
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAYLEY MAZE: UNIVERSAL OPEN-ENDED REIN-
FORCEMENT LEARNING ENVIRONMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Parametrizable environments with variable complexity are crucial for advancing
fields such as Unsupervised Environment Design (UED), Open-Ended Learning,
Curriculum Learning, and Meta Reinforcement Learning. However, the selec-
tion of environments in evaluation procedures, along with their complexities, is
often either neglected or lacks formal justification. We propose the formal defi-
nition of complexity for Markov Decision Processes using Finite Automata and
Group Theory machinery. We introduce Cayley Maze, a novel open-ended rein-
forcement learning environment that naturally generalizes problems like solving
Rubik’s Cube, sorting, and integer factorization. Cayley Maze is universal: ev-
ery deterministic MDP is an MDP of a certain instance of Cayley Maze. We
demonstrate how Cayley Maze enables control over complexity, simplification,
and combination of its instances. Finally, we evaluate UED algorithms on various
instances of the Cayley Maze and analyze their capacity to produce agents with
robust generalization capabilities.

1 INTRODUCTION

Designing agents capable of generalizing across a diverse array of tasks and environments is both
a challenging and exciting problem in modern reinforcement learning. Open-ended learning, unsu-
pervised environment design (UED), and curriculum learning remain attractive approaches to reach
this goal (Hughes E., 2024)

There has been a lot of recent progress in the design and implementation of Open-Ended environ-
ments, For example Genie (Bruce J., 2024) or Craftax (Matthews M., 2024). While the Genie is a
huge achievement by itself, we doubt that such an environment allows for producing challenging,
algorithmic, or intelligent problems. On the other hand, some of the Unsupervised Environment
Design(UED) algorithms(Beukman M., 2024) , (Parker-Holder J., 2024) are still being evaluated
on Minigrid (Boisvert C., 2018) environments. In such an experiment-oriented field like Machine
Learning, algorithms cannot be better than their evaluation procedures. We pose the question: what
is a good evaluation procedure for Open Ended Learning? The partial answer is that variable com-
plexity is necessarily its component. The ability to produce observations which gradually become
more and more complex, is the core assumption of curriculum learning. The diversity of parametriz-
able environments is an assumption of UED, hence it also relies on some notion of similarity/metric.
In this paper we propose the formal definition of the complexity of Reinforcement Learning environ-
ments. We discuss, why the current heuristics like the cardinality of state or action space might be a
naive estimate for this goal. We do it by translating the certain concepts from the Language of Alge-
bra, Deterministic Finite Automata theory, and Topology, and hopefully prove its usefulness. More
than that, we introduce a novel Reinforcement Learning environment called Cayley Maze, which is,
in cerain way, universal. We show, that many important problems such as sorting or Rubik’s Cube
are specific instances of Cayley Maze. Finally, we introduce our implementation of Cayley Maze in
JAX, and evaluate UED algorithms in different scenarios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

Here we briefly recap some definitions of algebraic approach to Automata theory. For more context
we advise to read J. (2021). Monoid is a set M equipped with the operation (·) : M ×M → M for
which the following hold:

• Identity element: there exists e ∈ M such that for every m ∈ M e · m = m · e = m.
Identity element is always unique.

• Associativity: for every elements f, g, h ∈ M , (f · g) · h = f · (g · h)

A group is monoid, whose every element has an inverse, i.e. for every g ∈ G there exists g−1 ∈ G
such that g · g−1 = g−1 · g = e.
Given a group G, a G-action on the set S, is the map ρ : G×S → S, for which ∀s ∈ S ρ(e, s) = s,
and action commutes with multiplication: ρ(g, ρ(h, s)) = ρ(g × h, s) for all g, h ∈ G and s ∈ S.
By [n] we denote an n-element set [n] = {1, 2, · · ·n}. Given set M and S, the set MS is a set of
all functions from S to M . A monoid of functions from n-element set to itself with the operation of
composition is denoted by End([n]) = [n][n] = {f : f : [n] → [n]}. The following theorem is the
core idea of our environment:

Theorem 1 (Cayley’s theorem). Every finite monoid N is isomorphic to some submonoid (subset)
of End([n]) for certain n ∈ N.

A subset G ⊆ M of monoid M is called a set of generators if it generates M , i.e. for every m ∈ M
there is a sequence g1, . . . gn such that m = g1 · g2 · . . . gn. A free monoid on the set A is a set
M = A∗, containing all finite sequences of elements of A, with the operation of concatenation,
namely for x = xmxm−1 . . . x1, y = ynyn−1 . . . y1 , x · y = xmxm−1 . . . x1ynyn−1 . . . y1.
A homomorphism between monoids M and N is a map between its sets ϕ : M → N , such that for
every a, b ∈ M ϕ(a · b) = ϕ(a) · ϕ(b). An isomorphism is a bijective homomorphism.
A congruence on monoid M is an equivalence relation ∼ on a set M , which is compatible with its
operation: for every a, b, c, d ∈ M , a ∼ c, b ∼ d =⇒ (a · b) ∼ (c · d). Every congruence induces
monoid structure on the set M/ ∼ of equivalence classes on M and a canonical homomorphism:
π : M → M/ ∼, π(a · b) = [a · b]∼ = [a]∼ · [b]∼. M/ ∼ is called a quotient monoid of M . Given
a monoid M and its subset L, syntactic congruence on M is defined as a ∼L b if for all x, y ∈ M
xay ∈ L ⇐⇒ xby ∈ M . The quotient of this equivalence relation is called a syntactic monoid.
We call Markov Decision Process a tuple (A,S, s0, R, T) where A is the set of actions, S - the set
of states, s0 - initial state, R : A×S → R - reward function, and T : A → (S → Pr(S)) transition
function, assigning the transition kernel T (a) = Ta on S to every state. For the mathematical
convenience we define a transition kernel Te of the neutral element e (empty sequence) of the free
monoid A to be an identity matrix. Markov Decision Process (A,S, s0, R, T) is called sparse, if
there exists a a set of final states F ⊆ S, such that{

R(a, s) = 1 Ta(s, f) = 1 for some f ∈ F

R(a, s) = 0 otherwise

For given MDP with action space A, trajectory is a sequence of actions α = an . . . a1, alternatively,
its an element of free monoid on A. Given a trajectory α we call its realization a resulting kernel
Tα = Tn · Tn−1 . . . T1. By R : A∗ → Pr(R) we denote a cumulative reward R(α) after moving
along the trajectory α from the initial state s0.
A transition monoid of MDP (A,S, s0, R, T) is a set of trajectory realizations M(T) = {Tα : α ∈
A∗}, equipped with the operation of matrix multiplication.
Finite deterministic automaton is a tuple (Q,A, T, I, F), where Q is a set of states, A - set of actions,
T : A → (S → S) - transition kernel (by Ta we’ll denote a function T (a,−) : S → S), I - set of
initial states, F - set of final states. Every DFA induces a directed graph on its states. Given DFA, its
transition monoid is a set of functions {Tα : α ∈ A∗}, equipped with the operation of composition.

3 COMPLEXITY OF MARKOV DECISION PROCESSES

Loosely speaking, we define two MDP’s to have same complexity, if the corresponding trajectories
yield the same cumulative reward. We begin by proposing the extension of the notion of syntactic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

monoid for general structures, such as functions, returning random variables. If one thinks, that the
condition R(a) = R(b) as random variables is too strict, then one could compare expectations, or
to replace it with some approximation, for example by d(R(a), R(b)) ≤ ε after choosing certain
metric on Pr(R) and ε ≥ 0.
Definition 1. A reward congruence ∼R on MDP (A,S, s0, R, T) is a congruence on its transition
monoid {Tα : α ∈ A∗}, such that for every a, b ∈ M(T), a ∼R b if and only if for all x, y ∈
M(T) R(xay) = R(xby). Then, an irreducible monoid M(R) of MDP is the quotient by the
congruence relation ∼R. R is well-defined on M(R).
Proposition 1. A reward congruence ∼R on M(T) for MDP (A,S, s0, R, T) is maximal among all
congruences preserving reward structure: ∀a, b ∈ M(T) a ∼ b =⇒ R(a) = R(b).

Proof. For a congruence ∼ on M(T) and some elements a, b ∈ M(T), a ∼ b =⇒ ∀x, y ∈
M(T) xay ∼ xby. Hence R(xay) = R(xby), and a ∼R b.

There are multiple ways to define the complexity of MDP: for example one could measure the size
of state space or action space. While these definitions are reasonable, the definition we propose
captures different kind of information.
Definition 2. Two MDP’s (A,S, s0, R, T) , (A′, S′, s′0, R

′, T ′) are equivalent if there is an iso-
morphism ϕ between their irreducible monoids M(R), M(R′), preserving reward structure, i.e.
∀a ∈ M(R), R′(ϕ(a)) = R(a).

The definition 2 is equivalent to another one:
Definition 3. Two MDP’s (A,S, s0, R, T) , (A′, S′, s′0, R

′, T ′) are equivalent if there is a sur-
jective homomorphism ϕ from A∗ A′∗ or vice versa, such that reward structure is preserved:
∀a ∈ A∗, R′(ϕ(a)) = R(a). For deterministic MDP’s with sparse binary rewards it means, that
the trajectory α ∈ A∗ solves the first MDP if and only if ϕ(α) solves the second MDP.
Definition 4. Order complexity of MDP (A,S, s0, R, T) is the minimal possible cardinality of the
state space of DFA, whose transition monoid is isomorphic to M(R).

Let’s have a look how it works on example:
Example 1. Suppose we want to get on the right side of the grid, which has width 3, and infinite
length. In other words, we are given an deterministic MDP (A,S, s0, R, T), where:

• State space S = Z3 × Z

• Initial state s0 = (0, 0)

• Action space A = {(1, 0), (−1, 0), (0, 1), (0,−1)}

• Transition kernel T (i, j)(a, b) = ((a+ i) mod 3, b+ j)

• Reward
{
R((i, j)(a, b)) = 1 (i+ a) ≡ 2 mod 3

R((i, j)(a, b)) = 0 otherwise

By the definition 3, we define a reward congruence on T (M):

(a, b) ∼R (c, d) ⇐⇒ ∀(x, y), (uv), R((x, y) + (a, b) + (u, v)) = R((x, y) + (c, d) + (u, v))

It is true if and only if (x+a+u) mod 3 = (x+c+u) mod 3, and so a = c, since a, c ∈ {0, 1, 2}.
Hence the relation ∼R will have only 3 equivalence classes: {{(i, j) : j ∈ N} : i ∈ Z3}, and the
irreducible monoid will have only 3 elements. Hence the irreducible monoid is isomorphic to Z3,
and its order complexity is 3. The main conclusion - MDP with an infinite number of states and
bigger action space might be equivalent (reduced) to MDP with 3 states and only 1 action.

We’d like to point out that even though deterministic sparse MDP’s are very similar to DFA’s, there
exists a difference: while in RL the episode stops if agent reaches the final state, for DFA’s the
word belonging to its language might have an extension not belonging to it. Such difference can be
eliminated by modifying the automaton, or by adding the termination action to the agent’s action
space. This modification looks both useful and reasonable: without it any finite MDP with connected
directed graph can be solved by the exhaustive search without any use of environment’s output.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 CAYLEY MAZE

We propose a new Open-Ended Reinforcement Learning Environment: Cayley Maze. The agent’s
goal is to find the path between initial and final vertices of directed graph, by choosing the edges to
move along.
Definition 5. An instance of Cayley Maze is defined by the tuple (m,n, T, i, F), where

• m ∈ N is the size of the action space , so A = [m]

• n ∈ N is the size of the state space, so S = [n]

• T : A → End([n]) is the correspondence between action and monoid generators: G =
Im(T) is called the set of generators, and each generator is denoted by Ta = T (a). For
the function T extended to A∗: T (α) = Tα = T (α1 · α2 . . . αk) = Tα1

◦ Tα2
◦ . . . Tαk

,
the transition monoid of T is the image M(T) = T (A∗).

• i ∈ [n] is an initial state

• F ⊆ [n] is a set of final states

Then the instance induces a sparse deterministic MDP ([m], [n], i, R, T), where R is{
R(a, s) = 1 Ta(s, f) = 1 for some f ∈ F

R(a, s) = 0 otherwise

The opposite appears also to be true:
Proposition 2. Every deterministic sparse finite MDP is an MDP of certain instance of Cayley
Maze.

Proof. Since (A,S, s0, R, T) is deterministic, T can be seen as a function A → (S → S). Since
MDP is sparse, R is completely defined by the subset of final states F ⊆ S. Then, after enumerating
A and S, (|A|, |S|, T, s0, F) is an instance of Cayley Maze with the same MDP.

From now on all discussed Reinforcement Learning environments and its MDP’s are assumed to be
deterministic and sparse. While the transition between MDP’s and Cayley Maze looks tautological,
we see it valuable for several reasons.

4.1 CAYLEY MAZE IS NATURAL

Cayley Maze is a framework which naturally generalizes many important problems. For example,
the problem of sorting the array of length n can be seen as the instance of Cayley Maze, where:

• state space is the group of all n-element permutations Sn,
• action space - the set of allowed operations for sorting the array for example it could be the

set of all transpositions {(i, j) : i, j ≤ n}. Note, that in this situation every action can be
associated with its state,

• the transition monoid is defined by the left multiplication of the state by action
• the initial state is the number array seen as a permutation, and the final state is the identity

permutation. In this case the multiplied path from the initial to final state is exactly the
right order of the array.

Enumerating the squares of Rubik’s Cube allows to translate the problem just like in case of sorting,
the only difference - actions will have different kind of permutations.
The examples above are natural examples of Cayley Maze, because unlike for general MDP’s, whose
transition monoid M(T) acts on the trajectories, in this cases M(T) acts on the state space S by
multiplication of action and state. In other words, any local information about paths, which is
attained at some state s1 ∈ S, is valid for any other state s2 ∈ S. Such remarkable and rare
property can be used for evaluating agent’s generalization capabilities and architecture’s inductive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

biases. Nevertheless, that doesn’t mean, that such MDP’s are easy to solve: MDP’s whose transition
monoid M(T) is simple in group-theoretic sense, are also irreducible and can have unbounded state
space, hence unbounded complexity in the sense of definition 2.

4.2 CAYLEY MAZE HAS VARIABLE COMPUTATIONAL COMPLEXITY

Various subfamilies of Cayley Maze have different computational complexity: as it has been shown,
the problems of sorting the array, and solving the Rubik’s cube both can be represented as instances
of Cayley Maze. Sorting problem has polynomial time complexity, while the problem of finding
the optimal solution of Rubik’s Cube (hence such problem can be expressed by decreasing episode
length of usual Cayley Maze representation of Rubik’s Cube) is NP-Complete (Demaine E., 2018).

4.3 MOST OF THE REINFORCEMENT LEARNING ENVIRONMENTS ARE NOT UNIVERSAL

Some of the most popular environments used for evaluation of UED algorithms, like Minigrid mazes
(Boisvert C., 2018), make a heavy use of the underlying geometric structure of its state space.
We note, that any Open-Ended environment, which can be solely represented by moving on 2-
dimensional grid (i.e. for which the directed graph of its MDP can be embedded into the plane
respecting grid structure) is not universal in the sense of proposition 2 : for example an MDP with
three states {A,B,C} and one action a : A a−→ B

a−→ C
a−→ A cannot be embedded into the plane,

since otherwise agent would have to always move in the same direction and return to the initial state.
What is less obvious, such environments are not universal even in the sense of definition 2:
Proposition 3. There exists an MDP which is not equivalent in the sense of definition 2 to any
MDP, whose directed graph is planar. Consequently, such MDP cannot be represented by moving
on 2-dimensional grid.

The proof of this fact is due to Book R. (1976). The witnessing automaton has only 7 states and 6
actions. The further development of this topic and the applications of topology for measuring the
complexity of finite automata’s can be found in Bonfarte G. (2018)

4.4 MODIFICATION AND SIMPLIFICATION OF EXISTING INSTANCES

Given an abstract MDP, or the set of game instructions it is often not clear which modification would
make it simpler or harder. But it’s certainly possible for MDP’s: painting all Rubik’s cube faces into
black makes it much easier to solve. In other words, given the MDP M whose transition monoid
acts on the set S, and the coloring of S - a surjective function h : S → K, it’s not hard to build
quotient of M by h, whose construction is similar to it’s group-theoretic analogue.
Many constructions on groups, such as products also allow to efficiently combine existing MDP’s to
produce new ones.

5 APPLICATIONS AND IMPLEMENTATION DETAILS

We implement Cayley Maze as a parametrizable environment in JAX with Gym interface. It allows
to sample any MDP with predefined action space, and the state space, or to slightly modify the ex-
isting transition kernel, initial or target state.
Cayley Maze may be used in evaluation procedure of every learning problem, which has the sequen-
tial structure, and where generalization, or emergent complexity of observations are crucial. Some
of the proposed scenarios are:

1. Since the sampled instances can be very diverse, it may be used for the evaluation of UED
algorithms in classical scenario.

2. It is possible to create environment samplers, whose instances have common structure. For
example it might be MDP’s whose transition monoid are simple groups, or environments
which represent n× n× n Rubik’s Cube.

3. It is possible not only to evaluate on subfamilies of environments, but on its various con-
structions. For example, we can check, whether the agent, which performed well on some
instances would perform well on its product.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: The training and evaluation learning curves of experiment 1

4. Another way to test generalization capabilities is to use the local property of natural Cayley
Mazes, as in 4.1. For example, to evaluate on the states which were unreachable during
training but have the same properties.

5. Since the process of creating new MDP can be seen as MDP, it can be expressed as an
instance of Cayley Maze. Hence the UED scenarios, where the teacher learns to build the
environment without student become possible.

6. A model which can’t recognize the language, cannot solve it’s corresponding MDP. Hence
after adding the termination action as it was proposed at the end of section 3, Cayley Maze
can be used to evaluate the expressive power of various architectures (Zhou H., 2023).

Another interesting feature of the implementation: while constructing the most general reinforce-
ment learning environment, one might expect the explosion of the teacher’s action space. Our im-
plementation allows to set the desired trade-off between the size of action space, representation
dimension, and the power of edit per step.

6 EXPERIMENTS

We’ve run multiple experiments to evaluate UED algorithms such as PAIRED (Dennis M., 2021)
and PLR (Jiang M., 2022) on the Cayley Maze. We basically followed scenarios 3, 1, 2, from the list
above. To make the results are comparable we’ve used the setups proposed in (Dennis M., 2021):
all models have LSTM (Hochreiter S., 1997) and were taught for 30000 gradient updates. In all
the experiments on both training and evaluation environments the initial and target states have been
sampled. All the plots represent the averaged behaviour for 10 seeds, and all the MDP’s have the
naturality property 4.1. 1 unit of the X axis on the all learning curve figures below corresponds to
100 gradient updates.
In the first experiment models were trained on two separate environments, where one represents the
dihedral group of order 6, the other one - the symmetries of 3-cube. Environment used for evaluation
represents the wreath product of these two groups. In this experiments underlying MDP’s have 10
actions, and 18 states. As it can be seen on the figure 1, the agent, which was trained with the plain
domain randomization algorithm, had the best performance on both train and evaluations instances.
Even though it’s counterintuitive, it can be explained by the fact, that complexity of the instance used
in training was lower, than of the instance generated by PAIRED right after initialization. However
it’s still possible to conclude, that in this case agent, which was trained with domain randomization
i general performed better.

In the second experiment model were train on random MDP’s with 48 states and 12 actions.
They’ve been evaluated on 6 evaluation instances with various degrees of complexity: dihedral
group, group of 3-cube symmetries, symmetric group with transposition actions, wreath product of
random groups, and the Rubik’s Cube.

As it can be seen on the figure 2, all the UED algorithms performed very poorly on Rubik’s Cube.
Also, based on the evaluation scores it’s still not possible to conclude, that any UED algorithm

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: The box plots of evaluation scores of experiment 2

Figure 3: The training learning curve of of experiment 2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: The training and evaluation learning curves of experiment 3

performed better than domain randomization. However, on the first glance it strongly contradicts
with the scores on the figure 3. But it can be explained by the same argument as before: on the very
beginning all UED algorithms generate instances of the same complexity, and then gradually adapt,
what can’t be said about domain randomization.

The goal of the third experiment was to determine the effect of the replay buffer while the MDP
itself stayed mostly unchanged - agents were trained on the Rubik’s Cube, and only initial and target
states were sampled. As it can be seen on the figure 4, the results are similar to the previous ones
- replay buffer allows to gradually increase complexity, however it doesn’t help much in solving
evaluation instance.

REFERENCES

Coward S. et al. Beukman M. Refining minimax regret for unsupervised environment design. arxiv,
pp. 2402.12284, 2024.

Willems L. et al. Boisvert C. Minimalistic gridworld environment for ope- nai gym.
https://github.com/maximecb/ gym-minigrid, 2018.

Deloup F. Bonfarte G. The genus of regular languages. Mathematical Structures in Computer
Science, 28(1):14–44, 2018.

Chandra Book R. Inherently nonplanar automata. A.K. Acta Informatica, 6:89–94, 1976.

Dennis M. et al. Bruce J. Genie: Generative interactive environments. arxiv, pp. 2402.15391, 2024.

Eisenstat S. et al. Demaine E. Solving the rubik’s cube optimally is np-complete. In 35th Symposium
on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in
Informatics (LIPIcs), 96:24:1–24:13, 2018.

Jaques N. Jaques et al. Dennis M. Emergent complexity and zero-shot transfer via unsupervised
environment design. arxiv.org, pp. 2012.02096, 2021.

Schmidhuber J. Hochreiter S. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Dennis M. et al. Hughes E. Open-endedness is essential for artificial superhuman intelligence. arxiv,
pp. 2406.04268, 2024.

Pin J. Handbook of automata theory. Volume I. Theoretical foundations, volume 1. Berlin: European
Mathematical Society (EMS), 2021.

Dennis M. et al. Jiang M. Replay-guided adversarial environment design. arxiv.org, pp. 2110.02439,
2022.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Beukman M. et al. Matthews M. Craftax: A lightning-fast benchmark for open-ended reinforcement
learning. arxiv.org, pp. 2402.16801, 2024.

Jiang M. et al. Parker-Holder J. Evolving curricula with regret-based environment design. arxiv, pp.
2203.01302, 2024.

Bradley A. et al. Zhou H. What algorithms can transformers learn? a study in length generalization.
arxiv, pp. 2310.16028, 2023.

A APPENDIX

You may include other additional sections here.

9

	Introduction
	Preliminaries
	Complexity of Markov Decision Processes
	Cayley Maze
	Cayley Maze is natural
	Cayley Maze has variable computational complexity
	Most of the Reinforcement Learning environments are not universal
	Modification and simplification of existing instances

	Applications and implementation details
	Experiments
	Appendix

