
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAYLEY MAZE: UNIVERSAL OPEN-ENDED REIN-
FORCEMENT LEARNING ENVIRONMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Parametrizable environments with variable complexity are crucial for advancing
fields such as Unsupervised Environment Design (UED), Open-Ended Learning,
Curriculum Learning, and Meta Reinforcement Learning. However, the selection
of environments in evaluation procedures, along with their complexities, is often
either neglected or lacks formal justification. We propose the formal definition of
complexity for Markov Decision Processes using Deterministic Finite Automata
and Group Theory machinery. We introduce Cayley Maze, a novel open-ended
reinforcement learning environment that naturally generalizes problems like solv-
ing Rubik’s Cube or sorting. Cayley Maze is universal: every finite deterministic
sparse MDP is an MDP of a certain instance of Cayley Maze. We demonstrate how
Cayley Maze enables control over complexity, simplification, and combination of
its instances.

1 INTRODUCTION

Designing agents capable of generalizing across diverse tasks and environments is both a challeng-
ing and exciting problem in modern reinforcement learning. Open-ended learning, unsupervised
environment design (UED), and curriculum learning remain attractive approaches to reach this goal
(Hughes et al., 2024)

There has been a lot of progress in designing and implementing Open-Ended environments. For
example, Genie (Bruce et al., 2024) or Craftax (Matthews et al., 2024). While the Genie is a huge
achievement, we doubt that such an environment allows for producing challenging, algorithmic,
or intelligent problems. On the other hand, some of the Unsupervised Environment Design(UED)
algorithms(Beukman et al., 2024), (Parker-Holder et al., 2023) are still being evaluated on Minigrid
(Boisvert et al., 2018) environments. In such an experiment-oriented field like Machine Learning,
algorithms cannot be better than their evaluation procedures. We pose the question: what is a good
evaluation procedure for Open Ended Learning? The partial answer is that variable complexity is
necessarily its component. The core assumption of curriculum learning is the ability to produce
observations that gradually become more complex. The diversity of parametrizable environments is
an assumption of UED. Hence, it also relies on some notion of similarity/metric. This paper proposes
a formal definition of the complexity of Reinforcement Learning environments. We discuss why the
current heuristics, like state or action space cardinality, might be a naive estimate for this goal. We
do it by translating certain concepts from the Language of Algebra, Deterministic Finite Automata
theory, and Topology, and hopefully prove its usefulness. More than that, we introduce a novel
Reinforcement Learning environment called Cayley Maze, which is, in a certain way, universal.
We show that many important problems, such as sorting or Rubik’s Cube, are specific instances of
Cayley Maze.

2 PRELIMINARIES

Here, we briefly recap some definitions of the algebraic approach to Automata theory. For more
context we advise to read Pin (2021). Monoid is a set M equipped with the operation (·) : M×M →
M for which the following hold:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Identity element: there exists e ∈ M such that for every m ∈ M e ·m = m · e = m. The
identity element is always unique.

• Associativity: for every elements f, g, h ∈ M , (f · g) · h = f · (g · h)

A group is a monoid whose every element has an inverse, i.e. for every g ∈ G there exists g−1 ∈ G
such that g · g−1 = g−1 · g = e.
Given a group G, a G-action on the set S, is the map ρ : G×S → S, for which ∀s ∈ S ρ(e, s) = s,
and action commutes with multiplication: ρ(g, ρ(h, s)) = ρ(g · h, s) for all g, h ∈ G and s ∈ S. A
homomorphism between monoids M and N is a map between its sets ϕ : M → N , such that for
every a, b ∈ M ϕ(a · b) = ϕ(a) · ϕ(b). An isomorphism is a bijective homomorphism.
By [n] we denote an n-element set [n] = {1, 2, . . . n}. Given set M and S, the set MS is a set of
all functions from S to M . A monoid of functions from n-element set to itself with the operation of
composition is denoted by End([n]) = [n][n] = {f : f : [n] → [n]}. The following theorem is the
core idea of our environment:
Theorem 1 (Cayley’s theorem). Every finite monoid N is isomorphic to some submonoid (subset)
of End([n]) for certain n ∈ N.

A subset G ⊆ M of monoid M is called a set of generators if it generates M , i.e. for every m ∈ M
there is a sequence g1, . . . gn such that m = gn · gn−1 · . . . · g1. A free monoid on the set A is a
set M = A∗, containing all finite sequences of elements of A, with the operation of concatenation,
namely for x = xmxm−1 . . . x1, y = ynyn−1 . . . y1 , x · y = xmxm−1 . . . x1ynyn−1 . . . y1.
A congruence on monoid M is an equivalence relation ∼ on a set M , which is compatible with its
operation: for every a, b, c, d ∈ M , a ∼ c, b ∼ d =⇒ (a · b) ∼ (c · d). Every congruence induces
monoid structure on the set M/ ∼ of equivalence classes on M and a canonical homomorphism:
π : M → M/ ∼, π(a · b) = [a · b]∼ = [a]∼ · [b]∼. M/ ∼ is called a quotient monoid of M . Given
a monoid M and its subset L, syntactic congruence on M is defined as a ∼L b if for all x, y ∈ M
xay ∈ L ⇐⇒ xby ∈ L. The quotient of this equivalence relation is called a syntactic monoid.
We call Markov Decision Process a tuple (A,S, s0, R, T) where A is the set of actions, S - the set
of states, s0 - initial state, R : A×S → R - reward function, and T : A → (S → Pr(S)) transition
function, assigning the transition kernel T (a) = Ta on S to every state, where Pr(S) stands for the
space of probability distributions on the set S. We treat Ta as a matrix of size |S|× |S|, whose value
at the row s2 and column s1 is denoted by Ta(s1)(s2) meaning the probability of getting from s1 to
s2 by the action a. If Ta(s) are 0 − 1 valued for all a ∈ A, s ∈ S, Ta becomes a function S → S,
and we write Ta(s1) = s2 instead of Ta(s1)(s2) = 1.
For the mathematical convenience, we assume that the action set A necessarily contains neutral (do
nothing) action e. Then, its transition kernel Te is the identity matrix idS . Markov Decision Process
(A,S, s0, R, T) is called sparse, if there exists a a set of final states F ⊆ S, such that{

R(a, s) = 1 Ta(s)(f) = 1 for some f ∈ F

R(a, s) = 0 otherwise

For given MDP with action space A, trajectory is a sequence of actions α = an . . . a1; alternatively,
it’s an element of free monoid on A. Given a trajectory α we call its realization Tα = Tan

·Tan−1
. . .·

Ta1
. Given the reward function R : A × S → S, we define R : A∗ → Pr(R) to be the cumulative

reward after moving along the trajectory α ∈ A∗ from the initial state s0.
A transition monoid of MDP (A,S, s0, R, T) is a set of trajectory realizations M(T) = {Tα : α ∈
A∗}, equipped with the operation of matrix multiplication. We say, that R can be factorized through
M(T), if there exists R′ : M(T) → Pr(R), such that for all α ∈ A∗, R(α) = R′(Tα). For brevity,
we’ll write R instead of R′.
Deterministic finite automaton (DFA) is a tuple (Q,A, T, I, F), where Q is a set of states, A -
set of actions, T : A → (S → S) - transition function (by Ta we’ll denote a transition kernel
T (a) : S → S), I - set of initial states, F - set of final states. Every DFA induces a directed graph
on its states. Given DFA, its transition monoid is a set of matrices {Tα : α ∈ A∗}, equipped with
the operation of matrix multiplication and identity matrix Te as a neutral element.

3 COMPLEXITY OF MARKOV DECISION PROCESSES

Loosely speaking, we say that two MDPs have the same complexity if their cumulative rewards are
equal on every trajectory. We begin by proposing the extension of the notion of syntactic monoid

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

for general structures, such as functions, returning random variables. If one thinks that the condition
R(a) = R(b) as random variables is too strict, then one could compare expectations or replace
it with some approximation, for example, by d(R(a), R(b)) ≤ ε after choosing certain metric on
Pr(R) and ε ≥ 0. We’ll assume that the reward function of every MDP can be factorized through
its transition monoid, particularly it’s true for every sparse MDP.
Definition 1. A reward congruence ∼R on MDP (A,S, s0, R, T) is a congruence on its transition
monoid {Tα : α ∈ A∗}, such that for every a, b ∈ M(T), a ∼R b if and only if for all x, y ∈
M(T) R(xay) = R(xby). Then, an irreducible monoid M(R) of MDP is the quotient by the
congruence relation ∼R. R is well-defined on M(R).
Proposition 1. A reward congruence ∼R on M(T) for MDP (A,S, s0, R, T) is maximal among all
congruences of the type: ∀a, b ∈ M(T) a ∼ b =⇒ R(a) = R(b).

Proof. For a congruence ∼ on M(T) and some elements a, b ∈ M(T), a ∼ b =⇒ ∀x, y ∈
M(T) xay ∼ xby. Hence R(xay) = R(xby), and a ∼R b.

There are multiple ways to define MDP’s complexity: for example, one could measure the size
of state space or action space. While these definitions are reasonable, the definition we propose
captures a different kind of information.
Definition 2. Two MDP’s (A,S, s0, R, T) , (A′, S′, s′0, R

′, T ′) are equivalent if there is an iso-
morphism ϕ between their irreducible monoids M(R), M(R′), preserving reward structure, i.e.
∀a ∈ M(R), R′(ϕ(a)) = R(a).

The definition 2 is equivalent to another one:
Definition 3. Two MDP’s (A,S, s0, R, T), (A′, S′, s′0, R

′, T ′) are equivalent if there is a sur-
jective homomorphism ϕ from A∗ A′∗ or vice versa, such that reward structure is preserved:
∀a ∈ A∗, R′(ϕ(a)) = R(a). Hence, For deterministic MDPs with sparse binary rewards, the
trajectory α ∈ A∗ solves the first MDP if and only if ϕ(α) solves the second MDP.
Definition 4. Order complexity of MDP (A,S, s0, R, T) is the cardinality of its irreducible monoid
M(R).
Example 1. Suppose we want to get on the right side of the grid, which has a width of 3 and infinite
length. In other words, we are given an deterministic MDP (A,S, s0, R, T), where:

• State space S = Z3 × Z

• Initial state s0 = (0, 0)

• Action space A = {(1, 0), (−1, 0), (0, 1), (0,−1)}

• Transition kernel T (i, j)(a, b) = ((a+ i) mod 3, b+ j)

• Reward
{
R((i, j)(a, b)) = 1 (i+ a) ≡ 2 mod 3

R((i, j)(a, b)) = 0 otherwise

By the definition 3, we define a reward congruence on M(T):

(a, b) ∼R (c, d) ⇐⇒ ∀(x, y), (uv), R((x, y) + (a, b) + (u, v)) = R((x, y) + (c, d) + (u, v))

It is true if and only if (x+a+u) mod 3 = (x+c+u) mod 3, and so a = c, since a, c ∈ {0, 1, 2}.
Hence the relation ∼R will have only 3 equivalence classes: {{(i, j) : j ∈ N} : i ∈ Z3}, and the
irreducible monoid will have only 3 elements. Hence, the irreducible monoid is isomorphic to Z3,
and its order complexity is 3. The main conclusion is that MDP with infinite states and bigger action
space might be equivalent (reduced) to MDP with three states and only one action.

We’d like to point out that even though deterministic sparse MDPs are very similar to DFAs, there
exists a difference: while in RL, the episode stops if the agent reaches the final state, for DFA, the
word belonging to its language might have an extension not belonging to it. Such difference can be
eliminated by modifying the automaton or adding the termination action to the agent’s action space.
This modification looks useful and reasonable: without it, any finite MDP with a connected directed
graph can be solved by the exhaustive search without any use of the environment’s output.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 CAYLEY MAZE

We propose a new Open-Ended Reinforcement Learning Environment: Cayley Maze. The agent’s
goal is to find the path between the initial and final vertices of a directed graph by choosing the
edges to move along.

Definition 5. An instance of Cayley Maze is defined by the tuple (m,n, T, i, F), where

• m ∈ N is the size of the action space , so A = [m]

• n ∈ N is the size of the state space, so S = [n]

• T : A → End([n]) is the correspondence between action space and monoid generators;
G = T (A) is called the set of generators, and each generator is denoted by Ta = T (a). For
the function T extended to A∗: T (α) = Tα = T (α1 · α2 . . . · αk) = Tα1

◦ Tα2
◦ . . . Tαk

,
the transition monoid of T is the image M(T) = T (A∗).

• i ∈ [n] is an initial state

• F ⊆ [n] is a set of final states

Then the instance induces a sparse deterministic MDP ([m], [n], i, R, T), where R is{
R(a, s) = 1 Ta(s)(f) = 1 for some f ∈ F

R(a, s) = 0 otherwise

The opposite appears also to be true:

Proposition 2. Every deterministic sparse finite MDP is an MDP of certain instance of Cayley
Maze.

Proof. Since (A,S, s0, R, T) is deterministic, T can be seen as a function A → (S → S). Since
MDP is sparse, R is completely defined by the subset of final states F ⊆ S. Then, after enumerating
A and S, (|A|, |S|, T, s0, F) is an instance of Cayley Maze with the same MDP.

Cayley Mazes are parametrizable by the size of the state space n, the size of the action space m,
monoid generators T (A), and the choice of initial and final states. From now on, all discussed
Reinforcement Learning environments and their MDPs are assumed to be deterministic and sparse.
While the transition between MDP and Cayley Maze formalisms is tautological, we see it valuable
for several reasons.

4.1 CAYLEY MAZE IS NATURAL

Cayley Maze naturally generalizes many important problems. Such problems deserve a special
name:

Definition 6. An instance of the Cayley Maze is natural if the following holds:

(∀α, β ∈ A∗ ∃i ≤ n Tα(i) = Tβ(i)) =⇒ Tα = Tβ

Restating this property: if two trajectory realizations are equal at some state i, then they are equal at
any other state. Such remarkable property can be used for evaluating agent’s generalization capabil-
ities and architecture’s inductive biases.
The problem of sorting the array of length n can be seen as the instance of natural Cayley Maze,
where:

• state space is the group of all n-element permutations Sn,

• action space - some subset of Sn, generating it. For example, it could be the set of all
transpositions {(i, j) : i, j ≤ n}.

• the transition monoid is defined by the left multiplication of the state by the action

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• the initial state is the unsorted number array seen as a permutation, and the final state is the
identity permutation. In this case every winning trajectory α ∈ A∗ gives the right order Tα

Rubik’s Cube is another such problem. Enumerating the squares of Rubik’s Cube allows to translate
the problem just like in the case of sorting; the only difference is that actions will have different
kinds of permutations.

4.2 CAYLEY MAZE HAS VARIABLE COMPUTATIONAL COMPLEXITY

Various subfamilies of the Cayley Maze have different computational complexity: it has been shown
that the problems of sorting the array and solving the Rubik’s Cube can both be represented as
instances of the Cayley Maze. The sorting problem has polynomial time complexity, while the
problem of finding the optimal solution of Rubik’s Cube is NP-Complete (Demaine et al., 2018).

4.3 MOST OF THE REINFORCEMENT LEARNING ENVIRONMENTS ARE NOT UNIVERSAL

Some of the most popular environments used to evaluate UED algorithms, like Minigrid mazes
(Boisvert et al., 2018), make heavy use of the underlying geometric structure of its state space.
We note that any Open-Ended environment, which can be solely represented by moving on the 2-
dimensional grid (i.e., for which the directed graph of its MDP can be embedded into the plane
respecting grid structure), is not universal in the sense of proposition 2: for example an MDP with
three states {A,B,C} and one action a: A a−→ B

a−→ C
a−→ A cannot be embedded into the plane,

since otherwise agent would have to always move in the same direction and return to the initial state.
What is less obvious is that such environments are not universal even in the sense of definition 2:

Proposition 3. There exists an MDP that is not equivalent in the sense of definition 2 to any MDP
whose directed graph is planar. Consequently, such MDP cannot be represented by moving on a
2-dimensional grid.

The proof of this fact is due to Book & Chandra (1976). The witnessing automaton has only 7 states
and 6 actions. The further development of this topic and the applications of topology for measuring
the complexity of finite automata can be found in Bonfarte & Deloup (2018)

4.4 MODIFICATION AND SIMPLIFICATION OF EXISTING INSTANCES

Given an abstract MDP or the set of game instructions, it is often unclear which modification would
make it simpler or harder. But it’s certainly possible for Cayley Mazes: painting all Rubik’s cube
faces into black makes it much easier to solve. In other words, given the MDP M whose transition
monoid acts on the set S, and the coloring of S - a surjective function h : S → K, it’s not hard to
build quotient of M by h, whose construction is similar to its group-theoretic analog.
Many constructions on groups, such as products, allow to efficiently combine existing MDPs to
produce new ones.

5 APPLICATIONS AND IMPLEMENTATION DETAILS

We implement Cayley Maze as a parametrizable environment in JAX with a Gym interface. It allows
the sampling of any MDP with predefined action space and state spaces or the modification of the
existing transition monoid, initial and target states.
Cayley Maze may be used in the evaluation procedure of every learning problem, which has a
sequential structure and where generalization or emergent complexity of observations are crucial.
Some of the proposed scenarios are:

1. Since universality is essential for UED, Cayley Maze may be used for the evaluation of
UED algorithms

2. It is possible to create environment samplers whose instances have a common structure. For
example, it might be MDPs whose transition monoids are simple groups or environments
that represent n× n× n Rubik’s Cube.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3. It is possible to evaluate not only on the subfamilies of environments but also on various
combinations of these environments. For example, we can check whether the agent, which
performed well on some instances, would perform well on its product.

4. Another way to test generalization capabilities is to use the local property of natural Cayley
Mazes, as in 4.1. For example, evaluate the agent’s performance on the initial states that
were unreachable during training.

5. Since the process of creating a new MDP can be seen as an MDP, it can be expressed as an
instance of Cayley Maze. Hence, the UED scenarios where the teacher learns to build an
environment without student become possible.

Another interesting feature of the implementation is that while constructing the most general re-
inforcement learning environment, one might expect the explosion of the teacher’s action space.
The implementation allows customization of the desired trade-off between the size of action space,
representation dimension, and the power of the edit per step.

REFERENCES

M. Beukman, S. Coward, et al. Refining minimax regret for unsupervised environment design, 2024.
URL https://arxiv.org/abs/2402.12284.

C. Boisvert, L. Willems, et al. Minimalistic gridworld environment for ope- nai gym, 2018. URL
https://github.com/maximecb/gym-minigrid.

G. Bonfarte and F. Deloup. The genus of regular languages. Mathematical Structures in Computer
Science, 28(1):14–44, 2018.

R. Book and A. Chandra. Inherently nonplanar automata. A.K. Acta Informatica, 6:89–94, 1976.

J. Bruce, M. Dennis, et al. Genie: Generative interactive environments, 2024. URL https:
//arxiv.org/abs/2402.15391.

E. Demaine, S. Eisenstat, et al. Solving the rubik’s cube optimally is np-complete. In 35th Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceed-
ings in Informatics (LIPIcs), 96:24:1–24:13, 2018.

E. Hughes, M. Dennis, et al. Open-endedness is essential for artificial superhuman intelligence,
2024. URL https://arxiv.org/abs/2406.04268.

M. Matthews, M. Beukman, et al. Craftax: A lightning-fast benchmark for open-ended reinforce-
ment learning, 2024. URL https://arxiv.org/abs/2402.16801.

J. Parker-Holder, M. Jiang, et al. Evolving curricula with regret-based environment design, 2023.
URL https://arxiv.org/abs/2203.01302.

J. Pin. Handbook of automata theory. Volume I. Theoretical foundations, volume 1. Berlin: Euro-
pean Mathematical Society (EMS), 2021.

6

https://arxiv.org/abs/2402.12284
https://github.com/maximecb/ gym-minigrid
https://arxiv.org/abs/2402.15391
https://arxiv.org/abs/2402.15391
https://arxiv.org/abs/2406.04268
https://arxiv.org/abs/2402.16801
https://arxiv.org/abs/2203.01302

	Introduction
	Preliminaries
	Complexity of Markov Decision Processes
	Cayley Maze
	Cayley Maze is natural
	Cayley Maze has variable computational complexity
	Most of the Reinforcement Learning environments are not universal
	Modification and simplification of existing instances

	Applications and implementation details

