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ABSTRACT

Deep probabilistic forecasting is gaining attention in numerous applications from
weather prognosis, through electricity consumption estimation, to autonomous
vehicle trajectory prediction. However, existing approaches focus on improvements
on average metrics without addressing the long tailed distribution of errors. In this
work, we observe long tail behavior in the error distribution of state-of-the-art deep
learning methods for probabilistic forecasting. We present two loss augmentation
methods to reduce tailedness: Pareto Loss and Kurtosis Loss. Both methods are
related to the concept of moments, which measures the shape of a distribution.
Kurtosis Loss is based on a symmetric measure, the fourth moment. Pareto Loss is
based on an asymmetric measure of right tailedness and models loss using a Gener-
alized Pareto Distribution (GPD). We demonstrate the performance of our methods
on several real-world datasets, including time series and spatiotemporal trajectories,
achieving significant improvements on tail error metrics, while maintaining and
even improving upon average error metrics.

1 INTRODUCTION

Probabilistic forecasting is one of the most fundamental problems in time series and spatiotemporal
data analysis, with broad applications in energy, finance, and transportation. Deep learning models Li
et al. (2019); Salinas et al. (2020); Rasul et al. (2021a) have emerged as state-of-the-art approaches for
forecasting rich time series and spatiotemporal data with uncertainty. In several forecast competitions,
such as the M5 forecasting competition Makridakis et al. (2020), Argoverse motion forecasting
challenge Chang et al. (2019), and IARAI Traffic4cast contest Kreil et al. (2020), almost all the
winning solutions are based on deep neural networks.

Figure 1: Log-log error distribu-
tion plot for trajectory prediction on
the ETH-UCY dataset using SoTA
(Traj++EWTA). We see the long tail
in error upto 2 orders of magnitude
higher than the average. Also shown is
a tail sample with predictions from our
method(teal) and Traj++EWTA(purple).

Despite encouraging progress, we observe that the fore-
casting error for deep learning models has long-tail be-
havior. This means that a significant amount of samples
are very difficult to forecast. These samples have errors
much larger than the average. Figure 1 visualizes an ex-
ample of long-tail behavior for a motion forecasting task.
Existing works often measure forecasting performance by
averaging across test samples. However, average perfor-
mance measured by metrics such as root mean square error
(RMSE) or mean absolute error (MAE) can be misleading.
A low RMSE or MAE may indicate good average perfor-
mance, but it does not prevent the model from behaving
disastrously in critical scenarios.

From a practical perspective, the long-tail behavior in fore-
casting error is alarming. In motion forecasting, the long
tail could correspond to crucial events in driving, such as
turning maneuver and sudden stops. Failure to accurately
forecast in these scenarios would pose paramount safety
risks in route planning. In electricity forecasting, these
high errors could be during short circuits, power outages,
grid failures, or sudden behavior changes. Focusing solely on average performance would ignore the
electric load anomalies, significantly increasing maintenance and operational costs.
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Long-tailed learning is heavily studied in classification settings, with a focus on class imbalance.
There is also rich literature for heavy-tailed time series Kulik & Soulier (2020). However, long tail
there usually refers to distribution of the data, not distribution of the error. We refer the reader to
Table 2 in Menon et al. (2020) and the survey paper Zhang et al. (2021) for a complete review. Most
common approaches to address the long-tail data distribution include post-hoc normalization Pan
et al. (2021), data resampling Chawla et al. (2002); Torgo et al. (2013), loss engineering Lin et al.
(2017); Lu et al. (2018), and learning class-agnostic representations Tiong et al. (2021). These
approaches implicitly assume strong correspondence between data and error. Hence, they are not
directly applicable to forecasting, as we do not have pre-defined classes or the prediction error before
training. Makansi et al. (2021) observed similar long-tail error in trajectory and proposed to use
Kalman filter prediction performance to measure sample difficulty. However, Kalman filter is a
different model class and its difficulties do not translate to deep neural networks used for forecasting.

In this paper, we address the long-tail behavior in prediction error for deep probabilistic forecasting.
We present two loss augmentation methods: Pareto Loss and Kurtosis Loss. Kurtosis Loss is based
on a symmetric measure of tailedness as a scaled fourth moment of a distribution. Pareto Loss uses
the Generalized Pareto Distribution (GPD) to fit the long-tailed error distribution. The GPD can
be described as a weighted summation of shifted moments, which is an asymmetric measure of
tailedness. We investigate these measurements as loss regularization and reweighting approaches for
probabilistic forecasting tasks. We achieve significantly improved tail performance compared to the
base model and baselines. Interestingly, we also observe better average performance in most settings.

In summary, our contributions are

• We identify long-tail behavior in forecasting error for deep probabilistic models.

• We investigate principled approaches to address this long-tail behavior and propose two
novel methods: Pareto Loss and Kurtosis Loss.

• We significantly improve the tail errors on four real world forecasting tasks, including two
time series and two spatiotemporal trajectory forecasting datasets.

2 RELATED WORK

Deep probabilistic forecasting. There is a flurry of work on probabilistic forecasting using deep
neural networks. A common practice is to combine classic time series models with deep learning,
resulting in DeepAR Salinas et al. (2020), Deep State Space Rangapuram et al. (2018), Deep Factors
Wang et al. (2019) and normalizing Kalman Filter de Bézenac et al. (2020). Others introduce
normalizing flow Rasul et al. (2021b), denoising diffusion Rasul et al. (2021a) and particle filter
Pal et al. (2021) to deep learning. For probabilistic trajectory forecasting, a few recent works
propose to approximate the conditional distribution of future trajectories given the past with explicit
parameterization Tang & Salakhutdinov (2019); Luo et al. (2020), CVAE Sohn et al. (2015); Lee
et al. (2017); Salzmann et al. (2020) or implicit models such as GAN Gupta et al. (2018); Liu et al.
(2019a). Nevertheless, most existing works focus on average performance, the issue of long-tail in
error distribution is largely overlooked in the community.

Long-tailed learning. The main efforts to address the long-tail in error in learning revolve around
reweighing, resampling, loss function engineering, and two-stage training, but mainly for classifica-
tion. Rebalancing during training is done in the form of synthetic minority oversampling Chawla et al.
(2002), oversampling with adversarial examples Kozerawski et al. (2020), inverse class frequency
balancing Liu et al. (2019b), balancing using effective number of samples Cui et al. (2019), or
balance-oriented mixup augmentation Xu et al. (2021). Another direction involves post-processing
either in form of normalized calibration Pan et al. (2021) or logit adjustment Menon et al. (2020). An
important direction is loss modification approaches such as Focal Loss Lin et al. (2017), Shrinkage
Loss Lu et al. (2018), and Balanced Meta-Softmax Ren et al. (2020). Others use two-stage train-
ing Liu et al. (2019b); Cao et al. (2019) or separate expert networks Zhou et al. (2020); Li et al.
(2020); Wang et al. (2021). We refer the readers to Zhang et al. (2021) for an extensive survey. Tang
et al. (2020) indicated SGD momentum can contribute to the aggravation of the long-tail problem
and suggested de-confounded training to mitigate its effects. Feldman (2020); Feldman & Zhang
(2020) performed theoretical analysis and suggested label memorization in a long-tail distribution as
a necessity for the network to generalize.
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A few methods were developed for imbalanced regression. Many approaches are modifications of
SMOTE (Synthetic Minority Oversampling Technique) such as, adapted to regression SMOTER Torgo
et al. (2013), augmented with Gaussian Noise SMOGN Branco et al. (2017), or Ribeiro & Mo-
niz (2020) extending for prediction of extremely rare values. Steininger et al. (2021) proposed
DenseWeight, a method based on Kernel Density Estimation for better assessment of the relevance
function for sample reweighing. Yang et al. (2021) proposed a distribution smoothing over label
(LDS) and feature space (FDS) for imbalanced regression. Prasad et al. (2018); Zhu & Zhou (2021)
worked on robust regression approaches applicable to point forecast. GARCH Bollerslev (1986) and
AFTER Cheng et al. (2015) addressed heavy-tailed error in forecasting but both are statistical models,
and not applicable to deep learning. A concurrent work is Makansi et al. (2021) where they also
notice the long-tail error distribution for trajectory prediction. They use Kalman filter Kalman (1960)
performance as a difficulty measure and propose contrastive learning to mitigate the tail problem.
However, the tail samples of Kalman Filter differ from that of deep learning models.

Most methods in long-tailed learning operate on known heavy-tailedness in data, whereas our focus
is to mitigate the unknown long tail in the error distribution of test samples without any specific
assumption on the data distribution. This is essential to our problem setting and techniques.

3 METHODOLOGY

We first identify the long-tail error distribution in probabilistic forecasting. Then, we propose two
novel methods, Pareto Loss and Kurtosis Loss, to mitigate the long tail in error.

3.1 LONG-TAIL IN PROBABILISTIC FORECASTING

Given input xt ∈ Rdin and output yt ∈ Rdout respectively, probabilistic forecasting task aims to
predict the conditional distribution of future states y = (yt+1, . . . , yt+h) given current and past
observations x = (xt−k, . . . , xt) as:

p(yt+1, . . . , yt+h|xt−k, . . . , , xt) (1)
where k is the length of the history and h is the prediction horizon. The maximum likelihood predic-
tion –mean when the predicted distribution is a Gaussian– can be denoted as ŷ = (ŷt+1, . . . , ŷt+h).
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Figure 2: Log-log error distribution plots. Time series datasets (left half) use DeepAR, trajectory
datasets (right half) use Traj++EWTA. This clearly illustrates the long tail in error distribution.

Long tailed error distributions for deep learning models manifest in numerous real world datasets.
This is evident in four benchmark forecasting datasets studied in this work (Time series: Electric-
ity Dua & Graff (2017), Traffic Dua & Graff (2017); Trajectory: ETH-UCY Pellegrini et al. (2009);
Lerner et al. (2007), nuScenes Caesar et al. (2020)). Fig. 2 shows the long-tailed error distribution
for time series datasets using DeepAR Salinas et al. (2020) and for trajectory datasets using Trajec-
tron++EWTA Makansi et al. (2019). We follow the literature and use Normalized deviation (ND) and
Final Displacement Error (FDE) to measure the performance.

We also observe that the samples forming the tail in error vary across methods and even across
different runs of the same model. For example, we trained 2 DeepAR Salinas et al. (2020) models on
the same Electricity forecasting dataset from UCI repository Dua & Graff (2017). We observe that
the sets of samples with the top 5% error values have only 3.5% samples common to both models.
This shows that the tail in the data does not necessarily correspond to the tail in error.

The fact that it is impossible to identify a fixed set of tail samples means that we cannot simply
reweigh ( Cui et al. (2019); Fan et al. (2017)) or resample ( Torgo et al. (2013); Branco et al. (2017))
these samples before training. The variation of tail samples between models also invalidates the
approach taken by Makansi et al. (2021). Mitigating the long tail in error requires an approach
that is independent of the data distribution and is adaptive during training. Thus, we propose using
tail-sensitive loss augmentations that adapt the model to also improve on samples with tail errors.

3



Under review as a conference paper at ICLR 2023

3.2 PARETO LOSS

Long tail distributions naturally lend themselves to analysis using Extreme Value Theory (EVT).
EVT McNeil (1997) shows that long tail behavior of a distribution can be modeled as a generalized
Pareto distribution (GPD). The probability distribution function (pdf) of the GPD is:

f(ξ,η,µ)(a) =
1

η

(
1 + ξ

(
a− µ

η

))−( 1
ξ+1)

⇒ f(ξ,η)(a) =

(
1 +

ξa

η

)−( 1
ξ+1)

(2)

where the parameters are location (µ), scale (η) and shape (ξ). Without loss of generality, µ can be
set to 0. We can drop the scaling term 1

η as the pdf will be scaled using a hyperparameter.

The idea behind our Pareto Loss is to fit the GPD pdf in equation 2 to the final loss distribution and
use it to increase the emphasis placed on the tail samples during training. We denote the loss function
of a given model, base loss, as l. In probabilistic forecasting, a commonly used loss is Negative Log
Likelihood (NLL) loss: li = − log(p(y(i)|x(i))) where ⟨x(i),y(i)⟩ is the ith training sample.

Our goal is to reduce the long-tail error measured by, e.g. MSE. This means that using NLL to
fit the GPD might not lead to the intended prioritization of samples. Thus, we propose using an
auxiliary loss l̂, which is better correlated with the evaluation metric used, to fit the GPD. The choice
of auxiliary loss is completely up to the model designer and could be the base loss itself in settings
where it correlates well with the evaluation metric. See Appendix F for further details.

There are two main classes of loss augmentation methods to mitigate tail errors: regularization Ren
et al. (2020); Makansi et al. (2021) and reweighting Lin et al. (2017); Lu et al. (2018); Yang et al.
(2021). Inspired by these, we propose two variations of the Pareto Loss using the GPD fitted on l̂:
Pareto Loss Margin (PLM) and Pareto Loss Weighted (PLW).

PLM is based on the principles of margin-based regularization Ren et al. (2020); Liu et al. (2016),
which assigns larger additive penalties to tail samples using the fitted GPD. For a given hyperparameter
λ, PLM is defined as,

lplm = l + λ ∗ rplm(l̂), rplm(l̂) = 1− f(ξ,η)(l̂) (3)

An alternative is to reweigh the loss terms using the fitted GPD. For a given λ, PLW is defined as,

lplw = wplw(l̂) ∗ l, wplw(l̂) = 1− λ ∗ f(ξ,η)(l̂) (4)

3.3 KURTOSIS LOSS

Use cases requiring higher emphasis on the extreme tail need an even more skewed measure of
heavy-tailedness. For such cases we propose using Kurtosis, which is the scaled fourth moment
relative to its mean. It assesses the propensity of a distribution to have extreme values within its tails.
To increase the emphasis on tail samples, we use this measure as a margin-based regularization term
in our proposed Kurtosis Loss. For a given hyperparameter λ and using the same notations as Sec.3.2,
Kurtosis Loss is defined as,

lkurt = l + λ ∗ rkurt(l̂), rkurt(l̂) =

(
l̂ − µl̂

σl̂

)4

(5)

where µl̂ and σl̂ are the mean and standard deviation of the auxiliary loss (l̂) for a batch of samples.
We do not use a reweighting based approach with kurtosis as there is no upper bound to the kurtosis
value. This could lead to convergence issues due to very high weights for some samples.

3.4 CONNECTION BETWEEN PARETO AND KURTOSIS LOSS

Kurtosis Loss and Pareto Loss are both based on moments of a distribution. Pareto Loss is a weighted
sum of shifted moments, while Kurtosis Loss is the scaled fourth moment. Specifically, let b = ξa

η

and c = −( 1ξ + 1), then the Taylor expansion for the GPD pdf in equation 2 is,

(1 + b)c = 1 + cb+
c(c− 1)

2!
b2 +

c(c− 1)(c− 2)

3!
b3 + · · · (6)
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For c < 0 or equivalently ξ < −1 or ξ > 0, the coefficients are positive for even moments and
negative for odd moments (odd and even powers of b). Even moments are always symmetric and
positive, whereas odd moments are positive only for right-tailed distributions. Since we use the
negative of the pdf, it yields an asymmetric measure of the right-tailedness of the distribution.

Kurtosis Loss uses the fourth moment. This is a symmetric and positive measure. GPD and kurtosis
are visualized in Appendix E. Kurtosis emphasizes extreme values in the tail. Our experiments also
show that it is more effective in controlling the extremes in the error distribution.

4 EXPERIMENTS

We evaluate our methods on multiple benchmark datasets from two probabilistic forecasting tasks:
time series forecasting (1D) and trajectory prediction (2D).

4.1 SETUP

Datasets. For time series forecasting, we use electricity and traffic datasets from the UCI ML
repository Dua & Graff (2017) used in Salinas et al. (2020) as benchmarks. We also generate three
synthetic 1D time series datasets, Sine, Gaussian, and Pareto, to further our understanding of potential
causes of long-tail error distribution. For trajectory prediction, we use two benchmark datasets: a
pedestrian trajectory dataset ETH-UCY (which is a combination of ETH Pellegrini et al. (2009) and
UCY Lerner et al. (2007) datasets) and a vehicle trajectory dataset nuScenes Caesar et al. (2020).
Further details regarding the datasets are available in Appendix A.

Baselines. We compare with SoTA baselines in long tail mitigation for different tasks:

• Contrastive Loss: Makansi et al. (2021) uses contrastive loss as a regularizer to group examples
together. The grouping is based on Kalman Filter prediction errors as a measure of sample difficulty.

• Label Distribution Smoothing (LDS): Yang et al. (2021) uses a symmetric kernel to smooth the
label distribution and use its inverse to reweigh the loss terms.

• Shrinkage Loss: Lu et al. (2018) uses a sigmoid-based function to reweigh loss terms. This
deprioritizes lower loss values.

• Focal Loss: Lin et al. (2017) uses L1 loss to reweigh the loss terms. Additional power of the loss
term increases the steepness of the loss function.

Focal Loss, Shrinkage Loss, and LDS were originally proposed for classification and/or regression
and required adaptation to be applied to the forecasting task. See Appendix B for details.

Evaluation Metrics. We use metrics in accordance with literature Walters et al. (2021); Salzmann
et al. (2020); Makansi et al. (2021): Average Displacement Error (ADE), which is the average L2
distance between total predicted trajectory and ground truth, and Final Displacement Error (FDE)
which is the L2 distance for the final timestep. For time series forecasting, we use the metrics from
DeepAR Salinas et al. (2020) and use Normalized Deviation (ND) and Normalized Root Mean
Squared Error (NRMSE). We also report Continuous Ranked Probability Score (CRPS) Gneiting &
Ranjan (2011) for the time series datasets, a more suitable metric for probabilistic forecasting.

Apart from the above-mentioned average performance metrics, we introduce metrics to capture the
tail errors. We adapt the Value-at-Risk (VaR equation 7) tail metric from financial domain:

VaRα(E) = inf{e ∈ E : P (E ≥ e) ≤ 1− α} (7)

VaR at level α ∈ (0, 1) is the smallest error e such that the probability of observing error greater than
e is less than 1− α, where E is the error distribution. This evaluates to the αth quantile of the error
distribution. We measure VaR at three different levels: 0.95, 0.98, and 0.99. Additionally, we report
the maximum error representing the worst-case performance. We present tail metrics on the complete
error distribution as there is no fixed set of tail samples across different methods (See Sec.3.1).

4.2 SYNTHETIC DATASET EXPERIMENTS

To better understand the long tail in error, we perform experiments on three synthetic datasets. The
task is to forecast 8 steps ahead given a history of 8 time steps. We use AutoRegression (AR) and
DeepAR Salinas et al. (2020) as models to perform this task. The top row in Figure 3 shows that
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among the datasets, only Gaussian and Pareto exhibit tail in the data distribution. The data distribution
is available here only because the datasets were generated synthetically.
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Figure 3: Top Row: Ground truth distribution for
synthetic datasets. Middle Row: ND error distribu-
tion using AR. Bottom Row : ND error distribution
using DeepAR. Datasets (L to R): Sine, Gaussian,
Pareto. Note: the x-axes for plots in the same col-
umn or y-axes for plots in the same row are not for
the same range of values.

On the Sine dataset, we observe long tail error
for DeepAR but not for AR. This is especially
significant as there is no long tail in the data
distribution. On Gaussian and Pareto datasets,
DeepAR leads to a heavier tail than AR, sug-
gesting that the long tail in data also contributes
to long tail in error. The difference between
AR and DeepAR error distributions also inval-
idates the assumption made by Makansi et al.
(2021)). Using the prediction performance from
Kalman Filter is not a good indicator of sample
tailedness for deep neural networks. The com-
plete results for synthetic datasets are available
in appendix K.

4.3 REAL-WORLD EXPERIMENTS

Time Series Forecasting. We present average
and tail metrics using ND and NRMSE for the
time series forecasting task on electricity and
traffic datasets in Tables 1 and 3 respectively.
All methods use DeepAR Salinas et al. (2020),
one of the SoTA in probabilistic time series fore-
casting, as the base model. The task for both
datasets is to use a 1-week history (168 hours)
to forecast for 1 day (24 hours) at an hourly frequency. The base model exhibits long tail behavior
in error on both datasets (see Fig. 2). The tail of the error distribution is significantly longer for the
traffic dataset as compared to the electricity dataset. This is evident from comparing the tail error
values to the average error. The auxiliary loss used here is MAE to correlate with L1 metrics like ND.
DeepAR can have intrinsic variation on re-training so results in Table 1 are averaged over 3 runs.

Trajectory Forecasting. We present experimental results on ETH-UCY and nuScenes datasets in
Tables 2 and 4 respectively. Following Salzmann et al. (2020) and Makansi et al. (2021) we calculate
model performance based on the best out of 20 guesses. On both datasets, we compare with several
long-tail baselines using Trajectron++EWTA Makansi et al. (2021) as a base model due to its SoTA
average performance on these datasets. The auxiliary loss used here is MAE with MSE to correlate
with L2 metrics like ADE and FDE.

4.4 RESULTS ANALYSIS

Cross-task consistency. As shown in Tables 1, 3, 2 and 4, our proposed approaches, Kurtosis Loss
and PLM, are the only methods improving on tail metrics across all tasks. Our methods typically
deliver 10-15% improvement on tail metrics and sometimes as high as 40% (See Appendix G). These
are significant improvements with no sacrifice on average performance for any task. In fact, in some
tasks our methods have better average performance as well.

The generality of our methods is shown by their success on all studied tasks. Our tasks have different
base models (DeepAR, Trajectron++EWTA), data representations (1D: Time series, 2D: Trajectory),
base losses (GaussianNLL for Time series, EWTA for Trajectory), and forecasting horizons. Our
methods provide consistent improvement on tail metrics for all tasks. In comparison, Focal Loss
performs well on trajectory datasets but fails on time series datasets. Contrastive Loss only performs
well on Traffic dataset. LDS and Shrinkage Loss do not compare to the best results for any dataset
and perform worse than the base model on the time series datasets.

We illustrate some difficult examples, examples with large errors common across methods, for all real
world datasets in Figure 4 to demonstrate the improvement in the quality of forecast for our methods.

Re-weighting vs Regularization. As mentioned in Section 3.2, we can categorize loss modifying
methods into two classes: re-weighting (Focal Loss, Shrinkage Loss, LDS and PLW) and regulariza-
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Table 1: Performance on Electricity Dataset (ND/NRMSE/CRPS). All our methods improve on the
average as well as tail metrics. Baseline methods are worse on average and inconsistent on the tail.
All methods use DeepAR as the base model. Results indicated as Top 3 and Best. All results have
been averaged across 3 runs with different seeds, standard deviation available in Appendix H

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
BASE MODEL ND 0.0600 0.0793 0.2251 0.4356 4.2777

NRMSE 0.3069 0.0991 0.2533 0.5430 5.5994
CRPS 142 463 1138 1996 30705

CONTRASTIVE LOSS ND. 0.0696 0.0954 0.2419 0.4646 4.5286
NRMSE 0.3345 0.1138 0.2778 0.5504 5.6761

CRPS 167 521 1266 2363 31835

FOCAL LOSS ND 0.0639 0.0859 0.2505 0.4456 4.3217
NRMSE 0.3110 0.1062 0.2922 0.5342 5.4843

CRPS 150 474 1195 2103 30224

SHRINKAGE LOSS ND 0.0673 0.0888 0.2328 0.4568 4.5911
NRMSE 0.3247 0.1103 0.2871 0.5213 5.6334

CRPS 156 480 1199 2240 28398

LDS ND 0.0632 0.0920 0.2287 0.4620 3.8626
NRMSE 0.2980 0.1152 0.2790 0.5322 5.0126

CRPS 151 496 1185 2110 29959

KURTOSIS LOSS (OURS) ND 0.0578 0.0827 0.2132 0.4044 3.6565
NRMSE 0.2801 0.1023 0.2564 0.4958 4.7673

CRPS 140 455 1105 1952 26946

PLM (OURS) ND 0.0580 0.0791 0.2018 0.3990 3.7827
NRMSE 0.2897 0.1011 0.2396 0.4844 5.0230

CRPS 141 449 1111 2044 28992

PLW (OURS) ND 0.0581 0.0793 0.2191 0.3917 3.5673
NRMSE 0.2789 0.1013 0.2569 0.4973 4.7328

CRPS 140 454 1099 1953 26273

Table 2: Macro-averaged performance on the ETH-UCY Dataset (ADE/FDE). Our approaches
improve tail performance better than existing baselines. The improvements are most significant
for far-future prediction (FDE). PLM improves well across prediction horizon (ADE). All methods
utilize Trajectron++EWTA as the base model. Results indicated as Top 3 and Best.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
BASE MODEL 0.16/0.33 0.43/1.05 0.60/1.53 0.76/1.89 1.63/3.95
CONTRASTIVE 0.17/0.34 0.43/1.03 0.62/1.56 0.79/1.89 1.67/4.02
FOCAL LOSS 0.16/0.32 0.40/0.89 0.54/1.28 0.66/1.57 1.50/3.50
SHRINKAGE LOSS 0.16/0.33 0.43/1.05 0.58/1.50 0.74/1.84 1.66/3.95
LDS 0.17/0.35 0.44/1.04 0.57/1.45 0.78/1.86 1.69/3.85
KURTOSIS LOSS (OURS) 0.17/0.34 0.46/0.98 0.59/1.25 0.67/1.47 1.22/2.77
PLM (OURS) 0.16/0.30 0.38/0.81 0.52/1.20 0.63/1.49 1.30/3.20
PLW (OURS) 0.21/0.36 0.46/0.84 0.55/1.08 0.63/1.32 1.25/2.93

tion (Contrastive Loss, PLM and Kurtosis Loss). Re-weighting multiplies the loss for tail samples
with higher weights. Regularization adds higher regularization values for samples with higher loss.

We notice that re-weighting methods perform worse as the long-tail in error worsens. In scenarios
with longer tails, the weights of tail samples can be very high. Overemphasizing tail examples might
hamper the learning for other samples. Notice the significantly worse average performance of Focal
loss for the traffic dataset in Table 3. Shrinkage Loss limits this issue by bounding the weights but
fails to show tail improvements in longer tail scenarios (electricity and traffic datasets). Our proposed
PLW is the best reweighting method on most datasets, likely due to bounded weights.
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Table 3: Performance on the Traffic Dataset (ND/NRMSE/CRPS). PLM (Ours) delivers best overall
results, improving on average and tail metrics. Among baseline methods, contrastive loss is most
consistent. Regularization methods in general fare better than re-weighting methods due to a very
long tail. All methods use DeepAR as the base model. Results indicated as Top 3 and Best

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
BASE MODEL ND 0.1741 0.6866 25.5840 32.1330 84.1582

NRMSE 0.4465 1.2283 6.0283 7.5988 18.8103
CRPS 0.0068 0.0211 0.0412 0.0691 0.8524

CONTRASTIVE LOSS ND 0.2052 0.7463 24.3737 30.5117 81.1716
NRMSE 0.4667 1.2956 5.7747 7.2342 18.3360

CRPS 0.0079 0.0235 0.0450 0.0802 0.8517

FOCAL LOSS ND 0.4903 1.1553 26.7537 30.1506 52.8272
NRMSE 0.7302 1.6485 6.5880 7.3660 13.7985

CRPS 0.0183 0.0463 0.0639 0.0933 0.8471

SHRINKAGE LOSS ND 0.2431 0.8380 25.3381 32.9147 85.2713
NRMSE 0.5114 1.3099 6.0418 7.8882 19.0771

CRPS 0.0093 0.0316 0.0511 0.0732 0.8573

LDS ND 0.4763 1.4781 28.9162 38.4263 126.5733
NRMSE 0.7829 1.8702 6.8826 9.2061 27.3684

CRPS 0.0175 0.0564 0.0802 0.1074 0.8530

KURTOSIS LOSS (OURS) ND 0.2022 0.7653 25.3752 31.4677 62.9173
NRMSE 0.4892 1.4072 6.0263 7.3369 13.7783

CRPS 0.0081 0.0243 0.0409 0.0682 0.8491

PLM (OURS) ND 0.1594 0.7115 24.5911 30.331 90.3169
NRMSE 0.4600 1.3881 5.6779 7.0033 20.5736

CRPS 0.0065 0.0185 0.0429 0.0822 0.8463

PLW (OURS) ND 0.3751 1.0495 25.4471 31.6621 65.759
NRMSE 0.6238 1.4914 6.0552 7.3491 13.8938

CRPS 0.0126 0.0361 0.0501 0.0716 0.8571

Table 4: Average performance on the nuScenes Dataset (ADE/FDE). Our approaches improve
tail performance for far-future prediction (FDE) better than existing baselines. All methods utilize
Trajectron++EWTA as the base model. Results indicated as Top 3 and Best.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
BASE MODEL 0.19/0.34 0.65/1.49 1.00/2.49 1.32/3.34 7.07/11.42
CONTRASTIVE 0.19/0.35 0.65/1.51 1.01/2.58 1.36/3.46 6.82/10.48
FOCAL LOSS 0.19/0.33 0.56/1.09 0.85/1.95 1.11/2.65 6.55/11.71
SHRINKAGE LOSS 0.19/0.32 0.62/1.32 0.96/2.31 1.25/3.17 6.39/10.26
LDS 0.19/0.32 0.62/1.26 0.94/2.23 1.20/2.99 5.20/10.53
KURTOSIS LOSS (OURS) 0.20/0.38 0.65/1.35 0.85/1.82 1.03/2.27 5.39/7.52
PLM (OURS) 0.19/0.33 0.62/1.32 0.95/2.31 1.25/3.18 6.10/10.96
PLW (OURS) 0.24/0.37 0.60/1.00 0.82/1.49 1.01/2.01 7.51/9.91

In contrast, regularization methods are consistent across all tasks on both tail and average metrics.
The additive nature of regularization limits the impact tail samples have on the learning. This enables
these methods to handle different severities of long-tail without degrading the average performance.

Choosing between PLM and Kurtosis Loss Kurtosis Loss performs better on extreme tail metrics,
VaR99 and Max. Higher kurtosis puts more emphasis on extreme samples in the tail. It is also
important to note that the magnitude of kurtosis varies significantly for different distributions, making
the choice of hyperparameter (See equation 5) critical. Further analysis available in Appendix D.

PLM is the most consistent method across all tasks. As noted by McNeil (1997) GPD is well suited
to model long tail error distributions. PLM rewards examples moving away from the tail towards
the mean with significantly lower margin values. PLM margin values saturate beyond a point in the
tail providing similar penalties for long-tail samples. Comparatively, Kurtosis Loss is sensitive to
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Figure 4: Visualization of overlapping tail samples for Electricity (top row left half), Traffic (top row
right half), ETH-UCY (bottom row left half) and nuScenes (bottom row right half) datasets. The
shaded region represents the confidence interval of the prediction. The difficulty here is a departure
from historical behavior. This manifests as sudden increases or decreases in the 1D time series
datasets and as high velocity trajectories with sharp turns for the trajectory datasets. These samples
represent critical events in real world scenarios where the performance of the model is of utmost
importance. Our methods perform significantly better on such samples.

extreme samples in the tail. This shows in performance with Kurtosis Loss performing better on
VaR99 and Max, and PLM performing better on VaR95 and VaR98. The choice between the methods
depends on the objective. If the preference is to mitigate extreme samples, then Kurtosis Loss is
better. Otherwise, if the preference is to improve on the tail overall, then PLM is better.
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Figure 5: Distribution of the top 5% error values
(FDE) for different horizons for the ETH-UCY
(Zara1) dataset. Predictions obtained using Tra-
jectron++EWTA. The trend shows that the long
tail in error gets worse as the forecasting horizon
increases due to compounding.

Tail error and long-term forecasting. Based
on the trajectory prediction results in Tables 2
and 4 we observe that the error reduction for
tail samples is more visible in FDE than in ADE.
This indicates that the magnitude of the observed
error increases with the forecasting horizon. The
error compounds through prediction steps mak-
ing far-future predictions inherently more diffi-
cult. Larger improvements in FDE indicate that
both Kurtosis and Pareto Loss ensure that high
tail errors (stemming from large, far-future pre-
diction errors measured by FDE) are decreased.

Accurate long-term forecasting is a central goal
of deep probabilistic forecasting. As we can see
in Fig. 5, the tail of error distribution is more pro-
nounced with longer horizons. Thus, methods
addressing the tail performance are necessary in
order to ensure the practical applicability and reliability of future long-term prediction models.

5 CONCLUSION

We identify and address the problem of long-tail in error distribution for deep probabilistic forecasting.
We propose Pareto Loss (Margin and Weighted) and Kurtosis Loss, two novel moment-based loss
augmentation approaches, increasing emphasis on tail samples adaptively. We demonstrate their
practical effects on two spatiotemporal trajectory datasets and two time series datasets using different
base models. Our methods achieve significant improvements on tail metrics over existing baselines
without degrading average performance. Both proposed losses can be easily integrated with existing
approaches in deep probabilistic forecasting to improve their performance on tail metrics.

Future directions include more principled ways to tune hyperparameters, extensions to deterministic
time series forecasting models, and theoretical analysis for the source of the long-tail error. Based
on our observations, we suggest evaluating tail metrics apart from average performance in machine
learning tasks to identify potential long tail issues across different tasks and domains.
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REPRODUCIBILITY STATEMENT

The datasets used in the paper are cited and the preprocessing has been described in Appendix A.
We have released the code to run experiments on both time series and trajectory datasets in the
supplementary material. Both folders include a step-by-step README file that guides through
the process of running our methods and baselines. Hyperparamter values to be used are present in
Appendix D. We have also provided the location of the base code that was used in Appendix C.
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A DATASET DESCRIPTION

The ETH-UCY dataset consists of five subdatasets, each with Bird’s-Eye-Views: ETH, Hotel, Univ,
Zara1, and Zara2. As is common in the literature Makansi et al. (2021); Salzmann et al. (2020) we
present macro-averaged 5-fold cross-validation results in our experiment section. The nuScenes
dataset includes 1000 scenes of 20 second length for vehicle trajectories recorded in Boston and
Singapore.

The electricity dataset contains electricity consumption data for 370 homes over the period of Jan
1st, 2011 to Dec 31st, 2014 at a sampling interval of 15 minutes. We use the data from Jan 1st, 2011
to Aug 31st, 2011 for training and data from Sep 1st, 2011 to Sep 7th, 2011 for testing. The traffic
dataset consists of occupancy values recorded by 963 sensors at a sampling interval of 10 minutes
ranging from Jan 1st, 2008 to Mar 30th, 2009. We use data from Jan 1st, 2008 to Jun 15th, 2008
for training and data from Jun 16th, 2008 to Jul 15th, 2008 for testing. Both time series datasets are
downsampled to 1 hour for generating examples.

The synthetic datasets are generated as 100 different time series consisting of 960 time steps. Each
time series in the Sine dataset is generated using a random offset θ and a random frequency ν both
selected from a uniform distribution U [0, 1]. Then the time series is sin(2πνt + θ) where t is the
index of the time step. Gaussian and Pareto datasets are generated as order 1 lag autoregressive time
series with randomly sampled Gaussian and Pareto noise respectively. Gaussian noise is sampled
from a Gaussian distribution with mean 1 and standard deviation 1. Pareto noise is randomly sampled
from a Pareto distribution with shape 10 and scaling 1.

B METHOD ADAPTATION

Time Series forecasting DeepAR uses Gaussian Negative Log Likelihood as the loss which is
unbounded. Due to this many baseline methods need to be adapted in order to be usable. For the
same reason, we also need an auxiliary loss (l̂). We use MAE loss to fit the GPD, calculate kurtosis,
and to calculate the weight terms for Focal and Shrinkage loss. For LDS we treat all labels across
time steps as a part of a single distribution. Additionally, to avoid extremely high weights (O(108))
in LDS due to the nature of long tail we ensure a minimum probability of 0.001 for all labels.

Trajectory forecasting We adapt Focal Loss and Shrinkage Loss to use EWTA loss Makansi et al.
(2019) in order to be compatible with Trajectron++EWTA base model. LDS was originally proposed
for a regression task and we adapt it to the trajectory prediction task in the same way as for the time
series task. We use MAE to fit the GPD, due to the Evolving property of EWTA loss.

C IMPLEMENTATION DETAILS

Time Series forecasting We use the DeepAR implementation from
https://github.com/zhykoties/TimeSeries as the base code to run all time series experiments.
The original code is an AWS API and not publicly available. The implementation of contrastive loss
is taken directly from the source code of Makansi et al. (2021).

Trajectory forecasting For the base model of Trajectron++EWTA Makansi et al. (2021) we have
used the original implementation provided by the original authors. The implementation of contrastive
loss is taken directly from the source code of Makansi et al. (2021).

The experiments have been conducted on a machine with 7 RTX 2080 Ti GPUs.

D HYPERPARAMETER TUNING

We observe during our experiments that the performance of Kurtosis Loss is highly dependent on
the hyperparameter λ (See equation 5). Results for different values of λ on the electricity dataset
for Kurtosis Loss are shown in Table5. We also show the variation of ND and NRMSE with the
hyperparameter value in Figure 6. We can see that there is an optimal value of the hyperparameter
and the approach performs worse with higher and lower values.
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Figure 6: Left: Variation of ND by hyperparameter for Kurtosis Loss. Right: Variation of NRMSE
by hyperparameter for Kurtosis Loss.

For both ETH-UCY and nuScenes datasets we have used λ = 0.1 for Kurtosis Loss, and λ = 1 for
PLM and PLW. For both electricity and traffic datasets, we use λ = 1 for PLM, λ = 0.5 for PLW
and λ = 0.01 for Kurtosis Loss.

Table 5: Electricity Dataset evaluation for base model (ND/NRMSE) and different Kurtosis Loss
hyperparameters. The value of λ is denoted in [] with the method name. The base model is DeepAR.
Results indicated as Better than base model and Best

METHOD METRIC MEAN↓ V AR95 ↓ V AR98 ↓ V AR99 ↓ MAX↓
BASE MODEL ND 0.0584 0.0796 0.2312 0.4429 4.1520

NRMSE 0.2953 0.0972 0.2595 0.5263 5.4950

KURTOSIS LOSS [0.001] ND 0.0581 0.0815 0.2087 0.3936 4.2381
NRMSE 0.3046 0.1014 0.2325 0.4756 5.7144

KURTOSIS LOSS [0.005] ND 0.0574 0.0767 0.2147 0.4138 3.6767
NRMSE 0.2843 0.0999 0.2617 0.4792 5.0062

KURTOSIS LOSS [0.01] ND 0.0567 0.0842 0.2151 0.4120 3.2738
NRMSE 0.2631 0.1046 0.2732 0.4779 4.2613

KURTOSIS LOSS [0.1] ND 0.0677 0.0954 0.2269 0.4579 3.8772
NRMSE 0.3073 0.1184 0.2768 0.5419 5.1345
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Figure 7: Left: Generalized Pareto distributions with different shape parameters (η = 1). Right:
Illustrating the variation of kurtosis on distributions with the same mean.

Figure 7 illustrates different GPDs for different shape parameter values. Higher shape value models
more severe tail behavior.
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F AUXILIARY LOSS

In this section, we present mathematical intuition behind the usage of auxiliary loss in our methods.
We will examine a setting where the base loss for a probabilistic model is GaussianNLL loss and the
evaluation metric is MSE. For simplicity, we will assume 1-step prediction on 1D data however the
analysis can be easily extended to multi step prediction and multi dimensional data.

Consider 2 training samples,

Past observations : x(1) = (x
(1)
t−k, . . . , x

(1)
t ); x(2) = (x

(2)
t−k, . . . , x

(2)
t )

1-step prediction ground truth : y(1) = (y
(1)
t+1); y

(2) = (y
(2)
t+1)

Model prediction : µ(1)
t+1, σ

(1)
t+1;µ

(2)
t+1, σ

(2)
t+1

We will drop t+1 from the notation for simplicity and clarity as there is only one step prediction.
Since, the maximum likelihood prediction for a gaussian is the mean, the MSE is calculated using the
predicted mean.

MSE : (y(i) − µ(i))2 (8)

The GaussianNLL loss is calculated as the negative log likelihood of the ground truth as per the
predicted distribution. Simplifying the expression gives us,

GaussianNLL loss : ln (σ(i)
√
2π) +

1

2

(
y(i) − µ(i)

σ(i)

)2

(9)

We want to determine the conditions under which the GaussianNLL loss will be higher for sample 1
as compared to sample 2 while the MSE for sample 2 will be higher than sample 1 or vice versa. We
will call this a loss-metric inversion. This condition can be written as:

(GaussianNLL(1) −GaussianNLL(2))(MSE(1) −MSE(2)) < 0 (10)

Consider the scenario where, MSE(1) > MSE(2). This can be expressed as,

(y(1) − µ(1))2 = k(y(2) − µ(2))2 where k > 1 (From equation 8) (11)

The corresponding condition to satisfy is,

(GaussianNLL(1) −GaussianNLL(2)) < 0 (From equation 10)

=⇒ ln(
σ(1)

σ(2)
) +

1

2

((
y(1) − µ(1)

σ(1)

)2

−
(
y(2) − µ(1)

σ(2)

)2
)

< 0 (From equation 9)

=⇒ 1

2
(y(2) − µ(2))2

(
k

σ(1)2
− 1

σ(2)2

)
< ln(

σ(2)

σ(1)
) (From equation 11)

Consider, σ(1) = cσ(2), where c > 0

1

2

(
y(2) − µ(2)

σ(2)

)2(
k

c2
− 1

)
< ln(

1

c
)

For simplicity let’s represent 1
2

(
y(2)−µ(2)

σ(2)

)2
as a single variable m.

m

(
k

c2
− 1

)
+ ln(c) < 0

For a fixed k the minima for the LHS is achieved for c =
√
2km. The value of the LHS at minima is,
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(
1

2
−m

)
+

1

2
ln(km) =

1

2
ln

(
km

e2m−1

)

Since the numerator in the log form is linear in m and the denominator is exponential in m the
minima can be less than zero for suitable values of m.

This shows that there can be pairs of samples with loss-metric inversion. This means that regular-
ization and reweighting values can be completely different from intended unless an auxiliary loss is
used, which preserves the order w.r.t. the evaluation metric. This lack of correlation is illustrated in
Fig 8 for the DeepAR model on the electricity dataset.
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Figure 8: Comparing GaussianNLL loss to Normalized Deviation metric for DeepAR on the electricity
dataset. We can see that there are a large number of samples which have high GaussianNLL but low
ND and vice versa. This illustrates the need of an auxiliary loss for correct emphasis on samples.

G PERCENTAGE IMPROVEMENTS

We present percentage improvements compared to the base model for the different datasets.

Table 6: Percentage improvements over the base method (DeepAR) on Electricity Dataset
(ND/NRMSE). Results indicated as error reduction and increase in %.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
CONTRASTIVE LOSS ND 15.94 20.26 7.43 6.67 5.86

NRMSE 8.99 14.79 9.66 1.24 1.37

FOCAL LOSS ND 6.44 8.32 11.27 2.30 1.03
NRMSE 1.34 7.16 15.34 1.72 2.06

SHRINKAGE LOSS ND 12.17 11.94 3.42 4.86 7.33
NRMSE 5.80 11.26 13.33 4.10 0.61

LDS ND 5.28 16.06 1.57 6.06 9.71
NRMSE 2.90 16.21 10.13 2.10 10.48

KURTOSIS LOSS (OURS) ND 3.72 4.33 5.29 7.16 14.52
NRMSE 8.72 3.16 1.21 8.80 14.86

PLM (OURS) ND 3.28 0.21 10.36 8.40 11.57
NRMSE 5.58 1.98 5.41 10.89 10.29

PLW (OURS) ND 3.22 0.00 2.68 10.09 16.61
NRMSE 9.10 2.19 1.42 8.52 15.48
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Table 7: Percentage improvements over the base method (DeepAR) on Traffic Dataset (ND/NRMSE).
Results indicated as error reduction and increase in %.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
CONTRASTIVE LOSS ND 17.86 8.70 4.73 5.05 3.55

NRMSE 4.52 5.48 4.21 4.80 2.52

FOCAL LOSS ND 181.62 68.26 4.57 6.17 37.23
NRMSE 63.54 34.21 9.28 3.06 26.64

SHRINKAGE LOSS ND 39.63 22.05 0.96 2.43 1.32
NRMSE 14.54 6.64 0.22 3.81 1.42

LDS ND 173.58 115.28 13.02 19.59 50.40
NRMSE 75.34 52.26 14.17 21.15 45.50

KURTOSIS LOSS (OURS) ND 16.14 11.46 0.82 2.07 25.24
NRMSE 9.56 14.56 0.03 3.45 26.75

PLM (OURS) ND 8.44 3.63 3.88 5.61 7.32
NRMSE 3.02 13.01 5.81 7.84 9.37

PLW (OURS) ND 115.45 52.85 0.54 1.47 21.86
NRMSE 39.71 21.42 0.45 3.29 26.14

Table 8: Percentage improvements over the base method (Trajectron++EWTA) on ETH-UCY
Dataset (ADE/FDE). Results indicated as error reduction and increase in %.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
CONTRASTIVE 6.25/3.03 0.00/1.90 3.33/1.96 3.95/0.00 2.45/1.77
FOCAL LOSS 0.00/3.03 6.98/15.24 10.00/16.34 13.16/16.93 7.98/11.39
SHRINKAGE LOSS 0.00/0.00 0.00/0.00 3.33/1.96 2.63/2.65 1.84/0.00
LDS 6.25/6.06 2.33/0.95 5.00/5.23 2.63/1.59 3.68/2.53
KURTOSIS LOSS (OURS) 6.25/3.03 6.98/6.67 1.67/18.30 11.84/22.22 25.15/29.87
PLM (OURS) 0.00/9.09 11.63/22.86 13.33/21.57 17.11/21.16 20.25/18.99
PLW (OURS) 31.25/9.09 6.98/20.00 8.33/29.41 17.11/30.16 23.31/25.82

Table 9: Percentage improvements over the base method (Trajectron++EWTA) on nuScenes Dataset
(ADE/FDE). Results indicated as error reduction and increase in %.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
CONTRASTIVE 0.00/2.94 0.00/1.34 1.00/3.61 3.03/3.59 3.54/8.23
FOCAL LOSS 0.00/2.94 13.85/26.85 15.00/21.69 15.91/20.66 7.36/2.54
SHRINKAGE LOSS 0.00/5.88 4.62/11.41 4.00/7.23 5.30/5.09 9.62/10.16
LDS 0.00/5.88 4.62/15.44 6.00/10.44 9.09/10.48 26.45/7.79
KURTOSIS LOSS (OURS) 5.26/11.76 0.00/9.40 15.00/26.91 21.97/32.04 23.76/34.15
PLM (OURS) 0.00/2.94 4.62/11.41 5.00/7.23 5.30/4.79 13.72/4.03
PLW (OURS) 26.32/8.82 7.69/32.89 18.00/40.16 23.48/39.82 6.22/13.22

H ELECTRICITY DATASET STANDARD DEVIATION

Due to space limitations we were not able to report std dev across the 3 runs for the electricity dataset.
We present the same in Table 11.
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Table 10: Std deviation of results for Electricity Dataset (ND/NRMSE/CRPS). All results have been
computed across 3 runs with different seeds. Results corresponding to Table 1.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
BASE MODEL ND 0.0023 0.0024 0.0060 0.0258 0.1092

NRMSE 0.0102 0.0033 0.0057 0.0407 0.0919
CRPS 2 13 27 69 178

CONTRASTIVE LOSS ND 0.0075 0.0110 0.0276 0.0425 0.5142
NRMSE 0.0296 0.0108 0.0294 0.0195 0.5382

CRPS 17 41 120 184 1033

FOCAL LOSS ND 0.0018 0.0010 0.0164 0.0203 0.1247
NRMSE 0.0067 0.0009 0.0189 0.0221 0.3053

CRPS 4 27 50 68 1990

SHRINKAGE LOSS ND 0.0021 0.0059 0.0134 0.0248 0.3039
NRMSE 0.0124 0.0048 0.0048 0.0038 0.4650

CRPS 5 12 15 170 2826

LDS ND 0.0014 0.0048 0.0054 0.0401 0.7368
NRMSE 0.0249 0.0074 0.0068 0.0350 0.8518

CRPS 5 26 29 81 4051

KURTOSIS LOSS (OURS) ND 0.0010 0.0034 0.0084 0.0145 0.3646
NRMSE 0.0153 0.0039 0.0179 0.0170 0.4872

CRPS 3 15 44 54 2845

PLM (OURS) ND 0.0021 0.0009 0.0119 0.0308 0.3861
NRMSE 0.0129 0.0010 0.0047 0.0225 0.5220

CRPS 3 10 48 83 2205

PLW (OURS) ND 0.0013 0.0026 0.0183 0.0311 0.1256
NRMSE 0.0047 0.0026 0.0164 0.0154 0.1142

CRPS 3 8 10 57 1215

I TRAINING DETAILS

The training procedure employed for the Pareto Losses is as follows:

• Train the base model until convergence
• Fit the Pareto distribution on the loss distribution from the trained model. This is done on

the auxiliary loss if one is being used.
• Use the fitted Pareto distribution to implement PLM or PLW and retrain the model.
• The retrained model is the one employing PLM or PLW as per choice.

The training process for Kurtosis loss is straightforward. We use the loss function in Equation (5)
directly with one round of training.

J ROBUST STATISTICS METHODS

We ran robust regression methods on the task and found that the results do not show improvements
on the long tail of error. The methods examined here are Huber Loss and MSLE.

K SYNTHETIC DATASETS

We present complete results of our experiments on the synthetic datasets in Table 12. We ran our
methods, Kurtosis Loss, and PLM on these datasets as well. Both our methods show significant tail
improvements over the base model across all datasets.
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Table 11: Results for robust statistics losses on the Electricity dataset. Results indicated as Best.
Huber Loss and MSLE both fail to provide any meaningful improvements on the base model.
Moreover, the performance on CRPS is significantly worse illustrating their poor fit for the task.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓
BASE MODEL ND 0.0600 0.0793 0.2251 0.4356 4.2777

NRMSE 0.3069 0.0991 0.2533 0.5430 5.5994
CRPS 142 463 1138 1996 30705

HUBER LOSS ND 0.0594 0.0822 0.2378 0.4296 3.7959
NRMSE 0.2981 0.1041 0.2492 0.5393 5.3614

CRPS 544 1792 4892 8898 31001

MSLE ND 0.0608 0.0826 0.2434 0.4336 3.9035
NRMSE 0.3092 0.1162 0.2993 0.5753 5.2328

CRPS 601 1998 5683 9935 29485

PLM (OURS) ND 0.0580 0.0791 0.2018 0.3990 3.7827
NRMSE 0.2897 0.1011 0.2396 0.4844 5.0230

CRPS 141 449 1111 2044 28992

Table 12: Performance on the Synthetic Datasets (ND/NRMSE). Results indicated as
Better than DeepAR and Best for each dataset.

METHOD METRIC MEAN↓ V AR95 ↓ V AR98 ↓ V AR99 ↓ MAX↓
SINE DATASET

AUTOREG ND 1.2255 2.162 2.7088 2.9306 3.1271
NRMSE 1.5078 2.3134 2.7204 2.9379 3.1271

DEEPAR ND 0.0513 0.1721 0.316 0.5913 1.5744
NRMSE 0.1534 0.2009 0.3507 0.6199 1.654

KURTOSIS LOSS ND 0.0455 0.1412 0.2914 0.4470 1.5571
NRMSE 0.1330 0.1624 0.3455 0.5387 1.5571

PARETO LOSS ND 0.0462 0.1326 0.3014 0.7151 1.582
MARGIN NRMSE 0.1517 0.1563 0.3551 0.737 1.7522

GAUSSIAN DATASET

AUTOREG ND 0.5730 1.0225 1.3334 1.6226 27.6956
NRMSE 1.2705 1.1212 1.4045 1.6815 39.7474

DEEPAR ND 0.4379 0.7050 0.7908 0.8651 1.1362
NRMSE 0.5518 0.8172 0.9246 0.9908 1.3009

KURTOSIS LOSS ND 0.4378 0.7040 0.7973 0.8597 1.1294
NRMSE 0.5518 0.8191 0.9255 0.9865 1.2951

PARETO LOSS ND 0.4391 0.7023 0.7946 0.8674 1.1069
MARGIN NRMSE 0.5534 0.8194 0.9232 0.9889 1.2786

PARETO DATASET

AUTOREG ND 1.9377 1.1748 1.7039 2.4782 2113.7503
NRMSE 81.1652 1.4027 1.9856 2.7312 4069.3972

DEEPAR ND 0.4416 0.8336 1.0317 1.1763 2.015
NRMSE 0.6349 1.1511 1.4295 1.6688 2.8327

KURTOSIS LOSS ND 0.4413 0.8345 1.0295 1.1738 2.0326
NRMSE 0.6352 1.1541 1.4305 1.6653 2.8335

PARETO LOSS ND 0.4394 0.8497 1.0473 1.1955 2.086
MARGIN NRMSE 0.6397 1.1694 1.4470 1.6735 2.845
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