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ABSTRACT

The recognition of negative emotions is pivotal in numerous real-world applica-
tions, including public opinion analysis, customer service, emotional attribution,
and emotional support systems, where these emotions manifest with fine-grained
characteristics. However, current models struggle with fine-grained negative emo-
tion recognition tasks due to the limited granularity in existing multimodal emotion
recognition datasets. To address this, we refine coarse-grained emotion categories,
expanding negative emotions from conventional 4-5 types to 8 specific categories.
Based on this refined taxonomy, we construct Libra-Emo, a comprehensive dataset
for multimodal fine-grained negative emotion detection. It comprises Libra-Emo
Trainset for model development and Libra-Emo Bench for evaluation, collectively
containing 62,267 video samples annotated through a novel human-machine collab-
orative active learning strategy, surpassing existing datasets in both granularity and
scale. We present extensive experimental results from zero-shot evaluations using
Libra-Emo Bench and instruction-tuning experiments with Libra-Emo Trainset on
leading Multimodal Large Language Models (MLLMs). Our findings demonstrate
that while current MLLMs exhibit limited proficiency in fine-grained negative
emotion detection, models fine-tuned on Libra-Emo Trainset show substantial per-
formance improvements that generalize effectively to out-of-domain evaluations.
This work addresses critical limitations in existing multimodal emotion recognition
datasets regarding emotion category granularity and representation of negative
emotions, thus advancing research in fine-grained emotional analysis. The dataset
and models will be fully open-sourced.

1 INTRODUCTION

Emotion recognition (Poria et al., 2019b; Khare et al., 2024; Wang et al., 2022) has become a crucial
component in human-computer interaction, public opinion monitoring, and intelligent customer
service, where understanding human emotions enables more empathetic and effective communication.

Benefiting from the rapid development of Multimodal Large Language Models (MLLMs) (OpenAI,
2024; Google, 2024; Anthropic, 2025), various multimodal emotion recognition systems such as
EmoCLIP (Jiang et al., 2023), FARCER (Lei et al., 2024), and Emotion-LLaMA (Cheng et al.,
2024) have been proposed, aiming to analyze emotional states in videos and images by integrating
multimodal information including visual and linguistic cues. Although these approaches have
achieved progress in enhancing emotion understanding, they still face the following limitations:

• Limited granularity in emotion categories. Existing multimodal emotion detection
datasets are based on the six coarse-grained emotion categories defined by Paul Ekman
(Ekman et al., 2013) (see Table 1). However, we observe that existing MLLMs exhibit
suboptimal performance in recognizing coarse-grained emotion categories (see Table 2). We
partially attribute this to the inherent ambiguity and overlapping boundaries associated with
coarse-grained categories.

• Insufficient attention to negative emotions. The recognition of negative emotions plays a
vital role in numerous real-world applications, such as public opinion analysis, customer
service, emotion attribution, and emotional support systems (Ham et al., 2023; Guo et al.,
2024). Accurate identification of negative emotions facilitates more precise and effective
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response strategies. Nevertheless, existing multimodal emotion detection datasets provide
insufficient support for negative emotions (see Table 1).

These limitations highlight the urgent need for dedicated datasets and evaluation frameworks to
ensure effective detection and analysis of fine-grained negative emotions in multimodal content.

To address these challenges, we first refine the existing coarse-grained emotion categories, with a
particular focus on negative emotions. The mapping between coarse-grained and fine-grained emotion
categories is provided in Appendix F. We find that using fine-grained emotion categories significantly
improves the model’s emotion recognition capabilities (see Table 2), suggesting that fine-grained
labels reduce ambiguity and mitigate misclassifications caused by emotional vagueness. Building
on this finding, we propose the Libra-Emo, an advanced multimodal fine-grained negative emotion
detection dataset specifically designed for comprehensive emotion analysis in multimodal content.
Specifically, Libra-Emo employs a carefully designed data collection process and a human-machine
collaborative active learning annotation strategy to construct a diverse dataset comprising 13 emotion
categories, including 8 distinct negative emotions. The training subset, Libra-Emo Trainset, contains
61,625 samples, while the evaluation subset, Libra-Emo Bench, consists of 642 samples, providing
a solid foundation for research in multimodal fine-grained negative emotion detection.

To validate the effectiveness of Libra-Emo, we conduct comprehensive zero-shot evaluations using
Libra-Emo Bench and instruction-tuning experiments with Libra-Emo Trainset on leading MLLMs.
Experimental results demonstrate that while current MLLMs exhibit limited proficiency in fine-
grained negative emotion detection, models fine-tuned on Libra-Emo Trainset show substantial
performance improvements. Moreover, experiments demonstrate that the performance improvements
brought by Libra-Emo Trainset generalize to the out-of-domain test set DFEW (Jiang et al., 2020).
These results establish Libra-Emo as a robust framework for advancing fine-grained negative emotion
detection in multimodal content, thereby facilitating more nuanced emotion understanding across
diverse applications.

Our contributions can be summarized as follows:

Libra-Emo Taxonomy: A novel emotion classification framework that expands traditional
categories into 13 distinct emotional states with particular emphasis on 8 fine-grained negative
emotions, enabling more nuanced emotional analysis than existing taxonomies.
Libra-Emo Trainset: A large-scale multimodal fine-grained negative emotion detection
dataset comprising 61,625 annotated video samples, surpassing existing datasets in both
granularity and volume.
Libra-Emo Bench: A comprehensive benchmark for assessing the performance of mul-
timodal models in fine-grained negative emotion recognition, covering a wide range of
scenarios and providing a valuable resource for the research community.
Libra-Emo Model: We fine-tune a series of leading MLLMs on Libra-Emo Trainset, signifi-
cantly enhancing their performance in negative emotion recognition tasks and demonstrating
the value of specialized datasets.

Table 1: Comparison with other video emotion
detection datasets.

Dataset # Emo. # Neg. Emo. # Samps.
IEMOCAP (Busso et al., 2008) 9 5 10,039
CREMA-D (Cao et al., 2014) 6 4 7,442
MELD (Poria et al., 2019a) 7 4 13,000

CAER (Lee et al., 2019) 7 4 13,201
CMU-MOSEI (Zadeh et al., 2018b) 7 4 23,453

Libra-Emo (Ours) 13 8 62,267

Table 2: Refining emotion granularity on
Libra-Emo Bench.

Model CLS ACC F1

Gemini-2.0-Flash (Google, 2024) 7-CLS 53.89 53.65
13-CLS→ 7-CLS 58.88 59.04

GPT-4o (OpenAI, 2024) 7-CLS 40.97 43.07
13-CLS→ 7-CLS 53.58 53.03

Claude-3.7-Sonnet (Anthropic, 2025) 7-CLS 42.37 41.64
13-CLS→ 7-CLS 54.98 54.28

2 LIBRA-EMO CONSTRUCTION

Figure 1 provides an overview of the construction process of Libra-Emo, which mainly includes
emotion categories definition, video collection and processing, and emotion annotation.
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Figure 1: Overview of the dataset construction process for Libra-Emo.

2.1 EMOTION CATEGORIES DEFINITION

The first step in constructing Libra-Emo is to establish a comprehensive and fine-grained emotion
taxonomy. Drawing upon psychological research and practical applications 1, we expand Paul
Ekman’s 6 basic emotions (Ekman et al., 2013) into a more granular set of 13 distinct categories,
with a particular emphasis on negative emotions, which are divided into 8 specific types. Detailed
definitions can be found in Table 3. This fine-grained categorization, particularly for negative
emotions, fills a critical gap in existing datasets and enables more nuanced emotion recognition.

2.2 VIDEO COLLECTION AND PROCESSING

Video Collection. To ensure diversity and relevance, the source videos are collected from a wide
range of TV shows and movies on YouTube 2, all of which are licensed under Creative Commons.
These videos feature English and Chinese and cover 14 themes, including drama, comedy, romance,
action, adventure, sci-fi, fantasy, horror, thriller, crime, war, family, school, and historical drama. This
selection aims to provide a balanced representation of different cultural backgrounds and production
styles. A total of 385 source videos covering 2 languages and 14 themes are collected, as outlined in
Appendix A, thereby ensuring that the resulting emotion samples encompass a wide range of contexts
and expressive styles.

Video Processing. The collected videos are processed to extract meaningful segments and relevant
information:

1. Scene Segmentation: We utilize the scenedetect tool 3 to identify natural scene boundaries
within the source videos and retain video clips that are longer than 3 seconds and at most 10
seconds, thereby creating coherent, emotion-bearing clips. Each clip is then analyzed for its
primary emotional content.

2. Subtitle Extraction: For the collected raw videos, we download subtitle files in the corre-
sponding languages and obtain the subtitles for each clip according to the timestamps of the
segments, enabling subsequent training and testing. Clips without subtitles are filtered out.

3. Face Recognition: We employ the face_recognition tool 4 to perform facial detection on
each video clip, sampling three frames per second and retaining clips in which faces appear
in more than 99% of the frames.

1https://en.wikipedia.org/wiki/Emotion_classification
2https://www.youtube.com
3https://pypi.org/project/scenedetect
4https://github.com/ageitgey/face_recognition
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Table 3: Emotion categories in Libra-Emo.

Type Category Definition
Positive Excited A high-energy, positive state marked by eagerness, anticipation, and

enthusiasm.
Happy A general sense of contentment, joy, or life satisfaction, often calm and

sustained.
Amazed A strong and lasting sense of wonder or astonishment, often triggered

by something extraordinary or impressive.

Neutral Surprised An immediate emotional response to an unexpected event, marked by
sudden awareness or shock.

Neutral An emotionally unmarked state, indicating neither positive nor negative
affect.

Negative Ironic A sarcastic or mocking emotional state, often marked by indirect cri-
tique or contradiction.

Disgusted A visceral reaction of revulsion or strong disapproval, often in response
to something morally or physically offensive.

Frustrated A state of tension, irritation, and dissatisfaction resulting from obstacles
that prevent achieving goals or expectations.

Angry A reactive emotion involving displeasure, irritation, or aggression,
usually in response to perceived wrongs or injustice.

Hateful A persistent, intense hostility or contempt directed toward a person,
group, or idea, often associated with a desire for harm.

Fearful A defensive emotion involving anxiety or dread, triggered by perceived
threats or uncertainty.

Sad A low-energy emotion characterized by feelings of loss, disappointment,
or helplessness.

Despairful A profound sense of hopelessness and helplessness, often accompanied
by emotional distress and loss of purpose.

Through this process, we generate 64,824 candidate samples containing visual, auditory, and textual
information, with an average video length of 5.0 s and an average face ratio of 99.9%, creating a rich
multimodal foundation for annotation.

2.3 EMOTION ANNOTATION

Fine-grained emotion labels pose significant challenges for annotation. To obtain large-scale annotated
data while balancing labor costs and label quality, we employ an active learning strategy that combines
model predictions with human annotation.

Libra-Emo Bench: We first sample a batch of data from the candidate samples for manual annotation
to construct our test set, Libra-Emo Bench. The developed annotation tool is presented in Appendix G.
Each sample is annotated by 8 individuals, with a voting threshold set to 4, meaning the annotation is
considered successful when at least 4 annotators agree on the label. For samples that fail to reach
consensus, the final annotation is determined through detailed discussions among multiple annotators.
The final Libra-Emo Bench consists of 642 samples, with the category distribution shown in Figure 2.

Active Learning Strategy for Trainset Annotation: Model-based annotation can reduce costs while
maintaining high consistency (Gilardi et al., 2023; Tan et al., 2024). We first consider using multiple
MLLMs to vote for labeling the Libra-Emo Trainset. However, experimental results on a sampled test
set from Libra-Emo Bench (Table 4) indicate that the current leading MLLMs do not perform well in
fine-grained emotion recognition for videos. Therefore, we adopt a human-machine collaborative
active learning strategy for training set annotation (Tharwat & Schenck, 2023; Li et al., 2024), aiming
to maximize dataset quality while minimizing labor costs.

The algorithm for the annotation process is in Appendix D, with the textual description as follows:
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Figure 2: Libra-Emo Bench class distribution. Figure 3: Libra-Emo Trainset class distribution.

1. Initial Labeling: We select Gemini-2.0-Flash (Google, 2024), GPT-4o (OpenAI, 2024), and
Claude-3.7-Sonnet (Anthropic, 2025) as our voting models for initial labeling of the training
set based on the voting performance shown in Table 4. For each sample in the unlabeled
dataset, the three models independently predict a label. The prompt used for annotation
can be found in Appendix B. If at least two models agree, the majority vote becomes the
label and is added to the labeled dataset. Otherwise, the sample is annotated manually to
determine the initial label.

2. Iterative Label Refinement: (1) Model Training: Train the model using the currently
labeled dataset. (2) Sample Selection: The model predicts new labels for all labeled samples,
and selects the samples where the new predictions differ from the current labels for human
annotation. (3) Human Annotation: Annotators label the selected samples. Each sample is
annotated by 4 individuals, with a voting threshold set to 2.

3. Final Output: The iteration stops when the model’s performance reaches a plateau. The
number of iterative rounds used for the Libra-Emo Trainset is 2. The final output is the
trained model and the labeled dataset.

Synthesizing Explanations Consistent with Labels: Studies (Menon et al., 2022; Ferraretto et al.,
2023; Zhang et al., 2024b) have demonstrated that natural language explanations have a positive
impact on LLM classification tasks. We use Gemini-2.0-Flash to synthesize label-consistent explana-
tions on the annotated dataset to enhance the accuracy of the emotion recognition model. The prompt
for explanation synthesis can be found in Appendix B.

A detailed description of the construction process of the Libra-Emo Trainset is provided in Appendix C.
The final Libra-Emo Trainset contains 61,625 samples, with the category distribution shown in
Figure 3. Training examples can be found in Figure 1 and Appendix H. The composition distribution
of the complete Libra-Emo is shown in Table 5.

Table 4: The performance of leading MLLMs on Libra-
Emo Bench.

Model Acc F1
Gemini-2.0-Flash (Google, 2024) 47.82 47.66

GPT-4o (OpenAI, 2024) 43.30 41.74
Claude-3.7-Sonnet (Anthropic, 2025) 41.74 37.26

Vote 50.93 50.85

Table 5: Libra-Emo composition distribu-
tion. For more details, see Appendix F.

Emotion Type Quantity
Trainset Bench Total

Positive 6,406 137 6,543
Neutral 25,875 139 26,014
Negative 29,344 366 29,710

Total 61,625 642 62,267

3 EXPERIMENTS

In this section, we present the experimental setup and results used to evaluate the performance of
multimodal models on the Libra-Emo. We first describe the experimental settings, including model
selection and evaluation metrics, followed by a comparison with baseline approaches. Then, we
provide the main results, highlighting key insights from the evaluation.
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3.1 EXPERIMENTAL SETTINGS

Model Selection To comprehensively evaluate fine-grained negative emotion recognition capabil-
ities, we benchmark several leading multimodal large language models (MLLMs). Our selection
encompasses diverse, recent, and publicly available MLLMs that represent varied architectural ap-
proaches and parameter scales, including LLaVA-Video-7B-Qwen2 (Zhang et al., 2024a), Qwen2.5-
VL-7B (Team, 2025), Phi-3.5-vision-instruct (4.2B) (Abdin et al., 2024), MiniCPM-o 2.6 (8B) (Yao
et al., 2024), Qwen-2.5-Omni-7B (Xu et al., 2025), and InternVL-2.5 series (1B-8B) (Chen et al.,
2024). Detailed model descriptions are provided in Appendix E.

Fine-tuning Settings We conduct experiments on Qwen-2.5-Omni-7B (Xu et al., 2025) and
InternVL-2.5 series (1B-8B) (Chen et al., 2024). To validate the effectiveness of the dataset, we
employ consistent fine-tuning and video processing configurations across all experiments. The models
train for one epoch using the AdamW optimizer with a learning rate of 3e-4 (cosine decay following
a linear warm-up) and a weight decay of 0.01. The prompt used for fine-tuning, which integrates
video with subtitle text, is provided in Appendix B. Further details on hyperparameters are available
in Appendix E.

Evaluation Metrics 1. Libra-Emo Bench: We report Accuracy, Macro-F1, and Weighted-F1
for both all emotions and negative emotions (considering only samples with ground truth labeled
as negative emotions). 2. Out-of-Domain Test Set DFEW (Jiang et al., 2020): We use standard
evaluation metrics UAR (Unweighted Average Recall) and WAR (Weighted Average Recall) to
evaluate zero-shot inference performance on the set_1 collection of 2,341 samples.

Baselines To comprehensively evaluate the effectiveness of models fine-tuned on Libra-Emo Train-
set, the baseline approaches are divided into two categories: Zero-shot MLLMs (leading multimodal
models used without any fine-tuning to assess their inherent emotion recognition capabilities) and
Existing Emotion Recognition Models (specialized models trained on previous emotion datasets).

3.2 LIBRA-EMO BENCH EVALUATION

The experimental results presented in Table 6 reveal several important findings:

Performance disparity between closed-source and open-source models: Closed-source mod-
els outperform their open-source counterparts in zero-shot settings. Gemini-2.0-Flash achieves
the highest accuracy (47.82%) and F1 scores (47.55% macro-F1, 47.66% weighted-F1) for all
emotions, demonstrating strong performance in negative emotion recognition (49.18% accuracy,
48.30% weighted-F1). However, after fine-tuning on the Libra-Emo Trainset, open-source models
substantially narrow this gap: Libra-Emo-Omni-7B achieves 51.56% accuracy across all emotions,
while Libra-Emo-8B achieves 50.55% accuracy on negative emotions, significantly surpassing the
closed-source models.

Dataset effectiveness: Compared with zero-shot models, fine-tuning on the Libra-Emo Trainset
significantly improves the performance of models across different architectures and scales, validating
the dataset’s quality and usefulness. The most dramatic improvements are observed in smaller models,
with Libra-Emo-1B showing a 17.91% increase in overall accuracy and Libra-Emo-2B exhibiting
a 22.95% increase in negative emotion accuracy. These substantial gains highlight the efficacy of
specialized training for fine-grained emotion recognition tasks.

Impact of different modalities: The results of different modalities on the same model demonstrate
the performance improvement brought by incorporating modalities. Gemini-2.0-Flash achieves only
40.19% and 30.69% accuracy on visual-only and audio-only, respectively. The visual-audio (V,A) and
visual-text (V,T) modalities show slight improvements, reaching 42.37% and 46.57%, respectively,
while using all modalities (V,A,T) achieves the highest accuracy of 47.82%. Notably, after fine-tuning
on the Libra-Emo training set, the three-modality model Libra-Emo-Omni-7B reaches an overall
accuracy of 51.56% and a negative-emotion accuracy of 49.45%, both exceeding Gemini-2.0-Flash.
These results highlight the significance of multimodal fusion and underscore the value of Libra-Emo
for multimodal emotion recognition.
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Table 6: Performance Comparison of MLLMs on Libra-Emo Bench, showing the Accuracy and F1
scores for all emotions and negative emotions. The modalities column indicates the content available
during reasoning (V: visual, A: auditory, T: textual). All values are in percentages (%).

Model Modalities All Emotions (13 Classes) Negative Emotions (8 Classes)

Accuracy Macro-F1 Weighted-F1 Accuracy Macro-F1 Weighted-F1

Closed-Source Models

Gemini-2.0-Flash (Google, 2024) V 40.19 38.08 39.11 36.07 37.83 37.48
Gemini-2.0-Flash (Google, 2024) A 30.69 27.56 29.47 27.87 24.15 26.96
Gemini-2.0-Flash (Google, 2024) V,A 42.37 41.44 41.82 41.26 41.12 40.55
Gemini-2.0-Flash (Google, 2024) V,T 46.57 45.25 45.42 48.36 48.80 47.60
Gemini-2.0-Flash (Google, 2024) V,A,T 47.82 47.55 47.66 49.18 48.83 48.30
GPT-4o (OpenAI, 2024) V,T 43.30 44.47 41.74 45.90 46.91 45.00
Claude-3.7-Sonnet (Anthropic, 2025) V,T 41.74 33.70 37.26 36.89 27.09 30.81

Open-Source Models

LLaVA-Video-7B-Qwen2 (Zhang et al., 2024a) V,T 19.63 13.28 15.24 7.92 9.98 11.30
Qwen2.5-VL-7B (Team, 2025) V,T 38.32 33.99 34.70 35.25 29.47 31.03
Phi-3.5-vision-instruct (4.2B) (Abdin et al., 2024) V,T 24.61 19.37 20.40 13.39 15.59 15.12
MiniCPM-o 2.6 (8B) (Yao et al., 2024) V,A,T 19.78 14.78 15.87 17.49 11.45 14.41

Qwen-2.5-Omni-7B (Xu et al., 2025) V 30.22 25.72 26.39 23.77 20.37 21.09
Qwen-2.5-Omni-7B (Xu et al., 2025) V,A 35.20 30.72 30.61 30.33 27.62 28.32
Qwen-2.5-Omni-7B (Xu et al., 2025) V,A,T 38.94 34.46 34.64 35.79 33.17 34.14
InternVL-2.5-1B (Chen et al., 2024) V,T 21.50 13.19 15.93 16.94 9.32 11.86
InternVL-2.5-2B (Chen et al., 2024) V,T 19.47 11.12 13.53 18.58 9.61 12.09
InternVL-2.5-4B (Chen et al., 2024) V,T 32.40 27.42 26.73 25.68 25.53 26.67
InternVL-2.5-8B (Chen et al., 2024) V,T 36.45 32.50 33.84 36.61 32.29 34.39

Fine-Tuned on Libra-Emo Trainset

Libra-Emo-Omni-7B (Ours) V 39.88 38.83 39.12 33.61 36.58 36.47
Libra-Emo-Omni-7B (Ours) V,A 45.79 44.11 45.01 39.62 41.00 42.01
Libra-Emo-Omni-7B (Ours) V,A,T 51.56 50.83 51.08 49.45 49.30 49.28
Libra-Emo-1B (Ours) V,T 39.41 36.50 38.02 34.97 31.94 33.23
Libra-Emo-2B (Ours) V,T 43.61 40.66 42.19 41.53 37.48 38.82
Libra-Emo-4B (Ours) V,T 44.39 40.61 42.27 41.53 38.49 39.73
Libra-Emo-8B (Ours) V,T 51.25 51.40 51.07 50.55 50.20 49.79

These findings indicate that while leading MLLMs possess some inherent capability for emotion
recognition, they significantly underperform on fine-grained negative emotion detection without
specialized training. The Libra-Emo Trainset effectively addresses this limitation, enabling substantial
performance improvements across diverse model architectures through targeted fine-tuning.

3.3 OUT-OF-DOMAIN TEST SET EVALUATION

Table 7 presents zero-shot performance on the DFEW dataset (Jiang et al., 2020). Libra-Emo-8B
achieves the highest overall metrics (52.55% UAR, 59.85% WAR) among all models, demonstrating
strong generalization capabilities. Most notably, our models excel at recognizing negative emotions,
particularly sad (82.59%), angry (71.26%), and fearful (66.30%) categories, outperforming special-
ized emotion recognition models like Emotion-LLaMA (Cheng et al., 2024) in these areas. These
results validate the effectiveness of Libra-Emo Trainset for fine-grained negative emotion recognition
across domains and underscore its practical value for emotion monitoring applications.

Table 7: Performance Comparison on DFEW in Zero-Shot Setting. All values are in percentages (%).

Models Happy Surprised Neutral Sad Angry Disgusted Fearful UAR WAR
Video-LLaVA (Lin et al., 2023) 51.94 0.00 29.78 39.84 58.85 0.00 2.76 26.17 35.24
Video-Llama (Zhang et al., 2023) 20.25 4.76 80.15 67.55 5.29 0.00 9.39 26.77 35.75
GPT-4V (Lian et al., 2024) 62.35 32.19 56.18 70.45 50.69 10.34 51.11 47.69 54.85
Emotion-LLaMA (Cheng et al., 2024) 71.98 33.67 61.99 76.25 71.95 0.00 3.31 45.59 59.37

Libra-Emo-Omni-7B (Ours) 57.26 44.90 51.87 66.75 64.14 6.90 66.30 51.16 57.37
Libra-Emo-8B (Ours) 62.78 42.86 45.13 82.59 71.26 6.90 56.35 52.55 59.85
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4 ABLATION STUDIES

In this section, we evaluate key design choices in the Libra-Emo framework to understand their
impact on performance. Unless otherwise noted, all ablation experiments are conducted using the
InternVL-2.5-8B model for consistency.

4.1 IMPACT OF ACTIVE LEARNING AND EXPLANATION

Table 8 demonstrates the effectiveness of our active learning strategy. As active learning progresses
from Round 0 to Round 2, performance metrics steadily improve across the Libra-Emo Bench. The
overall accuracy on Libra-Emo Bench increases from 46.26% to 50.00%, while negative emotion
accuracy rises from 44.54% to 48.91%. Incorporating explanations in Round 2 provides a substantial
performance boost, with overall accuracy reaching 51.25% (+1.25%) and negative emotion accuracy
improving to 50.55% (+1.64%). These results validate our dataset construction methodology, demon-
strating that combining iterative active learning with explanatory annotations significantly enhances
emotion recognition capabilities, particularly in distinguishing fine-grained negative emotions.

Table 8: Ablation study on active learning and explanation. All values are in percentages (%).

Activate Learning Explanation All Emotions (13 Classes) Negative Emotions (8 Classes)
Round Accuracy Macro-F1 Weighted-F1 Accuracy Macro-F1 Weighted-F1

Round 0 46.26 43.91 45.15 44.54 42.10 43.51
Round 1 48.44 46.76 47.55 46.99 44.71 45.36
Round 2 50.00 48.51 49.29 48.91 46.89 47.27
Round 2 51.25 51.40 51.07 50.55 50.20 49.79

4.2 IMPACT OF DATASET SIZE

Figure 4 illustrates the impact of training data scale on model performance. With only 12.5% of
the data, the model already achieves substantial gains in overall accuracy (43.93%, +7.48%) and
negative emotion accuracy (42.90%, +6.29%). As the dataset size increases, performance continues
to improve steadily, ultimately reaching 51.25% and 50.55% on the full dataset, both of which surpass
Gemini-2.0-Flash. This underscores the pivotal role of large-scale, high-quality data in fine-grained
emotion recognition.

Figure 4: Impact of training data size on Libra-Emo Bench performance: left for all emotions, right
for negative emotions. Dashed lines show Gemini-2.0-Flash results. Blue: Accuracy, Red: F1-Score.

4.3 FAILURE CASE ANALYSIS

As shown in Figure 5, due to small inter-class differences, our model performs poorly in distinguishing
between despairful and sad, as well as hateful and angry. However, effectively differentiating these
fine-grained emotions is crucial, as they represent distinct psychological states and behavioral
tendencies: the former are deeper and more enduring, often accompanied by negative expectations or
aggressive intent, while the latter are transient emotional fluctuations. Accurately distinguishing these
emotions enables models to better understand human affect, supporting more targeted interventions
and guidance in applications such as mental health monitoring and social media analysis.
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Figure 5: Failure case analysis of Libra-Emo-8B. Left: confusion matrix, Right: specific examples.

5 RELATED WORKS

Multimodal Emotion Recognition Datasets. Datasets such as MELD (Poria et al., 2019a), CMU-
MOSEI (Zadeh et al., 2018a), and IEMOCAP (Busso et al., 2008) have advanced research but
are limited in scale and granularity. MELD contains 13K utterances with 7 emotion categories;
CMU-MOSEI has 23.5K clips with 6 basic emotions; IEMOCAP includes 10K samples across 9
categories. Recent benchmarks like EmoBench (Sabour et al., 2024) and EmotionQueen (Xu et al.,
2024) highlight challenges in deep emotional understanding, while SemEval-2024 tasks (Saha et al.,
2024) show negative emotions require more nuanced detection. Most datasets and models lack
specialized training for fine-grained negative emotion recognition. In contrast, our work evaluates
and fine-tunes MLLMs on Libra-Emo, improving recognition of subtle negative emotions.

Multimodal Large Models for Emotion Recognition. Recent multimodal large models such as
CLIP (Radford et al., 2021) and its emotion-specific variants (EmoCLIP (Jiang et al., 2023), Emotion-
LLaMA (Cheng et al., 2024)) show promise by integrating visual and textual data. Advanced
vision-language models like PaLI (Chen et al., 2023a), Flamingo (Alayrac et al., 2022), and BLIP
(Li et al., 2022) improve these capabilities. However, LLMs struggle with implicit emotional cues,
especially negative emotions, exhibiting higher confusion among negative categories (Sabour et al.,
2024; Saha et al., 2024). We address these issues by fine-tuning MLLMs such as InternVL (Chen et al.,
2023b) on Libra-Emo Trainset, significantly enhancing fine-grained negative emotion recognition.

Fine-grained Emotion Analysis. Recent works highlight the need for fine-grained emotion analysis.
GoEmotions (Demszky et al., 2020) offers a text-only dataset with 28 categories, and Emotic (Kosti
et al., 2017) provides 26 emotion categories for images. However, these are limited to single modalities
and often underrepresent negative emotions. Benchmarks like EmoBench and EmotionQueen (Sabour
et al., 2024; Xu et al., 2024) extend evaluation to emotional intelligence in LLMs, stressing detection
of implicit cues and subtle negative emotion distinctions. Our work advances this by focusing on
fine-grained negative emotions in a multimodal setting, enabling nuanced video emotion analysis.

6 LIMITATIONS AND FUTURE WORK

Libra-Emo has several limitations: (1) suboptimal modality fusion methods; (2) limited evaluation
in real-world applications such as content moderation and mental health assessment; and (3) high
computational requirements. Despite these constraints, Libra-Emo provides a solid foundation for
advancing negative emotion recognition research and facilitates more nuanced understanding of
emotions in multimodal contexts. Future work will focus on addressing these limitations to further
enhance the performance and applicability of fine-grained emotion recognition.

9
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7 ETHICS STATEMENT

Our video data comes from YouTube and undergoes strict screening to ensure compliance with
Creative Commons licenses. We will include video metadata in the released dataset to guarantee
proper copyright attribution. Additionally, our models have potential risks, including privacy and data
security concerns, misclassification of emotions and biases, as well as ethical and fairness challenges.
Therefore, taking rigorous measures in data privacy protection, diverse modeling, and ethical review
is crucial for ensuring the safe and fair application of this technology.

8 REPRODUCIBILITY STATEMENT

We commit to open-sourcing the Libra-Emo dataset, models, and code, and we have documented the
implementation details thoroughly in the appendix.

REFERENCES

Qwen2 technical report. 2024.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. In Advances in Neural Information Processing Systems, 2022.

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet. Accessed: 2025-09-24.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
motion capture database. volume 42, pp. 335–359. Springer, 2008.

Houwei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini Verma.
Crema-d: Crowd-sourced emotional multimodal actors dataset. IEEE transactions on affective
computing, 5(4):377–390, 2014.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
language-image model. In International Conference on Learning Representations, 2023a.

Zhe Chen, Jianhua Li, Chenhang Guo, Tong Huang, Yongfei Zhang, et al. Internvl: Scaling up
vision foundation models and aligning for generic visual-linguistic tasks. In arXiv preprint
arXiv:2312.14238, 2023b.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiaojiang Peng,
and Alexander Hauptmann. Emotion-llama: Multimodal emotion recognition and reasoning with
instruction tuning. Advances in Neural Information Processing Systems, 37:110805–110853, 2024.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. Goemotions: A dataset of fine-grained emotions. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020.

Paul Ekman, Wallace V Friesen, and Phoebe Ellsworth. Emotion in the human face: Guidelines for
research and an integration of findings, volume 11. Elsevier, 2013.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fernando Ferraretto, Thiago Laitz, Roberto Lotufo, and Rodrigo Nogueira. Exaranker: Synthetic
explanations improve neural rankers. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2409–2414, 2023.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120,
2023.

Google. Gemini 2.0 flash. https://gemini.google.com, 2024. URL https://gemini.
google.com. Accessed: 12/2024.

Runfang Guo, Hongfei Guo, Liwen Wang, Mengmeng Chen, Dong Yang, and Bin Li. Develop-
ment and application of emotion recognition technology—a systematic literature review. BMC
psychology, 12(1):95, 2024.

Seung-Mi Ham, Hye-Min Lee, Jae-Hyun Lim, and Jeongwook Seo. A negative emotion recognition
system with internet of things-based multimodal biosignal data. Electronics, 12(20):4321, 2023.

Xingxun Jiang, Yuan Zong, Wenming Zheng, Chuangao Tang, Wanchuang Xia, Cheng Lu, and
Jiateng Liu. Dfew: A large-scale database for recognizing dynamic facial expressions in the wild.
In Proceedings of the 28th ACM international conference on multimedia, pp. 2881–2889, 2020.

Zhiying Jiang, Tianyi Xu, Tianrui Yin, Zhou Zhao, and Mohammad Soleymani. Emoclip: A vision-
language method for zero-shot emotion recognition. In Proceedings of the 31st ACM International
Conference on Multimedia, 2023.

Smith K Khare, Victoria Blanes-Vidal, Esmaeil S Nadimi, and U Rajendra Acharya. Emotion recog-
nition and artificial intelligence: A systematic review (2014–2023) and research recommendations.
Information fusion, 102:102019, 2024.

Ronak Kosti, Jose M Alvarez, Adria Recasens, and Agata Lapedriza. Emotic: Emotions in context
dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017.

Jiyoung Lee, Seungryong Kim, Sunok Kim, Jungin Park, and Kwanghoon Sohn. Context-aware
emotion recognition networks. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 10143–10152, 2019.

Yuxuan Lei, Dingkang Yang, Zhaoyu Chen, Jiawei Chen, Peng Zhai, and Lihua Zhang. Large vision-
language models as emotion recognizers in context awareness. arXiv preprint arXiv:2407.11300,
2024.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A
survey on deep active learning: Recent advances and new frontiers. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, 2022.

Zheng Lian, Licai Sun, Haiyang Sun, Kang Chen, Zhuofan Wen, Hao Gu, Bin Liu, and Jianhua Tao.
Gpt-4v with emotion: A zero-shot benchmark for generalized emotion recognition. Information
Fusion, 108:102367, 2024.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
united visual representation by alignment before projection. arXiv preprint arXiv:2311.10122,
2023.

Rakesh R Menon, Sayan Ghosh, and Shashank Srivastava. Clues: A benchmark for learning classifiers
using natural language explanations. arXiv preprint arXiv:2204.07142, 2022.

OpenAI. Gpt-4o: Openai’s multimodal language model. OpenAI Blog, 2024. URL https:
//openai.com/research/gpt-4o. Accessed: 2025-02-19.

11

https://gemini.google.com
https://gemini.google.com
https://gemini.google.com
https://openai.com/research/gpt-4o
https://openai.com/research/gpt-4o


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019a.

Soujanya Poria, Navonil Majumder, Rada Mihalcea, and Eduard Hovy. Emotion recognition in
conversation: Research challenges, datasets, and recent advances. IEEE access, 7:100943–100953,
2019b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021.

Sahand Sabour, Siyang Liu, Zheyuan Zhang, June M. Liu, Jinfeng Zhou, Alvionna S. Sunaryo, Ta-
tia M.C. Lee, Rada Mihalcea, and Minlie Huang. Emobench: Evaluating the emotional intelligence
of large language models. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics, 2024.

Sayan Saha, Sandipan Saha, and Sudip Kumar Naskar. Clteam1 at semeval-2024 task 10: Large
language model based emotion detection and sentiment analysis. In Proceedings of the 18th
International Workshop on Semantic Evaluation (SemEval-2024), 2024.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
and synthesis: A survey. arXiv preprint arXiv:2402.13446, 2024.

Qwen Team. Qwen2.5-vl, January 2025. URL https://qwenlm.github.io/blog/qwen2.
5-vl/.

Alaa Tharwat and Wolfram Schenck. A survey on active learning: State-of-the-art, practical chal-
lenges and research directions. Mathematics, 11(4):820, 2023.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Yan Wang, Wei Song, Wei Tao, Antonio Liotta, Dawei Yang, Xinlei Li, Shuyong Gao, Yixuan Sun,
Weifeng Ge, Wei Zhang, et al. A systematic review on affective computing: Emotion models,
databases, and recent advances. Information Fusion, 83:19–52, 2022.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215, 2025.

Jingyi Xu, Zhiying Jiang, Tianyi Xu, Zhou Zhao, and Mohammad Soleymani. Emotionqueen: A
benchmark for evaluating empathy of large language models. In Findings of the Association for
Computational Linguistics: ACL 2024, 2024.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Amir Zadeh, Paul Pu Liang, Navonil Mazumder, Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic
fusion graph. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, 2018a.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
graph. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2236–2246, 2018b.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

12

https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
tion tuning with synthetic data, 2024a. URL https://arxiv.org/abs/2410.02713.

Zhexin Zhang, Yida Lu, Jingyuan Ma, Di Zhang, Rui Li, Pei Ke, Hao Sun, Lei Sha, Zhifang Sui,
Hongning Wang, et al. Shieldlm: Empowering llms as aligned, customizable and explainable
safety detectors. arXiv preprint arXiv:2402.16444, 2024b.

13

https://arxiv.org/abs/2410.02713


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATA SOURCE STATISTICS

Table 9: Summary of video data source statistics

Category # Videos Category # Videos
Theme

Drama 59 Horror 20
Comedy 55 Sci-Fi 18
Action 50 Adventure 17
Mystery 33 Family 10
Romance 32 Fantasy 9
War 32 School 5
Crime 24
Costume 21

Language

English 274 Chinese 111

Total 385

B DETAILED PROMPTS

Prompt for Annotation

Prompt for Annotation

System Prompt
I want you to act as a video emotion annotator. Please accurately understand the video
content and output the answer according to the prompt format. Do not output any other
content.

User Prompt
<video>
subtitle: {subtitle}
The above are a few evenly sampled images from a video and the subtitles for the video,
which may be the words spoken by the people in the video.
Please accurately identify the emotional label expressed by the people in the video and
provide an explanation. Emotional labels should be limited to: happy, excited, angry,
disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful, ironic, neutral. This
explanation should be accurate and concise.
The output format should be: [label];[explanation]. Please do not output any additional
content.

Prompt for Explanation Synthesis

Prompt for Explanation Synthesis

System Prompt
I want you to act as a video emotion annotator. Please accurately understand the video
content and output the answer according to the prompt format. Do not output any other
content.

User Prompt
<video>
subtitle: {subtitle}
The above are a few evenly sampled images from a video and the subtitles for the video,
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which may be the words spoken by the people in the video.
The emotion expressed by the person in the video is **{emotion}**. Please provide an
explanation, describing the video content and the reasons for labeling it with this emotion.
The output should be in JSON format:
{{

"emotion": "{emotion}",
"explanation": "Your answer"

}}

Prompt for Fine-tuning

Prompt for Fine-tuning

User
<video>
The above is a video. [if subtitle is not None] The video’s subtitle is ’{subtitle}’, which
maybe the words spoken by the person. [endif] Please accurately identify the emotional label
expressed by the people in the video. Emotional labels include should be limited to: happy,
excited, angry, disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful,
ironic, neutral. The output format should be:
[label]
[explanation]

Assistant
{label}
{explanation}

C COMPLETE CONSTRUCTION DETAILS OF THE LIBRA-EMO TRAINSET

As shown in Table 10, the construction of the Libra-Emo Bench from the original pool of 64,824
candidate samples leaves 64,174 samples. In the 0th round of active learning, three models perform
voting-based annotation combined with human annotation, and 2,549 samples are discarded due to
quality issues, resulting in 61,625 samples. In the 1st round of active learning, 13,000 samples are
selected for human annotation. Among them, 7,533 samples undergo label changes. In the 2nd round
of active learning, 11,764 samples are selected for human annotation. Of these, 6,373 samples have
their labels modified. After the explanation synthesis process, the Libra-Emo Trainset ultimately
contains 61,625 meticulously processed samples.

Table 10: Complete construction details of the Libra-Emo Trainset.

Operate # Input # Sample # Drop # Changed Labels # Output
Active Learning Round 0 64,174 - 2549 - 61,625
Active Learning Round 1 61,625 13,000 0 7,533 61,625
Active Learning Round 2 61,625 11,764 0 6,373 61,625

Explanation Synthesis 61,625 - 0 - 61,625
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D PROCESS OF THE HUMAN-MACHINE COLLABORATIVE ACTIVE LEARNING
ANNOTATION STRATEGY

Algorithm 1 Human-Machine Collaborative Active Learning Annotation Strategy

1: Input: Initial unlabeled dataset Dunlabeled, initial models M1,M2,M3

2: Output: Labeled dataset Dlabeled, trained model Mfinal

3: Initialize an empty labeled dataset: Dlabeled ← ∅
4: Step 1: Initial Labeling
5: for each sample xi ∈ Dunlabeled do
6: Get the predicted label from each model: yi1, yi2, yi3 ←M1(xi),M2(xi),M3(xi)
7: Assign the initial label yi ← vote(yi1, yi2, yi3)
8: if the majority vote is successful (e.g., at least 2 models agree) then
9: Add (xi, yi) to Dlabeled

10: else
11: Conduct human annotation on xi to obtain yhuman

i

12: Add (xi, y
human
i ) to Dlabeled

13: end if
14: end for
15: Step 2: Iterative Label Refinement
16: repeat
17: Step 2.1: Model Training
18: Train model Mcurrent using Dlabeled

19: Step 2.2: Sample Selection
20: for each sample (xi, yi) ∈ Dlabeled do
21: Predict new label ycurrenti ←Mcurrent(xi)
22: if ycurrenti ̸= yi then
23: Add (xi, yi) to Dnew

24: end if
25: end for
26: Step 2.3: Human Annotation
27: for each sample (xi, yi) ∈ Dnew do
28: Conduct human annotation on xi to obtain yhuman

i

29: Update yi with yhuman
i

30: end for
31: Update the labeled dataset: Dlabeled ← Dlabeled \Dnew

32: until Model performance reaches saturation
33: Step 3: Final Model
34: Train final model Mfinal using the fully labeled dataset Dlabeled

35: return Mfinal, Dlabeled

E EXPERIMENTAL SETTING DETAILS

Model Descriptions

• LLaVA-Video-7B-Qwen2(Zhang et al., 2024a): Based on the Qwen2(qwe, 2024) as the
foundation large language model, it supports a context length of 32K tokens and can process
up to 64 video frames. It accepts joint inputs of videos, images, and multiple images.

• Qwen2.5-VL-7B(Team, 2025): Compared to Qwen2-VL(Wang et al., 2024), it incorporates
dynamic frame rate (FPS) training and absolute temporal encoding techniques, enhancing
the model’s perception of temporal and spatial scales while further simplifying the network
architecture to improve efficiency.

• Phi-3.5-vision-instruct (4.2B)(Abdin et al., 2024): With only 4.2B parameters, it concur-
rently processes text, images, and videos through attention mechanisms that align textual
and visual modalities.
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• MiniCPM-o 2.6 (8B)(Yao et al., 2024): Adopts an end-to-end omnimodal architecture capa-
ble of processing diverse inputs including text, images, audio, and video, while supporting
real-time streaming interaction. Additionally, it offers multiple deployment options with
low inference latency.

• Qwen2.5-Omni-7B(Xu et al., 2025): An end-to-end omnimodal model based on Qwen2.5,
capable of processing text, images, audio, and video simultaneously. It uses TMRoPE posi-
tional encoding to align multimodal inputs and achieves strong performance on OmniBench,
surpassing similar-scale single-modal models.

• InternVL-2.5 series (1B-8B)(Chen et al., 2024): Utilizes a Progressive Scaling Strategy for
pretraining and extends dynamic high-resolution training methods to enhance capabilities in
processing multi-image and video datasets.

Fine-tuning Hyperparameters

Table 11: Fine-tuning hyperparameters used in our experiments.

Hyperparameter Value
Learning Rate 3e-4
Learning Rate Schedule Linear warmup + cosine decay
Warmup Ratio 0.03
Batch Size 128
Gradient Accumulation Steps 1
Training Epochs 1
Optimizer AdamW
Weight Decay 0.01
Max Gradient Norm 1.0
GPU Type H800
GPU Memory H800
GPU Numbers 32
Trainging Time (8B) 2h

Table 12: Video Preprocessing Hyperparameters before Fine-tuning used in our experiments.

Hyperparameter Value
Frame sampling strategy 16 frames uniformly distributed
Frame resolution 448 × 448 pixels
Maximum subtitle length 8192 tokens
Text tokenization Model-specific tokenizer
Data augmentation Random horizontal flip, color jitter
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F DETAILED CATEGORY DISTRIBUTION

Table 13: The detailed category distribution of the Libra-Emo dataset.

Emotion Type Emotion (7-CLS) Emotion (13-CLS) Quantity
Training Testing Total

Positive Happy Excited 819 41 860
Happy 5,119 61 5,180

Amazed 468 35 503

Neutral Surprised Surprised 2,194 62 2,256

Neutral Neutral 23,681 77 23,758

Negative Disgusted Ironic 5,348 51 5,399
Disgusted 420 44 464

Angry Frustrated 7,137 42 7,179
Angry 5,720 80 5,800
Hateful 525 35 560

Fearful Fearful 2,408 39 2,447

Sad Sad 7,152 48 7,200
Despairful 634 27 661

Total 61,625 642 62,267

G DEMONSTRATION OF THE ANNOTATION TOOL

Figure 6: Annotation tool used in Libra-Emo.
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H MORE TRAINING EXAMPLES DEMONSTRATION

Figure 7: More training examples in Libra-Emo dataset.

I USE OF LLMS

In our manuscript, we partially used large language models (LLMs) for academic polishing, but only
to a limited extent.
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