transformer block introduced
by Zhang et al. (2024b). Unlike yq-LSA, LTB combines LSA with a linear multilayer perceptron (MLP)
component. Critically, the global optimum of LTB implements a Newton step rather than one-step gradient
descent. This approach fails to bridge the performance gap between one-step GD and single-head LSA and
requires significantly more parameters through the additional MLP, in contrast to yq-LSA’s more parsimonious
approach of introducing a single vector parameter w. See Lemma 3 in Appendix B for more details.

5 Experiments

For experiments in Sections 5.1 and 5.2, we focus on a simplified setting where the LSA consists of a single
linear self-attention layer without LayerNorm or softmax. We generate linear functions in a 10-dimensional
input space (d = 10) and provide C = 10 context examples per task. We endow the LSA parameters with
ICL capability by minimizing the expected ICL risk E[(fθ(E) − y)2] over random tasks. Each training step is
an Adam update of {W Q, W K , W V , W P } (and w for yq-LSA) using freshly sampled (X, y, xq, y); at test
time, no parameter updates are performed. We train for 5000 gradient steps. Further implementation details
are provided in Appendix C.1.

5.1 Multi-head LSA

5.1.1 Multi-head LSA with Varying Numbers of Heads

(a) (b)

Figure 2: Training loss of multi-head LSA with different
numbers of attention heads. In (a), we visualize the training
loss curves for models with different head configurations, each
curve shows the expected ICL risk during parameter training
(Adam updates of {W Q, W K , W V , W P }; no updates at test time).
While (b) shows the final trained loss as a function of the number
of heads.

We investigate the ICL risk (evaluation
loss) of the multi-head LSA under dif-
ferent numbers of attention heads in the
setting of a non-zero prior mean and yq is
fixed at zero (details in Table 1). Fig. 2a
illustrates the loss curves over the course
of training for several head configurations,
while Fig. 2b summarizes the final evalu-
ation losses as a function of the number
of heads. From these results, we observe
that increasing the number of heads up
to d + 1 (here d = 10, see Fig. 2b) sub-
stantially enhances the in-context learning
capability of multi-head LSA, as reflected
by a pronounced reduction in the final
evaluation loss.

However, adding more than d + 1 heads
yields negligible further improvement, in-
dicating a saturation effect beyond this
threshold. This confirms our results in
Theorem 1. Notably, even at d + 1 heads,
the multi-head LSA model does not converge to the one-step GD baseline loss, suggesting that while additional
heads can capture richer in-context information(Crosbie & Shutova, 2024), they alone are insufficient for
achieving full parity with the one-step GD performance in non-zero prior means setting. In other words,
one-step GD loss serves as a strict lower bound of the ICL risk for multi-head LSA empirically.

7

Under review as submission to TMLR

5.1.2 Effect of Prior Mean w⋆ in Multi-Head LSA.

(a) (b)

Figure 3: Training loss of multi-head LSA under different
prior means w⋆. (a) Training loss curves for different values of
∥w⋆∥. (b) Final trained loss as a function of ∥w⋆∥2. Multi-head
LSA matches the one-step GD loss only when w⋆ = 0; for w⋆ ̸= 0
the gap grows approximately linearly with ∥w⋆∥2

2.

We investigate how the prior mean w⋆,
which represents the mean weight of the
generated linear function, affects the per-
formance of multi-head LSA when the
number of heads is fixed at or above d + 1
and yq is fixed at zero. Fig. 3a shows the
loss curves for different values of ∥w⋆∥,
while Fig. 3b presents the final trained
loss as a function of ∥w⋆∥2.

Our results demonstrate that even when
the number of heads is sufficiently large
(i.e., ≥ d + 1 , reaching the optimal multi-
head LSA configuration), multi-head LSA
only matches the loss of one-step GD
when the prior mean w⋆ is zero. For
non-zero prior means, a systematic gap re-
mains between Multi-Head LSA and one-
step GD. Furthermore, this gap increases
linearly with the squared ℓ2 norm of the
prior mean, ∥w⋆∥2, indicating that the prior mean significantly impacts the optimal loss and that larger
deviations from zero result in a larger discrepancy from the GD baseline.

Figure 4: Training and final loss of multi-head LSA under different initial guess configurations.
Left Training loss curves for various ∥yq_bias∥2, Middle Final trained loss as a function of ∥yq_bias∥2, Right
Upper Training loss curves for various ∥yq_guess∥, and Right Lower Final trained loss as a function of
∥yq_guess∥2. Multi-head LSA reaches the GD loss only when both the linear guess component and the bias
vanish (yq = w⊤

⋆ xq and no offset).

5.1.3 Effect of yq in LSA

To investigate the effect of the initial guess yq, contained in the embedding matrix equation 2 on the in-context
learning ability of multi-head LSA, we decompose yq into two components:

yq = x⊤
q yq_guess + yq_bias.

8

Under review as submission to TMLR

We set the prior mean w⋆ to zero and number of head is d + 1, then conduct two separate experiments: (1)
varying yq_guess while fixing yq_bias = 0, and (2) varying yq_bias while fixing yq_guess = 0. This allows us to
isolate the contribution of each component to the model’s behavior.

As shown in Fig. 4, multi-head LSA only converges to the same loss as one-step GD when yq_guess = 0
(i.e., equal to the prior mean) and yq_bias = 0. In all other cases, a systematic gap remains between the
loss of multi-head LSA and one-step GD. Moreover, this gap is directly proportional to ∥yq_guess∥2 (the
squared ℓ2-norm of the guessed component) and ∥yq_bias∥2 (the squared bias term). These findings suggest
that deviations in yq from the optimal initialization introduce a persistent discrepancy in multi-head LSA’s
performance relative to one-step GD, regardless of the training of multi-head LSA.

5.2 yq-LSA

(a) (b)

Figure 5: Training loss and sensitivity analysis of yq-LSA. (a)
Training loss curves of yq-LSA and one-step GD. (b) Model behavior
metrics including prediction norm difference, gradient norm difference,
and cosine similarity.

In this section, we aim to empiri-
cally validate whether yq-LSA, in-
troduced in Section 4, aligns with
one-step GD across different prior
settings. Fig. 5 presents the training
loss of yq-LSA. Throughout Fig. 5a
the dashed “GD Loss” curve is the
in-context risk of the predictor ob-
tained by one GD step initialized
at the prior mean w0 = w⋆: w1 =
w0 − η

C X⊤(Xw0 − y), ŷGD(xq) =
x⊤

q w1, and the plotted baseline is
RGD-1step = E

[
(ŷGD(xq) − y)2] .

In Fig. 5a, we compare the conver-
gence of yq-LSA to one-step GD,
demonstrating that regardless of
the prior configuration, yq-LSA ef-
fectively matches the GD solution.
Fig. 5b provides a detailed evaluation of prediction norm differences, gradient norm differences (defined in
Appendix C.2), and cosine similarity between the models. The results confirm that yq-LSA exhibits strong
alignment with one-step GD in both loss convergence and gradient analysis.

5.3 LLM experiments

Figure 6: Error Comparison Two
pre-trained models show consistently
improved ICL performance on a sen-
tence similarity task when prompted
with a non-trivial initial guess.

Through theoretical and experimental analysis, we hypothesize that
providing an initial guess for the target output during the ICL
significantly improves the model’s ability to refine its predictions.
Specifically, we posit that initial guesses act as a prior for optimization,
guiding the model to more accurately. To validate this hypothesis,
we conduct experiments leveraging widespread LLMs, demonstrating
the efficacy of initial guesses in improving prediction accuracy.

Our experiments utilize Meta-LLaMA-3.1-8B-Instruct (Grattafiori
et al., 2024), Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024; Team,
2024) and the STS-Benchmark dataset (English subset) (May, 2021).
Each prompt is presented in conjunction with a context comprising
10 labelled examples, where each example included a pair of sentences
and its correct similarity score. A lightweight guess model is used
to generate initial guesses for both the query and context examples.
These guesses are included in the prompts provided to the LLM
model, framed as prior guess. The model’s task is to predict a
similarity score for the query pair, explicitly improving upon the

9

Under review as submission to TMLR

initial guess. For evaluation, we calculate the mean squared error
(MSE) between the predicted and true similarity scores, comparing the models with and without initial
guesses. More details are in Appendix C.3.

The results demonstrate that the inclusion of initial guesses significantly enhances the performance of LLMs
in ICL tasks. As shown in Fig. 6, incorporating initial guesses into the context reduce MSE under all
experimental conditions. Comparative analysis of the LLaMA and QWen models further underscores the
generality of this approach, as both models consistently benefit from the inclusion of initial guesses. These
findings follow our hypothesis that initial guesses enhance ICL by providing an initial guess for refinement.

6 Conclusion

In this work, we have theoretically and empirically studied the extent to which multi-head LSA approximates
GD in ICL, under more realistic assumptions of non-zero prior means. Our analysis establishes that while
increasing the number of attention heads to d + 1 suffices to reach the minimal ICL risk in the linear setting,
the model fundamentally fails to reach a stationary point when the prior mean is non-zero and context size
grows. This limitation is further connected with the initial guess yq, whose misalignment with the prior
induces a persistent optimality gap, even when the number of heads is sufficient. To solve this, we introduce
yq-LSA, an LSA variant with a trainable initial guess, and show both theoretically and empirically that it
bridges the gap between LSA and one-step GD in linear regression. Finally, we illustrate that incorporating
an initial guess also benefits ICL in large language models, showing how this approach can be also used in
more common settings.

Limitations. While our analysis is limited to linear regression tasks and simplified architectures without
nonlinearities, normalization, or softmax, these assumptions are standard across much of the theoretical
literature on in-context learning and mechanistic interpretation of transformers. The theoretical results rely
on the infinite-context limit, which, although analytically tractable, diverges from practical settings where
context size is finite. Additionally, while yq-LSA closes the gap with one-step GD in controlled experiments,
its applicability to complex real-world tasks remains contingent on effective mechanisms for estimating or
learning initial guesses. The LLM experiments suggest empirical benefits, but further exploration is required
to assess generalizability across diverse tasks, model families, and training regimes.

References
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement

preconditioned gradient descent for in-context learning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=LziniAXEI9. (Cited on pages 2, 3,
5, 6, and 15.)

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. (Cited
on pages 1 and 2.)

Xingwu Chen, Lei Zhao, and Difan Zou. How transformers utilize multi-head attention in in-context learning?
a case study on sparse linear regression, 2024. URL https://arxiv.org/abs/2408.04532. (Cited on
page 4.)

Joy Crosbie and Ekaterina Shutova. Induction heads as an essential mechanism for pattern matching in
in-context learning, 2024. URL https://arxiv.org/abs/2407.07011. (Cited on page 7.)

10

https://openreview.net/forum?id=LziniAXEI9
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2408.04532
https://arxiv.org/abs/2407.07011

Under review as submission to TMLR

Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention in
in-context linear regression, 2024. URL https://arxiv.org/abs/2401.17426. (Cited on page 4.)

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 1107–1128, Miami, Florida, USA, November 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.64. URL https://aclanthology.org/
2024.emnlp-main.64/. (Cited on page 1.)

Fabian Falck, Ziyu Wang, and Christopher C. Holmes. Is In-Context Learning in Large Language Models
Bayesian? A Martingale Perspective. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=b1YQ5WKY3w. (Cited on page 2.)

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn to achieve second-order
convergence rates for in-context linear regression, 2024. URL https://arxiv.org/abs/2310.17086.
(Cited on page 2.)

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in-context?
A case study of simple function classes. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=flNZJ2eOet. (Cited on page 1.)

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How well can
transformers emulate in-context newton’s method?, 2024. URL https://arxiv.org/abs/2403.03183.
(Cited on page 2.)

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal,
Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, and al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783. (Cited on pages 9 and 27.)

Ruomin Huang and Rong Ge. Task descriptors help transformers learn linear models in-context. In ICML
2024 Workshop on In-Context Learning, 2024. URL https://openreview.net/forum?id=4SfCI1DJhr.
(Cited on page 5.)

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
(Cited on page 27.)

Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One Step of Gradient Descent is Provably
the Optimal In-Context Learner with One Layer of Linear Self-Attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=8p3fu56lKc.
(Cited on pages 2, 3, and 5.)

Sadegh Mahdavi, Renjie Liao, and Christos Thrampoulidis. Revisiting the equivalence of in-context learning
and gradient descent: The impact of data distribution. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7410–7414. IEEE, 2024. (Cited on
page 3.)

Philip May. Machine translated multilingual sts benchmark dataset., 2021. URL https://github.com/
PhilipMay/stsb-multi-mt. (Cited on pages 9 and 27.)

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-Context Learning through the Bayesian Prism. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=HX5ujdsSon. (Cited on page 2.)

Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual using knowledge
distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2020. URL https://arxiv.org/abs/2004.09813. (Cited
on page 27.)

11

https://arxiv.org/abs/2401.17426
https://aclanthology.org/2024.emnlp-main.64/
https://aclanthology.org/2024.emnlp-main.64/
https://openreview.net/forum?id=b1YQ5WKY3w
https://arxiv.org/abs/2310.17086
https://openreview.net/forum?id=flNZJ2eOet
https://openreview.net/forum?id=flNZJ2eOet
https://arxiv.org/abs/2403.03183
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=4SfCI1DJhr
https://openreview.net/forum?id=8p3fu56lKc
https://github.com/PhilipMay/stsb-multi-mt
https://github.com/PhilipMay/stsb-multi-mt
https://openreview.net/forum?id=HX5ujdsSon
https://openreview.net/forum?id=HX5ujdsSon
https://arxiv.org/abs/2004.09813

Under review as submission to TMLR

Simone Rossi, Rui Yuan, and Thomas Hannagan. Understanding in-context learning in transformers. In
The Third Blogpost Track at ICLR 2024, 2024. URL https://openreview.net/forum?id=lpyfAihk28.
(Cited on pages 2 and 5.)

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Position: Do pretrained transformers learn in-
context by gradient descent? In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=WsawczEqO6. (Cited on page 2.)

Shiyu Shen et al. Towards understanding in-context learning via training dynamics. arXiv preprint
arXiv:2305.14743, 2023. (Cited on page 2.)

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.io/
blog/qwen2.5/. (Cited on pages 9 and 27.)

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 35151–35174. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/von-oswald23a.html. (Cited on pages 1, 2, 3, 4, 5, and 19.)

Aaron T Wang, William Convertino, Xiang Cheng, Ricardo Henao, and Lawrence Carin. On understanding
attention-based in-context learning for categorical data. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=7Daf4TMtX9. (Cited on page 2.)

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of In-context Learning
as Implicit Bayesian Inference. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI. (Cited on page 2.)

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin,
Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang,
Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei,
Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui,
Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024. (Cited
on pages 9 and 27.)

Naimeng Ye, Hanming Yang, Andrew Siah, and Hongseok Namkoong. Pre-training and In-context Learning IS
Bayesian Inference a la De Finetti. In ICLR 2024 Workshop on Mathematical and Empirical Understanding
of Foundation Models, 2024. URL https://openreview.net/forum?id=ttupfosvgx. (Cited on page 2.)

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context. Journal
of Machine Learning Research, 25(49):1–55, 2024a. URL http://jmlr.org/papers/v25/23-1042.html.
(Cited on pages 3 and 5.)

Ruiqi Zhang, Jingfeng Wu, and Peter Bartlett. In-context learning of a linear transformer block: Benefits of
the MLP component and one-step GD initialization. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024b. URL https://openreview.net/forum?id=Thou1rKdpZ. (Cited
on pages 1, 2, 3, 6, 7, and 19.)

Yedi Zhang, Aaditya K Singh, Peter E. Latham, and Andrew M Saxe. Training dynamics of in-context
learning in linear attention. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=aFNq67ilos. (Cited on page 2.)

12

https://openreview.net/forum?id=lpyfAihk28
https://openreview.net/forum?id=WsawczEqO6
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://openreview.net/forum?id=7Daf4TMtX9
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=ttupfosvgx
http://jmlr.org/papers/v25/23-1042.html
https://openreview.net/forum?id=Thou1rKdpZ
https://openreview.net/forum?id=aFNq67ilos

Under review as submission to TMLR

A Proofs of Section 3

For the sake of completeness and self-containment, we restate the theorems and lemmas shown in Section 3
and provide their full proof in this section.

A.1 Proof of Theorem 1

First, let’s redefine the notations used in Theorem 1 and restate the theorem. We write the input of a model
as an embedding matrix given by

E
def=

[
X⊤ xq

y⊤ yq

]
∈ R(d+1)×(C+1), (13)

where X, y, xq, yq are defined in Section 2. The multi-head linear-self attention (LSA) function is defined as

fH−LSA(E) def=
[
E +

∑H

h=1
headh(E)

]
−1,−1

, (14)

where the output of each transformer head is defined as

headh(E) def= 1
C WP

h WV
h EWM

(
E⊤(WK

h)⊤WQ
h E
)

, h ∈ [H] . (15)

The trainable parameters WK
h , WQ

h , WP
h and WV

h are specific to the h-th head, and WM def=
[
IC 0
0 0

]
is a

mask matrix, to ignore the query token when computing the attention scores. Let’s define by

FH−LSA
def=
{

fH−LSA

∣∣∣∣ {WK
h , WQ

h , WV
h , WP

h

}H

h=1

}
the hypothesis class associated with multi-head LSA models with H heads. Finally, we measure the ICL risk
of a model f by the mean squared error,

R(f) def= E[(f(E) − y)2], (16)

where the expectation is taken over the data distribution (and effectively over the embedding matrix E
defined in equation 13).

Now we are ready to restate and prove Theorem 1.
Theorem 1. Let d ∈ N, and consider the hypothesis classes F(d+1)−LSA and F(d+2)−LSA corresponding to
multi-head LSA models with H = d + 1 and H = d + 2 attention heads, respectively. Then

inf
f∈F(d+1)−LSA

R(f) = inf
f∈F(d+2)−LSA

R(f) ,

where R(f) is the ICL risk defined in Eq. (4).

Proof. To simplify the notation, let’s introduce a couple of additional definitions. For each head h ∈ [H], the
product of the output projection WP

h and the value projection WV
h can be written without loss of generality

as
WP

h WV
h

def=
[

∗
b⊤

h

]
∈ R(d+1)×(d+1),

where bh ∈ Rd+1 is the last row of the matrix, and the block ∗ denotes entries that have no influence on the
ICL risk. Then, let’s rewrite the product of the key and query matrices as

(WK
h)⊤WQ

h

def= Ah ∈ R(d+1)×(d+1),

13

Under review as submission to TMLR

and denote its column decomposition by

Ah =
[
ah

1 · · · ah
d+1
]

,

where ah
i ∈ Rd+1 for each i ∈ [d + 1].

With this notation, the contribution of all heads to the attention mechanism can be expressed in terms of the
matrices

Mi
def=

H∑
h=1

bh(ah
i)⊤ ∈ R(d+1)×(d+1), i ∈ [d + 1].

Each Mi is a (d + 1) × (d + 1) real matrix. The space of such matrices, R(d+1)×(d+1), has dimension (d + 1)2.

The collection
(M1, M2, . . . , Md+1)

is thus an element of the Cartesian product (
R(d+1)×(d+1))d+1

.

with dimension dim
((

R(d+1)×(d+1))d+1
)

= (d + 1)3. Hence, the set of all possible tuples (M1, . . . , Md+1)
can be identified with a vector space of dimension (d + 1)3.

We now compute the number of parameters available per head. For a fixed head h, the parameters that
influence the construction of Mi are (1) the vector bh which contributes (d + 1) free parameters, (2) the
family of vectors ah

1 , . . . , ah
d+1, which contributes (d + 1)(d + 1) free parameters. Therefore, in total one head

contributes (d + 1) + (d + 1)(d + 1) = (d + 1)(d + 2) degrees of freedom. With H heads in total, the dimension
of the parameter space ΩH is dim(ΩH) = H (d + 1)(d + 2).

Suppose H ≥ d + 1. Then
H (d + 1)(d + 2) ≥ (d + 1)(d + 1)(d + 2).

Since (d + 2) ≥ (d + 1), we obtain

H (d + 1)(d + 2) ≥ (d + 1)3.

This inequality shows that, when H ≥ d + 1, the parameter space has dimension at least as large as the target
space. In particular, there is no dimensional obstruction to surjectivity of the mapping from parameters
(bh, ah

i) to matrices (M1, . . . , Md+1).

To demonstrate that the mapping is indeed surjective once H ≥ d + 1, we now construct explicitly any desired
collection of matrices (M1, . . . , Md+1).

Fix i ∈ [d + 1]. Let e1, . . . , ed+1 denote the standard basis vectors of Rd+1. For each h ∈ [d + 1], set

bh = eh, ah
i = Mi[h],

where Mi[h] denotes the h-th row of the matrix Mi. For h > d + 1, we may set bh = 0 and ah
i = 0, so that

those heads contribute nothing. With this choice of parameters,
d+1∑
h=1

bh(ah
i)⊤ =

d+1∑
h=1

eh (Mi[h])⊤ = Mi.

Thus, every Mi is exactly reproduced, and therefore every tuple (M1, . . . , Md+1) is realizable when H ≥ d+1.

We have shown that with H = d + 1 heads, the model can realize any element of the target space, and
therefore the hypothesis class is saturated. Adding additional heads H > d + 1 cannot enlarge the class of
realizable functions. For this reason, for any H ≥ d + 1, we have

inf
f∈F(d+2)−LSA

R(f) ≤ inf
f∈F(d+1)−LSA

R(f).

14

Under review as submission to TMLR

Finally, observe that F(d+1)−LSA ⊆ F(d+2)−LSA, since a (d + 1)-head model can be viewed as a (d + 2)-head
model with the additional head parameters set to zero. Consequently, it follows that the only possibility is
that

inf
f∈F(d+1)−LSA

R(f) = inf
f∈F(d+2)−LSA

R(f),

which concludes the proof.

A.2 Proof of Theorem 2

Theorem 2. Let H ∈ N and consider the hypothesis class FH−LSA of multi-head LSA models with context
size C → ∞. Then the in-context learning risk R(f) admits no non-trivial stationary point in parameter
space. More precisely,

∇R(f) ̸= 0 for all f ∈ FH−LSA

for every choice of parameters {WK
h , WQ

h , WV
h , WP

h }H
h=1, except in the case where the prior mean vector

vanishes, w⋆ = 0.

The proof of Theorem 2 is based on the analysis of Ahn et al. (2023).

Proof. Step 1: Simplify the risk function and compute its gradient

We first derive explicitly the expression of multi-head LSA’s ICL risk and simplify it. The key idea is to
decompose the ICL risk into components. That is,

R(fH−LSA) equation 4= E
[
(fH−LSA(E) − y)2] with y = ŵ⊤xq and ŵ ∼ N (w⋆, Id),

equation 6= E


[E +

H∑
h=1

headh(E)
]

−1,−1

− ŵ⊤xq

2


equation 5= E


[E + 1

C

H∑
h=1

WP
h WV

h EWM
(

E⊤(WK
h)⊤WQ

h E
)]

−1,−1

− ŵ⊤xq

2
 .

Since the prediction of fH−LSA is the bottom right entry of the output matrix, only the last row of the product
WP

h WV
h contributes to the prediction. Therefore, we write

WP
h WV

h
def=
[

∗
b⊤

h

]
∈ R(d+1)×(d+1),

where bh ∈ Rd+1 for all h ∈ [H], and ∗ denotes entries that do not affect the ICL risk.

To simplify the computation, we also rewrite the product (WK
h)⊤WQ

h and the embedding matrix E as

(WK
h)⊤WQ

h

def= Ah ∈ R(d+1)×(d+1),

E
def=
[
z1 z2 · · · zC zC+1

]
∈ R(d+1)×(C+1),

where

Ah
def=
[
ah

1 ah
2 · · · ah

d+1
]

with ah
1 , · · · , ah

d+1 ∈ Rd+1,

zi
def=
[
xi

yi

]
∈ Rd+1 for all i ∈ [C], and zC+1

def=
[
xq

yq

]
∈ Rd+1.

We define

G
def= 1

C

C∑
i=1

ziz⊤
i = 1

C
EWM E⊤ ∈ R(d+1)×(d+1) and ŵ def= w⋆ + ϵ,

15

Under review as submission to TMLR

where ϵ ∈ Rd ∼ N (0, Id) is the noise.

Then the ICL risk can be written as

R(fH−LSA) = E

(yq +
H∑

h=1
b⊤

h GAhzC+1 − ŵ⊤xq

)2
= E

(yq +
H∑

h=1
b⊤

h G
[
ah

1 ah
2 · · · ah

d+1
] [xq

yq

]
− ŵ⊤xq

)2
= E

(yq +
H∑

h=1

(
d∑

i=1
b⊤

h Gah
i xq[i]

)
+ b⊤

h Gah
d+1yq − ŵ⊤xq

)2 ,

where xq[i] is the i-th coordinate of the vector xq.

Furthermore, we know that, for all h ∈ [H] and i ∈ [d + 1],

b⊤
h Gah

i ∈ R = Tr
(
b⊤

h Gah
i

)
= Tr

(
Gah

i b⊤
h

)
=
〈
G, bh(ah

i)⊤〉 ,

where ⟨U , V ⟩ def= Tr
(
UV ⊤) is the Frobenius inner product for any squared matrices U and V .

Hence, by using the linearity of the Frobenius inner product, we rewrite the ICL risk as

R(fH−LSA)

= E

(yq +
H∑

h=1

〈
G, bh(ah

d+1)⊤〉 yq +
d∑

i=1

H∑
h=1

(〈
G, bh(ah

i)⊤〉− ŵ[i]
)

xq[i]
)2

= E

((1 +
〈

G,

H∑
h=1

bh(ah
d+1)⊤

〉)
yq +

d∑
i=1

(〈
G,

H∑
h=1

bh(ah
i)⊤

〉
− ŵ[i]

)
xq[i]

)2 ,

where ŵ[i] is the i-th coordinate of the vector ŵ.

By reparametrizing the ICL risk, using a composite function, we have

R(fH−LSA) = E
G,ŵ,xq

((1 + ⟨G, Md+1⟩) yq +
d∑

i=1
(⟨G, Mi⟩ − ŵ[i]) xq[i]

)2 , (17)

where

Mi
def=

H∑
h=1

bh(ah
i)⊤ ∈ R(d+1)×(d+1), for all i ∈ [d + 1].

Recall xq ∼ N (0, Id). Thus, both G and ŵ are independent to xq[i] for all i ∈ [d], and xq[i] ∼ N (0, 1) are i.i.d.

Expanding equation 17 yields

R(fH−LSA) = EG

[
(1 + ⟨G, Md+1⟩)2

y2
q

]
+

d∑
i=1

E
G,ŵ

[
(⟨G, Mi⟩ − ŵ[i])2

]
Exq

[
xq[i]2

]
= EG

[
(1 + ⟨G, Md+1⟩)2

y2
q

]
+

d∑
i=1

E
G,ŵ

[
(⟨G, Mi⟩ − ŵ[i])2

]
=

d+1∑
i=1

Li(Mi), (18)

16

Under review as submission to TMLR

where
Li(Mi)

def= E
G,ŵ

[
(⟨G, Mi⟩ − ŵ[i])2

]
for all i ∈ [d],

Ld+1(Md+1) def= EG

[
(1 + ⟨G, Md+1⟩)2

y2
q

]
.

Thus, the ICL risk equation 18 is decomposed into (d + 1) separated components Li with i ∈ [d + 1]. Each
component is a function of Mi. To compute the gradient of R(fH−LSA), we can first compute the gradient
of each component with respect to Mi for i ∈ [d]. That is,

∇Mi
Li(Mi) = 2E

G,ŵ [⟨G, Mi⟩ G] − 2E
G,ŵ [ŵ[i]G] , for i ∈ [d], (19)

∇Md+1Ld+1(Md+1) = 2y2
qEG [(1 + ⟨G, Md+1⟩) G] . (20)

Step 2: Compute E [⟨G, Mi⟩ G], E [ŵ[i]G] in equation 19

Recall that ŵ ∼ N (w⋆, Id) and xj
i.i.d.∼ N (0, Id) are independent for all j ∈ [C], yj = ŵ⊤xj , and ŵ = w⋆ + ϵ

with ϵ ∼ N (0, Id).

For E
G,ŵ [ŵ[i]G] in equation 19 with i ∈ [d], we have

E
G,ŵ [ŵ[i]G] = 1

C

C∑
j=1

[
Eŵ,xj

[ŵ[i] · xjx⊤
j] Eŵ,xj

[ŵ[i] · yjxj]
Eŵ,xj

[ŵ[i] · yjx⊤
j] Eŵ,xj

[ŵ[i] · y2
j]

]
.

In particular, for each block of the above matrix, we have
Eŵ,xj

[ŵ[i] · xjx⊤
j] = Eŵ [ŵ[i]]Exj

[
xjx⊤

j

]
= w⋆[i]Id,

Eŵ,xj
[ŵ[i] · yjxj] = Eŵ,xj

[
ŵ[i]ŵ⊤xjxj

]
= Eϵ,xj

[
(w⋆[i] + ϵ[i])(w⋆ + ϵ)⊤xjxj

]
= w⋆[i]w⋆ + ei,

Eŵ,xj
[ŵ[i] · y2

j] = Eŵ,xj
[ŵ[i]ŵ⊤xjx⊤

j ŵ] = Eŵ

[
ŵ[i]ŵ⊤ŵ

]
= Eϵ

[
(w⋆[i] + ϵ[i])(w⋆ + ϵ)⊤(w⋆ + ϵ)

]
= w⋆[i](∥w⋆∥2 + d + 2),

where ei denotes the standard basis vector with zeros in all coordinates except the i-th position, where the
value is 1.

Combining the above three components, we have

E
G,ŵ [ŵ[i]G] =

[
w⋆[i]Id w⋆[i]w⋆ + ei

(w⋆[i]w⋆ + ei)⊤ w⋆[i](∥w⋆∥2 + d + 2)

]
. (21)

Now we compute E [⟨G, Mi⟩ G] for i ∈ [d].

We start by calculating the expected value of the product of elements in matrix G. That is, for all
m, n, p, q ∈ [d + 1],

E [GmnGpq] = 1
C2

C∑
j=1

C∑
k=1

E [zj [m]zj [n]zk[p]zk[q]] ,

where Gmn is the value of matrix G in m-th row and n-th column position for all m, n ∈ [d + 1]. By
expanding the summation, we have

E [GmnGpq] = 1
C2

∑
1≤j,k≤C

j ̸=k

E [zj [m]zj [n]zk[p]zk[q]] + 1
C
E [z1[m]z1[n]z1[p]z1[q]]

= C(C − 1)
C2 E [z1[m]z1[n]]E [z2[p]z2[q]] + 1

C
E [z1[m]z1[n]z1[p]z1[q]]

≈ E [z1[m]z1[n]]E [z2[p]z2[q]] , when C −→ ∞.

To compute E [z1[m]z1[n]],

17

Under review as submission to TMLR

1. For m, n ∈ [d], we have z1[m] = x1[n] and z1[n] = x1[n]. Thus, E [z1[m]z1[n]] = δmn, where δ is
the Kronecker delta.

2. For m ∈ [d] and n = d + 1, we have z1[n] = y1. Thus, E [z1[m]z1[n]] = E
[
x1[m]x⊤

1 ŵ
]

= w⋆[m].

3. For m = n = d + 1, we have E [z1[m]z1[n]] = E
[
ŵ⊤x1x⊤

1 ŵ
]

= E
[
ŵ⊤ŵ

]
= ∥w⋆∥2 + d.

We denote
M

def=
[

Id w⋆

w⊤
⋆ ∥w⋆∥2 + d

]
∈ R(d+1)×(d+1). (22)

By using equation 22, when C −→ ∞, we have

E [GmnGpq] = MmnMpq. (23)

By linearity of the Frobenius inner product, we have

E [⟨G, Mi⟩ G] = ⟨M , Mi⟩ M . (24)

Combining the above equation with equation 21, equation 19 becomes

∇Mi
Li(Mi) = 2 ⟨M , Mi⟩ M − 2

[
w⋆[i]Id w⋆[i]w⋆ + ei

(w⋆[i]w⋆ + ei)⊤ w⋆[i](∥w⋆∥2 + d + 2)

]
= 2 ⟨M , Mi⟩ M − 2w⋆[i]M − 2N

= (2 ⟨M , Mi⟩ − 2w⋆[i])M − 2N , (25)

where

N
def=
[

0 ei

e⊤
i 2w⋆[i]

]
.

Notice that M is full rank and the rank of N is smaller or equal to 2. Thus, for any Mi ∈ R(d+1)×(d+1), we have

∇MiLi(Mi) ̸= 0.

A.3 Proof of Lemma 1

Proof. From equation 25, we can compute the Hessian of the function Li(Mi), that is,

∇2
Mi

Li(Mi) = 2M .

We verify that M is positive semi-definite. Indeed, let u ∈ Rd and u ∈ R. We have[
u⊤ u

]
M

[
u
u

]
equation 22=

[
u⊤ u

] [Id w⋆

w⊤
⋆ ∥w⋆∥2 + d

] [
u
u

]
=
[
u⊤ u

] [u + uw⋆

w⊤
⋆ u + u(∥w⋆∥2 + d)

]
= ∥u∥2 + 2uw⊤

⋆ u + u2(∥w⋆∥2 + d)
= ∥u + uw⋆∥2 + du2 ≥ 0.

Since M is positive semi-definite, we have the function Li is convex with respect to Mi.

From equation 18, we know that

R(fH−LSA) =
d+1∑
i=1

Li(Mi).

18

Under review as submission to TMLR

Each function Li is a function of Mi. We denote

R(fH−LSA) = f(M1, · · · , Md+1).

Then the Hessian of the function f with respect to variables M1, · · · , Md+1 is a block diagonal matrix, each
block on the diagonal is ∇2

Mi
Li(Mi) ≥ 0. Therefore, the function f is convex with respect to M1, · · · , Md+1.

Lastly, Mi =
∑H

h=1 bh(ah
i)⊤ for i ∈ [d + 1]. To simplify it, we can consider only one head. That is,

Mi = b1(a1
i)⊤, a bilinear function, which is known to be not convex with respect to b1 and a1

i .

To conclude, the ICL risk R(fH−LSA) is a composite function with a convex function and non convex functions,
which implies that R(fH−LSA) is not convex.

B Proofs of Section 4

B.1 Derivation of equation 8

Here we provide the derivation of equation 8. Recall

WV =
[

0 0
w⊤

⋆ −1

]
, WK = WQ =

[
Id 0
0 0

]
, WP = − η

C
Id+1.

From the standard LSA formulation equation 3 with the given embedding in equation 2, we have

K
def= Q

def= WQE =
[
X⊤ xq

0 0

]
,

V
def= WV E =

[
0 0

w⊤
⋆ X⊤ − y⊤ w⊤

⋆ xq − yq

]
.

So we get the LSA simplified as

fLSA(E) =
[
E + WP V WM

(
K⊤Q

)]
−1,−1

.

In this case, we have

V WM
(
K⊤Q

)
=
[

0 0
(w⊤

⋆ X⊤ − y⊤)XX⊤ (w⊤
⋆ X⊤ − y⊤)Xxq

]
,

and LSA recovers the result in Von Oswald et al. (2023), which performs one-step GD on the update of the
linear regression parameter initialized at w⋆ = 0 with yq = 0 = w⊤

⋆ xq:

fLSA(E) = yq − η

C
(w⊤

⋆ X⊤ − y⊤)Xxq

=
(

w⋆ − η

C
X⊤(Xw⋆ − y)

)⊤
xq,

that yields equation 8.

B.2 yq-LSA is a Special Case of Linear Transformer Block

In this section, we show that yq-LSA defined in equation 12 is a special case of linear transformer block (LTB)
presented in Zhang et al. (2024b), which is mentioned in Section 4.

LTB combines LSA with a linear multilayer perceptron (MLP) component. That is,

fLTB : R(d+1)×(C+1) → R (26)

E 7→
[
W ⊤

2 W1

(
E + 1

C
WP WV EWM E⊤(WK)⊤WQE

)]
−1,−1

,

19

Under review as submission to TMLR

where W1, W2, WP , WV , WK and WQ are trainable parameters for fLTB, and

E =
[
X⊤ xq

y⊤ 0

]
∈ R(d+1)×(C+1),

for X ∈ RC×d, y ∈ RC and xq ∈ Rd. Notice that there is no initial guess yq involved in this embedding
matrix E.

We denote the hypothesis class formed by LTB models as

FLTB
def=
{

fLTB : WK , WQ, WV , WP , W1, W2

}
,

where fLTB is defined in equation 26. Then we have the following lemma.
Lemma 3. Consider fyq−LSA defined in equation 12. We have

fyq−LSA ∈ FLTB.

Proof. Let w ∈ Rd. For all X ∈ RC×d, y ∈ RC and xq ∈ Rd, we have

fyq−LSA(X, y, xq) = fLSA(Ew) =
[
Ew + 1

C WP WV EwWM (E⊤
w(WK)⊤WQEw)

]
−1,−1,

with

Ew =
[
X⊤ xq

y⊤ w⊤xq

]
∈ R(d+1)×(C+1).

We aim to find (WK)′, (WQ)′, (WV)′, (WP)′, W1, W2 for fLTB such that fyq−LSA(X, y, xq) = fLTB(E) with

E =
[
X⊤ xq

y⊤ 0

]
∈ R(d+1)×(C+1).

Let choose W2 = Id+1 and

W1 =
[

Id w
w⊤ c

]
(27)

with c ̸= ∥w∥2, then W ⊤
2 W1 = W1 and W1 ∈ R(d+1)×(d+1) is invertible.

Indeed, let u ∈ Rd and u ∈ R such that W1

[
u
u

]
= 0. So we have

u + uw = 0,

w⊤u + cu = 0.

From u + uw = 0, we have u = −uw. Plugging it into w⊤u + cu = 0, we obtain

(c − ∥w∥2)u = 0.

Since c ̸= ∥w∥2, we obtain u = 0. Thus, u = −uw = 0. This implies that W1 is invertible.

Next, we consider the following matrix

W3 =
[

Id 0
w⊤ 0

]
∈ R(d+1)×(d+1).

Let

(WP)′ = W −1
1 WP ,

(WK)′ = WKW3,

(WQ)′ = WQW3,

(WV)′ = WV W3.

20

Under review as submission to TMLR

We show that fyq−LSA(X, y, xq) = fLTB(E).

Indeed, by using Xw = y, we have

W3E =
[

X⊤ xq

w⊤X⊤ w⊤xq

]
= Ew.

So

fLTB(E) = W1

[(
E + 1

C
W −1

1 WP WV W3EWM E⊤(WKW3)⊤WQW3E

)]
−1,−1

= [W1E]−1,−1 +
[(

1
C

WP WV EwWM (E⊤
w(WK)⊤WQEw

)]
−1,−1

= w⊤xq +
[(

1
C

WP WV EwWM (E⊤
w(WK)⊤WQEw

)]
−1,−1

= fyq−LSA(X, y, xq).

Thus, we conclude fyq−LSA ∈ FLTB.

B.3 Proofs of Theorem 4

The risk (loss) function with learnable vector v is given by:

R(fyq−LSA) = E

[((
E + 1

C
Att(E)

)
C+1,C+1 + v⊤xq − ŵT xq

)2
]

.

Similar as Appendix A, we rewrite the risk:

R(fyq−LSA) = E
[(

(1 + bT Gad+1)yq + (bT GA:d − ŵ⊤)xq

)2
]

= E
[(

(1 + bT Gad+1)v⊤ + (bT GA:d − ŵ⊤)
)

xq

]
= E

 d∑
j=1

(
⟨G, ba⊤

j ⟩ + ⟨G, ba⊤
d+1⟩v[j] + v[j] − ŵ[j]

)2


We define, for each j:
tj = ⟨G, b a⊤

j ⟩ + ⟨G, b a⊤
d+1⟩ v[j] + v[j] − ŵ[j].

Then

fyq−LSA =
d∑

j=1
E
[
t2
j

]
.

Step 1: Gradient for parameters

We list the first-order partial derivatives with respect to b, aj , ad+1, and v[j]. j is from 1 to d

• Gradient w.r.t. b

∂tj

∂b = G aj + v[j] G ad+1.

∂

∂b
(
t2
j

)
= 2 tj

∂tj

∂b = 2 tj

(
G aj + v[j] G ad+1

)
.

21

Under review as submission to TMLR

∂f

∂b =
d∑

j=1
E
[

2 tj

(
G aj + v[j] G ad+1

)]
.

• Gradient w.r.t. aj

∂tj

∂aj
= G⊤b.

∂

∂aj

(
t2
j

)
= 2 tj

(
G⊤b

)
.

Only the j-th term depends on aj , so

∂fyq−LSA

∂aj
= 2E

[
tj (G⊤b)

]
.

• Gradient w.r.t. ad+1

∂tj

∂ad+1
= v[j]

(
G⊤b

)
.

∂

∂ad+1

(
t2
j

)
= 2 tj

(
v[j] G⊤b

)
.

∂fyq−LSA

∂ad+1
= 2

d∑
j=1

E
[
tj v[j] (G⊤b)

]
.

• Gradient w.r.t. v[j]

We have
tj = b⊤G aj + v[j]

(
b⊤G ad+1 + 1

)
−
(
w[j] + w⋆[j]

)
.

∂tj

∂v[j] =
(
b⊤G ad+1 + 1

)
.

∂fyq−LSA

∂v[j] = 2E
[
tj

(
b⊤G ad+1 + 1

)]
.

Step 2: Plug in One Step GD

we verify when b =
[
−w⋆

1

]
, aj =

[
ej

0

]
, ad+1 = 0 , v = w⋆, the gradients equal to zero

we define w = ŵ − w⋆, We have the following intermediate formula:

bT Gaj = [−wT
⋆ , 1]

C∑
i=1

[
xixT

i xiy
T
i

yixT
i y2

i

] [
ej

0

]
=
∑C

i=1
C

[
wT xixT

i , wT xiyi

] [[ej

0

]]
=
∑C

i=1
C

wT xixi[j]

v[i](bT Gad+1) = 0

22

Under review as submission to TMLR

tj =
∑C

i=1
C

wT xixi[j] − w[j]

Gaj = 1
C

C∑
i=1

[
xixi[j]
yixi[j]

]

• Gradient w.r.t. b

∂fyq−LSA

∂b
= 2

d∑
j=1

E

[
(
∑C

i=1
C

wT xixi[j] − w[j]) 1
C

C∑
i=1

[
xixi[j]
yixi[j]

]]
Calculate each part:

−w[j] 1
C

C∑
i=1

xixi[j] = 0,

−w[j] 1
C

C∑
i=1

yixi[j] = −w[j] 1
C

C∑
i=1

(wT
⋆ + wT)xixi[j] = −w[j] 1

C

C∑
i=1

wT xixi[j] = −1,

∑C
i=1
C

wT xixi[j]xixi[j] = 0,

∑C
i=1
C

wT xixi[j] 1
C

C∑
i=1

(wT
⋆ + wT)xixi[j] =

∑C
i=1
C

wT xixi[j]
∑C

i=1
C

wT xixi[j]

= 1
C2E

[(C∑
i=1

xi[j] xT
i

) (C∑
k=1

xk[j] xk

)]
,

compute E
[(∑C

i=1 xi[j] xT
i

) (∑C
k=1 xk[j] xk

)]
when i ̸= k ,

E[xi[j]xk[j](xT
i xk)] = 1.

∑
i ̸=k

E[xi[j]xk[j](xT
i xk)] = C(C − 1) · 1 = C(C − 1).

when i = k,

xi[j]xi[j](xT
i xi) = xi[j]2

d∑
m=1

xi[m]2 = xi[j]2(xT
i xi) = d + 2.

Because E[x[j]2(xT x)] = E[x[j]4] +
∑

m̸=j E[x[j]2x[m]2] , E[x[j]4] = 3.

(C∑
i=1

xi[j] xT
i

) (C∑
k=1

xk[j] xk

)
= C(C − 1) + C(d + 2)

23

Under review as submission to TMLR

if we have very large C, we have: ∑C
i=1
C

wT xixi[j] 1
C

C∑
i=1

yixi[j] = 1.

So that ∂fyq−LSA
∂b = 0

• Gradient w.r.t. aj

∂fyq−LSA

∂aj
= 2E

[
tj (G⊤b)

]
= E

[∑C
i=1
C

wT xixi[j] − w[j])
∑C

i=1
C

[
xixT

i w
yixT

i w

]]

E
[
−w[j]

∑C
i=1
C

[
xixT

i w
(wT + wT

⋆)xixT
i w

]]
= E

[
−
[

ej

w[j](wT + wT
⋆)w

]]
= −

[
ej

w⋆[j]

]

compute
∑C

i=1
C wT xixi[j]

∑C

i=1
C xixT

i w

We aim to compute the expectation:

E

[
wT

(
C∑

i=1
xixi[j]

)(
C∑

k=1
xkxT

k

)
w
]

,

First, expand the product inside the expectation:

wT

(
C∑

i=1
xixi[j]

)(
C∑

k=1
xkxT

k

)
w =

C∑
i=1

C∑
k=1

wT xi xi[j] xT
k w · xk.

Taking expectation:

E

[
C∑

i=1

C∑
k=1

wT xi xi[j] xT
k w · xk

]
=

C∑
i=1

C∑
k=1

E
[
wT xi xi[j] xT

k w · xk

]
.

Case 1: i ̸= k

Since xi and xk are independent:

E
[
wT xi xi[j] xT

k w · xk

]
= E

[
wT xi xi[j]

]
E
[
xT

k w · xk

]
.

Given xi ∼ N (0, Id):
E
[
wT xi xi[j]

]
= w[j], E

[
xT

k w · xk

]
= w.

Thus, for i ̸= k:
E
[
wT xi xi[j] xT

k w · xk

]
= w[j]w.

There are C(C − 1) such terms, contributing:

C(C − 1)w[j]w = C(C − 1)ej .

Case 2: i = k

For i = k:
E
[
wT xi xi[j] xT

i w · xi

]
= E

[
(wT xi)2xi[j]xi

]
.

24

Under review as submission to TMLR

Using properties of Gaussian vectors:

E
[
(wT xi)2xi[j]xi

]
= 2wjw + ∥w∥2ej ,

where ej is the j-th standard basis vector. There are C such terms, contributing:

C(2wjw + ∥w∥2ej).

Adding contributions from both cases:

E

[
wT

(
C∑

i=1
xixi[j]

)(
C∑

k=1
xkxT

k

)
w

]
= C(C − 1)wj∥w∥2 + C(2wjw + ∥w∥2ej).

Simplifying:
= C(C + 1)wjw + C∥w∥2ej .

Thus, the expectation is:

E

[
wT

(
C∑

i=1
xixi[j]

)(
C∑

k=1
xkxT

k

)
w
]

= C(C + 1)wjw + C∥w∥2ej .

when C is large E
[∑C

i=1
C wT xixi[j]

∑C

i=1
C xixT

i w
]

= ej

compute
∑C

i=1
C wT xixi[j]

∑C

i=1
C yixT

i w∑C
i=1
C

wT xixi[j]
∑C

k=1
C

(wT
⋆ + wT)xkxT

k w

From our previous experience, we only need calculate case when k ̸= i

E

[∑C
i=1
C

wT xixi[j]
∑C

k=1
C

(wT
⋆ + wT)xkxT

k w

]
= E

[
w[j](wT

⋆ + wT)w
]

= w⋆[j]

So that we have ∂fyq−LSA
∂aj

= 0

• Gradient w.r.t. ad+1

∂fyq−LSA

∂ad+1
= 2

d∑
j=1

E
[
tj v[j] (G⊤b)

]
= 2

d∑
j=1

E
[
tj w⋆[j] (G⊤b)

]
.

we already have ∂fyq−LSA
∂aj

= 2E
[
tj (G⊤b)

]
So that we have ∂fyq−LSA

∂ad+1
= 0

• Gradient w.r.t. v[j]

∂fyq−LSA

∂v[j] = 2E
[
tj

(
b⊤G ad+1 + 1

)]
= 2E

[(
∑C

i=1
C

wT xixi[j] − w[j])
(∑C

i=1
C

wT xixi[j] + 1
)]

25

Under review as submission to TMLR

2E
[(
∑C

i=1
C

wT xixi[j] − w[j]) 1
]

= 0

2E
[(
∑C

i=1
C

wT xixi[j] − w[j])
∑C

k=1
C

wT xkxk[j]
]

we still only consider the case i ̸= k

2E
[(
∑C

i=1
C

wT xixi[j] − w[j])
∑C

k=1
C

wT xkxk[j]
]

= 2E
[
w[j] − w[j]) wT

]
= 0

we verify that b =
[
−w⋆

1

]
, aj =

[
ej

0

]
ad+1 = 0 v = w⋆, is a stationary point for loss fyq−LSA

B.4 Proof of Lemma 2

Proof. Based on the proof of Lemma 3, we consider the following matrix

W =
[

Id 0
w⊤ 0

]
∈ R(d+1)×(d+1).

Now for any fyq−LSA’s inputs (X, y, xq), by using Xw = y, we have

W E =
[

X⊤ xq

w⊤X⊤ w⊤xq

]
= Ew.

Thus,

fyq−LSA(X, y, xq) = fLSA(Ew) = fLSA(W E).

By using Lemma 1 with one-single head, we know that R(fLSA) is non-convex. Thus, we conclude that
R(fyq−LSA) is non-convex, as it is a composite function with a non-convex function R(fLSA) and a linear
function.

C Details of Experiment

C.1 Implementation Settings.

The experiments use JAX to implement and train the LSA models. We set the learning rate to lr = 5 × 10−4

and a batch size of 2,048. A single linear attention layer is used, without any LayerNorm or softmax operations.
We will release our code repository upon publication to facilitate reproducibility.

Table 1: Overview of the experimental setups. Each experiment modifies one factor (number of attention
heads, prior mean, or yq) while holding the others fixed.

Experiment Number of Heads Prior Mean yq

Head Section 5.1.1 Varies [2, 2, . . . , 2] 0
Prior Mean Section 5.1.2 11 Varies 0
yq Section 5.1.3 11 [0, 0, . . . , 0] Varies

26

Under review as submission to TMLR

C.2 Detailed Metric Definitions

Prediction Norm Difference The prediction norm difference measures the discrepancy between the outputs
of yq-LSA and one-step GD (fGD). Given a test input xq, we define the difference as:

∥fyq−LSA(xq) − fGD(xq)∥.

This metric quantifies how closely yq-LSA approximates the predictions of the explicit one-step GD solution.

Gradient Norm Difference The gradient norm difference assesses the deviation between the sensitivity
of the model predictions to the input. Given the gradient of the output with respect to the input xq, we
compute: ∥∥∥∥∂fGD(xq)

∂xq
−

∂fyq−LSA(xq)
∂xq

∥∥∥∥ .

This metric evaluates whether yq-LSA captures the same local sensitivity as one-step GD.

Cosine Similarity The cosine similarity measures the angular alignment between the gradients of the two
models. It is defined as: 〈

∂fGD(xq)
∂xq

,
∂fyq−LSA(xq)

∂xq

〉
∥∥∥∂fGD(xq)

∂xq

∥∥∥ ∥∥∥∂fyq−LSA(xq)
∂xq

∥∥∥ .

A cosine similarity of 1 indicates perfect alignment between the two models, while lower values suggest
deviations in the learned representations.

C.3 LLM Experimental Settings

We conducted our experiments using the STS-Benchmark dataset (English subset)(May, 2021), which consists
of sentence pairs labelled with semantic similarity scores ranging from 0 to 5. The LLM used in our study
was Meta-LLaMA-3.1-8B-Instruct(Grattafiori et al., 2024) and Qwen/Qwen2.5-7B-Instruct(Yang et al., 2024;
Team, 2024). The model’s generation parameters included a maximum of 150 new tokens and deterministic
decoding.

The guess model was trained to generate initial similarity score guesses. It consisted of a two-layer feedforward
architecture, taking as input the concatenated embeddings of two sentences computed by the Sentence-
Transformer model all-MiniLM-L6-v2(Reimers & Gurevych, 2020). The first layer mapped the concatenated
embeddings to a 16-dimensional space with ReLU activation, followed by a second layer that outputs a single
scalar value as the predicted similarity score. The model was trained using Adam Optimizer(Kingma, 2014)
with a learning rate of 1e-3 and a mean squared error loss function. Training was performed over 10 epochs,
with a batch size of 8. Sentence embeddings were dynamically computed during training. The loss for training
the guess model was computed as the MSE between the predicted and ground truth scores.

For each prompt, a context was constructed by randomly sampling 10 labelled examples from the dataset.
Each labelled example included two sentences, a ground truth similarity score, and an initial guess for the
similarity score generated by a lightweight guess model. The query example included two sentences and its
guessed similarity score and an explicit instruction for the LLM to refine the guess and provide a similarity
score between 0 and 5.

To evaluate the effectiveness of the initial guess, we calculated the MSE between the LLM’s predicted
similarity scores and the ground truth scores across 100 experimental runs. The baseline performance, derived
from the initial guesses provided was compared to the refined predictions generated by the LLM.

27

