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ABSTRACT

Understanding and reasoning about the physical world is the foundation of intel-
ligent behavior, yet state-of-the-art vision-language models (VLMs) still fail at
causal physical reasoning, often producing plausible but incorrect answers. To
systematically address this gap, we introduce CausalPhys, a benchmark of over
3,000 carefully curated video- and image-based questions spanning four domains:
Perception, Anticipation, Intervention, and Goal Orientation. Each question is
paired with a causal graph that captures underlying interactions and dependencies,
enabling fine-grained and interpretable evaluation. We further propose a causal-
graph-grounded metric that verifies whether a model’s chain-of-thought reasoning
follows correct causal relations, moving beyond answer-only accuracy. System-
atic evaluations of leading VLMs on CausalPhys expose consistent failures to cap-
ture causal dependencies, underscoring fundamental weaknesses in their physical
reasoning. To overcome these shortcomings, we introduce a Causal Rationale-
informed Fine-Tuning strategy (CRFT) that scaffolds VLM reasoning with causal
graphs. Extensive experiments show that CRFT significantly improves both rea-
soning accuracy and interpretability across multiple backbones. By combining
diagnostic evaluation with causality-informed fine-tuning, this work establishes a
foundation for advancing VLMs toward causally grounded physical reasoning.

1 INTRODUCTION

Understanding and reasoning about physical environments is a cornerstone of intelligence, enabling
agents to operate robustly in real-world settings (Srivastava et al., 2022} |Gupta et al., |2021). Yet
today’s VLMs remain far from human intuition, often failing to capture even basic physical interac-
tions. Robust physical reasoning demands more than pattern recognition: agents must infer intrinsic
object properties (Y1 et al., 2019; (Chen et al., 2022), track spatial relations across entities (Yang
et al.| 2025b; [Wang et al., |2024), interpret evolving physical scenes, and anticipate how interactions
unfold to guide planning and prevent costly errors (Bear et al., 2021 Dong et al.l |2025)). Humans,
by contrast, perform such reasoning effortlessly, drawing on an intuitive grasp of physical causality
that emerges early in development (Carey, |2000; McCloskey et al.| [1983; |Chow et al., 2025)). How
to equip VLMs with this level of causally grounded understanding remains a central open challenge.
Resolving it is critical for advancing embodied Al systems that are both reliable and trustworthy.

Recent VLMs excel at multimodal tasks such as visual question answering, object recognition, and
image captioning. Yet extending these successes to dynamic physical reasoning in realistic envi-
ronments remains an open challenge (Bear et al., 2021} [Tung et al., 2023 |Chow et al., [2025; Dong
et al.,|2025). Relying solely on perception-driven capabilities has proven insufficient for building
generalist embodied agents (Komanduri et al., 2025} [Foss et al., 2025} [Liu et al.| |2025} |Chen et al.,
2024]), often leading to brittle behaviors such as mishandling fragile objects or misjudging grasp
affordances. As a concrete example, Fig. [T| (Intervention) illustrates that inferring the orientation of
a door relative to the camera viewpoint from limited observations is far from trivial. Such reasoning
demands sensitivity to latent spatial structures, occluded relationships, and viewpoint transforma-
tions that are invisible in isolated images. Ultimately, these cases hinge on anticipating how the
world changes under interventions or viewpoint shifts, reasoning that is naturally framed through
causal inference. Structural causal models provide exactly this grounding: they connect inter-
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Figure 1: CausalPhys emphasizes comprehensive physical understanding across four distinct cate-
gories, with each question explicitly annotated by a causal graph encoding the underlying physical
relationships.

ventions with their consequences, enabling agents to infer unobserved properties from incomplete
evidence with both precision and interpretability.

However, bringing causal reasoning into VLMs remains non-trivial, and we identify three criti-
cal challenges. (1) Current VLMs are trained to capture statistical associations in observational
data rather than the underlying causal mechanisms, which limits their ability to reason in dynamic,
real-world environments. (2) Existing benchmarks for physical reasoning rarely include ground-
truth causal annotations, making it impossible to rigorously measure whether models follow correct
causal dependencies. (3) There is a notable absence of causally informed fine-tuning methods; prior
research efforts in this domain have predominantly focused exclusively on evaluation, leaving a gap
in methods that can effectively enhance causal reasoning in multimodal systems. These challenges
highlight the absence of targeted training paradigms that explicitly foster causal understanding, un-
derscoring the need for new benchmarks and methods that move VLMs beyond surface correlations
toward genuine causal reasoning.

To systematically investigate and address these challenges, we introduce CausalPhys, a benchmark
of over 3,000 carefully curated video and image questions spanning four domains: Perception, An-
ticipation, Intervention, and Goal Orientation, across 16 subfields (Fig. [2). Each question is paired
with a ground-truth causal graph that captures physical interactions and dependencies, enabling
mechanism-level, interpretable evaluation of VLM reasoning. These explicit annotations make
CausalPhys a rigorous testbed for diagnosing both strengths and failures in causal reasoning, filling
critical gaps left by prior benchmarks. Using CausalPhys, we systematically evaluate state-of-the-
art open-source VLMs and reveal systematic failures on tasks that require robust causal inference.
Building on these observations, we propose CRFT, a causal rationale-enhanced fine-tuning ap-
proach that leverages causal graphs to guide VLMs toward generating more accurate and causally
consistent explanations, thereby improving both their performance and interpretability in complex
physical environments.

We aim for this work to provide meaningful insights and help narrow the gap between VLMs and
physical world understanding, thereby fostering progress in embodied Al toward human-level capa-
bilities. By situating our contributions at the intersection of benchmarking, evaluation, and model
improvement, we hope to offer a resource that not only diagnoses current limitations but also points
toward concrete paths forward. Overall, this paper makes three key contributions. (1) We introduce
CausalPhys, the first benchmark to couple real-world physical reasoning questions with explicit
ground-truth causal graphs, enabling interpretable, mechanism-level evaluation beyond surface-level
answer accuracy. (2) We develop a causal-graph-grounded metric that verifies whether a model’s
chain-of-thought follows the correct causal dependencies, and we systematically evaluate state-of-
the-art VLMs to uncover fine-grained reasoning failures that answer-only benchmarks cannot cap-
ture. (3) We propose a causally inspired fine-tuning (CRFT) approach that leverages causal graphs to
guide models toward more accurate and consistent reasoning, thereby improving both performance
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and interpretability. These contributions push VLMs beyond surface pattern recognition, steering
them toward genuine causal reasoning in complex physical environments.
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Figure 2: Taxonomy of CausalPhys spanning Table 1: Statistics of CausalPhys questions across
four causal rungs. four domains and 16 subsets.

2 RELATED WORKS

Physical Benchmarks. Early benchmarks addressing physical reasoning predominantly focused
on scenarios involving rudimentary physical interactions and simplified environmental contexts.
(Bear et all 2021} Tung et al., 2023} [Zhu et al., |2023) For example, (Yi et al., 2019} |Chen et al.,
2022)focus on elementary visual primitives, including spheres, cubes, and rigid-body collision
events. To assess the physical reasoning capability of VLMs, some datasets (He et al., 2024} Jiang
et al.| [2024; [Lu et al.| [2022; Hao et al.l 2025} Zhang et al.| [2025; |Azzolini et al., 2025)) are designed,
which typically emphasize commonsense reasoning grounded in linguistic knowledge, rather than
perceptual understanding of physical interactions. On the other hand, spatial VQA benchmarks
(Wang et al.l |2024; |Yang et al., | 2025b; [Li et al [2024; [Shiri et al.l [2024) focus on geometric rela-
tionships and spatial reasoning within 3D scenes, reflecting an initial stage toward comprehensive
physical world modeling. Recent advancements include PhysBench (Chow et al., [2025)), which has
been expanded to provide a comprehensive evaluation of models’ understanding of physical sce-
narios across diverse tasks, and MVPBench (Dong et al., [2025), a curated benchmark specifically
developed to assess visual physical reasoning capabilities through visual CoT methodologies. How-
ever, these approaches primarily focus on whether VLMs can correctly answer questions, rather than
examining the underlying causal reasoning processes, potentially leading to unreliable predictions
when applied to real-world environments.

Causal Reasoning Datasets. While causal reasoning has been extensively studied for LLMs (Jin
et al.l 2023} Jiralerspong et al., |2024; Rajendran et al., [2024), equivalent efforts in the VLM do-
main remain comparatively nascent. Prior work often represents causal structure with narrowly
defined nodes. For example, CELLO models nodes as perceptible objects and focuses on simple
relations such as “object 1 supports object 2” (Chen et al. 2024). Other approaches seek inter-
pretability by instantiating structural causal models for CoT reasoning (Fu et al.| |2025). Recent
VLM benchmarks (e.g., CausalVLBench, Causal3D) evaluate causal inference using fixed-structure
graphs within predesigned scenes, where models are asked to estimate relations between entities
explicitly provided in prompts (Komanduri et al.l 2025} Liu et al.l 2025). Such constrained ex-
perimental setups limit dataset diversity and hinder the capacity of models to uncover generalized
causal structures within real-world physical scenarios. These motivate the development of bench-
marks that incorporate greater diversity in realistic physical environments, as well as methodologies
that explicitly enhance the physical reasoning capabilities of VLMs through causal inference.
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Table 2: Comparison of CausalPhys with existing physical reasoning benchmarks. While prior
datasets are limited by synthetic environments, restricted diversity, or missing causal structure,
CausalPhys uniquely integrates real-world data, diverse scenes, and fine-grained causal anno-
tations spanning objects, attributes, and events.

Dataset Data Instances Data Source Causal Structure Causal Node
Rea). Se, X Floy - . N
Wortg Dty €ne DIVCrsj[y Annoy, tion Ie‘“bili[y Objey, Atzr,bu[e Even,

CELLO (Chen et al.{2024) 14,000+ X X X
Causal3D (Liu et al.|[2025) 7 scenes X X X X X
CausalVLBench (Komanduri et al.|[2025) 5,000+ X X X X X
PhysBench (Chow et al.||2025) 10,000+ X X X X X
Causal VQA (Foss et al.|[2025) 700+ X X X X X
MVP Bench (Dong et al.[[2025) 1,000+ X X X X X
CausalPhys (Ours) 3,000+

3 THE CAUSALPHYS BENCHMARK

To rigorously assess VLMs’ capacity for physical reasoning, we present CausalPhys, a benchmark
tailored to causally-informed understanding of real-world environments. It comprises over 3,000
image and video instances, each paired with an explicit, instance-specific causal graph, moving
beyond fixed causal schemas in prior work. To ensure reproducibility and enable precise capability
analysis, we provide a fully documented data construction pipeline, along with open-sourced
resources that make the benchmark both transparent and extensible.

3.1 BENCHMARK OVERVIEW

The design of CausalPhys builds on a structured taxonomy that aligns physical reasoning tasks
with the rungs of Pearl’s causal ladder (Pearl, [2009). It spans four complementary categories
(see Fig. [I): Perception (“What is ...”: identifying observable states and attributes), Anticipation
(“What will happen next ... ”: projecting near-future outcomes), Intervention (“What will happen
if ... ”7: reasoning about consequences of explicit interventions with the do-operator), and Goal
Orientation (“What should be done to achieve ... ”: planning actions under physical constraints).
Each category is further divided into four subcategories, allowing fine-grained evaluation of how
VLMs reason about different facets of the physical world. By explicitly grounding these categories
in the causal hierarchy, CausalPhys provides not only broad coverage of physical reasoning tasks
but also a principled framework to reveal where along the causal rungs VLMs succeed, and where
they fail.

Our work bridges a key gap in existing benchmarks, which often reduce causal reasoning to flat
graphs with homogeneous node types. Such oversimplification erases the richness of real-world
physics, where reasoning must span objects with intrinsic attributes, attributes that evolve, and
events that trigger transformations. To capture this heterogeneity, CausalPhys introduces a prin-
cipled three-node taxonomy of Objects, Attributes, and Events, grounding physical reasoning in
mechanisms rather than surface correlations. Directed edges encode a wide spectrum of causal de-
pendencies: attributes describing objects, events involving objects, events modifying attributes, and
cascades where one event causes another. As illustrated in Fig. [T[(Intervention) (under our viewpoint
transformation category), the event “Camera rotates counterclockwise by 90°” alters the positional
attribute of the door from Front to Right. Each instance is systematically annotated as a directed
acyclic causal graph (DAG), making causal dependencies explicit, interpretable, and testable. Our
design elevates CausalPhys from a dataset to a diagnostic instrument, revealing not only what mod-
els predict but also how they reason.

Each instance in CausalPhys takes the form of a multiple-choice question with two to four options
and exactly one correct answer, ensuring unambiguous evaluation. Unlike previous benchmarks de-
signed for physical understanding [Dong et al.| (2025)); \Chow et al.|(2025)), every question in Causal-
Phys is paired with a structured causal graph that encodes the underlying physical mechanisms,
making the reasoning process interpretable rather than answer-only. The dataset spans four causal
domains and incorporates both images and videos, offering broad coverage of physical reasoning
tasks across modalities. Within this setting, causal dependencies are systematically represented: in-
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Figure 3: Radar plots of VLM performance. Models are evaluated on four metrics: Accu-
racy (ACC), Relation Awareness (RA), Description Correctness (DC), and Entity Faithfulness (EF)
across 16 CausalPhys subcategories.

trinsic object attributes such as velocity or texture, cross-object relations such as relative position,
event-driven transformations where collisions alter trajectories, and higher-order chains where one
event precipitates another.

3.2 DATA COLLECTION WORKFLOW

We built CausalPhys through a carefully structured workflow to ensure both quality and trans-
parency. All images, videos, questions, and annotations were manually curated by annotators with
STEM expertise. The construction process followed a structured pipeline of five stages: (a) Data
Acquisition, where instances were selected from more than ten publicly available datasets with
provenance carefully documented; (b) Question Formulation, where annotators designed original
questions centered on physical commonsense, each explicitly explainable through causal reasoning
and paired with verified answers; (c) Data Processing, where raw media were standardized and
paired with their annotations; (d) Causal Graph Construction, where each instance was encoded
into a graph, first drafted in Mermaid syntax and then converted into a typed JSON schema with
validators to enforce node typing and acyclicity; (e) Quality Assurance, where all items underwent
double annotation and adjudication to remove cases with insufficient visual cues or textual biases.

To support reproducibility, we release the entire pipeline, including selection scripts, annotation
guidelines, Mermaid DAGs encoding causal graphs, JSON schema with validators, and regeneration
code for data splits. This design makes CausalPhys not only high-quality but also transparent,
auditable, and extensible.
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Model Open-Source Models _ Closed-Sourcﬁ Models

Size 78B 32B 3B 7B 11B 5.6B ~ 200B 8B 7B -
# Anticipation

Accuracy (ACC) 1 0.5800 0.5189 0.2944 0.5222 0.3333 0.5533 0.4100 0.6011 0.5911 0.5822 0.5322
Entity Faithfulness (EF) 1 0.6211 0.5910 0.2700 0.5100 0.5290 0.5570 0.4926 0.5935 0.5706 0.5820 0.5798
Relation Awareness (RA) 1 0.2338 0.2088 0.0797 0.1710 0.1736 0.1719 0.1808 0.2346 0.2021 0.2061 0.2238
Description Correctness (DC) 1 0.4243 0.3428 0.1217 0.2586 0.2789 0.3012 0.2559 0.3979 0.3303 03714 0.3481
@ Perception

Accuracy (ACC) 1 0.6257 0.5689 0.4490 0.5205 0.3985 0.5573 0.4826 0.5889 0.5983 0.5920 0.5868
Entity Faithfulness (EF) 1 0.7873 0.7822 0.7112 0.6562 0.6965 0.7141 0.7221 0.7738 0.7687 0.7411 0.7349
Relation Awareness (RA) 1 0.3976 0.3884 0.2692 0.2325 0.2490 0.2822 0.3680 0.3407 0.3027 0.3092 0.3488
Description Correctness (DC) T 0.4664 0.4049 0.3483 03133 0.3457 0.3501 0.3479 0.4621 0.4014 0.4574 0.4218
2 Intervention

Accuracy (ACC) 1 0.5707 0.4799 0.3246 0.4764 0.3211 0.4852 0.4852 0.5707 0.5131 0.5567 0.5672
Entity Faithfulness (EF) 1 0.6547 0.5941 0.3954 0.5563 0.5044 0.5501 0.6240 0.6592 0.6295 0.6451 0.6941
Relation Awareness (RA) 1 0.2858 0.2666 0.1493 0.2003 0.1762 0.1925 0.2483 0.2762 0.2496 0.2464 0.3076
Description Correctness (DC) T 0.5985 0.5516 0.2991 0.5661 0.3781 0.4659 0.5562 0.5742 0.5873 0.5827 0.5278
© Goal-Orientation

Accuracy (ACC) 1 0.5799 0.5172 0.3103 0.4906 0.3009 0.4483 0.4796 0.5878 0.5157 0.5439 0.4702
Entity Faithfulness (EF) 1 0.7064 0.6978 0.5372 0.6207 0.5762 0.6440 0.6858 0.6784 0.6764 0.6614 0.6470
Relation Awareness (RA) 1 0.2855 0.2856 0.1819 0.1931 0.2078 0.2036 0.2410 0.2376 0.2238 0.1966 0.2238
Description Correctness (DC) T 0.4339 0.3564 0.1341 0.2475 0.2264 0.3153 0.3817 0.3447 0.3250 0.3385 0.3439
Ll Average

Accuracy (ACC) 1 0.5924 0.5268 0.3514 0.5065 0.3445 0.5199 0.4611 0.5888 0.5630 0.5725 0.5428
Entity Faithfulness (EF) 1 0.6968 0.6795 0.4862 0.5871 0.5862 0.6226 0.6287 0.6795 0.6652 0.6597 0.6634
Relation Awareness (RA) 1 0.3052 0.2914 0.1729 0.2002 0.2046 0.2166 0.2641 0.2760 0.2468 0.2437 0.2783
Description Correctness (DC) T 0.4720 0.4040 0.2278 0.3308 0.3073 0.3501 0.3669 0.4397 0.3994 0.4308 0.4037

Table 3: Benchmark evaluation results on CausalPhys. We report performance of state-of-the-art
open- and closed-source VLMs across four domains (Anticipation, Perception, Intervention, and
Goal Orientation). Metrics include Accuracy (ACC), Entity Faithfulness (EF), Relation Aware-
ness (RA), and Description Correctness (DC). Results reveal that while models achieve moderate
accuracy and entity-level consistency, they struggle with relation-level reasoning (RA), indicating
persistent gaps in capturing causal dependencies. These systematic weaknesses underscore the need
for causally-informed approaches such as our proposed CRFT.

We further introduce a causal-graph-grounded evaluation framework for VLMs which goes be-
yond answer correctness to assess whether a model’s reasoning chain faithfully reflects the under-
lying physical mechanisms. Given a query () and an image or video X, a vision—language model
produces a rationale R and a final answer Y. Each instance in CausalPhys is annotated with a
ground-truth causal graph G = (V, &), where V contains objects, attributes, and events, and &,
encodes their directed dependencies. The workflow of the evaluation framework is shown in Fig. 4]

Specifically, our framework evaluates I? along four complementary criteria:
1. Accuracy (ACC). Measures whether the predicted answer matches the ground-truth label:
ACC=1{Y =Y"}.

2. Entity Faithfulness (EF). Evaluates whether the rationale covers all relevant entities. Let
O, A, £ denote the sets of objects, attributes, and events in ). For each entity y € V,

EF(y) = 1{ y is explicitly mentioned in R }.
EF thus measures the coverage of reasoning-relevant entities rather than surface correctness.

3. Description Correctness (DC). Checks whether entities are described consistently with their
ground-truth annotations. For each y € A U £ with description d(y),

DC(y) = 1{ R contains a description semantically consistent with d(y) }.

This ensures that models not only mention entities but also characterize them correctly.

4. Relation Awareness (RA). Tests whether the rationale captures directed causal dependencies.
Let R, be the set of directed edges (u, v) in the ground-truth graph, with « as parent of v. For
each (u,v) € Ry,

RA(u,v) = 1{u,v € R A wis described before v }.

Here, ordering in R serves as a minimal signal of causal sequencing.
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Figure 4: Workflow of evaluating the physical understanding capability of VLMs.

Evaluation proceeds in four stages: (a) CoT-Answer Generation, where the VLM outputs R and
Y’; (b) Answer Verification, comparing Y against the ground-truth; (c) Causal-Aware Question
Construction, where auxiliary checks are derived from G for EF, DC, and RA; and (d) LLM-based
Judging, which scores the rationale in True/False format and aggregates results into final metrics.

By grounding evaluation in explicit causal graphs, this framework offers fine-grained diagnostics of
reasoning, revealing not only whether VLMs are correct but also how their reasoning aligns with the
true causal structure of the physical world, and where it diverges.

3.3 BENCHMARKING VLMS ON PHYSICAL WORLD UNDERSTANDING

Understanding physical relations remains challenging for VL. Ms.

As shown in Figure [3] and table [3] despite achieving moderate performance on perception-based
tasks, current VLMs struggle substantially when reasoning over physical relations. Subsets such as
viewpoint transformation remain particularly difficult: most models perform below 40%, essentially
at chance. Similarly, in optical inference, where models must predict the true location of an object
visible only via a mirror, even state-of-the-art closed-source systems achieve accuracies around 0.3.
These tasks require integrating spatial geometry and causal dependencies rather than surface-level
cues. While certain subsets, such as trajectory optimization, show surprisingly strong results, these
cases are largely driven by perceptual recognition (e.g., detecting a block on a path), not higher-
order causal inference. The consistently low performance on relation-intensive subsets highlights
the difficulty VLMs face in encoding spatially grounded causal relationships, such as reasoning
about visible regions, mirror angles, and relative object positions. These remain open challenges for
advancing physical reasoning in complex environments.

Open-source models perform on par with closed-source systems.

Unlike many general-purpose multimodal benchmarks, our results reveal that open-source models
match the performance of proprietary systems. The average gap between open and closed source
models is negligible across categories. For example, InternVL3 achieves nearly the same overall
accuracy as GPT-4o while maintaining consistently high entity faithfulness. In anticipation and
intervention, the performance difference between open and closed models is especially narrow, in-
dicating that scale or private data access is not the sole determinant of success in physical reasoning.
This suggests that strong open-source efforts provide credible baselines for causal reasoning tasks,
reducing dependence on closed systems.

Beyond the open—closed distinction, differences across model sizes emerge as more pronounced.
Within the Qwen series, for instance, smaller variants (e.g., Qwen2-VL 3B) perform substantially
worse than their larger counterparts (7B and 32B) across all four categories. The 3B model often lags
by wide margins in both accuracy and causal relation awareness, suggesting that limited capacity
constrains its ability to perform structured reasoning. By contrast, the 7B and 32B models demon-
strate clear gains, indicating that sufficient scale is critical for capturing the causal dependencies
required by our benchmark.

Causal relation awareness is most predictive of reasoning success.

While entity faithfulness (EF) is generally high and the rate often exceeding 0.65, model accuracy
correlates more strongly with relation awareness (RA). Models that capture causal links within the
ground-truth graph tend to achieve higher accuracies, even when EF remains broadly similar across
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Figure 5: The workflow of CRFT. CRFT employs causal graphs to guide VLMs in generating more
precise, causally coherent physical reasoning. The causal rationale is jointly optimized with the
ground-truth answer.

systems. For example, in perception and intervention tasks, improvements in RA are closely aligned
with accuracy gains, whereas EF shows weaker variance. This suggests that correctly identifying
entities alone is insufficient for reasoning: assembling them into coherent causal structures is critical.
Relation awareness thus emerges as the strongest correlate of final task performance, highlighting it
as a key bottleneck for progress.

A persistent gap exists between entity recognition and relation reasoning.

Across all categories, we observe a consistent EF-RA gap: models readily identify relevant objects
and attributes but struggle to connect them through causal relations. For instance, EF scores re-
main high (= 0.7), while RA lags behind (= 0.2-0.3). This indicates that models succeed at local
recognition yet fail at deeper relational inference. Bridging this gap appears essential for advancing
beyond surface-level performance. Closing the EF-RA gap may therefore be the critical step toward
robust causal reasoning in vision-language models.

4 FROM ANSWERS TO REASONS: CAUSAL RATIONALE FINE-TUNING

Our benchmark analysis (Sec. 3.3) reveals a consistent pattern: VLMs perform better when they
articulate not only the final answer, but also the causal relations that explain it. Motivated by this
insight, we propose Causal Rationale Fine-Tuning (CRFT), a training paradigm that explicitly
grounds rationales in causal graphs, teaching VLMs to reason through mechanisms rather than sur-
face correlations. The workflow of CRFT is shown in Fig. [3]

Rationale Construction. Given a dataset of instances (z, ¢, y, G), where z is an image or video,
q a query, y the correct answer, and G = (AN, €) a human-annotated causal graph, we generate
gold causal rationales r using a teacher LLM (e.g., GPT-40 (Hurst et al.}|2024)). Each rationale is
required to (i) explicitly reference nodes and edges in G, (ii) trace intermediate causal implications,
and (iii) conclude with y. This ensures that rationales are faithful to the causal graph, providing
structured supervision beyond free-form text.

Training Objective. For training, we concatenate the rationale and the answer into a single se-
quence s = [r; y] and fine-tune the target VLM 7y to maximize its likelihood under a weighted
supervision scheme:

Lcerrr(0) = —E(ag.9.0)~p | Ar Z log mo(se|@, ¢, 5<) + Ay Z log mo(s¢|w,q,8<¢) |, (1)
teidx(r) t€idx(y)

where A, and )\, balance rationale and answer supervision.

By anchoring fine-tuning to causal rationales, CRFT compels VLMs to internalize causal pathways
rather than memorize surface correlations. The model is guided not just to deliver the right answer,
but to trace why the answer follows, aligning its reasoning with the ground-truth causal graph. This
shift from answers to reasons transforms evaluation into learning: it produces predictions that are
more accurate, reasoning that is more interpretable, and models that are ultimately more reliable
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Metric Models o
Ong, Oy, Ve,
Vo, 1 e,
7 Sty ¥y,

Accuracy (ACC) 1 0.5349 0.6762 0.7066
Entity Faithfulness (EF) 1 0.5978 0.3247 0.5969
Relation Awareness (RA) 1 0.2130 0.0911 0.2554
Description Correctness (DC) 1 0.2905 0.2645 0.3493

Table 4: Average results of QWEN2-VL 7B models on CausalPhys. We report mean performance
across all tasks for the vanilla, SFT, and CRFT checkpoint variants. Best values are in bold.

for physical decision-making. Such alignment is uniquely enabled by CausalPhys, where every
instance comes with explicit causal structure and gold rationales, making CRFT both principled and
practically feasible.

As shown in Table [} observed from the fine-tuning results, we can conclude that although SFT
(answer-only fine-tuning) achieves a satisfactory Accuracy (ACC) score, its performance on Entity
Faithfulness (EF), Description Correctness (DC), and especially Relation Awareness (RA) drops
dramatically. This suggests that answer-only supervision encourages the model to optimize for
surface-level prediction accuracy, but at the cost of its ability to capture and reflect the underlying
causal reasoning process. In other words, SFT fine-tuning tends to make the model behave like a
“guesser,” prioritizing conclude final answers based on shallow experience rather than over struc-
tured, interpretable reasoning chains.

In contrast, the proposed CRFT introduces causal relations explicitly into the fine-tuning strategy.
The results show that CRFT not only preserves competitive accuracy but also substantially improves
EF, DC, and RA scores compared to both the vanilla model and the SFT-only variant. This indicates
that CRFT encourages the model to ground its answers in a more faithful and structured causal ra-
tionale, aligning outputs more closely with human-like reasoning. Importantly, CRFT demonstrates
that integrating causal structure into fine-tuning can mitigate the trade-off between accuracy and
interpretability, producing models that are both effective in prediction and transparent in reasoning.

5 CONCLUSION

In this paper, we introduced CausalPhys, a comprehensive benchmark that grounds physical rea-
soning evaluation in explicit causal graph annotations. By moving beyond surface-level question
answering, CausalPhys provides a structured and principled way to dissect the reasoning capabili-
ties of VLMSs across perception, anticipation, intervention, and goal-oriented tasks. Our extensive
experiments reveal that even the strongest state-of-the-art VLMs struggle when reasoning requires
causal consistency, highlighting a fundamental gap between pattern recognition and true physical
understanding. To bridge this gap, we proposed Causal Rationale Fine-Tuning (CRFT), which in-
jects causal structure into model training, enabling VLMs to generate answers supported by faithful,
interpretable reasoning chains.

Looking ahead, CausalPhys opens several avenues for advancing causal physical reasoning in Al
First, the benchmark can be extended to richer physical scenarios involving stochastic dynamics,
long-horizon dependencies, and multi-agent interactions, thereby pushing models closer to real-
world complexity. Second, incorporating embodied simulations, where agents not only observe but
also act upon environments, will allow us to assess whether VLMs can transfer causal reasoning
into interactive decision-making. Third, future work could explore causal generalization, evaluating
whether models trained on one set of causal structures extrapolate to novel but related ones, a hall-
mark of robust reasoning. Finally, the integration of causal rationales with reinforcement learning
and embodied robotics offers an exciting path toward building Al systems that are not only accurate
but also trustworthy, interpretable, and capable of reasoning like scientists about the physical world.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our benchmark, CausalPhys, is constructed entirely
from existing, publicly available datasets, including Ego4D, Epic Kitchen, SportsMOT, Something-
Something, MSD, CausalVQA, Fluid Flow, Cup dataset, Nexar Collision Prediction, MindCube,
and Video Dataset of Human Demonstrations. These sources were selected for their focus on phys-
ical interactions and causal dynamics, and all are already distributed for research purposes. No
personally identifiable or sensitive data is included in CausalPhys.

By curating from synthetic and publicly released visual data, we minimize risks related to privacy,
fairness, or real-world safety. Nonetheless, we acknowledge that improvements in causal reason-
ing for vision-language models could have downstream societal implications if applied in sensitive
domains such as robotics, surveillance, or industrial automation. Our contributions are intended
solely for advancing scientific research in multimodal reasoning and should be carefully evaluated
before deployment in real-world systems. We declare no conflicts of interest or external sponsorship
influencing this work.

REPRODUCIBILITY STATEMENT

We have taken deliberate steps to ensure reproducibility of our results. The CausalPhys benchmark,
along with data splits and annotations, is publicly available. Detailed descriptions of dataset con-
struction, evaluation metrics, and experimental setups are provided in Section ??, with implementa-
tion details and prompt templates included in Appendix ??. Anonymized source code, configuration
files, and evaluation scripts are provided with the submission to enable independent verification and
replication of all reported results.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, et al. Phi-4 technical report, 2024. URL https://
arxiv.org/abs/2412.08905.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2025.
Accessed: 2025-09-25.

Alisson Azzolini, Junjie Bai, Hannah Brandon, Jiaxin Cao, Prithvijit Chattopadhyay, Huayu Chen,
Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, et al. Cosmos-reasonl: From physical common
sense to embodied reasoning. arXiv preprint arXiv:2503.15558, 2025.

Daniel M Bear, Elias Wang, Damian Mrowca, Felix J Binder, Hsiao-Yu Fish Tung, RT Pramod,
Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, et al. Physion: Evaluating physical
prediction from vision in humans and machines. arXiv preprint arXiv:2106.08261, 2021.

Susan Carey. The origin of concepts. Journal of Cognition and Development, 1(1):37-41, 2000.

Meiqi Chen, Bo Peng, Yan Zhang, and Chaochao Lu. Cello: Causal evaluation of large vision-
language models. arXiv preprint arXiv:2406.19131, 2024.

Zhenfang Chen, Kexin Yi, Yunzhu Li, Mingyu Ding, Antonio Torralba, Joshua B Tenenbaum, and
Chuang Gan. Comphy: Compositional physical reasoning of objects and events from videos.
arXiv preprint arXiv:2205.01089, 2022.

Wei Chow, Jiageng Mao, Boyi Li, Daniel Seita, Vitor Guizilini, and Yue Wang. Physbench: Bench-
marking and enhancing vision-language models for physical world understanding. arXiv preprint
arXiv:2501.16411, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, et al. Gemini 2.5: Pushing the frontier with
advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.
URL https://arxiv.org/abs/2507.06261.

Zhuobai Dong, Junchao Yi, Ziyuan Zheng, Haochen Han, Xiangxi Zheng, Alex Jinpeng Wang,
Fangming Liu, and Linjie Li. Seeing is not reasoning: Mvpbench for graph-based evaluation of
multi-path visual physical cot. arXiv preprint arXiv:2505.24182, 2025.

10


https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2507.06261

Under review as a conference paper at ICLR 2026

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, and Justine T Kao.
Causalvga: A physically grounded causal reasoning benchmark for video models. arXiv preprint
arXiv:2506.09943, 2025.

Jiarun Fu, Lizhong Ding, Hao Li, Pengqi Li, Qiuning Wei, and Xu Chen. Unveiling and causalizing
cot: A causal pespective. arXiv preprint arXiv:2502.18239, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.
URLhttps://arxiv.org/abs/2407.21783.

Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
and evolution. Nature communications, 12(1):5721, 2021.

Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
benchmark. arXiv preprint arXiv:2501.05444, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Zhihuan Jiang, Zhen Yang, Jinhao Chen, Zhengxiao Du, Weihan Wang, Bin Xu, and Jie Tang. Viss-
cience: An extensive benchmark for evaluating k12 educational multi-modal scientific reasoning.
arXiv preprint arXiv:2409.13730, 2024.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
nando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, et al. Cladder: Assessing
causal reasoning in language models. Advances in Neural Information Processing Systems, 36:
31038-31065, 2023.

Thomas Jiralerspong, Xiaoyin Chen, Yash More, Vedant Shah, and Yoshua Bengio. Efficient causal
graph discovery using large language models. arXiv preprint arXiv:2402.01207, 2024.

Aneesh Komanduri, Karuna Bhaila, and Xintao Wu. Causalvlbench: Benchmarking visual causal
reasoning in large vision-language models. arXiv preprint arXiv:2506.11034, 2025.

Jianing Li, Xi Nan, Ming Lu, Li Du, and Shanghang Zhang. Proximity qa: Unleashing the
power of multi-modal large language models for spatial proximity analysis. arXiv preprint
arXiv:2401.17862, 2024.

Disheng Liu, Yiran Qiao, Wuche Liu, Yiren Lu, Yunlai Zhou, Tuo Liang, Yu Yin, and Jing Ma.
Causal3d: A comprehensive benchmark for causal learning from visual data. arXiv preprint
arXiv:2503.04852, 2025.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507-2521,
2022.

Michael McCloskey, Allyson Washburn, and Linda Felch. Intuitive physics: the straight-down belief
and its origin. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4):636,
1983.

Judea Pearl. Causality. Cambridge university press, 2009.
Qwen, :, An Yang, Baosong Yang, Beichen Zhang, et al. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

11


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.15115

Under review as a conference paper at ICLR 2026

Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Scholkopf, and Pradeep Raviku-
mar. Learning interpretable concepts: Unifying causal representation learning and foundation
models. arXiv preprint arXiv:2402.09236, 2024.

Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin Yu, Gholamreza Haffari, and Yuan-Fang Li.
An empirical analysis on spatial reasoning capabilities of large multimodal models. arXiv preprint
arXiv:2411.06048, 2024.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martin-Martin, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments. In Conference
on robot learning, pp. 477-490. PMLR, 2022.

Mistral Al Team. Mistral small 3: Apache 2.0, 81% mmlu, 150 tokens/s. https://mistral.
ai/news/mistral-small-3}, 2025. Accessed: 2025-09-25.

Hsiao-Yu Tung, Mingyu Ding, Zhenfang Chen, Daniel Bear, Chuang Gan, Josh Tenenbaum, Dan
Yamins, Judith Fan, and Kevin Smith. Physion++: Evaluating physical scene understanding
that requires online inference of different physical properties. Advances in Neural Information
Processing Systems, 36:67048-67068, 2023.

Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu, Ruiyuan Lyu, Peisen Li, Xiao Chen, Wenwei
Zhang, Kai Chen, Tianfan Xue, et al. Embodiedscan: A holistic multi-modal 3d perception suite
towards embodied ai. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19757-19767, 2024.

An Yang, Baosong Yang, Binyuan Hui, et al. Qwen2 technical report, 2024. URL https://
arxiv.org/abs/2407.10671.

An Yang, Anfeng Li, Baosong Yang, et al. Qwen3 technical report, 2025a. URL https://
arxiv.org/abs/2505.09388.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 10632—10643, 2025b.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. arXiv preprint
arXiv:1910.01442, 2019.

Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando,
Mike Zheng Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark
towards physics-based reasoning. arXiv preprint arXiv:2502.12054, 2025.

Jinguo Zhu, Weiyun Wang, Zhe Chen, et al. Internvl3: Exploring advanced training and test-time
recipes for open-source multimodal models, 2025. URL https://arxiv.org/abs/2504.
104709.

Mingwei Zhu, Leigang Sha, Yu Shu, Kangjia Zhao, Tiancheng Zhao, and Jianwei Yin. Benchmark-
ing sequential visual input reasoning and prediction in multimodal large language models. arXiv
preprint arXiv:2310.13473, 2023.

12


https://mistral.ai/news/mistral-small-3
https://mistral.ai/news/mistral-small-3
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2504.10479

Under review as a conference paper at ICLR 2026

APPENDIX

Goal-Orientation Annotation Tool

Video ID: 001 | Category: Goal-orientation | Sub-category: Object relocation

Video 10 200

Video

Question:
To make the orange fall to the ground, what should the hand do? A.

Place it on the table B. Release it C. Put it on the shelf D. Keep holding
it

Ground Truth Answer:

> 0:00/003 I B

Mermaid Causal Graph Input:

Instructions: Please provide your Mermaid diagram for the causal

relationships in the video.

Recommended Format:

« Objects: n1["0:NAME"] (e.g., n1["O:BALL"])

« Attributes: n2['A:NAME:DESCRIPTION'] (e.g.,
n2["A:LOCATION:spatial position”])

« Events: n3["E:NAME:DESCRIPTION'] (e.q.,
n3["E:MOVEMENT:motion event’))

Example:

Note: Any Mermaid syntax s allowed. No validation s performed.

Figure 6: The annotation tool (GUI): Data presentation and question annotation

Your Mermaid Diagram:

Preview:

pyw— Mo v

Figure 7: The annotation tool (GUI): Causal graph annotation
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.1

PROMPTS

Gold Rationale generation prompt:

You are a reasoning assistant that analyzes visual scenarios and provides step-by-step reasoning.

INPUT FORMAT:

You will receive:

- A question about the visual scenario

- A ground truth answer (A, B, C, or D)

- Supporting information about objects, their properties, and relationships

TASK:

Generate a clear, step-by-step rationale that answers the question in natural language.

REQUIREMENTS:

1. Write an objective, answer-focused rationale in natural language

2. Treat the supporting information as reference only (do not describe it)

3. Write ONE coherent paragraph (max 8 sentences) that flows naturally

4. Include relevant elements from the reference only when needed for reasoning (do not
enumerate them)

5. Follow the correct logical order: causes must appear before their effects in your explanation
6. If an element has a description, you MUST state it clearly and exactly as provided

7. Use natural, everyday language (avoid terms like “entity”, “relation”, “graph”, “structure”)
8. Ensure proper grammar and spelling

9. Make the explanation easy to understand and self-contained

10. Present the reasoning as a logical analysis of the situation

OUTPUT FORMAT:

- Single paragraph only

- No bullet points, lists, or special formatting

- Plain English text written

- Complete explanation that follows the logical reasoning sequence

IMPORTANT:

The supporting information (entities, descriptions, relations) is for reference only. Do NOT
describe or list it. Use it implicitly to justify the answer. Focus on explaining why the answer is
correct in plain language.

14
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VLM reasoning prompt with rationale
You are a precise Vision—-Language QA assistant.

GOALS

Read the user’s question and (if provided) a SEQUENCE of images in the given order.
Provide a one-sentence rationale and your answer.

SEQUENCE HANDLING

If multiple images are provided, treat them as an ordered sequence (e.g., frames of a video).
Consider temporal consistency and cross-frame cues when reasoning.

CONSERVATIVE REASONING

Rely only on information available in the images and the question.
Be explicit and concise; avoid speculation.

HARD FORMAT CONSTRAINTS (MUST OBEY EXACTLY)

Output MUST include:
1. Generate a clear, step-by-step rationale (max 8 sentences) wrapped in
<rationale>...</rationale> tags

2. Your answer must be in EXACTLY ONE CAPITAL LETTER: A, B, C, or D wrapped in
<result>...</result> tags

15
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VLM reasoning prompt answer only
You are a precise Vision—-Language QA assistant.

GOALS

Read the user’s question and (if provided) a SEQUENCE of images in the given order.
Answer with ONLY a single capital letter: A, B, C, or D.

SEQUENCE HANDLING

If multiple images are provided, treat them as an ordered sequence (e.g., frames of a video).
Consider temporal consistency and cross-frame cues when reasoning.

CONSERVATIVE REASONING

Rely only on information available in the images and the question.
Be explicit and concise; avoid speculation.

HARD FORMAT CONSTRAINTS (MUST OBEY EXACTLY)
Output MUST consist of EXACTLY ONE CAPITAL LETTER: A, B, C, or D.

16
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LLM as a judge causal relationship prompt

You are a meticulous evaluator. Read the problem and the model’s rationale, then answer a list
of True/False questions strictly based on that rationale. Do not use outside knowledge or the
image. If the rationale is ambiguous or does not state the fact, answer False.

Answer using ONLY the specified YAML schema. Do not add extra commentary.

INPUT

- problem: The multiple-choice question with options

- rationale: The model’s rationale paragraph(s)

- questions: A list of True/False questions. Each item has:
- id: opaque identifier (string)

- text: the T/F question

JUDGING PRINCIPLES

- True only if the rationale explicitly supports the statement with clear mention or an unam-
biguous entailment.

- False if absent, unclear, contradicted, or only weakly implied.

- Allow synonyms/coreference (e.g., “kicker” for “Fighter”), but do not infer beyond text.

- For causal relation questions, require a clear causal/influence expression (e.g., X causes/leads
to/affects Y; Y depends on X). Mere co-occurrence is insufficient.

OUTPUT FORMAT (YAML)

answers:

- id: <string>

answer: truelfalse

EXAMPLE

problem: "Which direction should he kick to hit the target?
A. Left B. Right"

rationale: "The pad is to the left of the kicker; therefore he
should kick left to hit it."

questions:

— l d . n O n

text: "Is object ’'Fighter’ mentioned in the rationale?"

— l d g n l n

text: "Is the causal relation between ’'Kick direction’ and

"Fighter’ correctly expressed?"

answers:
_ ld' "OH
answer: true
— ld’ "l"
answer: true

.2 CASE STUDY

17
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Anticipation: Collision Prediction

Question 1:

Based on the current frames, will the car collide?

Option:

A. Yes

B. No

Model Response: B—The sequence of images shows a car following another vehicle on a highway. The distance between the two cars remains
consistent across the frames, indicating that the following car is maintaining a safe distance. There are no sudden changes n speed or direction

visible in the frames. The road conditions appear stable, and there are no visible obstacles or sudden stops by the leading ar. The traffic flow seems

steady, with no indications of abrupt braking or lane changes. Therefore, based on the current frames, a collision is unlikely.

Ground Truth: A Mermaid Flow:

A: Relative speed between
current car and target car

0: Gery car

E: There will be a collision

A: Relative distance
between current car and
target car

0: Current car

E: Target car action:
Changing lane

Question 2:

Based on the current frames, will the car collide?
Option:

A.Yes

B. No

Model Resp : B—-In the of images, the white car on the right is moving into the lane of the black car in front. The white car's
position changes slightly towards the black car, indicating a lane change. However, the distance between the two cars remainsconsistent, suggesting
that the white car is not moving fast enough to cause a collision. The black car appears to maintain its speed and position,indicating no immediate

threat of collision. The traffic is moving slowly, which reduces the likelihood of a collision

Ground Truth: A Mermaid Flow:

A: Relative speed between
current car and target car

0: Gery car

E: There will be a collision

A: Relative distance
between current car and
target car

E: Target car action:
Changing lane

Figure 8: Sample cases of Anticipation-Collision Prediction

USE OF LARGE LANGUAGE MODELS

We used large language models solely as auxiliary tools to assist in the language polishing and
stylistic refinement of the paper draft. The research ideas, methodology, experiments, and analysis

18
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Anticipation: Deformation

Question 1:

‘What will happen to the garment as the person continues their current action?

Option:
A. The garment will be smoothed out completely B. The garment will be wrinkled further
C. The garment will be folded in half D. The garment will be stretched out

Model Response: C--The images show aperson folding a garment on a table. The person's hands are positioned on the garment,
indicating they are in the process of folding it. The garment is already partially folded, and the person's hands are movingin a way that
suggests they are continuing to fold it. There are no signs of stretching or wrinkling actions being performed. The setup andpositioning of
the hands imply that the garment will be folded further rather than smoothed out or stretched.

Ground Truth: A Mermaid Flow:

E: Smoothing action: Person

activelt smoothing the
garment \

E: Next state: Garment will

be smooth
A: Smoothness level: _/
Garment becoming

increasingly smooth

Question 2:

‘What will happen to the blue T-shirt as the person continues their current action?

Option:
A. It will become smoother. B. It will get wrinkled.
C. It will tear. D. It will change color.

Model Response: A--The images show aperson folding a blue T-shirt on a table. The person is using their hand to smooth out the T-
shirt, which is a common action to remove wrinkles and make the fabric lie flat. The T-shirt is already partially folded and appears to be in
the process of being smoothed out. There is no indication of any action that would cause the T-shirt to tear or change color. Therefore, as the
person continues their current action, the T-shirt will likely become smoother.

Ground Truth: A Mermaid Flow:

E: Current action:Person E: Next result: T-shirt

shirt surface smoother

smoothing/flattening the t- |— becomes flatter and
0: Blue T-shirt

Figure 9: Sample cases of Anticipation-Deformation
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Anticipation: Fluid Flow

Question 1:

Where will the liquid from container flow?

Option:

A. Into the other container B. No outflow

C. Onto the table D. Onto the hand

Model Response: B—-The sequence of images shows a hand reaching for a plastic cup filled with liquid. The cup is being lifted, but
there is no indication of the liquid being poured or spilled. The other container is a paper cup, which remains stationary and empty

throughout the sequence. The hand is holding the cup steadily, suggesting no liquid is flowing out. There is no visible movenent of liquid

towards the table or the hand. Therefore, the liquid remains in the cup without any outflow.

Ground Truth: A Mermaid Flow:

lastic Cup

A: Plastic Cup Rim: Tilted E: Plastic Cup's Liquid Flow:
above paper cup Into the paper cup

0: Paper Cup

Question 2:

Where is the liquid from container expected to go?

Option:
A. No outflow B. Onto the table
C. Onto the robotic arm D. Into the other container.

Model Response: D--The sequence of images shows a robotic arm holding a container with liquid. The arm is tilting the container
towards a glass on the table. The position and angle of the container suggest that the liquid is being poured into the glass.The glass is
positioned directly under the spout of the container, indicating the intended target for the liquid. Thereis no indication o the liquid spilling

onto the table or the robotic arm.

Ground Truth: B Mermaid Flow:

A: Measuring Cup Position:

Away from glass —> E: Measuring Cup's Liquid

Flow: Onto the table

0: Measuring Cup

A: Measuring Cup Status:
Tilted

Figure 10: Sample cases of Anticipation-Fluid Flow
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Anticipation: Intention Speculation

Question 1:

What will the person's next move be?

Option:
A. Pick up cafetiere plunger B. Pick up cutlery
C. Close cupboard D. Put plate into cupboard

Model Response: D--The sequence of images shows a person in a kitchen. In the first image, they are near a sink with a drying rack.
In the second image, they are holding a clean plate. In the third image, they open a cupboard containing plates. In the fourh image, they are
holding the plate near the cupboard. In the fifth image, they are about to place the plate into the cupboard. The logical next step is to put the
plate into the cupboard.

Ground Truth: C Mermaid Flow:

Im'—} E: Person's Current Action:
Put hand on cupboard
E: Person's Next Action:

0: Cuphoard

Close cupboard
| A: Cupboard's Status: Open I—/

Question 2:

‘What step will the person take next?

Option:
A. Open fridge B. Close fridge
C. Move bottle to the second hand D. Pick up towel

Model Response: A--In the first image, the person is holding a blue container near the sink. In the subsequent images, the person is
moving towards the fridge while still holding the container. The final image shows the person standing directly in front of he fridge,
suggesting the next logical step is to open it.

Ground Truth: A Mermaid Flow:

E: Person's Current Action:

Reach for fridge —\

0: Person |—>

E: Person's Next Action:

Open fridge
A: Fridge State: Closed |—/

Figure 11: Sample cases of Anticipation-Intention Speculation
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Goal Orientation : Object Relocation

Question 1:

To cover the bowl of flour with the lid, in which direction should the hand move?

Option:
A. Right B. Left
C. Forward D. Upward

Model Response: B The image shows abowl with a lid placed to the right of it. To cover the bowl with the lid, the hand should
move the lid towards the bowl. Since the lid is on the right side of the bowl, the hand should move left to place the lid over the bowl.

Ground Truth: B Mermaid Flow:

A:Lid's position relative to
bowl: Right

E: Cover bowl with lid

E: Adjust hand position

Question 2:

To place the blue cup into the pink basket, in which direction should the hand move?

Option:
A. Right B. Forward
C. Left D. Backward

Model Response: B-The image shows ahand holding a blue cup neara pink basket. The basket is positioned with its opening facing
the hand. To place the cup into the basket, the hand needs to move towards the basket's opening. The basket is directly in font of the hand,

so the hand should move forward. The direction\"forward\" aligns with moving towards the basket's opening.

Ground Truth: A Mermaid Flow:

0:Blue cup
0: Pink basket

A: Blue cup's position
relative to pink basket: Left

E: Hand action

E: Place cup into basket

Figure 12: Sample cases of Goal Orientation-Object Relocation
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Goal Orientation: Tool Selection

Question 1:

Which tool will be used to install the Rashult assemble bracket by tightening the screws?

Option:
A. Phillips screwdriver B. Flathead screwdriver
C. Allen key D. Wrench

Model Response: A-The image shows aclose-up of a hand holding a bracket with visible screws. The screws have a cross-shaped

d

i ion, which is ch istic of Phillips screws. This indicates that a Phillips screwdriver is needed to tighten them There are no

hexagonal or flathead features visible that would suggest the use of an Allen key, flathead screwdriver, or wrench.

Ground Truth: A Mermaid Flow:

| O:Rashult bracket }—P

A: Needs installation

A: Requires tightening
A: Phillips screwdriver

Question 2:

‘Which tool will be used to disassemble the MARIUS stool by loosening its screws?

Option:

A. Allen key with handle (looped hex key) B. Phillips screwdriver

C. Flathead screwdriver D. Wrench

E: Bracket is installed
securely

Model Response: D--The image shows a person using a wrench to loosen a bolt on the underside of a stool. The bolt is hexagonal,

which is typically loosened with a wrench. There is no indication of a hex key, Phillips, or flathead screwdriver being used. The presence of

a wrench in the person's hand confirms that this is the tool being used for disassembly.

Ground Truth: A Mermaid Flow:

‘ 0:MARIUS stool I—V

A: Requires disassembly

A: Requires loosening

E: MARIUS stool is
disassembled successfully

A: Allen key with
handle(looped)

Figure 13: Sample cases of Goal Orientation-Tool Selection
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Goal Orientation: Behavior Selection

Question 1:

Which direction should he move to get past the defender in soccer ?
Option:

A. Left B. Right

Model Response: B-The image shows asoccer playerin a white jersey attempting to maneuver past adefender in a green and black jersey.
The player in white is using his right foot to control the ball, and the defender is positioned directly in front of him. Thedefender's stance and
position suggest that moving to the left would be more challenging due to the defender's proximity. Moving to the right appeas to be a more open
path, as the defender's body is angled slightly away from that direction, potentially allowing the player in white to bypassthe defender more easily.

Ground Truth: B Mermaid Flow:

A: Player movement
direction

E: PL t t th
0: Defender A: Defender position ayer gets past the
defender

| 0: Ball }—P‘ A: Ball control state

Question 2:

Which direction should the teammate in red clothing move to position themselves properly during the
offensive and defensive confrontation?

Option:

A. Left B. Right

Model Response: B-The image shows aplayer in red attempting to tacklea player in white and blue. The player in red is bent over,
indicating they are engaged in a defensive action. To position themselves properly, the teammate in red should move to the right to support

the tackle and cover any potential escape routes for the player in white and blue.

Ground Truth: B Mermaid Flow:

0: Player A: Align movement direction

E: Player lines up correctly

| 0: Line of scrimmage |—> A: Reference position }—»

0: Ball A: At line of scrimmage

Figure 14: Sample cases of Goal Orientation-Behavior Selection
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Goal Orientation: Trajectory

Question 1:

To score and hit the left side of the rim, in which direction should the shot be shifted?

Option:
A.Up B. Down
C. Left D. Right

Model Response: C—-The sequence of images shows a basketball being shot towards the hoop. In the final frames, the ball is
approaching the center of the hoop. To hit the left side of the rim, the shot needs to be adjusted horizontally. Since the bdl is currently
centered, shifting the shot to the left would make it hit the left side of the rim.

Ground Truth: C Mermaid Flow:

E: Current shot: Make a

switch _\

E: Target Shot: Hit the left

side of rim
E: Shifting shot direction l—/

Question 2:

To score, in which direction should the shot be adjusted?

Option:
A.Up B. Down
C. Left D. Right

Model Response: C—In the sequence of images, the basketball is seen approaching the hoop. In the final frames, the ball is slightly to

theright of the hoop. This indicates that the shot is likely to miss on the right side. Therefore, to increase the chances d scoring, the shot
should be adjusted to the left.

Ground Truth: D Mermaid Flow:

E: Current shot: The ball

trajectory is left of the
basket \

E: Target Shot: The shot
should touch the basket

hot position adjust ’—/

Figure 15: Sample cases of Goal Orientation-Trajectory
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Intervention: Spatial Manipulation

Question 1:

If the player wearing blue stands 2 meters away from the player in yellow instead of standing right in front of
her, will he still be able to intercept the ball?

Option:

A. Yes. B. No.

Model Response: B—In the sequence of images, the player in blue is closely guarding the player in yellow, who is attempting to pass
the ball. The blue player's proximity allows for a successful interception attempt. If the blue player were to stand 2 metersaway, the

increased distance would reduce the likelihood of intercepting the ball due to the decreased ability to react quickly to thepass. The close

proximity is crucial for the interception, as it allows the blue player to immediately contest the pass.

Ground Truth: B Mermaid Flow:

: Player in yellow l—\
A: Defender position

E: Intervention: Defender
stands 2m away 0: Ball A: Interception possibility

A: Passing/Shooting lane
openness

0: Player in blue

A: Interception success

Question 2:

If the player in white jumps 0.2 meters higher when he tries to contest for the possession of the ball, will he
successfully touch the basketball ?

Option:

A.Yes B. No

Model Response: A-In the sequence of images, the player in white is attempting to jump for the basketball during the tip-off. In the

final image, the player in white is very close to the ball but does not appear to touch it. If he jumps 0.2 meters higher, itis likely that he will

successfully reach and touch the basketball, as the additional height would compensate for the small gap observed.

Ground Truth: A Mermaid Flow:

0: Basketball l-“
0: Player in white |—\ | A: Vertical overlap with ball ]—»I A: Ball contact: Yes / No
| A: Jump height l—/

E: Intervention: Jump 0.2m
higher

Figure 16: Sample cases of Intervention-Spatial Manipulation
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Intervention: Action Substitution

Question 1:

Based on the position and motion of both the offensive and defensive players, would the shooter have a higher
or lower chance of being blocked if she jumps forward while taking the shot? Option:

A. higher B. lower

Model Response: A-In the first image, the offensive player in blue is preparing to shoot with a defender in yellow closely positioned
in front. In the second image, the shooter is starting to jump, and the defender is also preparing to jump. In the third image, the defender is in
theair, closely contesting the shot. In the fourth image, the defender's hand is near the ball, indicating a strong contest.In the fifth image, the

defender's hand is very close to the ball, suggesting a high chance of blocking. The shooter's forward motion would bring hercloser to the

defender, increasing the likelihood of a block.
Ground Truth: A Mermaid Flow:

E: The shooter jumps
forward while taking the g
shot

A: Ball's angle of projection

E: Shooter has a higher

A: The ball's traject ’
© batls trajectory chance of being blocked

Question 2:

Is it likely that the player in yellow could still receive the ball if it were passed 50 cm more to the right from the current
trajectory?

Option:

A.Yes B. No

Model Response: A-In the sequence of images, the player in yellow is running towards the basket while the player with the ball is also moving in
the same direction. The ball is currently being dribbled by the player in yellow, indicating control over the ball. The playa in yellow is ahead of the
defenders and has a clear path. If the ball were passed 50 cm more to the right, it would still be within reach of the playerin yellow, given their proximity

and forward momentum. The player in yellow appears to bein a position to adjust and receive the ball even if it deviates slghtly from the current trajectory.

Ground Truth: A Mermaid Flow:

E: The player is likely to

A: The ball's trajectory receive the ball

E: The ball is passed 50cm _/

more to te right

Figure 17: Sample cases of Intervention-Action Substitution
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Intervention: Temporal Shifting

Question 1:

If the shooter delays the shot by 1 second while staying in the air, what will happen?

Option:

A. The ball is blocked by the defender. B. The shot still goes cleanly toward the basket.

C. The player lands before releasing, causing a turnover.

Model Response: C--The image shows a basketball player in mid-air attempting a shot with a defender closely contesting. The defender's arm is extended,
and they are in a position to potentially block the shot. If the shooter delays the shot by 1 second while staying in the air it is likely that the defender will have

more time to react and block the shot. Additionally, staying in the air foran extra second is unrealistic due to gravity, suggesting the player would land before

releasing the ball, causing a turnover.

Ground Truth: A

STARJIVE

Mermaid Flow:

0: Shooter

A: Shot timing

E: Delay shot by 1s while in __/

air

A: Defensive contest
opportunity

Question 2:

If player 14 waits 2 seconds longer to catch the ball, will he still successfully receive the ball?

Option:

A.No. B.Yes.

Model Response: A-In the first image, player 14 is positioned to receive the ball. In the second image, the ball is in the air, moving
towards player 14. By the third image, player 14 is closer to the ball, indicating it is still on its way. In the fourth imag, the ball is nearing

player 14, but other players are also approaching By the fifth image, player 14 is about to receive the ball, but opponentsare closing in. If

player 14 waits 2 seconds longer, the opponents will likely intercept the ball before it reaches him.

Ground Truth: A Mermaid Flow:

E: Intervention: Delay

catching the ball by 2s \
0: Player 14

A: Catching timing

A: Receive success

A: Defender distance /
pressure

Figure 18: Sample cases of Intervention-Temporal Shifting
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Intervention: Viewpoint Transformation

Question 1:

Where is the red pipeline in the first image located relative to the camera view in the second image ?

Option:

A. front B. left

C. below

Model Response: B—In the first image, the red pipeline s visible on the wall above the table and near the door. In the second image, the camera is
positioned further down the hallway, looking back towards the area where the table and yellow boxes are located. The red pipdine is not directly visible in the

second image, but based on the perspective, it would be located to the left of the camera view, as the camera is facing downthe hallway away from the wall

where the pipeline is mounted.

Ground Truth: A Mermaid Flow:

oy

I 0: Camera I—»I A: Camera location }_\A
| 0: Reference object |—>| A: Reference object location I-——v

E: Viewpoint
transformation: Rotate
clockwise for 90 degree

A: Location in first image: A: Location in second
Front image: Front

Question 2:

‘Where is the ottoman in the first image located relative to the camera view in the second image? Option:
A.right B. back

C. front D. left

Model Response: D-In the first image, the ottoman is positioned to the right of the green recycling bin. In the second image, the
camera is facing the bins from the side, with the green bin visible behind the blue bin. Since the ottoman is to the right ofthe bins in the first

image, and the camera in the second image is facing the bins from the side, the ottoman would be located to the left of the amera's view in

the second image.

Ground Truth: C Mermaid Flow:

. I 0: Camera }—b
| 0: Reference object I—b

A camers ocaton. |——

A: Reference object location

A: Location in first image: A: Location in second
-Q/ -

E: Viewpoint
transformation: Rotate
clockwise for 90 degree

Figure 19: Sample cases of Intervention-Viewpoint Transformation
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Perception: Optics

Question 1:

Where is the object chair located with respect to camera's view?

Option:
A. Front Left B. Front Right
C. Back Left D. Back Right

Model Response: D--The image shows a book in front of a mirror, with a chair visible in the reflection. The chair is located in the background, to the right

side of the image. Since the chair is in the reflection, it is positioned behind the camera's view. Therefore, the chair is beated at the back right with respect to

the camera's view.

Ground Truth: D Mermaid Flow:

AN ~

A

A: Visibility: Chair is not A: Location: Chair is

visible in actual scene but —»| located at the Back Right of
visible in mirror the camera

A: Angle: The mirror is
angled from front-right to
back-left

O:Mirror

Question 2:

Where is the object box located with respect to camera's view?

Option:
A. Front Left B. Front Right
C. Back Left D. Back Right

Model Response: A--The image shows a box with a mouse graphic and text on it. The box is positioned towards the left side of the

image. The camera's view captures the box in the foreground, indicating it is closer to the camera. The orientation and placanent suggest

that the box is located in the front left of the camera's view.

Ground Truth: C

[
9

Mermaid Flow:

T~

y

A: Visibility: Box is not
visible in actual scene but
visible in mirror

A: Location: Box is located
at the Back Left of the
camera

O:Mirror

A: Angle: The mirror is
angled from front-left to
back-right

Figure 20: Sample cases of Perception-Optics
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Perception: Containability

Question 1:

If we have two identical glasses vases with same shape, like the one shown in the image, can they be nested into each other
properly?

Option:

A. Yes. B. No.

Model Response: A--The image shows a glass vase with a wide opening and a narrow base. For two identical vases to be nested, the opening must be
wide enough to accommodate the base of the other vase. Since the vase has a narrow base and a wide opening, it is likely thatthey can be nested into each other
properly.

Ground Truth: B Mermaid Flow:

0: Glass vase A: Can be nested?: No
E: Nesting: Get stuck
A: Shape: Narrower opening
and wider body

Question 2:

If we have two identical cups with same shape, like the one shown in the image, can they be nested into each
other properly?

Option:

A.Yes B. No

Model Response: A-The image shows a glass with a Bloody Mary and a celery stick. The glass appears to have straight sides and a
uniform shape, which typically allows for nesting. Glasses with straight sides and no protrusions or handles can usually be rested into each

other properly. Therefore, two identical cups with the same shape as the one shown should be able to nest into each other.

Ground Truth: A Mermaid Flow:

cup
E: Nesting: No get stuck
A: Shape: Narrower opening

and wider base

Figure 21: Sample cases of Perception-Containability
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Perception: Scene Reconstruction

Question 1:

Will the ball cross the sideline?
Option:

A.Yes B. No

Model Response: A--The image shows asoccer match with the ball in mid-air. The ball is being played towards the right side of the field. The sideline is
visible on the right, and the ball appears to be moving in that direction. The trajectory of the ball suggests it is headingtowards the sideline. There are no players
immediately near the ball to intercept it before it crosses the line. The angle and height of the ball indicate it is likely to continue its path towards the sideline.

Mermaid Flow:

Ground Truth: B

/—> E: Cross sideline

0: Ball A: Trajectory: Rolling slowly

\ E: Not cross sideline

Question 2:

If the bottle were pushed gently off the edge of the table, in which direction would it most likely fall?
Option:
A. To the ground directly below the table's edge. B. Towards the drainpipe. C. Towards the plant.

Model Response: A-The bottle is placed near the edge of a table, and the ground directly below is visible. The drainpipe and the plant
are located further away from the table's edge. If the bottle is pushed gently offthe edge, it will most likely fall straight down due to gravity,

landing directly below the table's edge. The other options are further away and would require additional force or direction b reach.

Ground Truth: A Mermaid Flow:

A: Gravity: The force
pulling the bottle
downwards \

E: Falling: The bottle falls

from the table

Figure 22: Sample cases of Perception-Scene Reconstruction
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Perception: Mechanics Reasoning

Question 1:

What is the direct cause of the toothbrush moving from the green t-shirt to the hand?

Option:

A. The purple shirt being placed on top of the green t-shirt. B. The hand picking up the toothbrush.
C. The toothbrush resting on the green t-shirt.

Model Response: B-The sequence of images shows a toothbrush initially resting on a green t-shirt. In the third image, a hand appears near the toothbrush.

In the fourth image, the hand is holding the toothbrush, lifting it from the t-shirt. By the fifth image, the toothbrush is clearly in the hand. The direct cause of the
toothbrush moving from the green t-shirt to the hand is the action of the hand picking it up.

Ground Truth: A Mermaid Flow:

0: Toothbrush

A: Picking up force: A force
is applied by the hand to
lift the toothbrush

Question 2:

‘What is the primary cause of the flip-flop being lifted from the floor?

Option:

A: The weight of the flip-flop. B: The pulling force applied by the hand.

C: Friction between the flip-flop and the floor.

Model Response: B-The sequence of images shows a hand interacting with a pair of flip-flops on the floor. Initially, the flip-flops are
stationary on the floor. As the hand makes contact and begins to pull, the flip-flops start to lift from the floor. The consistent presence of the hand

pulling the flip-flops in each frame indicates that the primary cause of the flip-flops being lifted is the pulling force applied by the hand. There is no
indication that the weight of the flip-flops or friction is causing the lift.

Ground Truth: B Mermaid Flow:

A: Pulling force: An upward
force applied by the hand ~ f—| 0: Flip-flop
to lift the flip-flop

A: Friction: Force resisting
the motion between the
flip-flop and the floor

Figure 23: Sample cases of Perception-Mechanics Reasoning
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were entirely conceived and conducted by the authors. The LLM did not contribute to the design
of the framework, the experimental results, or the interpretation of findings. All scientific content
remains the responsibility of the authors.
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