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ABSTRACT

The social media-fuelled explosion of fake news and misin-
formation supported by tampered images has led to growth in
the development of models and datasets for image manipula-
tion detection. However, existing detection methods mostly
treat media objects in isolation, without considering the im-
pact of specific manipulations on viewer perception. Forensic
datasets are usually analyzed based on the manipulation op-
erations and corresponding pixel-based masks, but not on the
semantics of the manipulation, i.e., type of scene, objects, and
viewers’ attention to scene content. The semantics of the ma-
nipulation play an important role in spreading misinformation
through manipulated images. In an attempt to encourage fur-
ther development of semantic-aware forensic approaches to
understand visual misinformation, we propose a framework
to analyze the trends of visual and semantic saliency in popu-
lar image manipulation datasets and their impact on detection.
https://github.com/CV-Lehigh/Bias_IMD

Index Terms— Media Forensics, Image Manipulation,
Dataset Analysis, Image Saliency, Semantic Understanding

1. INTRODUCTION

The increase in quality, quantity and diversity of manipulated
media has led to an increased reliance on automated visual
forensics, as human analysis has limited applicability. How-
ever, not all manipulated images are equally misinforming.
For efficient detection at a large scale, forensic techniques
should focus more on images that have the potential for more
impact on viewer perception. In this work, we analyze im-
age forensics datasets based on perceptual saliency, i.e., the
amount of attention paid by human viewers to manipulated
content within an image. Such an analysis can be used to
reduce the scale and types of images that require urgent at-
tention and dedicated detection resources. We hypothesize
that image manipulations that catch human viewers’ attention
are more valuable to detect and analyze from the perspective
of misinformation. Gauging perceptual understanding in an
image-centric manner that goes beyond just labeling images
as real or fake is essential for fighting fake news and its ef-
fects. In this paper, we provide the following:

* Determine the impact of saliency on the human ability
to detect and localize image manipulations. Analyze
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Fig. 1: Saliency of the manipulation is an important factor in
determining if a human or machine will consider an image to

be manipulated.

the range of visually and semantically salient splicing-
based manipulations present in widely used benchmark
datasets for image manipulation detection.

» Experiments showing that synthetic manipulation of
saliency of image contents also lead to trends in detec-
tion performance, providing further evidence that more
salient manipulated regions are easier to detect.

 Evaluate bias in the performance of manipulation de-
tection networks based on the visual saliency of the ma-
nipulated region and the semantic change offered by the
manipulation. We propose a novel method of calculat-
ing the semantic relevance of the manipulation using
CLIP [1], a vision-language foundation model.

2. RELATED WORK

Human Perception and Image Manipulation Detection.
While humans can efficiently associate semantic understand-
ing with coherent visual scene elements [2,3] early works in
analyzing human manipulation detection ability, such as [4],
proved that humans consistently fail to detect physical im-
possibilities in an image such as inconsistent shadows, per-
spectives, and reflections. Recently, Nightingale et al. [5] and
Schetinger et al. [6] showed that humans are unable to distin-
guish real images from manipulated ones. In the respective
studies, participants’ could correctly classify 66% [5] and
58% [6] of the presented images as real vs. fake. The former
also showed that viewers couldn’t locate the manipulation
in the image 55% of the time. However, existing literature
has mostly focused on evaluating manipulation detection and
localization ability of humans without exploring deeper into
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(b) Ground-truth manipulation
mask.

(a) Image shown to the partici-
pants.

(c) Region(s) perceived as most
salient by the participants.

(d) Region(s) perceived as ma-
nipulated by the participants.

Fig. 2: Example saliency and manipulation prediction maps obtained from the human study. Maps (b) and (c) are compared
using Mean Recall to estimate the saliency of the manipulation. Maps (b) and (d) are compared using ROC to understand the

accuracy of human manipulation prediction.

its explanations. They do not investigate how the relevance
of the manipulation or viewer attention to specific regions
impacts the ability to detect it.

Saliency is a property that characterizes where people
choose to focus their mental processing power. Visual
saliency plays a key role in biasing human attention [7]
and processing visual stimuli [8]. Perception scientists have
studied how salient aspects of an image impact human per-
formance on a range of perceptual tasks, such as user engage-
ment [9], category learning [10], and distinguishing between
real and fake image [5, 11].

Rensink et al.’s seminal work, “To See or Not To See” [12],
studied the human ability to detect changes in scenes that
belonged to one of two saliency-related categories, central in-
terest and marginal interest. In the study, participants would
swap between two images, one original and one manipulated,
until they found the difference between the two. The au-
thors concluded that visual perception of change of an object
occurs only when that object is given focused attention. In
this paper, we perform a human study that investigates how
the saliency of manipulations in real-world images affects
the users’ ability to detect manipulations. Unlike the study
in [12], to emulate a more realistic online scenario, we show
manipulated images without an original reference images and
ask the participants to annotate the regions they pay attention
to and those they think were manipulated.

Learning-based Manipulation Detection Models. With the
advent of deep learning, data-driven solutions for manipula-
tion detection were developed. In recent years, Convolutional
Neural Networks (CNNs) have been applied to the manipu-
lation detection task [13—16]. These networks learn patterns
that distinguish pristine and manipulated images from human-
labeled data. Most notably, the Local Anomaly Detection
Network (LADN) architecture proposed by ManTra-Net [13]
was designed to mimic the human decision-making process.
Similarly, the authors of PSCC-Net [14] got inspired by how
people solve tasks going from a coarse to fine image analysis
to detect manipulations. Thus, certain biases originating from
data curation can influence learning-based models trained on
this data. Other models have explored attention networks for
context-aware manipulation detection [17] and fine-grained
hierarchical manipulation classification [18]. This work in-

vestigates biases observed in image manipulation detection
models and compares them with those observed in humans.

3. HUMAN SALIENCY

To understand how the saliency of the manipulations is re-
lated to peoples’ ability to accurately spot them, i.e., if people
are better at detecting manipulations when they are within the
salient region of the image, we set up a user study. Identifying
saliency bias within human manipulation detection can help
develop tools to help humans spot less salient manipulations.

In the study, participants looked at 130 spliced images
from the Korus’ Realistic Tampering (RT) dataset [19, 20]
containing well-crafted manipulations proven to be challeng-
ing for manipulation detection and localization networks [21].
For each image, the participants completed 2 tasks. The first
task was to place bounding boxes on objects or regions that
looked the most attention-grabbing. This question identified
the salient regions of the image. For the second task, the par-
ticipants placed bounding boxes on objects or regions they
believed to be manipulated, if any. The order of these ques-
tions is important. We wanted to first understand what a hu-
man focuses on (saliency), and then ask specifically if they
find something manipulated in the image. Since saliency is a
more general visual concept, the saliency question being pre-
sented first does not shift the participants’ opinion of manip-
ulation because saliency can be assessed from any image re-
gardless of whether it is manipulated. Additionally, we chose
to ask these questions to the same participants instead of con-
ducting two studies for collecting the two types of responses.
There can be variations in the human detection ability and vi-
sual reasoning. Recording both in the same session maintains
consistency between saliency and manipulation data.

The study was created by the authors ' and participants
were recruited using Prolific 2, a crowdsourcing platform
which ensures highly qualified and vetted participants [22].
Each image was reviewed 5 times and 650 responses were
recorded in total from 65 individuals. The participants were
compensated $2.00 per survey consisting of 10 images each.

The bounding boxes recorded from all the participants’ re-
sponses were combined to create a (i) human saliency map 2c

http://pnz.aca.mybluehost .me
’https://www.prolific.com
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Fig. 3: Detection performance (AuROC) from human partic-
ipants for five saliency levels over the RT dataset (number of
images in each group in parentheses).

and the corresponding (ii) manipulation prediction mask 2d.
The final masks for each image contain a higher weight or
confidence for pixel locations where boxes provided by mul-
tiple participants overlapped. Both the human saliency and
manipulation prediction masks are then compared to its re-
spective ground-truth pixel-wise manipulation mask 2b. This
comparison reveals how salient a manipulation is to the par-
ticipants, and how well they could localize the manipulation
(used to also determine detection performance, as correct lo-
calization implies correct detection implicitly). To obtain the
saliency score of each image manipulation, the saliency mask
was compared with the ground truth using pixel-wise Mean
Recall, which considers both accuracy and group agreement.

The images used in the study were then divided into five
groups depending on the saliency score of their manipula-
tions. We obtained a fairly even distribution of images in
the five groups, implying that the RT dataset contains splic-
ing manipulations evenly spread across different levels of
saliency. To understand if the human performance wors-
ens when the less salient image regions were manipulated,
we computed the detection performance of human partici-
pants for the images in each group. For each image within
a group, the manipulation prediction mask was compared
to the ground truth manipulation mask and the Area under
the Receiver Operating Characteristics curve (AuROC) for
pixel-wise manipulation classification was used. The average
AuROC for each level of saliency is reported in Fig. 3 and
shows a correlation between the saliency of the manipulations
and how well people can localize them. The detection per-
formance increases consistently through groups, from around
0.62 in the first group to 0.89 in the final group, showcasing
that the saliency of the manipulations can bias people’s ability
to properly localize manipulations.

4. MACHINE EXPERIMENTS

Results from the human study lead us to formulate two ques-
tions: first, do manipulation detection networks reflect similar
biases as seen in humans, and are the trends similar in other
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image manipulation datasets? And second, will increasing the
saliency of these manipulations correlate to improved human
detection performance? Answering the latter also further ver-
ifies if saliency was a contributor to the performance trends
over other variables such as content in the image, quality, etc.
This section describes the experiments conducted to answer
the two research questions.

Datasets Used. For enabling comparison between hu-
man performance and that of detection algorithms, the first
adopted dataset refers to the same subset of 130 images from
the Korus’ RT dataset as used in the human study (Sec. 3).

We use two other forgery datasets, which enable larger-
scale automated analyses. The 2018 Media Forensics Chal-
lenge dataset (MFC18) [23] was released by the American
National Institute of Standards and Technology (NIST), and
contains several forgery instances (more examples than the
RT dataset). It contains multiple manipulations on the same
image, which is a typical technique utilized by forgers to
improve realism and hide detectability. Due to input reso-
lution constraints, we select 1127 images from MFC18 with
sum of dimensions up to 4K pixels and at least one manip-
ulation that can change the semantic meaning of the image
(e.g., copy-move, splicing, and inpainting). The second
dataset, IMD2020 [24], contains 2007 images sourced from
the r/photoshopbattles subreddit. This crowdsourced
database provides the benefit of massive variance in image ac-
quisition conditions and content. However, as the main goal
of the community is to create obvious, funny, and satirical
manipulations, the forgeries may not be well disguised.
Experiment 1. Dataset Visual Saliency Bias Estimation. The
process of collecting human annotations cannot be extrapo-
lated for every dataset, as it is time-consuming and expen-
sive. In order to get robust saliency predictions for the larger
datasets, we utilize two object-based saliency prediction net-
works, U2-Net [25] and R3Net [26]. Both networks generate
a saliency prediction within the range [0, 1] for each pixel in
a given image. Averaging the two saliency maps helps build
robustness and accommodate scenarios where a single net-
work fails. Since saliency is subjective, it is important to con-
sider multiple opinions when deciding the saliency, as with

3259

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on May 16,2025 at 06:51:46 UTC from IEEE Xplore. Restrictions apply.



Realistic Tampering

IMD2020

[
© o
=] =]
~
>
~
°

o
<)
"
kA
NN
m
%

&
1)
N

BusterNet
PSCC-Net
ManTra-Net
OSN

Human Pred.

N
=]

Detection Performance [Avg. AuROC]

7

56 57
49 48

BusterNet
PSCC-Net
ManTra-Net
OSN

93
87 90 89

8282

78
75 1278 7375 76

52 5o 2 53 53

BusterNet
PSCC-Net
ManTra-Net
OSN

o

<2(15) .2-4(29)

<.2(187) .2-.4(135) .4-.6 (331) .6-.8 (136) >.8(338)
Saliency Of Manipulation [Mean Recall]

<.2(162) .2-.4(114) .4-.6 (265) .6-.8 (455) >.8 (1011)

Fig. 5: Manipulation detection and localization (average AuROC) results on the 3 datasets. The first plot additionally shows
efficacy of manipulated region predictions collected from the human study.
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Fig. 6: Top: tampered image and its predictions from different networks. Bottom: saliency enhanced tampered image and its
predictions. (D) - (G) prediction from each of the manipulation detection and localization networks [13—-16].

human responses. The combined saliency map from U?-Net
and R®Net is compared to the ground truth manipulated mask
using Mean Recall. Based on the mean recall score, images
are placed into one of five saliency groups.

The distribution of saliency of manipulations for the
RT [20], MFC18 [23] and IMD2020 [24] datasets is shown
in Fig. 4. Compared to the saliency distribution generated by
the human study, the RT dataset is less uniformly distributed.
However, it is still more uniformly distributed than MFC18
and IMD2020. After splitting images into the proper saliency
groups, we calculate the average AuROC (detection perfor-
mance) for each group across popular manipulation detection
and localization models: PSCC-Net [14], OSN [16], Buster-
Net [15], and ManTra-net [13]. AuROC is commonly used to
evaluate manipulation detection models and allows for com-
parison of model performance across datasets. Evaluating
the detection performance for images in each saliency group
individually can help determine how much visual saliency
has an effect on manipulation detection.

Experiment 2. Impact of Varying Saliency on Manipulation
Detection. As observed so far, saliency of the manipulated
region plays a role in a model’s ability to detect the manipula-
tion. If saliency bias exists within manipulation detection net-
works, the average detection performance for each saliency
group should increase as saliency of manipulations in images
of the group increases. Essentially, when a manipulation be-
comes more salient, models should detect the manipulation
more accurately. Saliency of difficult-to-detect manipulated
regions in a given image can be increased using a saliency-
guided image manipulation network [27-29]. Such networks
attempt to modify color, contrast, and saturation, while avoid-
ing changes that can alter semantic interpretation of the im-

age. Evaluating average detection performance of saliency
enhanced manipulations across multiple networks can pro-
vide additional evidence that saliency is a biasing factor for
manipulation detection.

To understand if the detectability of manipulated images
improves upon artificially guiding attention towards relevant
areas, we employ the GAN-based method proposed in [28].
Upon providing two images, an RGB image and a binary
attention mask, the Saliency-Guidance Image Manipulation
(SaGIM) network [28] attempts to modify the RGB image
such that the regions highlighted in the attention mask are
more salient. Average detection performance for each ma-
nipulation detection network is calculated for the saliency en-
hanced variants of the images in each manipulation saliency
group. The performance before and after saliency-guided im-
age manipulation are presented in Fig. 7.

Additionally, another human study was conducted with
images post saliency enhancement, following the same proto-
col as described in Sec. 3, to evaluate if saliency adjustment
helps people detect manipulations. 130 images received re-
sponses from 5 participants each and their overall detection
performance is shown in Fig. 7.

5. RESULTS

Is there performance bias for manipulation detection al-
gorithms based on the visual saliency of the manipulated
region? Based on Experiment 1, discussed in Section 4,
a similar trend of results across multiple networks provide
tangible evidence of saliency bias. The results from the
evaluation show a clear increase in performance as the ma-
nipulations get more salient across all evaluated datasets and
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Fig. 7: SaGIM [28] allows for the manipulated region to become more salient and results in increased detection performance.
Results shown on RT dataset (2 outlier images removed). Left: Average AuROC of resized (to fit SaGIM requirements) RT
images for each saliency of manipulation group. Right: Average AuROC of saliency enhanced RT images.

Table 1: Average detection performance per saliency group for various manipulation detection networks. The result shows a
decrease in performance variation between low and high salient manipulations after saliency enhancement.

Original Saliency

Saliency Enhanced

Dataset ‘ Partition ‘ count ‘ BusterNet PSCC-Net ManTra-Net OSN ‘ BusterNet PSCC-Net  ManTra-Net  OSN
<2 179 0.53 0.57 0.65 0.71 0.55 0.72 0.90 0.79

2—4 118 0.59 0.59 0.71 0.82 0.61 0.74 0.90 0.85

IMD2020 4—.6 270 0.65 0.59 0.72 0.86 0.67 0.73 0.91 0.89
6—.8 431 0.68 0.56 0.75 0.86 0.70 0.71 0.90 0.89

> .8 1008 0.72 0.59 0.79 0.90 0.73 0.72 0.93 091

using all models except BusterNet (see Fig. 5). The failure
can be attributed to its inability to handle larger images This
clear performance gap between saliency groups similar to
the one seen in human performance (Fig. 3) indicates that
saliency is a clear factor in detectability of manipulations.
The larger number of low-salient manipulations combined
with detection performance bias may explain why RT is
considered such a difficult dataset for many manipulation
detection networks [21, 30].

Does varying the saliency of the manipulated region
change the detection performance for machines and hu-
mans? Experiment 2 was aimed to test if there is an increase
in average detection performance as we increased the saliency
of the manipulated regions in images, resulting in a shrinking
of the performance gap between low salient images and high
salient images. This direct relation between manipulation
saliency and detection performance (Table 1 and Fig. 7)
reinforces evidence for our hypothesis that the more salient
a manipulation, the more accurate its detection is by both
humans and models.

A possible source of improvement in algorithmic detec-
tion performance is networks detecting the manipulation per-
formed by the SaGIM network. However, if the networks
were detecting the global changes made by SaGIM, the detec-
tion performance scores would be low by virtue of increased
false positive rate, i.e., where the models predicted a pixel as
manipulated when it was not indicated as manipulated in the
original ground truth mask. Additionally, BusterNet which
previously failed to score well (Fig. 5) improves in detection
performance due to resizing (downsampling as per input di-
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mension requirements of SaGIM) improving its ability. How-
ever, saliency enhancement led to minor improvements in its
performance. Conversely, the resizing caused PSCC-Net to
perform worse, also reported in the original paper [14] and
while saliency enhancement has a positive impact, it is not
enough to surpass its performance on the unprocessed images.
Fig.6 illustrates and summarizes the impact of using saliency
re-attention over a manipulated image. Finally, a marginal de-
cline in detection performance is observed for highly salient
images following saliency enhancement. This phenomenon
arises from the inherent challenge of augmenting the saliency
of regions already characterized by high salience. Enhance-
ment attempts may inadvertently introduce manipulations that
diminish the saliency of the region, consequently reducing the
overall performance.

6. SEMANTIC RELEVANCE OF VISUAL SALIENCY

The semantics within an image that a human focuses on can
also represent saliency and can directly impact the perceived
message. If an image region is not visually salient, it may
not contribute to the interpretation of the image by a human
viewer and can lead to misinformation. The semantic descrip-
tion of a scene can be obtained by either asking human partic-
ipants (expensive and difficult to standardize) or using a mul-
timodal foundation model, that embeds both images and se-
mantic descriptions, originally provided by humans, into the
same latent space.

To figure out the effect of saliency of a manipulation on
the semantic interpretation of images, we use a pre-trained
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Fig. 8: The CLIP model generates the probability of relevance
for every word in the corpus based on an image. The tags
shared by the pristine and tampered images are in green, and
the rest in red. We calculate the percentage of common se-
mantic concepts when considering top 5 relevant words from
the pristine and manipulated image predictions.

Contrastive Language-Image Pretraining (CLIP) [1] model to
compare the important semantic elements within a scene be-
fore and after spliced edits or manipulation. CLIP has been
used for evaluation of various high-level tasks such as image
captioning [31] and image reconstruction [32]. In a similar
vein, we employ it to evaluate the semantic change caused by
manipulation. Given an image and a text corpus, in our case,
a dictionary of nouns 3_the model tries to relate the semantic
content in images with text and returns a list of words rele-
vant to the scene and their probabilities. By applying CLIP
to both pristine image and their manipulated variant, we can
investigate the correlation of the visual manipulation and its
saliency to what machine algorithms find relevant in a scene.
The exact metrics compare the words predicted with the high-
est relevance, i.e., probability, for both pristine and manipu-
lated images and are explained with an example in Fig 8.
Semantic change is analyzed using the aggregated change
in the predicted tag lists and probabilities yielded by the pris-
tine and tampered versions of an image, for 5 trials (since
the model is stochastic in its predictions). Specifically, we
use topl overlap, top5 overlap, top5S IoU, and top5 probabil-
ity change as metrics (reported in Fig. 9 for RT and IMD2020
datasets for manipulations with varying saliency). If the pris-
tine and tampered tag list has a top1 overlap score of 0, the
primary semantic meaning was changed by the manipulation.
Similarly, if the top5 IoU and top5 overlap are low, it indicates
the manipulated region greatly changes the semantic mean-
ing. Top5S probability change calculates the sum of change in
probability of the top 5 tags for each image.
Do visual saliency biases also relate to semantic differ-
ence interpreted by general purpose vision models? Fig. 9
shows that on average, the higher the saliency of manipula-
tion, the lower the overlap metric scores. The topl overlap
is initially 0.93, but decreases to 0.50 by the final saliency
group. The decrease in overlap metrics implies that there is
higher perceivable semantic change as the manipulated region
gets more salient. Similarly, the top 5 probability change met-
ric increases, starting from 9% probability change for the low-

3https://en.wiktionary.org
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Fig. 9: Semantic change metrics for image groups created us-
ing automated saliency estimation splits for RT dataset. High
overlap scores indicate more similarity between original and
tampered images, hence the manipulation lends low semantic
change, and vice versa.

est salient set to 20% for the highest. The increase in proba-
bility change metric with increase in saliency of the manipu-
lation shows that the higher the saliency of the manipulation,
the greater the semantic change from the manipulation.

7. CONCLUSION

This paper formally identifies saliency of the manipulation
as a factor in its detectability. Manipulations in two of the
three investigated datasets are diverse with regard to saliency
and IMD2020 has generally high salient manipulations. Our
results conclude that the saliency of the manipulation is an
important factor in changing the semantic meaning of the im-
age and the ability for both people and networks to localize
it. Additionally, we show that increasing the saliency of the
manipulated region with tools such as [27-29] results in an
increased detection performance for both humans and detec-
tion networks, reinforcing the hypothesis that saliency affects
detection performance of manipulated images.

8. REFERENCES

[1] Alec Radford et al., “Learning transferable visual mod-
els from natural language supervision,” in ICML, 2021,
pp- 8748-8763.

[2] Walter Scheirer et al., “Perceptual annotation: Measur-
ing human vision to improve computer vision,” IEEE
TPAMI, vol. 36, pp. 1679-1686, 2014.

[3] Rishi Rajalingham et al., “Large-scale, high-resolution
comparison of the core visual object recognition behav-
ior of humans, monkeys, and state-of-the-art deep artifi-
cial neural networks,” Journal of Neuroscience, vol. 38,

no. 33, pp. 7255-7269, 2018.

[4] Hany Farid and Mary Bravo, “Image forensic analyses
that elude the human visual system,” in SPIE Media
forensics and security 11, 2010, vol. 7541, pp. 52-61.

3262

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on May 16,2025 at 06:51:46 UTC from IEEE Xplore. Restrictions apply.



(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

Sophie Nightingale, Kimberley Wade, and Derrick Wat-
son, “Can people identify original and manipulated
photos of real-world scenes?,” Springer Cognitive re-
search: principles and implications, vol. 2, no. 1, pp.
1-21, 2017.

Victor Schetinger et al., “Humans are easily fooled by
digital images,” Elsevier Computers & Graphics, vol.
68, pp. 142-151, 2017.

Laurent Itti, Christof Koch, and Ernst Niebur, “A model
of saliency-based visual attention for rapid scene analy-
sis,” IEEE TPAMI, vol. 20, pp. 1254-1259, 1998.

Ali Borji, Dicky Sihite, and Laurent Itti, “What stands
out in a scene? a study of human explicit saliency judg-
ment,” Elsevier Vision Research, vol. 91, pp. 62-77,
2013.

Lori McCay-Peet, Mounia Lalmas, and Vidhya Naval-
pakkam, “On saliency, affect and focused attention,” in
ACM CHI, 2012, pp. 541-550.

Rubi Hammer, “Impact of feature saliency on visual

category learning,” Frontiers in Psychology, vol. 6, pp.
451, 2015.

Matthew Groh et al.,, “Deepfake detection by hu-
man crowds, machines, and machine-informed crowds,”
PNAS, vol. 119, no. 1, 2022.

Ronald Rensink, Kevin O’Regan, and James Clark, “To
see or not to see: The need for attention to perceive
changes in scenes,” Psychological Science, vol. 8, no.
5, pp- 368-373, 1997.

Yue Wu, Wael Abd-Almageed, and Prem Natarajan,
“Mantra-net: Manipulation tracing network for detec-
tion and localization of image forgeries with anomalous
features,” in IEEE/CVF CVPR, 2019.

Xiaohong Liu et al., “Pscc-net: Progressive spatio-
channel correlation network for image manipulation de-
tection and localization,” [EEE TCSVT, vol. 32, pp.
7505-7517, 2022.

Yue Wu, Wael Abd-Almageed, and Prem Natarajan,
“Busternet: Detecting copy-move image forgery with
source/target localization,” in ECCV, 2018, pp. 168—
184.

Haiwei Wu et al., “Robust image forgery detection
against transmission over online social networks,” IEEE
TIFS, vol. 17, no. 1, pp. 443-456, 2022.

Ruyong Ren et al., “Multi-scale attention context-aware
network for detection and localization of image splicing:
Efficient and robust identification network,” Springer

Applied Intelligence, pp. 1-20, 2023.

3263

(18]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

Xiao Guo et al.,
forgery detection and localization,”
CVPR, 2023, pp. 3155-3165.

“Hierarchical fine-grained image
in IEEE/CVF

Pawel Korus and Jiwu Huang, “Multi-scale analysis
strategies in prnu-based tampering localization,” IEEE
TIFS, vol. 12, no. 4, pp. 809-824, 2016.

Pawetl Korus and Jiwu Huang, “Evaluation of random
field models in multi-modal unsupervised tampering lo-
calization,” in IEEE WIFS, 2016, pp. 1-6.

Owen Mayer and Matthew Stamm, “Exposing fake im-
ages with forensic similarity graphs,” IEEE JSTSP, vol.
14, no. 5, pp. 1049-1064, 2020.

Benjamin Douglas, Patrick Ewell, and Markus Brauer,
“Data quality in online human subjects research:
Comparisons between mturk, prolific, cloudresearch,
qualtrics, and sona,” Plos One, vol. 18, 2023.

Haiying Guan et al., “Mfc datasets: Large-scale bench-
mark datasets for media forensic challenge evaluation,”
in IEEE/CVF WACYV, 2019, pp. 63-72.

Adam Novozamsky, Babak Mahdian, and Stanislav
Saic, “Imd2020: A large-scale annotated dataset tai-
lored for detecting manipulated images,” in IEEE/CVF
WACYV, 2020, pp. 71-80.

Xuebin Qin et al., “U2-net: Going deeper with nested u-
structure for salient object detection,” Elsevier Pattern
Recognition, vol. 106, pp. 107404, 2020.

Zijun Deng et al., “R3net: Recurrent residual refinement
network for saliency detection,” in AAAI IJCAI, 2018,
pp. 684-690.

Youssef Mejjati et al., “Look here! A parametric learn-
ing based approach to redirect visual attention,” in
Springer ECCV, 2020, pp. 343-361.

Yen-Chung Chen et al., “Guide your eyes: Learning im-
age manipulation under saliency guidance.,” in BMVC,
2019, vol. 2, p. 3.

Mahdi Miangoleh et al., “Realistic saliency guided im-
age enhancement,” in IEEE/CVF CVPR, 2023, pp. 186—
194.

Susmit Agrawal et al., “Sisl: self-supervised image sig-
nature learning for splicing detection & localization,” in
IEEE/CVF CVPR, 2022, pp. 22-32.

Jack Hessel et al., “CLIPScore: A reference-free eval-
uation metric for image captioning,” in ACL EMNLP,
2021, pp. 7514-7528.

Yu Takagi and Shinji Nishimoto, “High-resolution im-
age reconstruction with latent diffusion models from hu-
man brain activity,” in IEEE/CVF CVPR, 2022.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on May 16,2025 at 06:51:46 UTC from IEEE Xplore. Restrictions apply.



