

LIBRA-EMO: A LARGE DATASET FOR MULTIMODAL FINE-GRAINED NEGATIVE EMOTION DETECTION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 The recognition of negative emotions is pivotal in numerous real-world applica-
012 tions, including public opinion analysis, customer service, emotional attribution,
013 and emotional support systems, where these emotions manifest with fine-grained
014 characteristics. However, current models struggle with fine-grained negative emo-
015 tion recognition tasks due to the limited granularity in existing multimodal emotion
016 recognition datasets. To address this, we refine coarse-grained emotion categories,
017 expanding negative emotions from conventional 4-5 types to 8 specific categories.
018 Based on this refined taxonomy, we construct **Libra-Emo**, a comprehensive dataset
019 for multimodal fine-grained negative emotion detection. It comprises **Libra-Emo**
020 **Trainset** for model development and **Libra-Emo Bench** for evaluation, collectively
021 containing 62,267 video samples annotated through a novel human-machine collab-
022 orative active learning strategy, surpassing existing datasets in both granularity and
023 scale. We present extensive experimental results from zero-shot evaluations using
024 Libra-Emo Bench and instruction-tuning experiments with Libra-Emo Trainset on
025 leading Multimodal Large Language Models (MLLMs). Our findings demonstrate
026 that while current MLLMs exhibit limited proficiency in fine-grained negative
027 emotion detection, models fine-tuned on Libra-Emo Trainset show substantial per-
028 formance improvements that generalize effectively to out-of-domain evaluations.
029 This work addresses critical limitations in existing multimodal emotion recognition
030 datasets regarding emotion category granularity and representation of negative
031 emotions, thus advancing research in fine-grained emotional analysis. The dataset
032 and models will be fully open-sourced.

1 INTRODUCTION

033 Emotion recognition (Poria et al., 2019b; Khare et al., 2024; Wang et al., 2022) has become a crucial
034 component in human-computer interaction, public opinion monitoring, and intelligent customer
035 service, where understanding human emotions enables more empathetic and effective communication.

036 Benefiting from the rapid development of Multimodal Large Language Models (MLLMs) (OpenAI,
037 2024; Google, 2024; Anthropic, 2025), various multimodal emotion recognition systems such as
038 EmoCLIP (Jiang et al., 2023), FARCER (Lei et al., 2024), and Emotion-LLaMA (Cheng et al.,
039 2024) have been proposed, aiming to analyze emotional states in videos and images by integrating
040 multimodal information including visual and linguistic cues. Although these approaches have
041 achieved progress in enhancing emotion understanding, they still face the following limitations:
042

- 043 • **Limited granularity in emotion categories.** Existing multimodal emotion detection
044 datasets are based on the six coarse-grained emotion categories defined by Paul Ekman
045 (Ekman et al., 2013) (see Table 1). However, we observe that existing MLLMs exhibit
046 suboptimal performance in recognizing coarse-grained emotion categories (see Table 2). We
047 partially attribute this to the inherent ambiguity and overlapping boundaries associated with
048 coarse-grained categories.
- 049 • **Insufficient attention to negative emotions.** The recognition of negative emotions plays a
050 vital role in numerous real-world applications, such as public opinion analysis, customer
051 service, emotion attribution, and emotional support systems (Ham et al., 2023; Guo et al.,
052 2024). Accurate identification of negative emotions facilitates more precise and effective

054 response strategies. Nevertheless, existing multimodal emotion detection datasets provide
 055 insufficient support for negative emotions (see Table 1).
 056

057 These limitations highlight the urgent need for dedicated datasets and evaluation frameworks to
 058 ensure effective detection and analysis of fine-grained negative emotions in multimodal content.
 059

060 To address these challenges, we first refine the existing coarse-grained emotion categories, with a
 061 particular focus on negative emotions. The mapping between coarse-grained and fine-grained emotion
 062 categories is provided in Appendix F. We find that using fine-grained emotion categories significantly
 063 improves the model’s emotion recognition capabilities (see Table 2), suggesting that fine-grained
 064 labels reduce ambiguity and mitigate misclassifications caused by emotional vagueness. Building
 065 on this finding, we propose the **Libra-Emo**, an advanced multimodal fine-grained negative emotion
 066 detection dataset specifically designed for comprehensive emotion analysis in multimodal content.
 067 Specifically, Libra-Emo employs a carefully designed data collection process and a human-machine
 068 collaborative active learning annotation strategy to construct a diverse dataset comprising 13 emotion
 069 categories, including 8 distinct negative emotions. The training subset, **Libra-Emo Trainset**, contains
 070 61,625 samples, while the evaluation subset, **Libra-Emo Bench**, consists of 642 samples, providing
 a solid foundation for research in multimodal fine-grained negative emotion detection.

071 To validate the effectiveness of Libra-Emo, we conduct comprehensive zero-shot evaluations using
 072 Libra-Emo Bench and instruction-tuning experiments with Libra-Emo Trainset on leading MLLMs.
 073 Experimental results demonstrate that while current MLLMs exhibit limited proficiency in fine-
 074 grained negative emotion detection, models fine-tuned on Libra-Emo Trainset show substantial
 075 performance improvements. Moreover, experiments demonstrate that the performance improvements
 076 brought by Libra-Emo Trainset generalize to the out-of-domain test set DFEW (Jiang et al., 2020).
 077 These results establish Libra-Emo as a robust framework for advancing fine-grained negative emotion
 078 detection in multimodal content, thereby facilitating more nuanced emotion understanding across
 079 diverse applications.
 080

Our contributions can be summarized as follows:

Libra-Emo Taxonomy: A novel emotion classification framework that expands traditional categories into 13 distinct emotional states with particular emphasis on 8 fine-grained negative emotions, enabling more nuanced emotional analysis than existing taxonomies.

Libra-Emo Trainset: A large-scale multimodal fine-grained negative emotion detection dataset comprising 61,625 annotated video samples, surpassing existing datasets in both granularity and volume.

Libra-Emo Bench: A comprehensive benchmark for assessing the performance of multimodal models in fine-grained negative emotion recognition, covering a wide range of scenarios and providing a valuable resource for the research community.

Libra-Emo Model: We fine-tune a series of leading MLLMs on Libra-Emo Trainset, significantly enhancing their performance in negative emotion recognition tasks and demonstrating the value of specialized datasets.

095 Table 1: Comparison with other video emotion
 096 detection datasets.
 097

Dataset	# Emo.	# Neg. Emo.	# Samps.
IEMOCAP (Busso et al., 2008)	9	5	10,039
CREMA-D (Cao et al., 2014)	6	4	7,442
MELD (Poria et al., 2019a)	7	4	13,000
CAER (Lee et al., 2019)	7	4	13,201
CMU-MOSEI (Zadeh et al., 2018b)	7	4	23,453
Libra-Emo (Ours)	13	8	62,267

098 Table 2: Refining emotion granularity on
 099 Libra-Emo Bench.
 100

Model	CLS	ACC	F1
Gemini-2.0-Flash (Google, 2024)	7-CLS 13-CLS → 7-CLS	53.89 58.88	53.65 59.04
GPT-4o (OpenAI, 2024)	7-CLS 13-CLS → 7-CLS	40.97 53.58	43.07 53.03
Claude-3.7-Sonnet (Anthropic, 2025)	7-CLS 13-CLS → 7-CLS	42.37 54.98	41.64 54.28

104 2 LIBRA-EMO CONSTRUCTION

105 Figure 1 provides an overview of the construction process of Libra-Emo, which mainly includes
 106 emotion categories definition, video collection and processing, and emotion annotation.
 107

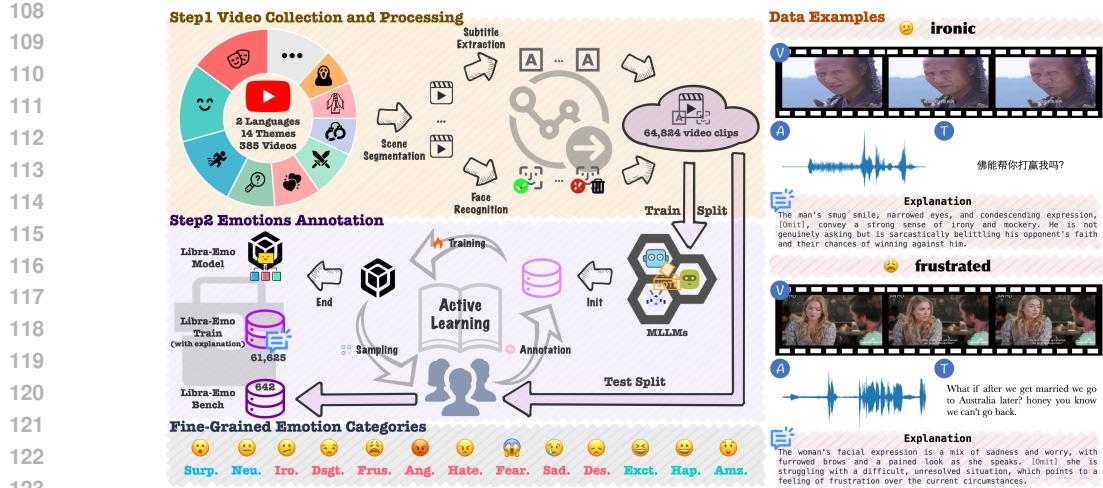


Figure 1: Overview of the dataset construction process for Libra-Emo.

2.1 EMOTION CATEGORIES DEFINITION

The first step in constructing Libra-Emo is to establish a comprehensive and fine-grained emotion taxonomy. Drawing upon psychological research and practical applications¹, we expand Paul Ekman’s 6 basic emotions (Ekman et al., 2013) into a more granular set of 13 distinct categories, with a particular emphasis on negative emotions, which are divided into 8 specific types. Detailed definitions can be found in Table 3. This fine-grained categorization, particularly for negative emotions, fills a critical gap in existing datasets and enables more nuanced emotion recognition.

2.2 VIDEO COLLECTION AND PROCESSING

Video Collection. To ensure diversity and relevance, the source videos are collected from a wide range of TV shows and movies on YouTube², all of which are licensed under Creative Commons. These videos feature English and Chinese and cover 14 themes, including drama, comedy, romance, action, adventure, sci-fi, fantasy, horror, thriller, crime, war, family, school, and historical drama. This selection aims to provide a balanced representation of different cultural backgrounds and production styles. A total of 385 source videos covering 2 languages and 14 themes are collected, as outlined in Appendix A, thereby ensuring that the resulting emotion samples encompass a wide range of contexts and expressive styles.

Video Processing. The collected videos are processed to extract meaningful segments and relevant information:

- Scene Segmentation:** We utilize the *scenedetect* tool³ to identify natural scene boundaries within the source videos and retain video clips that are longer than 3 seconds and at most 10 seconds, thereby creating coherent, emotion-bearing clips. Each clip is then analyzed for its primary emotional content.
- Subtitle Extraction:** For the collected raw videos, we download subtitle files in the corresponding languages and obtain the subtitles for each clip according to the timestamps of the segments, enabling subsequent training and testing. Clips without subtitles are filtered out.
- Face Recognition:** We employ the *face_recognition* tool⁴ to perform facial detection on each video clip, sampling three frames per second and retaining clips in which faces appear in more than 99% of the frames.

¹https://en.wikipedia.org/wiki/Emotion_classification

²<https://www.youtube.com>

³<https://pypi.org/project/scenedetect>

⁴https://github.com/ageitgey/face_recognition

Table 3: Emotion categories in Libra-Emo.

Type	Category	Definition
Positive	Excited	A high-energy, positive state marked by eagerness, anticipation, and enthusiasm.
	Happy	A general sense of contentment, joy, or life satisfaction, often calm and sustained.
	Amazed	A strong and lasting sense of wonder or astonishment, often triggered by something extraordinary or impressive.
Neutral	Surprised	An immediate emotional response to an unexpected event, marked by sudden awareness or shock.
	Neutral	An emotionally unmarked state, indicating neither positive nor negative affect.
Negative	Ironic	A sarcastic or mocking emotional state, often marked by indirect critique or contradiction.
	Disgusted	A visceral reaction of revulsion or strong disapproval, often in response to something morally or physically offensive.
	Frustrated	A state of tension, irritation, and dissatisfaction resulting from obstacles that prevent achieving goals or expectations.
	Angry	A reactive emotion involving displeasure, irritation, or aggression, usually in response to perceived wrongs or injustice.
	Hateful	A persistent, intense hostility or contempt directed toward a person, group, or idea, often associated with a desire for harm.
	Fearful	A defensive emotion involving anxiety or dread, triggered by perceived threats or uncertainty.
	Sad	A low-energy emotion characterized by feelings of loss, disappointment, or helplessness.
	Despairful	A profound sense of hopelessness and helplessness, often accompanied by emotional distress and loss of purpose.

Through this process, we generate 64,824 candidate samples containing visual, auditory, and textual information, with an average video length of 5.0 s and an average face ratio of 99.9%, creating a rich multimodal foundation for annotation.

2.3 EMOTION ANNOTATION

Fine-grained emotion labels pose significant challenges for annotation. To obtain large-scale annotated data while balancing labor costs and label quality, we employ an active learning strategy that combines model predictions with human annotation.

Libra-Emo Bench: We first sample a batch of data from the candidate samples for manual annotation to construct our test set, Libra-Emo Bench. The developed annotation tool is presented in Appendix G. Each sample is annotated by 8 individuals, with a voting threshold set to 4, meaning the annotation is considered successful when at least 4 annotators agree on the label. For samples that fail to reach consensus, the final annotation is determined through detailed discussions among multiple annotators. The final Libra-Emo Bench consists of 642 samples, with the category distribution shown in Figure 2.

Active Learning Strategy for Trainset Annotation: Model-based annotation can reduce costs while maintaining high consistency (Gilardi et al., 2023; Tan et al., 2024). We first consider using multiple MLLMs to vote for labeling the Libra-Emo Trainset. However, experimental results on a sampled test set from Libra-Emo Bench (Table 4) indicate that the current leading MLLMs do not perform well in fine-grained emotion recognition for videos. Therefore, we adopt a human-machine collaborative active learning strategy for training set annotation (Tharwat & Schenck, 2023; Li et al., 2024), aiming to maximize dataset quality while minimizing labor costs.

The algorithm for the annotation process is in Appendix D, with the textual description as follows:

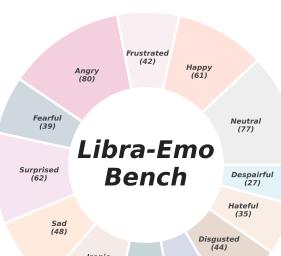
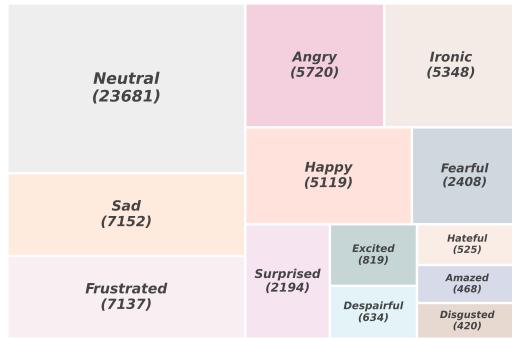


Figure 2: Libra-Emo Bench class distribution. Figure 3: Libra-Emo Trainset class distribution.

- Initial Labeling:** We select Gemini-2.0-Flash (Google, 2024), GPT-4o (OpenAI, 2024), and Claude-3.7-Sonnet (Anthropic, 2025) as our voting models for initial labeling of the training set based on the voting performance shown in Table 4. For each sample in the unlabeled dataset, the three models independently predict a label. The prompt used for annotation can be found in Appendix B. If at least two models agree, the majority vote becomes the label and is added to the labeled dataset. Otherwise, the sample is annotated manually to determine the initial label.
- Iterative Label Refinement:** (1) Model Training: Train the model using the currently labeled dataset. (2) Sample Selection: The model predicts new labels for all labeled samples, and selects the samples where the new predictions differ from the current labels for human annotation. (3) Human Annotation: Annotators label the selected samples. Each sample is annotated by 4 individuals, with a voting threshold set to 2.
- Final Output:** The iteration stops when the model’s performance reaches a plateau. The number of iterative rounds used for the Libra-Emo Trainset is 2. The final output is the trained model and the labeled dataset.

Synthesizing Explanations Consistent with Labels: Studies (Menon et al., 2022; Ferraretto et al., 2023; Zhang et al., 2024b) have demonstrated that natural language explanations have a positive impact on LLM classification tasks. We use Gemini-2.0-Flash to synthesize label-consistent explanations on the annotated dataset to enhance the accuracy of the emotion recognition model. The prompt for explanation synthesis can be found in Appendix B.

A detailed description of the construction process of the Libra-Emo Trainset is provided in Appendix C. The final Libra-Emo Trainset contains 61,625 samples, with the category distribution shown in Figure 3. Training examples can be found in Figure 1 and Appendix H. The composition distribution of the complete Libra-Emo is shown in Table 5.

Table 4: The performance of leading MLLMs on Libra-Emo Bench.

Model	Acc	F1
Gemini-2.0-Flash (Google, 2024)	47.82	47.66
GPT-4o (OpenAI, 2024)	43.30	41.74
Claude-3.7-Sonnet (Anthropic, 2025)	41.74	37.26
Vote	50.93	50.85

Table 5: Libra-Emo composition distribution. For more details, see Appendix F.

Emotion Type	Quantity		
	Trainset	Bench	Total
Positive	6,406	137	6,543
Neutral	25,875	139	26,014
Negative	29,344	366	29,710
Total	61,625	642	62,267

3 EXPERIMENTS

In this section, we present the experimental setup and results used to evaluate the performance of multimodal models on the Libra-Emo. We first describe the experimental settings, including model selection and evaluation metrics, followed by a comparison with baseline approaches. Then, we provide the main results, highlighting key insights from the evaluation.

270 3.1 EXPERIMENTAL SETTINGS
271

272 **Model Selection** To comprehensively evaluate fine-grained negative emotion recognition capabilities, we benchmark several leading multimodal large language models (MLLMs). Our selection
273 encompasses diverse, recent, and publicly available MLLMs that represent varied architectural ap-
274 proaches and parameter scales, including LLaVA-Video-7B-Qwen2 (Zhang et al., 2024a), Qwen2.5-
275 VL-7B (Team, 2025), Phi-3.5-vision-instruct (4.2B) (Abdin et al., 2024), MiniCPM-o 2.6 (8B) (Yao
276 et al., 2024), Qwen-2.5-Omni-7B (Xu et al., 2025), and InternVL-2.5 series (1B-8B) (Chen et al.,
277 2024). Detailed model descriptions are provided in Appendix E.
278

279 **Fine-tuning Settings** We conduct experiments on Qwen-2.5-Omni-7B (Xu et al., 2025) and
280 InternVL-2.5 series (1B-8B) (Chen et al., 2024). To validate the effectiveness of the dataset, we
281 employ consistent fine-tuning and video processing configurations across all experiments. The models
282 train for one epoch using the AdamW optimizer with a learning rate of 3e-4 (cosine decay following
283 a linear warm-up) and a weight decay of 0.01. The prompt used for fine-tuning, which integrates
284 video with subtitle text, is provided in Appendix B. Further details on hyperparameters are available
285 in Appendix E.
286

287 **Evaluation Metrics** **1. Libra-Emo Bench:** We report Accuracy, Macro-F1, and Weighted-F1
288 for both all emotions and negative emotions (considering only samples with ground truth labeled
289 as negative emotions). **2. Out-of-Domain Test Set DFEW (Jiang et al., 2020):** We use standard
290 evaluation metrics UAR (Unweighted Average Recall) and WAR (Weighted Average Recall) to
291 evaluate zero-shot inference performance on the set_1 collection of 2,341 samples.
292

293 **Baselines** To comprehensively evaluate the effectiveness of models fine-tuned on Libra-Emo Train-
294 set, the baseline approaches are divided into two categories: **Zero-shot MLLMs** (leading multimodal
295 models used without any fine-tuning to assess their inherent emotion recognition capabilities) and
296 **Existing Emotion Recognition Models** (specialized models trained on previous emotion datasets).
297

298 3.2 LIBRA-EMO BENCH EVALUATION
299

300 The experimental results presented in Table 6 reveal several important findings:

301 **Performance disparity between closed-source and open-source models:** Closed-source mod-
302 els outperform their open-source counterparts in zero-shot settings. Gemini-2.0-Flash achieves
303 the highest accuracy (47.82%) and F1 scores (47.55% macro-F1, 47.66% weighted-F1) for all
304 emotions, demonstrating strong performance in negative emotion recognition (49.18% accuracy,
305 48.30% weighted-F1). However, after fine-tuning on the Libra-Emo Trainset, open-source models
306 substantially narrow this gap: Libra-Emo-Omni-7B achieves 51.56% accuracy across all emotions,
307 while Libra-Emo-8B achieves 50.55% accuracy on negative emotions, significantly surpassing the
308 closed-source models.
309

310 **Dataset effectiveness:** Compared with zero-shot models, fine-tuning on the Libra-Emo Trainset
311 significantly improves the performance of models across different architectures and scales, validating
312 the dataset’s quality and usefulness. The most dramatic improvements are observed in smaller models,
313 with Libra-Emo-1B showing a 17.91% increase in overall accuracy and Libra-Emo-2B exhibiting
314 a 22.95% increase in negative emotion accuracy. These substantial gains highlight the efficacy of
315 specialized training for fine-grained emotion recognition tasks.
316

317 **Impact of different modalities:** The results of different modalities on the same model demon-
318 strate the performance improvement brought by incorporating modalities. Gemini-2.0-Flash achieves only
319 40.19% and 30.69% accuracy on visual-only and audio-only, respectively. The visual-audio (V,A) and
320 visual-text (V,T) modalities show slight improvements, reaching 42.37% and 46.57%, respectively,
321 while using all modalities (V,A,T) achieves the highest accuracy of 47.82%. Notably, after fine-tuning
322 on the Libra-Emo training set, the three-modality model Libra-Emo-Omni-7B reaches an overall
323 accuracy of 51.56% and a negative-emotion accuracy of 49.45%, both exceeding Gemini-2.0-Flash.
324 These results highlight the significance of multimodal fusion and underscore the value of Libra-Emo
325 for multimodal emotion recognition.
326

324 Table 6: Performance Comparison of MLLMs on **Libra-Emo Bench**, showing the Accuracy and F1
 325 scores for all emotions and negative emotions. The modalities column indicates the content available
 326 during reasoning (V: visual, A: auditory, T: textual). All values are in percentages (%).

328 Model	329 Modalities	330 All Emotions (13 Classes)			331 Negative Emotions (8 Classes)		
		332 Accuracy	333 Macro-F1	334 Weighted-F1	335 Accuracy	336 Macro-F1	337 Weighted-F1
Closed-Source Models							
Gemini-2.0-Flash (Google, 2024)	V	40.19	38.08	39.11	36.07	37.83	37.48
Gemini-2.0-Flash (Google, 2024)	A	30.69	27.56	29.47	27.87	24.15	26.96
Gemini-2.0-Flash (Google, 2024)	V,A	42.37	41.44	41.82	41.26	41.12	40.55
Gemini-2.0-Flash (Google, 2024)	V,T	46.57	45.25	45.42	48.36	48.80	47.60
Gemini-2.0-Flash (Google, 2024)	V,A,T	47.82	47.55	47.66	49.18	48.83	48.30
GPT-4o (OpenAI, 2024)	V,T	43.30	44.47	41.74	45.90	46.91	45.00
Claude-3.7-Sonnet (Anthropic, 2025)	V,T	41.74	33.70	37.26	36.89	27.09	30.81
Open-Source Models							
LLaVA-Video-7B-Qwen2 (Zhang et al., 2024a)	V,T	19.63	13.28	15.24	7.92	9.98	11.30
Qwen2.5-VL-7B (Team, 2025)	V,T	38.32	33.99	34.70	35.25	29.47	31.03
Phi-3.5-vision-instruct (4.2B) (Abdin et al., 2024)	V,T	24.61	19.37	20.40	13.39	15.59	15.12
MinicPM-o 2.6 (8B) (Yao et al., 2024)	V,A,T	19.78	14.78	15.87	17.49	11.45	14.41
Qwen-2.5-Omni-7B (Xu et al., 2025)	V	30.22	25.72	26.39	23.77	20.37	21.09
Qwen-2.5-Omni-7B (Xu et al., 2025)	V,A	35.20	30.72	30.61	30.33	27.62	28.32
Qwen-2.5-Omni-7B (Xu et al., 2025)	V,A,T	38.94	34.46	34.64	35.79	33.17	34.14
InternVL-2.5-1B (Chen et al., 2024)	V,T	21.50	13.19	15.93	16.94	9.32	11.86
InternVL-2.5-2B (Chen et al., 2024)	V,T	19.47	11.12	13.53	18.58	9.61	12.09
InternVL-2.5-4B (Chen et al., 2024)	V,T	32.40	27.42	26.73	25.68	25.53	26.67
InternVL-2.5-8B (Chen et al., 2024)	V,T	36.45	32.50	33.84	36.61	32.29	34.39
Fine-Tuned on Libra-Emo Trainset							
Libra-Emo-Omni-7B (Ours)	V	39.88	38.83	39.12	33.61	36.58	36.47
Libra-Emo-Omni-7B (Ours)	V,A	45.79	44.11	45.01	39.62	41.00	42.01
Libra-Emo-Omni-7B (Ours)	V,A,T	51.56	50.83	51.08	49.45	49.30	49.28
Libra-Emo-1B (Ours)	V,T	39.41	36.50	38.02	34.97	31.94	33.23
Libra-Emo-2B (Ours)	V,T	43.61	40.66	42.19	41.53	37.48	38.82
Libra-Emo-4B (Ours)	V,T	44.39	40.61	42.27	41.53	38.49	39.73
Libra-Emo-8B (Ours)	V,T	51.25	51.40	51.07	50.55	50.20	49.79

353
 354 These findings indicate that while leading MLLMs possess some inherent capability for emotion
 355 recognition, they significantly underperform on fine-grained negative emotion detection without
 356 specialized training. The Libra-Emo Trainset effectively addresses this limitation, enabling substantial
 357 performance improvements across diverse model architectures through targeted fine-tuning.
 358

360 3.3 OUT-OF-DOMAIN TEST SET EVALUATION

361
 362 Table 7 presents zero-shot performance on the DFEW dataset (Jiang et al., 2020). Libra-Emo-8B
 363 achieves the highest overall metrics (52.55% UAR, 59.85% WAR) among all models, demonstrating
 364 strong generalization capabilities. Most notably, our models excel at recognizing negative emotions,
 365 particularly sad (82.59%), angry (71.26%), and fearful (66.30%) categories, outperforming special-
 366 ized emotion recognition models like Emotion-LLaMA (Cheng et al., 2024) in these areas. These
 367 results validate the effectiveness of Libra-Emo Trainset for fine-grained negative emotion recognition
 368 across domains and underscore its practical value for emotion monitoring applications.
 369

370 Table 7: Performance Comparison on DFEW in Zero-Shot Setting. All values are in percentages (%).

372 Models	373 Happy	374 Surprised	375 Neutral	376 Sad	377 Angry	378 Disgusted	379 Fearful	380 UAR	381 WAR
Video-LLaVA (Lin et al., 2023)	51.94	0.00	29.78	39.84	58.85	0.00	2.76	26.17	35.24
Video-Llama (Zhang et al., 2023)	20.25	4.76	80.15	67.55	5.29	0.00	9.39	26.77	35.75
GPT-4V (Lian et al., 2024)	62.35	32.19	56.18	70.45	50.69	10.34	51.11	47.69	54.85
Emotion-LLaMA (Cheng et al., 2024)	71.98	33.67	61.99	76.25	71.95	0.00	3.31	45.59	59.37
Libra-Emo-Omni-7B (Ours)	57.26	44.90	51.87	66.75	64.14	6.90	66.30	51.16	57.37
Libra-Emo-8B (Ours)	62.78	42.86	45.13	82.59	71.26	6.90	56.35	52.55	59.85

378 4 ABLATION STUDIES

380 In this section, we evaluate key design choices in the Libra-Emo framework to understand their
 381 impact on performance. Unless otherwise noted, all ablation experiments are conducted using the
 382 InternVL-2.5-8B model for consistency.

384 4.1 IMPACT OF ACTIVE LEARNING AND EXPLANATION

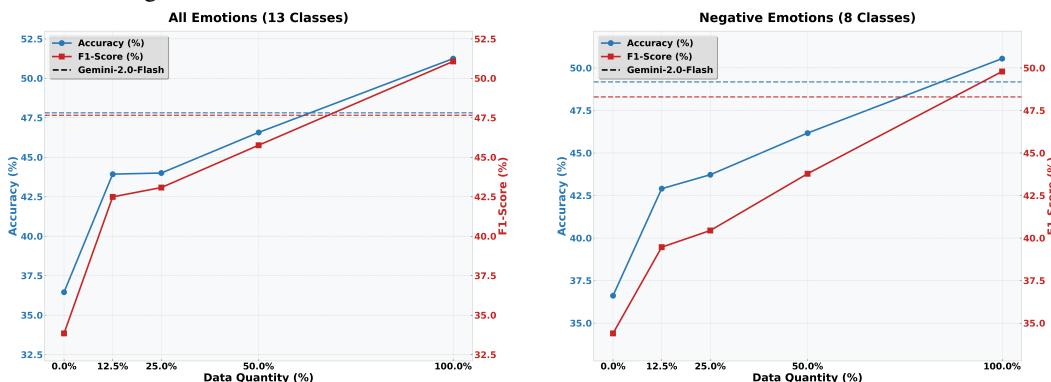
386 Table 8 demonstrates the effectiveness of our active learning strategy. As active learning progresses
 387 from Round 0 to Round 2, performance metrics steadily improve across the Libra-Emo Bench. The
 388 overall accuracy on Libra-Emo Bench increases from 46.26% to 50.00%, while negative emotion
 389 accuracy rises from 44.54% to 48.91%. Incorporating explanations in Round 2 provides a substantial
 390 performance boost, with overall accuracy reaching 51.25% (+1.25%) and negative emotion accuracy
 391 improving to 50.55% (+1.64%). These results validate our dataset construction methodology, demon-
 392 strating that combining iterative active learning with explanatory annotations significantly enhances
 393 emotion recognition capabilities, particularly in distinguishing fine-grained negative emotions.

393 Table 8: Ablation study on active learning and explanation. All values are in percentages (%).

395 Activate Learning	396 Explanation	397 All Emotions (13 Classes)			398 Negative Emotions (8 Classes)		
		399 Round	400 Accuracy	401 Macro-F1	402 Weighted-F1	403 Accuracy	404 Macro-F1
406 Round 0	407 ✗	408 46.26	409 43.91	410 45.15	411 44.54	412 42.10	413 43.51
414 Round 1	415 ✗	416 48.44	417 46.76	418 47.55	419 46.99	420 44.71	421 45.36
422 Round 2	423 ✗	424 50.00	425 48.51	426 49.29	427 48.91	428 46.89	429 47.27
430 Round 2	431 ✓	432 51.25	433 51.40	434 51.07	435 50.55	436 50.20	437 49.79

401 4.2 IMPACT OF DATASET SIZE

403 Figure 4 illustrates the impact of training data scale on model performance. With only 12.5% of
 404 the data, the model already achieves substantial gains in overall accuracy (43.93%, +7.48%) and
 405 negative emotion accuracy (42.90%, +6.29%). As the dataset size increases, performance continues
 406 to improve steadily, ultimately reaching 51.25% and 50.55% on the full dataset, both of which surpass
 407 Gemini-2.0-Flash. This underscores the pivotal role of large-scale, high-quality data in fine-grained
 408 emotion recognition.



421 Figure 4: Impact of training data size on Libra-Emo Bench performance: left for all emotions, right
 422 for negative emotions. Dashed lines show Gemini-2.0-Flash results. Blue: Accuracy, Red: F1-Score.

424 4.3 FAILURE CASE ANALYSIS

426 As shown in Figure 5, due to small inter-class differences, our model performs poorly in distinguishing
 427 between *despairful* and *sad*, as well as *hateful* and *angry*. However, effectively differentiating these
 428 fine-grained emotions is crucial, as they represent distinct psychological states and behavioral
 429 tendencies: the former are deeper and more enduring, often accompanied by negative expectations or
 430 aggressive intent, while the latter are transient emotional fluctuations. Accurately distinguishing these
 431 emotions enables models to better understand human affect, supporting more targeted interventions
 and guidance in applications such as mental health monitoring and social media analysis.

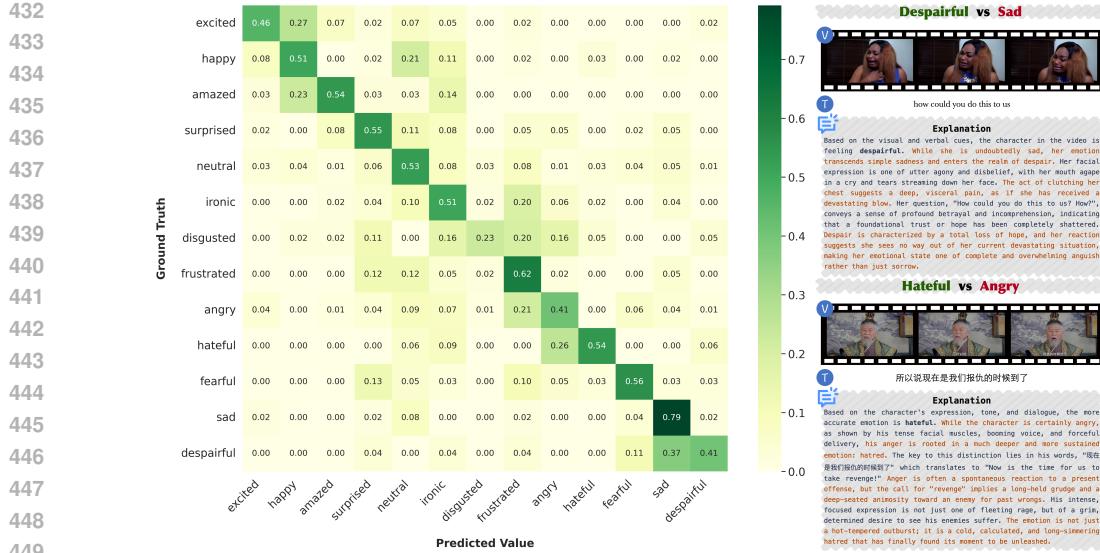


Figure 5: Failure case analysis of Libra-Emo-8B. Left: confusion matrix, Right: specific examples.

5 RELATED WORKS

Multimodal Emotion Recognition Datasets. Datasets such as MELD (Poria et al., 2019a), CMU-MOSEI (Zadeh et al., 2018a), and IEMOCAP (Busso et al., 2008) have advanced research but are limited in scale and granularity. MELD contains 13K utterances with 7 emotion categories; CMU-MOSEI has 23.5K clips with 6 basic emotions; IEMOCAP includes 10K samples across 9 categories. Recent benchmarks like EmoBench (Sabour et al., 2024) and EmotionQueen (Xu et al., 2024) highlight challenges in deep emotional understanding, while SemEval-2024 tasks (Saha et al., 2024) show negative emotions require more nuanced detection. Most datasets and models lack specialized training for fine-grained negative emotion recognition. In contrast, our work evaluates and fine-tunes MLLMs on Libra-Emo, improving recognition of subtle negative emotions.

Multimodal Large Models for Emotion Recognition. Recent multimodal large models such as CLIP (Radford et al., 2021) and its emotion-specific variants (EmoCLIP (Jiang et al., 2023), Emotion-LLaMA (Cheng et al., 2024)) show promise by integrating visual and textual data. Advanced vision-language models like PaLI (Chen et al., 2023a), Flamingo (Alayrac et al., 2022), and BLIP (Li et al., 2022) improve these capabilities. However, LLMs struggle with implicit emotional cues, especially negative emotions, exhibiting higher confusion among negative categories (Sabour et al., 2024; Saha et al., 2024). We address these issues by fine-tuning MLLMs such as InternVL (Chen et al., 2023b) on Libra-Emo Trainset, significantly enhancing fine-grained negative emotion recognition.

Fine-grained Emotion Analysis. Recent works highlight the need for fine-grained emotion analysis. GoEmotions (Demszky et al., 2020) offers a text-only dataset with 28 categories, and Emotic (Kosti et al., 2017) provides 26 emotion categories for images. However, these are limited to single modalities and often underrepresent negative emotions. Benchmarks like EmoBench and EmotionQueen (Sabour et al., 2024; Xu et al., 2024) extend evaluation to emotional intelligence in LLMs, stressing detection of implicit cues and subtle negative emotion distinctions. Our work advances this by focusing on fine-grained negative emotions in a multimodal setting, enabling nuanced video emotion analysis.

6 LIMITATIONS AND FUTURE WORK

Libra-Emo has several limitations: (1) suboptimal modality fusion methods; (2) limited evaluation in real-world applications such as content moderation and mental health assessment; and (3) high computational requirements. Despite these constraints, Libra-Emo provides a solid foundation for advancing negative emotion recognition research and facilitates more nuanced understanding of emotions in multimodal contexts. Future work will focus on addressing these limitations to further enhance the performance and applicability of fine-grained emotion recognition.

486 **7 ETHICS STATEMENT**
 487

488 Our video data comes from YouTube and undergoes strict screening to ensure compliance with
 489 Creative Commons licenses. We will include video metadata in the released dataset to guarantee
 490 proper copyright attribution. Additionally, our models have potential risks, including privacy and data
 491 security concerns, misclassification of emotions and biases, as well as ethical and fairness challenges.
 492 Therefore, taking rigorous measures in data privacy protection, diverse modeling, and ethical review
 493 is crucial for ensuring the safe and fair application of this technology.

494
 495 **8 REPRODUCIBILITY STATEMENT**
 496

497 We commit to open-sourcing the Libra-Emo dataset, models, and code, and we have documented the
 498 implementation details thoroughly in the appendix.
 499

500 **REFERENCES**
 501

502 Qwen2 technical report. 2024.

503 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
 504 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
 505 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

506 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 507 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 508 model for few-shot learning. In *Advances in Neural Information Processing Systems*, 2022.

509 Anthropic. Claude 3.7 sonnet and claude code, 2025. URL <https://www.anthropic.com/news/claude-3-7-sonnet>. Accessed: 2025-09-24.

510 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
 511 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
 512 motion capture database. volume 42, pp. 335–359. Springer, 2008.

513 Huawei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini Verma.
 514 Crema-d: Crowd-sourced emotional multimodal actors dataset. *IEEE transactions on affective
 515 computing*, 5(4):377–390, 2014.

516 Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
 517 Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
 518 language-image model. In *International Conference on Learning Representations*, 2023a.

519 Zhe Chen, Jianhua Li, Chenhang Guo, Tong Huang, Yongfei Zhang, et al. Internvl: Scaling up
 520 vision foundation models and aligning for generic visual-linguistic tasks. In *arXiv preprint
 521 arXiv:2312.14238*, 2023b.

522 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 523 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
 524 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024.

525 Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiaojiang Peng,
 526 and Alexander Hauptmann. Emotion-llama: Multimodal emotion recognition and reasoning with
 527 instruction tuning. *Advances in Neural Information Processing Systems*, 37:110805–110853, 2024.

528 Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
 529 Sujith Ravi. Goemotions: A dataset of fine-grained emotions. In *Proceedings of the 58th Annual
 530 Meeting of the Association for Computational Linguistics*, 2020.

531 Paul Ekman, Wallace V Friesen, and Phoebe Ellsworth. *Emotion in the human face: Guidelines for
 532 research and an integration of findings*, volume 11. Elsevier, 2013.

540 Fernando Ferraretto, Thiago Laitz, Roberto Lotufo, and Rodrigo Nogueira. Exaranker: Synthetic
 541 explanations improve neural rankers. In *Proceedings of the 46th International ACM SIGIR*
 542 *Conference on Research and Development in Information Retrieval*, pp. 2409–2414, 2023.

543

544 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for
 545 text-annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120,
 546 2023.

547 Google. Gemini 2.0 flash. <https://gemini.google.com>, 2024. URL <https://gemini.google.com>. Accessed: 12/2024.

548

549

550 Runfang Guo, Hongfei Guo, Liwen Wang, Mengmeng Chen, Dong Yang, and Bin Li. Develop-
 551 ment and application of emotion recognition technology—a systematic literature review. *BMC*
 552 *psychology*, 12(1):95, 2024.

553

554 Seung-Mi Ham, Hye-Min Lee, Jae-Hyun Lim, and Jeongwook Seo. A negative emotion recognition
 555 system with internet of things-based multimodal biosignal data. *Electronics*, 12(20):4321, 2023.

556

557 Xingxun Jiang, Yuan Zong, Wenming Zheng, Chuangao Tang, Wanchuang Xia, Cheng Lu, and
 558 Jiateng Liu. Dfew: A large-scale database for recognizing dynamic facial expressions in the wild.
 In *Proceedings of the 28th ACM international conference on multimedia*, pp. 2881–2889, 2020.

559

560 Zhiying Jiang, Tianyi Xu, Tianrui Yin, Zhou Zhao, and Mohammad Soleymani. Emoclip: A vision-
 561 language method for zero-shot emotion recognition. In *Proceedings of the 31st ACM International*
 562 *Conference on Multimedia*, 2023.

563

564 Smith K Khare, Victoria Blanes-Vidal, Esmaeil S Nadimi, and U Rajendra Acharya. Emotion recog-
 565 nition and artificial intelligence: A systematic review (2014–2023) and research recommendations.
 566 *Information fusion*, 102:102019, 2024.

567

568 Ronak Kosti, Jose M Alvarez, Adria Recasens, and Agata Lapedriza. Emotic: Emotions in context
 569 dataset. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 570 *Workshops*, 2017.

571

572 Jiyoung Lee, Seungryong Kim, Sunok Kim, Jungin Park, and Kwanghoon Sohn. Context-aware
 573 emotion recognition networks. In *Proceedings of the IEEE/CVF international conference on*
 574 *computer vision*, pp. 10143–10152, 2019.

575

576 Yuxuan Lei, Dingkang Yang, Zhaoyu Chen, Jiawei Chen, Peng Zhai, and Lihua Zhang. Large vision-
 577 language models as emotion recognizers in context awareness. *arXiv preprint arXiv:2407.11300*,
 578 2024.

579

580 Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A
 581 survey on deep active learning: Recent advances and new frontiers. *IEEE Transactions on Neural*
 582 *Networks and Learning Systems*, 2024.

583

584 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 585 training for unified vision-language understanding and generation. In *International Conference on*
 586 *Machine Learning*, 2022.

587

588 Zheng Lian, Licai Sun, Haiyang Sun, Kang Chen, Zhuofan Wen, Hao Gu, Bin Liu, and Jianhua Tao.
 589 Gpt-4v with emotion: A zero-shot benchmark for generalized emotion recognition. *Information*
 590 *Fusion*, 108:102367, 2024.

591

592 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 593 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 594 2023.

595

596 Rakesh R Menon, Sayan Ghosh, and Shashank Srivastava. Clues: A benchmark for learning classifiers
 597 using natural language explanations. *arXiv preprint arXiv:2204.07142*, 2022.

598

599 OpenAI. Gpt-4o: Openai’s multimodal language model. OpenAI Blog, 2024. URL <https://openai.com/research/gpt-4o>. Accessed: 2025-02-19.

594 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 595 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. In
 596 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 2019a.
 597

598 Soujanya Poria, Navonil Majumder, Rada Mihalcea, and Eduard Hovy. Emotion recognition in
 599 conversation: Research challenges, datasets, and recent advances. *IEEE access*, 7:100943–100953,
 600 2019b.

601 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 602 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 603 models from natural language supervision. In *International Conference on Machine Learning*,
 604 2021.

605 Sahand Sabour, Siyang Liu, Zheyuan Zhang, June M. Liu, Jinfeng Zhou, Alivionna S. Sunaryo, Ta-
 606 tia M.C. Lee, Rada Mihalcea, and Minlie Huang. Emobench: Evaluating the emotional intelligence
 607 of large language models. In *Proceedings of the 62nd Annual Meeting of the Association for
 608 Computational Linguistics*, 2024.

609 Sayan Saha, Sandipan Saha, and Sudip Kumar Naskar. Cteam1 at semeval-2024 task 10: Large
 610 language model based emotion detection and sentiment analysis. In *Proceedings of the 18th
 611 International Workshop on Semantic Evaluation (SemEval-2024)*, 2024.

612 Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
 613 sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
 614 and synthesis: A survey. *arXiv preprint arXiv:2402.13446*, 2024.

615 Qwen Team. Qwen2.5-vl, January 2025. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

616 Alaa Tharwat and Wolfram Schenck. A survey on active learning: State-of-the-art, practical chal-
 617 lenges and research directions. *Mathematics*, 11(4):820, 2023.

618 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 619 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 620 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 621 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

622 Yan Wang, Wei Song, Wei Tao, Antonio Liotta, Dawei Yang, Xinlei Li, Shuyong Gao, Yixuan Sun,
 623 Weifeng Ge, Wei Zhang, et al. A systematic review on affective computing: Emotion models,
 624 databases, and recent advances. *Information Fusion*, 83:19–52, 2022.

625 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 626 Fan, Kai Dang, et al. Qwen2.5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.

627 Jingyi Xu, Zhiying Jiang, Tianyi Xu, Zhou Zhao, and Mohammad Soleymani. Emotionqueen: A
 628 benchmark for evaluating empathy of large language models. In *Findings of the Association for
 629 Computational Linguistics: ACL 2024*, 2024.

630 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 631 Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint
 632 arXiv:2408.01800*, 2024.

633 Amir Zadeh, Paul Pu Liang, Navonil Mazumder, Soujanya Poria, Erik Cambria, and Louis-Philippe
 634 Morency. Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic
 635 fusion graph. In *Proceedings of the 56th Annual Meeting of the Association for Computational
 636 Linguistics*, 2018a.

637 AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
 638 Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
 639 graph. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
 640 (Volume 1: Long Papers)*, pp. 2236–2246, 2018b.

641 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 642 model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023.

648 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
649 tion tuning with synthetic data, 2024a. URL <https://arxiv.org/abs/2410.02713>.
650

651 Zhexin Zhang, Yida Lu, Jingyuan Ma, Di Zhang, Rui Li, Pei Ke, Hao Sun, Lei Sha, Zhifang Sui,
652 Hongning Wang, et al. Shieldlm: Empowering llms as aligned, customizable and explainable
653 safety detectors. *arXiv preprint arXiv:2402.16444*, 2024b.

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A DATA SOURCE STATISTICS**
703704 Table 9: Summary of video data source statistics
705

Category	# Videos	Category	# Videos
<i>Theme</i>			
Drama	59	Horror	20
Comedy	55	Sci-Fi	18
Action	50	Adventure	17
Mystery	33	Family	10
Romance	32	Fantasy	9
War	32	School	5
Crime	24		
Costume	21		
<i>Language</i>			
English	274	Chinese	111
Total		385	

722 **B DETAILED PROMPTS**
723724 **Prompt for Annotation**
725726 Prompt for Annotation
727728 **System Prompt**

729 I want you to act as a video emotion annotator. Please accurately understand the video
730 content and output the answer according to the prompt format. Do not output any other
731 content.

732 **User Prompt**
733

734 <video>

735 subtitle: {subtitle}

736 The above are a few evenly sampled images from a video and the subtitles for the video,
737 which may be the words spoken by the people in the video.

738 Please accurately identify the emotional label expressed by the people in the video and
739 provide an explanation. Emotional labels should be limited to: happy, excited, angry,
740 disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful, ironic, neutral. This
741 explanation should be accurate and concise.

742 The output format should be: [label];[explanation]. Please do not output any additional
743 content.

744 **Prompt for Explanation Synthesis**
745746 Prompt for Explanation Synthesis
747748 **System Prompt**

749 I want you to act as a video emotion annotator. Please accurately understand the video
750 content and output the answer according to the prompt format. Do not output any other
751 content.

752 **User Prompt**
753

754 <video>

755 subtitle: {subtitle}

The above are a few evenly sampled images from a video and the subtitles for the video,

756

757 which may be the words spoken by the people in the video.
 758 The emotion expressed by the person in the video is **{emotion}**. Please provide an
 759 explanation, describing the video content and the reasons for labeling it with this emotion.
 760 The output should be in JSON format:

```
761 {{  

762   "emotion": "{emotion}",  

763   "explanation": "Your answer"  

764 }}
```

765

Prompt for Fine-tuning

767

Prompt for Fine-tuning

768

User

<video>

The above is a video. [if subtitle is not None] The video's subtitle is '{subtitle}', which
 maybe the words spoken by the person. [endif] Please accurately identify the emotional label
 expressed by the people in the video. Emotional labels include should be limited to: happy,
 excited, angry, disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful,
 ironic, neutral. The output format should be:

[label]

[explanation]

777

Assistant

{label}

{explanation}

781

782

C COMPLETE CONSTRUCTION DETAILS OF THE LIBRA-EMO TRAINSET

783

784

As shown in Table 10, the construction of the Libra-Emo Bench from the original pool of 64,824 candidate samples leaves 64,174 samples. In the 0th round of active learning, three models perform voting-based annotation combined with human annotation, and 2,549 samples are discarded due to quality issues, resulting in 61,625 samples. In the 1st round of active learning, 13,000 samples are selected for human annotation. Among them, 7,533 samples undergo label changes. In the 2nd round of active learning, 11,764 samples are selected for human annotation. Of these, 6,373 samples have their labels modified. After the explanation synthesis process, the Libra-Emo Trainset ultimately contains 61,625 meticulously processed samples.

793

794

Table 10: Complete construction details of the Libra-Emo Trainset.

795

Operate	# Input	# Sample	# Drop	# Changed Labels	# Output
Active Learning Round 0	64,174	-	2549	-	61,625
Active Learning Round 1	61,625	13,000	0	7,533	61,625
Active Learning Round 2	61,625	11,764	0	6,373	61,625
Explanation Synthesis	61,625	-	0	-	61,625

800

801

802

803

804

805

806

807

808

809

810 **D PROCESS OF THE HUMAN-MACHINE COLLABORATIVE ACTIVE LEARNING**
811 **ANNOTATION STRATEGY**
812

814 **Algorithm 1** Human-Machine Collaborative Active Learning Annotation Strategy

815 1: **Input:** Initial unlabeled dataset $D_{unlabeled}$, initial models M_1, M_2, M_3
816 2: **Output:** Labeled dataset $D_{labeled}$, trained model M_{final}
817 3: Initialize an empty labeled dataset: $D_{labeled} \leftarrow \emptyset$
818 4: **Step 1: Initial Labeling**
819 5: **for** each sample $x_i \in D_{unlabeled}$ **do**
820 6: Get the predicted label from each model: $y_{i1}, y_{i2}, y_{i3} \leftarrow M_1(x_i), M_2(x_i), M_3(x_i)$
821 7: Assign the initial label $y_i \leftarrow \text{vote}(y_{i1}, y_{i2}, y_{i3})$
822 8: **if** the majority vote is successful (e.g., at least 2 models agree) **then**
823 9: Add (x_i, y_i) to $D_{labeled}$
824 10: **else**
825 11: Conduct human annotation on x_i to obtain y_i^{human}
826 12: Add (x_i, y_i^{human}) to $D_{labeled}$
827 13: **end if**
828 14: **end for**
829 15: **Step 2: Iterative Label Refinement**
830 16: **repeat**
831 17: **Step 2.1: Model Training**
832 18: Train model $M_{current}$ using $D_{labeled}$
833 19: **Step 2.2: Sample Selection**
834 20: **for** each sample $(x_i, y_i) \in D_{labeled}$ **do**
835 21: Predict new label $y_i^{current} \leftarrow M_{current}(x_i)$
836 22: **if** $y_i^{current} \neq y_i$ **then**
837 23: Add (x_i, y_i) to D_{new}
838 24: **end if**
839 25: **end for**
840 26: **Step 2.3: Human Annotation**
841 27: **for** each sample $(x_i, y_i) \in D_{new}$ **do**
842 28: Conduct human annotation on x_i to obtain y_i^{human}
843 29: Update y_i with y_i^{human}
844 30: **end for**
845 31: Update the labeled dataset: $D_{labeled} \leftarrow D_{labeled} \setminus D_{new}$
846 32: **until** Model performance reaches saturation
847 33: **Step 3: Final Model**
848 34: Train final model M_{final} using the fully labeled dataset $D_{labeled}$
849 35: **return** $M_{final}, D_{labeled}$

850 **E EXPERIMENTAL SETTING DETAILS**

851 **Model Descriptions**

852

853

854 - **LLaVA-Video-7B-Qwen2**(Zhang et al., 2024a): Based on the Qwen2(qwe, 2024) as the
855 foundation large language model, it supports a context length of 32K tokens and can process
856 up to 64 video frames. It accepts joint inputs of videos, images, and multiple images.
857
858 - **Qwen2.5-VL-7B**(Team, 2025): Compared to Qwen2-VL(Wang et al., 2024), it incorporates
859 dynamic frame rate (FPS) training and absolute temporal encoding techniques, enhancing
860 the model’s perception of temporal and spatial scales while further simplifying the network
861 architecture to improve efficiency.
862
863 - **Phi-3.5-vision-instruct (4.2B)**(Abdin et al., 2024): With only 4.2B parameters, it concurrently
864 processes text, images, and videos through attention mechanisms that align textual
865 and visual modalities.

- **MiniCPM-o 2.6 (8B)**(Yao et al., 2024): Adopts an end-to-end omnimodal architecture capable of processing diverse inputs including text, images, audio, and video, while supporting real-time streaming interaction. Additionally, it offers multiple deployment options with low inference latency.
- **Qwen2.5-Omni-7B**(Xu et al., 2025): An end-to-end omnimodal model based on Qwen2.5, capable of processing text, images, audio, and video simultaneously. It uses TMRoPE positional encoding to align multimodal inputs and achieves strong performance on OmniBench, surpassing similar-scale single-modal models.
- **InternVL-2.5 series (1B-8B)**(Chen et al., 2024): Utilizes a Progressive Scaling Strategy for pretraining and extends dynamic high-resolution training methods to enhance capabilities in processing multi-image and video datasets.

Fine-tuning Hyperparameters

Table 11: Fine-tuning hyperparameters used in our experiments.

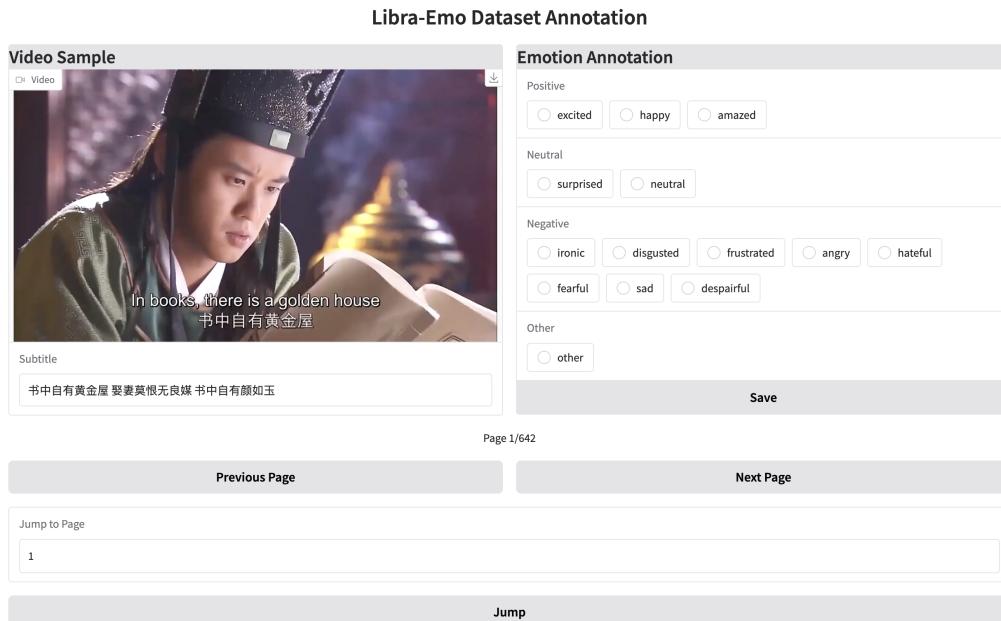
Hyperparameter	Value
Learning Rate	3e-4
Learning Rate Schedule	Linear warmup + cosine decay
Warmup Ratio	0.03
Batch Size	128
Gradient Accumulation Steps	1
Training Epochs	1
Optimizer	AdamW
Weight Decay	0.01
Max Gradient Norm	1.0
GPU Type	H800
GPU Memory	H800
GPU Numbers	32
Trainging Time (8B)	2h

Table 12: Video Preprocessing Hyperparameters before Fine-tuning used in our experiments.

Hyperparameter	Value
Frame sampling strategy	16 frames uniformly distributed
Frame resolution	448 × 448 pixels
Maximum subtitle length	8192 tokens
Text tokenization	Model-specific tokenizer
Data augmentation	Random horizontal flip, color jitter

918 **F DETAILED CATEGORY DISTRIBUTION**
919920 Table 13: The detailed category distribution of the Libra-Emo dataset.
921

923 Emotion Type	924 Emotion (7-CLS)	925 Emotion (13-CLS)	926 Quantity		
			927 Training	928 Testing	929 Total
925 Positive	926 Happy	Excited	927 819	928 41	929 860
		Happy	927 5,119	928 61	929 5,180
		Amazed	927 468	928 35	929 503
925 Neutral	926 Surprised	Surprised	927 2,194	928 62	929 2,256
		Neutral	927 23,681	928 77	929 23,758
925 Negative	926 Disgusted	Ironic	927 5,348	928 51	929 5,399
		Disgusted	927 420	928 44	929 464
		Angry	927 7,137	928 42	929 7,179
925	926 Frustrated	Angry	927 5,720	928 80	929 5,800
		Hateful	927 525	928 35	929 560
		Fearful	927 2,408	928 39	929 2,447
925	926 Sad	Sad	927 7,152	928 48	929 7,200
		Despairful	927 634	928 27	929 661
		Total	61,625	642	62,267

943 **G DEMONSTRATION OF THE ANNOTATION TOOL**
944966 Figure 6: Annotation tool used in Libra-Emo.
967

972 H MORE TRAINING EXAMPLES DEMONSTRATION
973

Figure 7: More training examples in Libra-Emo dataset.

I USE OF LLMs

In our manuscript, we partially used large language models (LLMs) for academic polishing, but only to a limited extent.