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ABSTRACT

Understanding and reasoning about the physical world is the foundation of intel-
ligent behavior, yet state-of-the-art vision-language models (VLMs) still fail at
causal physical reasoning, often producing plausible but incorrect answers. To
systematically address this gap, we introduce CausalPhys, a benchmark of over
3,000 carefully curated video- and image-based questions spanning four domains:
Perception, Anticipation, Intervention, and Goal Orientation. Each question is
paired with a causal graph that captures underlying interactions and dependencies,
enabling fine-grained and interpretable evaluation. We further propose a causal-
graph-grounded metric that verifies whether a model’s chain-of-thought reasoning
follows correct causal relations, moving beyond answer-only accuracy. System-
atic evaluations of leading VLMs on CausalPhys expose consistent failures to cap-
ture causal dependencies, underscoring fundamental weaknesses in their physical
reasoning. To overcome these shortcomings, we introduce a Causal Rationale-
informed Fine-Tuning strategy (CRFT) that scaffolds VLM reasoning with causal
graphs. Extensive experiments show that CRFT significantly improves both rea-
soning accuracy and interpretability across multiple backbones. By combining
diagnostic evaluation with causality-informed fine-tuning, this work establishes a
foundation for advancing VLMs toward causally grounded physical reasoning.

1 INTRODUCTION

Understanding and reasoning about physical environments is a cornerstone of intelligence, enabling
agents to operate robustly in real-world settings (Srivastava et al., 2022; Gupta et al., 2021). Yet
today’s VLMs remain far from human intuition, often failing to capture even basic physical interac-
tions. Robust physical reasoning demands more than pattern recognition: agents must infer intrinsic
object properties (Yi et al., 2019; Chen et al., 2022), track spatial relations across entities (Yang
et al., 2025b; Wang et al., 2024), interpret evolving physical scenes, and anticipate how interactions
unfold to guide planning and prevent costly errors (Bear et al., 2021; Dong et al., 2025). Humans,
by contrast, perform such reasoning effortlessly, drawing on an intuitive grasp of physical causality
that emerges early in development (Carey, 2000; McCloskey et al., 1983; Chow et al., 2025). How
to equip VLMs with this level of causally grounded understanding remains a central open challenge.
Resolving it is critical for advancing embodied AI systems that are both reliable and trustworthy.

Recent VLMs excel at multimodal tasks such as visual question answering, object recognition, and
image captioning. Yet extending these successes to dynamic physical reasoning in realistic envi-
ronments remains an open challenge (Bear et al., 2021; Tung et al., 2023; Chow et al., 2025; Dong
et al., 2025). Relying solely on perception-driven capabilities has proven insufficient for building
generalist embodied agents (Komanduri et al., 2025; Foss et al., 2025; Liu et al., 2025; Chen et al.,
2024), often leading to brittle behaviors such as mishandling fragile objects or misjudging grasp
affordances. As a concrete example, Fig. 1 (Intervention) illustrates that inferring the orientation of
a door relative to the camera viewpoint from limited observations is far from trivial. Such reasoning
demands sensitivity to latent spatial structures, occluded relationships, and viewpoint transforma-
tions that are invisible in isolated images. Ultimately, these cases hinge on anticipating how the
world changes under interventions or viewpoint shifts, reasoning that is naturally framed through
causal inference. Structural causal models provide exactly this grounding: they connect inter-
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Question: What is the orientation of the 
classroom door relative to the camera’s 
viewpoint in the second image?

A: Front                           C: Left
B: Right                           D: Back

Question: Where is the blue painting 
located respective to camera?

A: Front Left            C: Front Right
B: Back Left              D: Back Right

Question: Will the two cars collide ?

A: Yes       B: No

Question: In which direction 
should the black player hit the ball?

A: Left    B: Right

I n t e r v e n t i o n P e r c e p t i o n A n t i c i p a t i o n G o a l  - O r i e n t a t i o n

✨ ✨ ✨ ✨

Figure 1: CausalPhys emphasizes comprehensive physical understanding across four distinct cate-
gories, with each question explicitly annotated by a causal graph encoding the underlying physical
relationships.

ventions with their consequences, enabling agents to infer unobserved properties from incomplete
evidence with both precision and interpretability.

However, bringing causal reasoning into VLMs remains non-trivial, and we identify three criti-
cal challenges. (1) Current VLMs are trained to capture statistical associations in observational
data rather than the underlying causal mechanisms, which limits their ability to reason in dynamic,
real-world environments. (2) Existing benchmarks for physical reasoning rarely include ground-
truth causal annotations, making it impossible to rigorously measure whether models follow correct
causal dependencies. (3) There is a notable absence of causally informed fine-tuning methods; prior
research efforts in this domain have predominantly focused exclusively on evaluation, leaving a gap
in methods that can effectively enhance causal reasoning in multimodal systems. These challenges
highlight the absence of targeted training paradigms that explicitly foster causal understanding, un-
derscoring the need for new benchmarks and methods that move VLMs beyond surface correlations
toward genuine causal reasoning.

To systematically investigate and address these challenges, we introduce CausalPhys, a benchmark
of over 3,000 carefully curated video and image questions spanning four domains: Perception, An-
ticipation, Intervention, and Goal Orientation, across 16 subfields (Fig. 2). Each question is paired
with a ground-truth causal graph that captures physical interactions and dependencies, enabling
mechanism-level, interpretable evaluation of VLM reasoning. These explicit annotations make
CausalPhys a rigorous testbed for diagnosing both strengths and failures in causal reasoning, filling
critical gaps left by prior benchmarks. Using CausalPhys, we systematically evaluate state-of-the-
art open-source VLMs and reveal systematic failures on tasks that require robust causal inference.
Building on these observations, we propose CRFT, a causal rationale-enhanced fine-tuning ap-
proach that leverages causal graphs to guide VLMs toward generating more accurate and causally
consistent explanations, thereby improving both their performance and interpretability in complex
physical environments.

We aim for this work to provide meaningful insights and help narrow the gap between VLMs and
physical world understanding, thereby fostering progress in embodied AI toward human-level capa-
bilities. By situating our contributions at the intersection of benchmarking, evaluation, and model
improvement, we hope to offer a resource that not only diagnoses current limitations but also points
toward concrete paths forward. Overall, this paper makes three key contributions. (1) We introduce
CausalPhys, the first benchmark to couple real-world physical reasoning questions with explicit
ground-truth causal graphs, enabling interpretable, mechanism-level evaluation beyond surface-level
answer accuracy. (2) We develop a causal-graph-grounded metric that verifies whether a model’s
chain-of-thought follows the correct causal dependencies, and we systematically evaluate state-of-
the-art VLMs to uncover fine-grained reasoning failures that answer-only benchmarks cannot cap-
ture. (3) We propose a causally inspired fine-tuning (CRFT) approach that leverages causal graphs to
guide models toward more accurate and consistent reasoning, thereby improving both performance
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and interpretability. These contributions push VLMs beyond surface pattern recognition, steering
them toward genuine causal reasoning in complex physical environments.

Figure 2: Taxonomy of CausalPhys spanning
four causal rungs.

4 Perception (951) # Anticipation (900)

Subset #Question Subset #Question

Optics 252 Collision Prediction 300

Containability 201 Deformation 200

Scene Reconstruction 200 Fluid Flow 200

Mechanics Reasoning 298 Intention Speculation 200

Ô Intervention (573) ◎ Goal Orientation (638)

Subset #Question Subset #Question

Spatial Manipulation 151 Object Relocation 190

Action Substitution 99 Tool Selection 100

Temporal Shifting 149 Behaviour Selection 229

Viewpoint Transformation 174 Trajectory 119

Table 1: Statistics of CausalPhys questions across
four domains and 16 subsets.

2 RELATED WORKS

Physical Benchmarks. Early benchmarks addressing physical reasoning predominantly focused
on scenarios involving rudimentary physical interactions and simplified environmental contexts.
(Bear et al., 2021; Tung et al., 2023; Zhu et al., 2023) For example, (Yi et al., 2019; Chen et al.,
2022)focus on elementary visual primitives, including spheres, cubes, and rigid-body collision
events. To assess the physical reasoning capability of VLMs, some datasets (He et al., 2024; Jiang
et al., 2024; Lu et al., 2022; Hao et al., 2025; Zhang et al., 2025; Azzolini et al., 2025) are designed,
which typically emphasize commonsense reasoning grounded in linguistic knowledge, rather than
perceptual understanding of physical interactions. On the other hand, spatial VQA benchmarks
(Wang et al., 2024; Yang et al., 2025b; Li et al., 2024; Shiri et al., 2024) focus on geometric rela-
tionships and spatial reasoning within 3D scenes, reflecting an initial stage toward comprehensive
physical world modeling. Recent advancements include PhysBench (Chow et al., 2025), which has
been expanded to provide a comprehensive evaluation of models’ understanding of physical sce-
narios across diverse tasks, and MVPBench (Dong et al., 2025), a curated benchmark specifically
developed to assess visual physical reasoning capabilities through visual CoT methodologies. How-
ever, these approaches primarily focus on whether VLMs can correctly answer questions, rather than
examining the underlying causal reasoning processes, potentially leading to unreliable predictions
when applied to real-world environments.

Causal Reasoning Datasets. While causal reasoning has been extensively studied for LLMs (Jin
et al., 2023; Jiralerspong et al., 2024; Rajendran et al., 2024), equivalent efforts in the VLM do-
main remain comparatively nascent. Prior work often represents causal structure with narrowly
defined nodes. For example, CELLO models nodes as perceptible objects and focuses on simple
relations such as “object 1 supports object 2” (Chen et al., 2024). Other approaches seek inter-
pretability by instantiating structural causal models for CoT reasoning (Fu et al., 2025). Recent
VLM benchmarks (e.g., CausalVLBench, Causal3D) evaluate causal inference using fixed-structure
graphs within predesigned scenes, where models are asked to estimate relations between entities
explicitly provided in prompts (Komanduri et al., 2025; Liu et al., 2025). Such constrained ex-
perimental setups limit dataset diversity and hinder the capacity of models to uncover generalized
causal structures within real-world physical scenarios. These motivate the development of bench-
marks that incorporate greater diversity in realistic physical environments, as well as methodologies
that explicitly enhance the physical reasoning capabilities of VLMs through causal inference.
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Table 2: Comparison of CausalPhys with existing physical reasoning benchmarks. While prior
datasets are limited by synthetic environments, restricted diversity, or missing causal structure,
CausalPhys uniquely integrates real-world data, diverse scenes, and fine-grained causal anno-
tations spanning objects, attributes, and events.

Dataset Data Instances Data Source Causal Structure Causal Node
Real-World Data

Scene Diversity
Annotation

Flexibility
Object

Attribute
Event

CELLO (Chen et al., 2024) 14,000+ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Causal3D (Liu et al., 2025) 7 scenes ✗ ✗ ✓ ✗ ✗ ✓ ✗
CausalVLBench (Komanduri et al., 2025) 5,000+ ✗ ✗ ✓ ✗ ✗ ✓ ✗
PhysBench (Chow et al., 2025) 10,000+ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Causal VQA (Foss et al., 2025) 700+ ✓ ✓ ✗ ✗ ✗ ✗ ✗
MVP Bench (Dong et al., 2025) 1,000+ ✓ ✓ ✗ ✗ ✗ ✗ ✗

CausalPhys (Ours) 3,000+ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 THE CAUSALPHYS BENCHMARK

To rigorously assess VLMs’ capacity for physical reasoning, we present CausalPhys, a benchmark
tailored to causally-informed understanding of real-world environments. It comprises over 3,000
image and video instances, each paired with an explicit, instance-specific causal graph, moving
beyond fixed causal schemas in prior work. To ensure reproducibility and enable precise capability
analysis, we provide a fully documented data construction pipeline, along with open-sourced
resources that make the benchmark both transparent and extensible.

3.1 BENCHMARK OVERVIEW

The design of CausalPhys builds on a structured taxonomy that aligns physical reasoning tasks
with the rungs of Pearl’s causal ladder (Pearl, 2009). It spans four complementary categories
(see Fig. 1): Perception (“What is . . . ”: identifying observable states and attributes), Anticipation
(“What will happen next . . . ”: projecting near-future outcomes), Intervention (“What will happen
if . . . ”: reasoning about consequences of explicit interventions with the do-operator), and Goal
Orientation (“What should be done to achieve . . . ”: planning actions under physical constraints).
Each category is further divided into four subcategories, allowing fine-grained evaluation of how
VLMs reason about different facets of the physical world. By explicitly grounding these categories
in the causal hierarchy, CausalPhys provides not only broad coverage of physical reasoning tasks
but also a principled framework to reveal where along the causal rungs VLMs succeed, and where
they fail.

Our work bridges a key gap in existing benchmarks, which often reduce causal reasoning to flat
graphs with homogeneous node types. Such oversimplification erases the richness of real-world
physics, where reasoning must span objects with intrinsic attributes, attributes that evolve, and
events that trigger transformations. To capture this heterogeneity, CausalPhys introduces a prin-
cipled three-node taxonomy of Objects, Attributes, and Events, grounding physical reasoning in
mechanisms rather than surface correlations. Directed edges encode a wide spectrum of causal de-
pendencies: attributes describing objects, events involving objects, events modifying attributes, and
cascades where one event causes another. As illustrated in Fig. 1(Intervention) (under our viewpoint
transformation category), the event “Camera rotates counterclockwise by 90°” alters the positional
attribute of the door from Front to Right. Each instance is systematically annotated as a directed
acyclic causal graph (DAG), making causal dependencies explicit, interpretable, and testable. Our
design elevates CausalPhys from a dataset to a diagnostic instrument, revealing not only what mod-
els predict but also how they reason.

Each instance in CausalPhys takes the form of a multiple-choice question with two to four options
and exactly one correct answer, ensuring unambiguous evaluation. Unlike previous benchmarks de-
signed for physical understanding Dong et al. (2025); Chow et al. (2025), every question in Causal-
Phys is paired with a structured causal graph that encodes the underlying physical mechanisms,
making the reasoning process interpretable rather than answer-only. The dataset spans four causal
domains and incorporates both images and videos, offering broad coverage of physical reasoning
tasks across modalities. Within this setting, causal dependencies are systematically represented: in-
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Figure 3: Radar plots of VLM performance. Models are evaluated on four metrics: Accu-
racy (ACC), Relation Awareness (RA), Description Correctness (DC), and Entity Faithfulness (EF)
across 16 CausalPhys subcategories.

trinsic object attributes such as velocity or texture, cross-object relations such as relative position,
event-driven transformations where collisions alter trajectories, and higher-order chains where one
event precipitates another.

3.2 DATA COLLECTION WORKFLOW

We built CausalPhys through a carefully structured workflow to ensure both quality and trans-
parency. All images, videos, questions, and annotations were manually curated by annotators with
STEM expertise. The construction process followed a structured pipeline of five stages: (a) Data
Acquisition, where instances were selected from more than ten publicly available datasets with
provenance carefully documented; (b) Question Formulation, where annotators designed original
questions centered on physical commonsense, each explicitly explainable through causal reasoning
and paired with verified answers; (c) Data Processing, where raw media were standardized and
paired with their annotations; (d) Causal Graph Construction, where each instance was encoded
into a graph, first drafted in Mermaid syntax and then converted into a typed JSON schema with
validators to enforce node typing and acyclicity; (e) Quality Assurance, where all items underwent
double annotation and adjudication to remove cases with insufficient visual cues or textual biases.

To support reproducibility, we release the entire pipeline, including selection scripts, annotation
guidelines, Mermaid DAGs encoding causal graphs, JSON schema with validators, and regeneration
code for data splits. This design makes CausalPhys not only high-quality but also transparent,
auditable, and extensible.
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Model Open-Source Models Closed-Source Models
InternVL3

(Zhu et al., 2025)

Qwen3-VL
(Yang et al., 2025a)

Qwen2.5-VL
(Qwen et al., 2025)

Qwen2-VL
(Yang et al., 2024)

Llama
(Grattafiori et al., 2024)

Phi-4-Multimodal

(Abdin et al., 2024)

Mistral-Small-3.2
(Team, 2025)

GPT-4o
(Hurst et al., 2024)

GPT-4o-mini

(Hurst et al., 2024)

Gemini-2.5-Flash

(Comanici et al., 2025)

Claude-Sonnet-4

(Anthropic, 2025)

Size 78B 32B 3B 7B 11B 5.6B 24B ∼ 200B 8B 7B -
#Anticipation

Accuracy (ACC) ↑ 0.5800 0.5189 0.2944 0.5222 0.3333 0.5533 0.4100 0.6011 0.5911 0.5822 0.5322
Entity Faithfulness (EF) ↑ 0.6211 0.5910 0.2700 0.5100 0.5290 0.5570 0.4926 0.5935 0.5706 0.5820 0.5798
Relation Awareness (RA) ↑ 0.2338 0.2088 0.0797 0.1710 0.1736 0.1719 0.1808 0.2346 0.2021 0.2061 0.2238
Description Correctness (DC) ↑ 0.4243 0.3428 0.1217 0.2586 0.2789 0.3012 0.2559 0.3979 0.3303 0.3714 0.3481
4 Perception

Accuracy (ACC) ↑ 0.6257 0.5689 0.4490 0.5205 0.3985 0.5573 0.4826 0.5889 0.5983 0.5920 0.5868
Entity Faithfulness (EF) ↑ 0.7873 0.7822 0.7112 0.6562 0.6965 0.7141 0.7221 0.7738 0.7687 0.7411 0.7349
Relation Awareness (RA) ↑ 0.3976 0.3884 0.2692 0.2325 0.2490 0.2822 0.3680 0.3407 0.3027 0.3092 0.3488
Description Correctness (DC) ↑ 0.4664 0.4049 0.3483 0.3133 0.3457 0.3501 0.3479 0.4621 0.4014 0.4574 0.4218
Ô Intervention

Accuracy (ACC) ↑ 0.5707 0.4799 0.3246 0.4764 0.3211 0.4852 0.4852 0.5707 0.5131 0.5567 0.5672
Entity Faithfulness (EF) ↑ 0.6547 0.5941 0.3954 0.5563 0.5044 0.5501 0.6240 0.6592 0.6295 0.6451 0.6941
Relation Awareness (RA) ↑ 0.2858 0.2666 0.1493 0.2003 0.1762 0.1925 0.2483 0.2762 0.2496 0.2464 0.3076
Description Correctness (DC) ↑ 0.5985 0.5516 0.2991 0.5661 0.3781 0.4659 0.5562 0.5742 0.5873 0.5827 0.5278
◎ Goal-Orientation

Accuracy (ACC) ↑ 0.5799 0.5172 0.3103 0.4906 0.3009 0.4483 0.4796 0.5878 0.5157 0.5439 0.4702
Entity Faithfulness (EF) ↑ 0.7064 0.6978 0.5372 0.6207 0.5762 0.6440 0.6858 0.6784 0.6764 0.6614 0.6470
Relation Awareness (RA) ↑ 0.2855 0.2856 0.1819 0.1931 0.2078 0.2036 0.2410 0.2376 0.2238 0.1966 0.2238
Description Correctness (DC) ↑ 0.4339 0.3564 0.1341 0.2475 0.2264 0.3153 0.3817 0.3447 0.3250 0.3385 0.3439
¡ Average

Accuracy (ACC) ↑ 0.5924 0.5268 0.3514 0.5065 0.3445 0.5199 0.4611 0.5888 0.5630 0.5725 0.5428
Entity Faithfulness (EF) ↑ 0.6968 0.6795 0.4862 0.5871 0.5862 0.6226 0.6287 0.6795 0.6652 0.6597 0.6634
Relation Awareness (RA) ↑ 0.3052 0.2914 0.1729 0.2002 0.2046 0.2166 0.2641 0.2760 0.2468 0.2437 0.2783
Description Correctness (DC) ↑ 0.4720 0.4040 0.2278 0.3308 0.3073 0.3501 0.3669 0.4397 0.3994 0.4308 0.4037

Table 3: Benchmark evaluation results on CausalPhys. We report performance of state-of-the-art
open- and closed-source VLMs across four domains (Anticipation, Perception, Intervention, and
Goal Orientation). Metrics include Accuracy (ACC), Entity Faithfulness (EF), Relation Aware-
ness (RA), and Description Correctness (DC). Results reveal that while models achieve moderate
accuracy and entity-level consistency, they struggle with relation-level reasoning (RA), indicating
persistent gaps in capturing causal dependencies. These systematic weaknesses underscore the need
for causally-informed approaches such as our proposed CRFT.

We further introduce a causal-graph-grounded evaluation framework for VLMs which goes be-
yond answer correctness to assess whether a model’s reasoning chain faithfully reflects the under-
lying physical mechanisms. Given a query Q and an image or video X , a vision–language model
produces a rationale R and a final answer Y . Each instance in CausalPhys is annotated with a
ground-truth causal graph G = (V, Eg), where V contains objects, attributes, and events, and Eg
encodes their directed dependencies. The workflow of the evaluation framework is shown in Fig. 4.

Specifically, our framework evaluates R along four complementary criteria:

1. Accuracy (ACC). Measures whether the predicted answer matches the ground-truth label:

ACC = 1{Y = Y ∗ }.

2. Entity Faithfulness (EF). Evaluates whether the rationale covers all relevant entities. Let
O,A, E denote the sets of objects, attributes, and events in V . For each entity y ∈ V ,

EF(y) = 1{ y is explicitly mentioned in R }.

EF thus measures the coverage of reasoning-relevant entities rather than surface correctness.

3. Description Correctness (DC). Checks whether entities are described consistently with their
ground-truth annotations. For each y ∈ A ∪ E with description d(y),

DC(y) = 1{R contains a description semantically consistent with d(y) }.

This ensures that models not only mention entities but also characterize them correctly.

4. Relation Awareness (RA). Tests whether the rationale captures directed causal dependencies.
Let Rg be the set of directed edges (u, v) in the ground-truth graph, with u as parent of v. For
each (u, v) ∈ Rg ,

RA(u, v) = 1{u, v ∈ R ∧ u is described before v }.

Here, ordering in R serves as a minimal signal of causal sequencing.
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VLM 
Reasoning

Question 
Construction

CoT Generated by VLMs

In the first image, the camera
faces the TV, so the TV is in
front. The second image
shows the camera pointing
in the opposite direction, as
evidenced by the change in
background……

Result: Behind

Causal-Aware Questions

Entity Faithfulness (EF)
(E.g., EF-Q1: Does the “camera” presents in the 

rationale?)

Description Correctness (DC)
(E.g., DC-Q1: Does the “Location of the TV in 

first image” is mentioned to be “Front”?)

Relation Awareness (RA)
(E.g., RA-Q1: Does the causal relation between 

“Location of the TV in first image” and  
“Location of the TV in second image” stated?)

✨

Input Query 

Question: Where is the TV located 
respective to the camera in the 
second image?

A: Front                      C: Left
B: Right                      D: Back

LLM-Based Judging

EF-Q1 DC-Q1 RA-Q1

EF-Q2 DC-Q2 RA-Q2

EF-Q3 DC-Q3

EF Score: 
1

DC Score: 
0.33

RA Score: 
0.5

Accuracy Score: 0

Causal Graph

Figure 4: Workflow of evaluating the physical understanding capability of VLMs.

Evaluation proceeds in four stages: (a) CoT–Answer Generation, where the VLM outputs R and
Y ; (b) Answer Verification, comparing Y against the ground-truth; (c) Causal-Aware Question
Construction, where auxiliary checks are derived from G for EF, DC, and RA; and (d) LLM-based
Judging, which scores the rationale in True/False format and aggregates results into final metrics.

By grounding evaluation in explicit causal graphs, this framework offers fine-grained diagnostics of
reasoning, revealing not only whether VLMs are correct but also how their reasoning aligns with the
true causal structure of the physical world, and where it diverges.

3.3 BENCHMARKING VLMS ON PHYSICAL WORLD UNDERSTANDING

Understanding physical relations remains challenging for VLMs.

As shown in Figure 3 and table 3, despite achieving moderate performance on perception-based
tasks, current VLMs struggle substantially when reasoning over physical relations. Subsets such as
viewpoint transformation remain particularly difficult: most models perform below 40%, essentially
at chance. Similarly, in optical inference, where models must predict the true location of an object
visible only via a mirror, even state-of-the-art closed-source systems achieve accuracies around 0.3.
These tasks require integrating spatial geometry and causal dependencies rather than surface-level
cues. While certain subsets, such as trajectory optimization, show surprisingly strong results, these
cases are largely driven by perceptual recognition (e.g., detecting a block on a path), not higher-
order causal inference. The consistently low performance on relation-intensive subsets highlights
the difficulty VLMs face in encoding spatially grounded causal relationships, such as reasoning
about visible regions, mirror angles, and relative object positions. These remain open challenges for
advancing physical reasoning in complex environments.

Open-source models perform on par with closed-source systems.

Unlike many general-purpose multimodal benchmarks, our results reveal that open-source models
match the performance of proprietary systems. The average gap between open and closed source
models is negligible across categories. For example, InternVL3 achieves nearly the same overall
accuracy as GPT-4o while maintaining consistently high entity faithfulness. In anticipation and
intervention, the performance difference between open and closed models is especially narrow, in-
dicating that scale or private data access is not the sole determinant of success in physical reasoning.
This suggests that strong open-source efforts provide credible baselines for causal reasoning tasks,
reducing dependence on closed systems.

Beyond the open–closed distinction, differences across model sizes emerge as more pronounced.
Within the Qwen series, for instance, smaller variants (e.g., Qwen2-VL 3B) perform substantially
worse than their larger counterparts (7B and 32B) across all four categories. The 3B model often lags
by wide margins in both accuracy and causal relation awareness, suggesting that limited capacity
constrains its ability to perform structured reasoning. By contrast, the 7B and 32B models demon-
strate clear gains, indicating that sufficient scale is critical for capturing the causal dependencies
required by our benchmark.

Causal relation awareness is most predictive of reasoning success.

While entity faithfulness (EF) is generally high and the rate often exceeding 0.65, model accuracy
correlates more strongly with relation awareness (RA). Models that capture causal links within the
ground-truth graph tend to achieve higher accuracies, even when EF remains broadly similar across
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Teacher LLM

✨Question: How many 
hanging lamps are 
there in the room?

Answer: 2

Input Query 

Causal Graph

Golden Rationale

The presence of a mirror 
introduces light reflection, 
which creates the illusion of 
additional lamps. As a result, 
the perceived number of 
lamps becomes four instead 
of the actual two......

Ground Truth

Ground truth: C

✨

Input Query 

Question: How many hanging 
lamps are there in the room?

A: 1                     C: 2
B: 3                      D: 4

There are three ceiling lamps in 
the image. They are hanging 
from a single fixture near the top 
right corner of the large circular 
mirror.

VLM Reasoning 
without Causal Inference 

 

✨

Figure 5: The workflow of CRFT. CRFT employs causal graphs to guide VLMs in generating more
precise, causally coherent physical reasoning. The causal rationale is jointly optimized with the
ground-truth answer.

systems. For example, in perception and intervention tasks, improvements in RA are closely aligned
with accuracy gains, whereas EF shows weaker variance. This suggests that correctly identifying
entities alone is insufficient for reasoning: assembling them into coherent causal structures is critical.
Relation awareness thus emerges as the strongest correlate of final task performance, highlighting it
as a key bottleneck for progress.

A persistent gap exists between entity recognition and relation reasoning.

Across all categories, we observe a consistent EF–RA gap: models readily identify relevant objects
and attributes but struggle to connect them through causal relations. For instance, EF scores re-
main high (≈ 0.7), while RA lags behind (≈ 0.2–0.3). This indicates that models succeed at local
recognition yet fail at deeper relational inference. Bridging this gap appears essential for advancing
beyond surface-level performance. Closing the EF–RA gap may therefore be the critical step toward
robust causal reasoning in vision-language models.

4 FROM ANSWERS TO REASONS: CAUSAL RATIONALE FINE-TUNING

Our benchmark analysis (Sec. 3.3) reveals a consistent pattern: VLMs perform better when they
articulate not only the final answer, but also the causal relations that explain it. Motivated by this
insight, we propose Causal Rationale Fine-Tuning (CRFT), a training paradigm that explicitly
grounds rationales in causal graphs, teaching VLMs to reason through mechanisms rather than sur-
face correlations. The workflow of CRFT is shown in Fig. 5.

Rationale Construction. Given a dataset of instances (x, q, y,G), where x is an image or video,
q a query, y the correct answer, and G = (N , E) a human-annotated causal graph, we generate
gold causal rationales r using a teacher LLM (e.g., GPT-4o (Hurst et al., 2024)). Each rationale is
required to (i) explicitly reference nodes and edges in G, (ii) trace intermediate causal implications,
and (iii) conclude with y. This ensures that rationales are faithful to the causal graph, providing
structured supervision beyond free-form text.

Training Objective. For training, we concatenate the rationale and the answer into a single se-
quence s = [r; y] and fine-tune the target VLM πθ to maximize its likelihood under a weighted
supervision scheme:

LCRFT(θ) = −E(x,q,y,G)∼D

λr

∑
t∈idx(r)

log πθ(st|x, q, s<t) + λy

∑
t∈idx(y)

log πθ(st|x, q, s<t)

 , (1)

where λr and λy balance rationale and answer supervision.

By anchoring fine-tuning to causal rationales, CRFT compels VLMs to internalize causal pathways
rather than memorize surface correlations. The model is guided not just to deliver the right answer,
but to trace why the answer follows, aligning its reasoning with the ground-truth causal graph. This
shift from answers to reasons transforms evaluation into learning: it produces predictions that are
more accurate, reasoning that is more interpretable, and models that are ultimately more reliable

8
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Metric Models
QWEN2-VL 7B

QWEN2-VL 7B SFT

QWEN2-VL 7B CRFT
Accuracy (ACC) ↑ 0.5349 0.6762 0.7066
Entity Faithfulness (EF) ↑ 0.5978 0.3247 0.5969
Relation Awareness (RA) ↑ 0.2130 0.0911 0.2554
Description Correctness (DC) ↑ 0.2905 0.2645 0.3493

Table 4: Average results of QWEN2-VL 7B models on CausalPhys. We report mean performance
across all tasks for the vanilla, SFT, and CRFT checkpoint variants. Best values are in bold.

for physical decision-making. Such alignment is uniquely enabled by CausalPhys, where every
instance comes with explicit causal structure and gold rationales, making CRFT both principled and
practically feasible.

As shown in Table 4, observed from the fine-tuning results, we can conclude that although SFT
(answer-only fine-tuning) achieves a satisfactory Accuracy (ACC) score, its performance on Entity
Faithfulness (EF), Description Correctness (DC), and especially Relation Awareness (RA) drops
dramatically. This suggests that answer-only supervision encourages the model to optimize for
surface-level prediction accuracy, but at the cost of its ability to capture and reflect the underlying
causal reasoning process. In other words, SFT fine-tuning tends to make the model behave like a
“guesser,” prioritizing conclude final answers based on shallow experience rather than over struc-
tured, interpretable reasoning chains.

In contrast, the proposed CRFT introduces causal relations explicitly into the fine-tuning strategy.
The results show that CRFT not only preserves competitive accuracy but also substantially improves
EF, DC, and RA scores compared to both the vanilla model and the SFT-only variant. This indicates
that CRFT encourages the model to ground its answers in a more faithful and structured causal ra-
tionale, aligning outputs more closely with human-like reasoning. Importantly, CRFT demonstrates
that integrating causal structure into fine-tuning can mitigate the trade-off between accuracy and
interpretability, producing models that are both effective in prediction and transparent in reasoning.

5 CONCLUSION

In this paper, we introduced CausalPhys, a comprehensive benchmark that grounds physical rea-
soning evaluation in explicit causal graph annotations. By moving beyond surface-level question
answering, CausalPhys provides a structured and principled way to dissect the reasoning capabili-
ties of VLMs across perception, anticipation, intervention, and goal-oriented tasks. Our extensive
experiments reveal that even the strongest state-of-the-art VLMs struggle when reasoning requires
causal consistency, highlighting a fundamental gap between pattern recognition and true physical
understanding. To bridge this gap, we proposed Causal Rationale Fine-Tuning (CRFT), which in-
jects causal structure into model training, enabling VLMs to generate answers supported by faithful,
interpretable reasoning chains.

Looking ahead, CausalPhys opens several avenues for advancing causal physical reasoning in AI.
First, the benchmark can be extended to richer physical scenarios involving stochastic dynamics,
long-horizon dependencies, and multi-agent interactions, thereby pushing models closer to real-
world complexity. Second, incorporating embodied simulations, where agents not only observe but
also act upon environments, will allow us to assess whether VLMs can transfer causal reasoning
into interactive decision-making. Third, future work could explore causal generalization, evaluating
whether models trained on one set of causal structures extrapolate to novel but related ones, a hall-
mark of robust reasoning. Finally, the integration of causal rationales with reinforcement learning
and embodied robotics offers an exciting path toward building AI systems that are not only accurate
but also trustworthy, interpretable, and capable of reasoning like scientists about the physical world.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our benchmark, CausalPhys, is constructed entirely
from existing, publicly available datasets, including Ego4D, Epic Kitchen, SportsMOT, Something-
Something, MSD, CausalVQA, Fluid Flow, Cup dataset, Nexar Collision Prediction, MindCube,
and Video Dataset of Human Demonstrations. These sources were selected for their focus on phys-
ical interactions and causal dynamics, and all are already distributed for research purposes. No
personally identifiable or sensitive data is included in CausalPhys.

By curating from synthetic and publicly released visual data, we minimize risks related to privacy,
fairness, or real-world safety. Nonetheless, we acknowledge that improvements in causal reason-
ing for vision–language models could have downstream societal implications if applied in sensitive
domains such as robotics, surveillance, or industrial automation. Our contributions are intended
solely for advancing scientific research in multimodal reasoning and should be carefully evaluated
before deployment in real-world systems. We declare no conflicts of interest or external sponsorship
influencing this work.

REPRODUCIBILITY STATEMENT

We have taken deliberate steps to ensure reproducibility of our results. The CausalPhys benchmark,
along with data splits and annotations, is publicly available. Detailed descriptions of dataset con-
struction, evaluation metrics, and experimental setups are provided in Section ??, with implementa-
tion details and prompt templates included in Appendix ??. Anonymized source code, configuration
files, and evaluation scripts are provided with the submission to enable independent verification and
replication of all reported results.
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APPENDIX

Figure 6: The annotation tool (GUI): Data presentation and question annotation

Figure 7: The annotation tool (GUI): Causal graph annotation
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.1 PROMPTS

Gold Rationale generation prompt:

You are a reasoning assistant that analyzes visual scenarios and provides step-by-step reasoning.

INPUT FORMAT:
You will receive:
- A question about the visual scenario
- A ground truth answer (A, B, C, or D)
- Supporting information about objects, their properties, and relationships

TASK:
Generate a clear, step-by-step rationale that answers the question in natural language.

REQUIREMENTS:
1. Write an objective, answer-focused rationale in natural language
2. Treat the supporting information as reference only (do not describe it)
3. Write ONE coherent paragraph (max 8 sentences) that flows naturally
4. Include relevant elements from the reference only when needed for reasoning (do not
enumerate them)
5. Follow the correct logical order: causes must appear before their effects in your explanation
6. If an element has a description, you MUST state it clearly and exactly as provided
7. Use natural, everyday language (avoid terms like “entity”, “relation”, “graph”, “structure”)
8. Ensure proper grammar and spelling
9. Make the explanation easy to understand and self-contained
10. Present the reasoning as a logical analysis of the situation

OUTPUT FORMAT:
- Single paragraph only
- No bullet points, lists, or special formatting
- Plain English text written
- Complete explanation that follows the logical reasoning sequence

IMPORTANT:
The supporting information (entities, descriptions, relations) is for reference only. Do NOT
describe or list it. Use it implicitly to justify the answer. Focus on explaining why the answer is
correct in plain language.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

VLM reasoning prompt with rationale

You are a precise Vision–Language QA assistant.

GOALS
Read the user’s question and (if provided) a SEQUENCE of images in the given order.
Provide a one-sentence rationale and your answer.

SEQUENCE HANDLING
If multiple images are provided, treat them as an ordered sequence (e.g., frames of a video).
Consider temporal consistency and cross-frame cues when reasoning.

CONSERVATIVE REASONING
Rely only on information available in the images and the question.
Be explicit and concise; avoid speculation.

HARD FORMAT CONSTRAINTS (MUST OBEY EXACTLY)
Output MUST include:
1. Generate a clear, step-by-step rationale (max 8 sentences) wrapped in
<rationale>...</rationale> tags
2. Your answer must be in EXACTLY ONE CAPITAL LETTER: A, B, C, or D wrapped in
<result>...</result> tags
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VLM reasoning prompt answer only

You are a precise Vision–Language QA assistant.

GOALS
Read the user’s question and (if provided) a SEQUENCE of images in the given order.
Answer with ONLY a single capital letter: A, B, C, or D.

SEQUENCE HANDLING
If multiple images are provided, treat them as an ordered sequence (e.g., frames of a video).
Consider temporal consistency and cross-frame cues when reasoning.

CONSERVATIVE REASONING
Rely only on information available in the images and the question.
Be explicit and concise; avoid speculation.

HARD FORMAT CONSTRAINTS (MUST OBEY EXACTLY)
Output MUST consist of EXACTLY ONE CAPITAL LETTER: A, B, C, or D.
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LLM as a judge causal relationship prompt

You are a meticulous evaluator. Read the problem and the model’s rationale, then answer a list
of True/False questions strictly based on that rationale. Do not use outside knowledge or the
image. If the rationale is ambiguous or does not state the fact, answer False.

Answer using ONLY the specified YAML schema. Do not add extra commentary.

INPUT
- problem: The multiple-choice question with options
- rationale: The model’s rationale paragraph(s)
- questions: A list of True/False questions. Each item has:
- id: opaque identifier (string)
- text: the T/F question

JUDGING PRINCIPLES
- True only if the rationale explicitly supports the statement with clear mention or an unam-
biguous entailment.
- False if absent, unclear, contradicted, or only weakly implied.
- Allow synonyms/coreference (e.g., “kicker” for “Fighter”), but do not infer beyond text.
- For causal relation questions, require a clear causal/influence expression (e.g., X causes/leads
to/affects Y; Y depends on X). Mere co-occurrence is insufficient.

OUTPUT FORMAT (YAML)
answers:
- id: <string>
answer: true|false

EXAMPLE
problem: "Which direction should he kick to hit the target?
A. Left B. Right"
rationale: "The pad is to the left of the kicker; therefore he
should kick left to hit it."
questions:
- id: "0"
text: "Is object ’Fighter’ mentioned in the rationale?"
- id: "1"
text: "Is the causal relation between ’Kick direction’ and
’Fighter’ correctly expressed?"

answers:
- id: "0"
answer: true
- id: "1"
answer: true

.2 CASE STUDY
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Question 1: 

Based on the current frames, will the car collide?

Option:

A. Yes 

B. No

Model Response: B--The sequence of images shows a car following another vehicle on a highway. The distance between the two cars remains 

consistent across the frames, indicating that the following car is maintaining a safe distance. There are no sudden changes in speed or direction 

visible in the frames. The road conditions appear stable, and there are no visible obstacles or sudden stops by the leading car. The traffic flow seems 

steady, with no indications of abrupt braking or lane changes. Therefore, based on the current frames, a collision is unlikely.

Ground Truth: A  Mermaid Flow:

Anticipation: Collision Prediction

Question 2: 

Based on the current frames, will the car collide?

Option:

A. Yes 

B. No

Model Response : B--In the sequence of images, the white car on the right is moving into the lane of the black car in front. The white car's 

position changes slightly towards the black car, indicating a lane change. However, the distance between the two cars remains consistent, suggesting 

that the white car is not moving fast enough to cause a collision. The black car appears to maintain its speed and position, indicating no immediate 

threat of collision. The traffic is moving slowly, which reduces the likelihood of a collision

Ground Truth: A  Mermaid Flow:

Figure 8: Sample cases of Anticipation-Collision Prediction

USE OF LARGE LANGUAGE MODELS

We used large language models solely as auxiliary tools to assist in the language polishing and
stylistic refinement of the paper draft. The research ideas, methodology, experiments, and analysis
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Question 1: 

What will happen to the garment as the person continues their current action?

Option:

A. The garment will be smoothed out completely B. The garment will be wrinkled further 

C. The garment will be folded in half   D. The garment will be stretched out

Model Response: C--The images show a person folding a garment on a table. The person's hands are positioned on the garment, 

indicating they are in the process of folding it. The garment is already partially folded, and the person's hands are moving in a way that 

suggests they are continuing to fold it. There are no signs of stretching or wrinkling actions being performed. The setup and positioning of 

the hands imply that the garment will be folded further rather than smoothed out or stretched.

Ground Truth: A  Mermaid Flow:

Anticipation: Deformation

Question 2: 

What will happen to the blue T-shirt as the person continues their current action? 

Option:

A. It will become smoother.  B. It will get wrinkled.

C. It will tear.   D. It will change color.

Model Response: A--The images show a person folding a blue T-shirt on a table. The person is using their hand to smooth out the T-

shirt, which is a common action to remove wrinkles and make the fabric lie flat. The T-shirt is already partially folded and appears to be in 

the process of being smoothed out. There is no indication of any action that would cause the T-shirt to tear or change color. Therefore, as the 

person continues their current action, the T-shirt will likely become smoother.

Ground Truth: A  Mermaid Flow:

Figure 9: Sample cases of Anticipation-Deformation
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Question 1: 

Where will the liquid from container flow? 

Option:

A. Into the other container B. No outflow  

C. Onto the table  D. Onto the hand

Model Response: B--The sequence of images shows a hand reaching for a plastic cup filled with liquid. The cup is being lifted, but 

there is no indication of the liquid being poured or spilled. The other container is a paper cup, which remains stationary and empty 

throughout the sequence. The hand is holding the cup steadily, suggesting no liquid is flowing out. There is no visible movement of liquid 

towards the table or the hand. Therefore, the liquid remains in the cup without any outflow.

Ground Truth: A  Mermaid Flow:

Anticipation: Fluid Flow

Question 2: 

Where is the liquid from container expected to go?

Option:

A. No outflow  B. Onto the table 

C. Onto the robotic arm D. Into the other container.

Model Response: D--The sequence of images shows a robotic arm holding a container with liquid. The arm is tilting the container 

towards a glass on the table. The position and angle of the container suggest that the liquid is being poured into the glass. The glass is 

positioned directly under the spout of the container, indicating the intended target for the liquid. There is no indication of the liquid spilling 

onto the table or the robotic arm.

Ground Truth: B  Mermaid Flow:

Figure 10: Sample cases of Anticipation-Fluid Flow
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Question 1: 

What will the person's next move be? 

Option:

A. Pick up cafetiere plunger  B. Pick up cutlery  

C. Close cupboard   D. Put plate into cupboard

Model Response: D--The sequence of images shows a person in a kitchen. In the first image, they are near a sink with a drying rack. 

In the second image, they are holding a clean plate. In the third image, they open a cupboard containing plates. In the fourth image, they are 

holding the plate near the cupboard. In the fifth image, they are about to place the plate into the cupboard. The logical next step is to put the 

plate into the cupboard.

Ground Truth: C  Mermaid Flow:

Anticipation: Intention Speculation

Question 2: 

What step will the person take next? 

Option:

A. Open fridge     B. Close fridge  

C. Move bottle to the second hand   D. Pick up towel

Model Response: A--In the first image, the person is holding a blue container near the sink. In the subsequent images, the person is 

moving towards the fridge while still holding the container. The final image shows the person standing directly in front of the fridge, 

suggesting the next logical step is to open it.

Ground Truth: A  Mermaid Flow:

Figure 11: Sample cases of Anticipation-Intention Speculation
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Question 1: 

To cover the bowl of flour with the lid, in which direction should the hand move? 

Option:

A. Right  B. Left 

C. Forward D. Upward

Model Response: B-- The image shows a bowl with a lid placed to the right of it. To cover the bowl with the lid, the hand should 

move the lid towards the bowl. Since the lid is on the right side of the bowl, the hand should move left to place the lid over the bowl.

Ground Truth: B  Mermaid Flow:

Goal Orientation : Object Relocation

Question 2: 

To place the blue cup into the pink basket, in which direction should the hand move? 

Option:

A. Right  B. Forward 

C. Left  D. Backward 

Model Response: B--The image shows a hand holding a blue cup near a pink basket. The basket is positioned with its opening facing 

the hand. To place the cup into the basket, the hand needs to move towards the basket's opening. The basket is directly in front of the hand, 

so the hand should move forward. The direction \"forward\" aligns with moving towards the basket's opening.

Ground Truth: A  Mermaid Flow:

Figure 12: Sample cases of Goal Orientation-Object Relocation
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Question 1: 

Which tool will be used to install the Rashult assemble bracket by tightening the screws? 

Option:

A. Phillips screwdriver B. Flathead screwdriver 

C. Allen key  D. Wrench 

Model Response: A--The image shows a close-up of a hand holding a bracket with visible screws. The screws have a cross-shaped 

indentation, which is characteristic of Phillips screws. This indicates that a Phillips screwdriver is needed to tighten them. There are no 

hexagonal or flathead features visible that would suggest the use of an Allen key, flathead screwdriver, or wrench.

Ground Truth: A  Mermaid Flow:

Goal Orientation: Tool Selection

Question 2: 

Which tool will be used to disassemble the MARIUS stool by loosening its screws? 

Option:

A. Allen key with handle (looped hex key) B. Phillips screwdriver 

C. Flathead screwdriver   D. Wrench 

Model Response: D--The image shows a person using a wrench to loosen a bolt on the underside of a stool. The bolt is hexagonal, 

which is typically loosened with a wrench. There is no indication of a hex key, Phillips, or flathead screwdriver being used. The presence of 

a wrench in the person's hand confirms that this is the tool being used for disassembly.

Ground Truth: A  Mermaid Flow:

Figure 13: Sample cases of Goal Orientation-Tool Selection
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Question 1: 

Which direction should he move to get past the defender in soccer ? 

Option:

A. Left  B. Right

Model Response: B--The image shows a soccer player in a white jersey attempting to maneuver past a defender in a green and black jersey. 

The player in white is using his right foot to control the ball, and the defender is positioned directly in front of him. The defender's stance and 

position suggest that moving to the left would be more challenging due to the defender's proximity. Moving to the right appears to be a more open 

path, as the defender's body is angled slightly away from that direction, potentially allowing the player in white to bypass the defender more easily.

Ground Truth: B  Mermaid Flow:

Goal Orientation: Behavior Selection

Question 2: 

Which direction should the teammate in red clothing move to position themselves properly during the 

offensive and defensive confrontation?

Option:

A. Left  B. Right

Model Response: B--The image shows a player in red attempting to tackle a player in white and blue. The player in red is bent over, 

indicating they are engaged in a defensive action. To position themselves properly, the teammate in red should move to the right to support 

the tackle and cover any potential escape routes for the player in white and blue.

Ground Truth: B  Mermaid Flow:

Figure 14: Sample cases of Goal Orientation-Behavior Selection
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Question 1: 

To score and hit the left side of the rim, in which direction should the shot be shifted? 

Option:

A. Up  B. Down 

C. Left  D. Right

Model Response: C--The sequence of images shows a basketball being shot towards the hoop. In the final frames, the ball is 

approaching the center of the hoop. To hit the left side of the rim, the shot needs to be adjusted horizontally. Since the ball is currently 

centered, shifting the shot to the left would make it hit the left side of the rim.

Ground Truth: C  Mermaid Flow:

Goal Orientation: Trajectory

Question 2: 

To score, in which direction should the shot be adjusted? 

Option:

A. Up  B. Down 

C. Left  D. Right

Model Response: C--In the sequence of images, the basketball is seen approaching the hoop. In the final frames, the ball is slightly to 

the right of the hoop. This indicates that the shot is likely to miss on the right side. Therefore, to increase the chances of scoring, the shot 

should be adjusted to the left.

Ground Truth: D  Mermaid Flow:

Figure 15: Sample cases of Goal Orientation-Trajectory
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Question 1: 

If the player wearing blue stands 2 meters away from the player in yellow instead of standing right in front of 

her, will he still be able to intercept the ball?

Option:

A. Yes.  B. No.

Model Response: B--In the sequence of images, the player in blue is closely guarding the player in yellow, who is attempting to pass 

the ball. The blue player's proximity allows for a successful interception attempt. If the blue player were to stand 2 meters away, the 

increased distance would reduce the likelihood of intercepting the ball due to the decreased ability to react quickly to the pass. The close 

proximity is crucial for the interception, as it allows the blue player to immediately contest the pass.

Ground Truth: B  Mermaid Flow:

Intervention: Spatial Manipulation

Question 2: 

If the player in white jumps 0.2 meters higher when he tries to contest for the possession of the ball, will he 

successfully touch the basketball ?

Option:

A. Yes  B. No 

Model Response: A--In the sequence of images, the player in white is attempting to jump for the basketball during the tip -off. In the 

final image, the player in white is very close to the ball but does not appear to touch it. If he jumps 0.2 meters higher, it is likely that he will 

successfully reach and touch the basketball, as the additional height would compensate for the small gap observed.

Ground Truth: A  Mermaid Flow:

Figure 16: Sample cases of Intervention-Spatial Manipulation
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Question 1: 

Based on the position and motion of both the offensive and defensive players, would the shooter have a higher 

or lower chance of being blocked if she jumps forward while taking the shot? Option:

A. higher B. lower

Model Response: A--In the first image, the offensive player in blue is preparing to shoot with a defender in yellow closely positioned 

in front. In the second image, the shooter is starting to jump, and the defender is also preparing to jump. In the third image, the defender is in 

the air, closely contesting the shot. In the fourth image, the defender's hand is near the ball, indicating a strong contest. In the fifth image, the 

defender's hand is very close to the ball, suggesting a high chance of blocking. The shooter's forward motion would bring her closer to the 

defender, increasing the likelihood of a block.

Ground Truth: A  Mermaid Flow:

Intervention: Action Substitution

Question 2: 

Is it likely that the player in yellow could still receive the ball if it were passed 50 cm more to the right from the current 

trajectory? 

Option:

A. Yes  B. No 

Model Response: A--In the sequence of images, the player in yellow is running towards the basket while the player with the ball is also moving i n 

the same direction. The ball is currently being dribbled by the player in yellow, indicating control over the ball. The player in yellow is ahead of the 

defenders and has a clear path. If the ball were passed 50 cm more to the right, it would still be within reach of the player in yellow, given their proximity 

and forward momentum. The player in yellow appears to be in a position to adjust and receive the ball even if it deviates slightly from the current trajectory.

Ground Truth: A  Mermaid Flow:

Figure 17: Sample cases of Intervention-Action Substitution
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Question 1: 

If the shooter delays the shot by 1 second while staying in the air, what will happen? 

Option:

A. The ball is blocked by the defender. B. The shot still goes cleanly toward the basket. 

C. The player lands before releasing, causing a turnover.  

Model Response: C--The image shows a basketball player in mid-air attempting a shot with a defender closely contesting. The defender's arm is extended, 

and they are in a position to potentially block the shot. If the shooter delays the shot by 1 second while staying in the air, it is likely that the defender will have 

more time to react and block the shot. Additionally, staying in the air for an extra second is unrealistic due to gravity, suggesting the player would land before 

releasing the ball, causing a turnover.

Ground Truth: A  Mermaid Flow:

Intervention: Temporal Shifting

Question 2: 

If player 14 waits 2 seconds longer to catch the ball, will he still successfully receive the ball? 

Option:

A. No.  B. Yes. 

Model Response: A--In the first image, player 14 is positioned to receive the ball. In the second image, the ball is in the air, moving 

towards player 14. By the third image, player 14 is closer to the ball, indicating it is still on its way. In the fourth image, the ball is nearing 

player 14, but other players are also approaching. By the fifth image, player 14 is about to receive the ball, but opponents are closing in. If 

player 14 waits 2 seconds longer, the opponents will likely intercept the ball before it reaches him.

Ground Truth: A  Mermaid Flow:

Figure 18: Sample cases of Intervention-Temporal Shifting
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Question 1: 

Where is the red pipeline in the first image located relative to the camera view in the second image ?

Option:

A. front  B. left 

C. below 

Model Response: B--In the first image, the red pipeline is visible on the wall above the table and near the door. In the second image, the camera is 

positioned further down the hallway, looking back towards the area where the table and yellow boxes are located. The red pipeline is not directly visible in the 

second image, but based on the perspective, it would be located to the left of the camera view, as the camera is facing down the hallway away from the wall 

where the pipeline is mounted.

Ground Truth: A  Mermaid Flow:

Intervention: Viewpoint Transformation

Question 2: 

Where is the ottoman in the first image located relative to the camera view in the second image? Option:

A. right  B. back 

C. front  D. left

Model Response: D--In the first image, the ottoman is positioned to the right of the green recycling bin. In the second image, the 

camera is facing the bins from the side, with the green bin visible behind the blue bin. Since the ottoman is to the right of the bins in the first 

image, and the camera in the second image is facing the bins from the side, the ottoman would be located to the left of the camera's view in 

the second image.

Ground Truth: C  Mermaid Flow:

Figure 19: Sample cases of Intervention-Viewpoint Transformation
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Question 1: 

Where is the object chair located with respect to camera's view? 

Option:

A. Front Left  B. Front Right 

C. Back Left  D. Back Right 

Model Response: D--The image shows a book in front of a mirror, with a chair visible in the reflection. The chair is located in the background, to the right 

side of the image. Since the chair is in the reflection, it is positioned behind the camera's view. Therefore, the chair is located at the back right with respect to 

the camera's view.

Ground Truth: D  Mermaid Flow:

Perception: Optics

Question 2: 

Where is the object box located with respect to camera's view? 

Option:

A. Front Left B. Front Right 

C. Back Left D. Back Right 

Model Response: A--The image shows a box with a mouse graphic and text on it. The box is positioned towards the left side of the 

image. The camera's view captures the box in the foreground, indicating it is closer to the camera. The orientation and placement suggest 

that the box is located in the front left of the camera's view.

Ground Truth: C  Mermaid Flow:

Figure 20: Sample cases of Perception-Optics
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Question 1: 

If we have two identical glasses vases with same shape, like the one shown in the image, can they be nested into each other 

properly?

 Option:

A. Yes.  B. No.

Model Response: A--The image shows a glass vase with a wide opening and a narrow base. For two identical vases to be nested, the opening must be  

wide enough to accommodate the base of the other vase. Since the vase has a narrow base and a wide opening, it is likely that they can be nested into each other 

properly.

Ground Truth: B  Mermaid Flow:

Perception: Containability

Question 2: 

If we have two identical cups with same shape, like the one shown in the image, can they be nested into each 

other properly? 

Option:

A. Yes  B. No

Model Response: A--The image shows a glass with a Bloody Mary and a celery stick. The glass appears to have straight sides and a 

uniform shape, which typically allows for nesting. Glasses with straight sides and no protrusions or handles can usually be nested into each 

other properly. Therefore, two identical cups with the same shape as the one shown should be able to nest into each other.

Ground Truth: A  Mermaid Flow:

Figure 21: Sample cases of Perception-Containability
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Question 1: 

Will the ball cross the sideline? 

Option:

A. Yes  B. No

Model Response: A--The image shows a soccer match with the ball in mid-air. The ball is being played towards the right side of the field. The sideline is 

visible on the right, and the ball appears to be moving in that direction. The trajectory of the ball suggests it is heading towards the sideline. There are no players 

immediately near the ball to intercept it before it crosses the line. The angle and height of the ball indicate it is likely to continue its path towards the sideline.

Ground Truth: B  Mermaid Flow:

Perception: Scene Reconstruction

Question 2: 

If the bottle were pushed gently off the edge of the table, in which direction would it most likely fall? 

Option:

A. To the ground directly below the table's edge. B. Towards the drainpipe. C. Towards the plant. 

Model Response: A--The bottle is placed near the edge of a table, and the ground directly below is visible. The drainpipe and the plant 

are located further away from the table's edge. If the bottle is pushed gently off the edge, it will most likely fall straight down due to gravity, 

landing directly below the table's edge. The other options are further away and would require additional force or direction to reach.

Ground Truth: A  Mermaid Flow:

Figure 22: Sample cases of Perception-Scene Reconstruction
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Question 1: 

What is the direct cause of the toothbrush moving from the green t-shirt to the hand? 

Option:

A. The purple shirt being placed on top of the green t-shirt.  B. The hand picking up the toothbrush. 

C. The toothbrush resting on the green t-shirt. 

Model Response: B--The sequence of images shows a toothbrush initially resting on a green t-shirt. In the third image, a hand appears near the toothbrush. 

In the fourth image, the hand is holding the toothbrush, lifting it from the t-shirt. By the fifth image, the toothbrush is clearly in the hand. The direct cause of the 

toothbrush moving from the green t-shirt to the hand is the action of the hand picking it up.

Ground Truth: A  Mermaid Flow:

Perception: Mechanics Reasoning

Question 2: 

What is the primary cause of the flip-flop being lifted from the floor? 

Option:

A: The weight of the flip-flop. B: The pulling force applied by the hand. 

C: Friction between the flip-flop and the floor. 

Model Response: B--The sequence of images shows a hand interacting with a pair of flip-flops on the floor. Initially, the flip-flops are 

stationary on the floor. As the hand makes contact and begins to pull, the flip-flops start to lift from the floor. The consistent presence of the hand 

pulling the flip-flops in each frame indicates that the primary cause of the flip-flops being lifted is the pulling force applied by the hand. There is no 

indication that the weight of the flip-flops or friction is causing the lift.

Ground Truth: B  Mermaid Flow:

Figure 23: Sample cases of Perception-Mechanics Reasoning

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

were entirely conceived and conducted by the authors. The LLM did not contribute to the design
of the framework, the experimental results, or the interpretation of findings. All scientific content
remains the responsibility of the authors.
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