
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERDANCE: REACTIVE 3D DANCE GENERATION
WITH REALISTIC DUET INTERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans perform a variety of interactive motions, among which duet dance is one
of the most challenging interactions. However, in terms of human motion gener-
ative models, existing works are still unable to generate high-quality interactive
motions, especially in the field of duet dance. On the one hand, it is due to the
lack of large-scale high-quality datasets. On the other hand, it arises from the
incomplete representation of interactive motion and the lack of fine-grained opti-
mization of interactions. To address these challenges, we propose, InterDance,
a large-scale duet dance dataset that significantly enhances motion quality, data
scale, and the variety of dance genres. Built upon this dataset, we propose a new
motion representation that can accurately and comprehensively describe interac-
tive motion. We further introduce a diffusion-based framework with an interaction
refinement guidance strategy to optimize the realism of interactions progressively.
Extensive experiments demonstrate the effectiveness of our dataset and algorithm.
Our project page is https://inter-dance.github.io/.

Figure 1: Example of reactive 3D dance generation. Green represents the leader and blue represents
the follower (also positioned with a red marker). Given the music and leader’s dance, the goal of
reactive dance generation is to generate the follower’s dance that coordinates with the music and
leader.

1 INTRODUCTION

Dance is one of the most important elements in film, animation, and game production. The rapid
generation of high-quality 3D dances using computer algorithms has significant practical value. In
duet dance, two dancers perform interactive dances with music and can be typically divided into
a leader and a follower. The leader is responsible for initiating and guiding the dance, while the
follower responds to the leader’s cues and follows the leader (Siyao et al., 2024). Following this
paradigm, we focus on the task of reactive dance generation. Given the music and the leader’s
dance as inputs, our goal is to generate the follower’s dance with accurate interactive movements
and physical realism.

However, this task presents significant challenges. Firstly, large-scale, high-quality datasets for duet
dances are scarce. Secondly, current algorithms fail to adequately model strong interactions, re-
sulting in generated follower dance movements that lack both interactivity and physical realism.
Although some datasets are currently available for solo dances (Li et al., 2023b; 2021a), high-
quality duet dance data remains extremely scarce. Le et al. (Wang et al., 2022) introduce the
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AIOZ-GDANCE dataset, which includes YouTube videos of 2-7 dancers. They used monocular
SMPL pose estimation algorithms to obtain SMPL-format motion. However, the predicted motion
is low quality and lacks finger movements because estimating 3D multi-human motion from monoc-
ular video is a challenging problem, plagued by issues such as video motion blur and multi-person
occlusion. Duolando (Siyao et al., 2024) propose a duet dance dataset DD100 that includes finger
movements, but it only contains 1.92 hours of data with 10 ballroom dance genres, making it dif-
ficult to train robust and generalizable networks. To further improve the scale and quality of duet
dance data, we introduce the InterDance dataset. We employ experienced dancers and professional
MoCap equipment to record 3.93 hours of music-paired duet dance. The InterDance dataset includes
not only ballroom dances but also folk, classical, and street dances, making a total of 4 major cate-
gories and 15 diverse fine-grained genres. InterDance features precise body and finger movements,
realistic physical interactions between dancers, and accurate foot-ground contact.

Generating the follower’s dance based on the music and the leader’s dance has significant chal-
lenges in ensuring accurate interactivity and physical realism. Duet dances often involve strong
interactions, such as hand-holding and shoulder touches. However, existing methods fail to model
these strong interactions accurately. This failure arises partly because current algorithms use inter-
nal joint positions to represent motion, inherently lacking surface body information, which results in
inaccurate contacts. Additionally, current methods generate interactive movements based solely on
learned data priors without incorporating specific feedback on contacts and penetration during the
generation process. To address these issues, we propose a new motion representation suitable for re-
active dance generation. This representation expresses body and hand movements in canonical space
and includes downsampled body surface vertices, along with contact labels to enhance the dancers’
interaction accuracy. Moreover, we introduce a diffusion-based reactive dance generation algorithm.
This algorithm employs a contact and penetration guided sampling strategy based on contact labels
and signed distance fields to improve the accuracy and physical realism of interactions.

Our main contributions are as follows: (1) We introduce a duet dance dataset featuring body and
finger movements with high physical realism, comprising 3.93 hours of music-paired duet dance
across 15 different dance genres. (2) We propose a new motion representation. It includes body sur-
face information and contact labels, helping algorithms generate more realistic interactions. (3) We
propose a diffusion-based reactive dance motion generation model with Interactive Refine Guidance
to enhance the accuracy and realism of interactive dance movements.

Code, model, and data will be publicly available.

2 RELATED WORKS

Music-Dance Datasets. Existing works mainly focus on single-person dance datasets, where move-
ments are either estimated from dance videos using algorithms or captured by professional MoCap
equipment and dancers. The former method does not require specialized motion capture equipment,
making it easier to implement. Li et al. (Li et al., 2021b) used multiple cameras to capture dancers
from different angles, obtaining multi-view dance videos. They then used algorithms to estimate the
dance movements, creating the AIST++ dataset of 5.2 hours for solo dance. However, accurately es-
timating complex dance movements from videos is challenging due to video occlusion and blur. This
often results in failures to capture fine-grained finger movements and complex rapid actions such as
”Backflip”, ”Thomas rotation”, etc. Professional MoCap Equipment can precisely capture complex
movements and is widely used in animation and film production. Therefore, FineDance (Li et al.,
2023b) collects a dataset of solo dance performances totaling 14.6 hours, including accurate body
and finger movements. Recently, Duolando (Siyao et al., 2024) introduced the DD100 dataset, which
comprises only 1.92 hours of duet dance data with paired music. Additionally, ReMoCap (Ghosh
et al., 2024), InterHuman Liang et al. (2024), and Inter-X (Xu et al., 2024a) are also high-quality,
large-scale Human-Human Interaction datasets. While they include a small portion of the dance,
they are more focused on text-driven generation and lack music.

Dance generation. Recent advancements in the music-to-dance generation have seen significant
progress (Tang et al., 2018; Li et al., 2020; Sun et al., 2020; Zhuang et al., 2022; Sun et al., 2022;
Qi et al., 2023). FACT (Li et al., 2021b) utilizes cross-modal transformer blocks with strong se-
quence modeling capabilities to generate single-person dance from given music. Bailando (Siyao
et al., 2022; 2023) introduces a two-stage framework, with the first stage encoding and quantizing
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Figure 2: Visualizations of the InterDance samples, the dataset contains high-quality duet dance
with accurate body and fingers, there are a total of 15 fine-grained diverse genres.

3D dance and the second stage using an actor-critic GPT to generate dance. EDGE (Tseng et al.,
2023) introduces a diffusion-based approach for dance generation with editing capabilities and can
generate arbitrarily long sequences. Lodge(Li et al., 2024) designs a two-stage parallel Diffusion
architecture for efficient ultra-long dance generation, which can can generate minutes of dance in a
few seconds. GCD (Le et al., 2023a) introduces a diffusion-based neural network for music-driven
group dance generation with a group contrastive strategy to enhance the connection between dancers
and their group. However, existing methods mainly focus on generating solo dances or group dances
with only weak interactions. There remains a significant challenge in generating more complex in-
teractive dances.

3 THE INTERDANCE DATASET

There is still a lack of large-scale duet datasets with accurate strong interactions. To address the
shortcomings of existing datasets, we collect as much duet dance data as possible and use profes-
sional MoCap equipment to accurately record two dancers’ motions with music, ultimately intro-
ducing the InterDance dataset. Visualizations of our dataset samples and the distribution of dance
genres are shown in Figure 2. Statistical information about the dataset is presented in Table 1.

3.1 THE FEATURES OF THE INTERDANCE DATASET

The proposed InterDance dataset has the following key features: Large-scale Data: InterDance
contains 3.93 hours of duet dance data, providing a substantial amount of training data to improve
model generalization and reduce overfitting. To the best of our knowledge, this is currently the
largest duet dance dataset. Strong Interactions: This dataset emphasizes strong interactions, such
as handshakes, waist holds, which are essential elements for duet dance. High Motion Quality:
This dataset is collected using state-of-the-art professional MoCap equipment for precise body and
finger movements, with manual review to ensure the motion quality. High Artistic quality: We
invite professional dancers with over a year of experience to perform their familiar dances. Diverse
Dance Genres: Among duet dance datasets, InterDance includes the widest variety of 15 dance
genres. Long Duration per Sample: InterDance reach the longest average sample duration (T̄ /s) of
142.7 seconds among duet dance datasets. Dances with longer durations contain rich and complete
choreographic patterns.

3.2 THE DETAILS OF CONSTRUCTING THE DATASET

MoCap Equipment: The MoCap system we used consists of 16 infrared optical motion capture
cameras, with a resolution of 2048x1536 and a frame rate of 120 fps. The subjects wore tight-fitting
suits with 53 markers attached. The effective capture space is 7m x 7m x 3m. Due to the close
articulation and occlusion issues of hand movements, the hand motions were captured using inertial
data gloves.
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Table 1: Comparisons of Dance Datasets. HHI means Human-Human Interaction, where ‘W’ means
Weak Interaction without close contact, and ‘S’ means Strong Interaction otherwise. Among duet
dance datasets with strong interaction, InterDance features the widest range of 15 dance genres, the
longest average duration per sample at 142.7 seconds, and the total duration of 3.93 hours.

Datasets HHI Music Hand Genres T̄ /s T Mocap Representation

Dancing2Music (Lee et al., 2019) × ✓ 3 6 71.00h 2D Joints
DanceNet (Li et al., 2022) × ✓ ✓ 2 - 0.96h ✓ 3D Joints
PMSD (Valle-Pérez et al., 2021) × ✓ ✓ 3 - 3.10h ✓ 3D Joints
SMVR (Valle-Pérez et al., 2021) × ✓ 2 - 9.00h 3D Joints
AIST++ (Li et al., 2021b) × ✓ 10 13 5.20h SMPL
Motorica Dance(Alexanderson et al., 2023) × ✓ ✓ 8 - 6.22h ✓ BVH
FineDance (Li et al., 2023b) × ✓ ✓ 22 152.3 14.60h ✓ SMPL-X

AIOZ-GDANCE (Le et al., 2023b) W ✓ 7 37.5 16.70h SMPL
InterHuman (Liang et al., 2024) S n/a 3.9 6.56h SMPL
DD100 (Siyao et al., 2024) S ✓ ✓ 10 69.3 1.92h ✓ SMPL-X

InterDance S ✓ ✓ 15 142.7 3.93h ✓ SMPL-X

Dataset Collection: We invited professional dancers to perform duet dances based on music and
used motion capture equipment to record their body and hand movements. To prevent foot floating
issues, we required the dancers to wear flat shoes. The raw motion captured by MoCap was con-
verted into SMPL-X (Pavlakos et al., 2019) format and manually inspected. For any problematic
data, the dancers were invited to re-record the performance.

Post process: The MoCap system outputs the 3D coordinates of 53 markers on the body surface.
After processing with the MoCap system software, it also provides the 3D coordinates of 55 internal
human joints, including those of both the body and hands. Since the 3D coordinates of the 53 mark-
ers on the body surface contain detailed body surface information, we first used the SOMA (Ghor-
bani & Black, 2021) method to get the SMPL-X body shape parameters and body pose parameters
from the markers. Next, we fixed the body shape parameters and used the 55 joint coordinates to
optimize the poses for the body and hands, similar to Mosh++ Mahmood et al., 2019. Since the body
and fingers operate in different motion spaces and have different data scales, we optimized the body
and finger poses independently. We refined the body poses using 22 body joints and adjusted the
finger poses based on the relative distances of 30 finger joints to the wrist. Finally, we combined the
body and hand poses to obtain the human motion in SMPL-X format. The test and validation sets
were randomly sampled proportionally from various dance genres, comprising 16.22% and 6.25%
of the total data, respectively.

4 METHODOLOGY

Given music and the leader’s dance xl as input, our goal is to generate the follower’s dance xf . For
the given music, we follow (Li et al., 2021a) and employ Librosa (McFee et al., 2015) to extract the
2D music feature map m ∈ RT×35, where T is the time length, 35 is the music feature channels with
1-dim envelope, 20-dim MFCC, 12-dim chroma, 1-dim one-hot peaks, and 1-dim one-hot beats. For
the dance, we represent it as x ∈ RT×C , where C is the number of channels, details in the fol-
lowing chapter. Our method aims to model pθ(xf |m,xl). The main challenge lies in the accuracy
and physical interaction in the generated dance. We argue that previous methods encounter these
issues due to the use of inappropriate motion representations and the lack of explicit fine-grained
optimization for interactive movements during generation. To address these problems, we propose
a new motion representation suitable for reactive motion generation and introduce a baseline gener-
ation algorithm based on diffusion. To enhance the physical realism of interactive movements, we
also propose contact diffusion guidance and penetration diffusion guidance to optimize the quality
of these interactions.

4.1 THE MOTION REPRESENTATION

As shown in Figure 3, existing methods use different motion representations to describe movements.
SMPL-X (Pavlakos et al., 2019) parametrized body model achieves tremendous success. Through

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: An overview of different motion representations.

Table 2: Comparisons of 3D motion representations.

SMPL-X (Pavlakos et al., 2019) HumanML3D (Guo et al., 2022) MOJO (Zhang et al., 2021) COINS (Zhao et al., 2022) Ours

Position space ✓ ✓ ✓ ✓
Joints ✓ ✓ ✓
Hands info ✓ ✓ ✓
Surface info ✓ ✓ ✓ ✓
Canonical space ✓ ✓ ✓

the linear skinning function of SMPL-X, we can calculate the surface vertex positions of the human
body with different shapes and movements. This allows for further optimization of strong interac-
tions based on body surface vertices. However, the linear skinning function introduces huge compu-
tations and requires careful balancing of the weights of different losses, such as SMPL-X parameters
and vertex positions. Additionally, existing work (Zhang et al., 2021) finds that the relative angle
rotations propagated by the skeletal tree of SMPL-X exhibit highly nonlinear characteristics, which
are not conducive to optimization in neural networks and can easily lead to foot-skating issues.

Recently, HumanML3D (Guo et al., 2022) proposes a motion representation based on the positions
of 22 body joints. By operating in linear space and decoupling the trajectory and yaw angle, it
is well-suited for single-person motion generation tasks. However, this method lacks finger and
body surface information, making it difficult to use for fine-grained interactive motion generation
tasks. MOJO (Zhang et al., 2021) and COINS (Zhao et al., 2022) utilize sparse body markers and
vertices to represent motion, enabling accurate descriptions of both body shape and pose. This
approach has shown great effectiveness in tasks of Human Scene Interaction and Human Object
Interaction. However, these types of motion representations do not transform human motions into
canonical space and lack motion contact labels, resulting in inadequate performance in Reactive
Dance Generation tasks.

We find that while body vertices can accurately represent human shape and pose, incorporating
internal body joints is more helpful. Based on this, contact labels can be added to enhance the
accuracy of interactive motion, and transforming motion into canonical space can further increase
the network’s robustness and avoid overfitting. Based on the above observation, we propose a new
motion representation. For the one person motion x = {xi}Ti=1, where T is the frame number. The
xi is represented as:

xi = [rx, ry, rz, ra, ṙa, ṙx, ṙz, j,v, j̇, v̇, cfoot, cp] (1)

where rx, ry, rz is the root trajectory, ra is root angular along Y-axis (yaw angle), ṙa is root angular
velocity along Y-axis, ṙx, ṙz is root linear velocities on the floor. j is the relative distances of the
internal 55 joints. v is the relative distances of the surface 655 vertices, which is sampled following
COINS (Zhao et al., 2022). For the body parts, we measure their distances from the root node, while
for the fingers, we record their distances from the wrist. j̇ is joints velocities, v̇ is vertices velocities,
cfoot ∈ R4 is binary foot-ground contact label, cp ∈ R55+655 is the binary contact label of joints
and vertices, cp is set to 1 when the corresponding joint or vertex is in contact with another person.

4.2 THE DIFFUSION MODEL FOR REACT DANCE GENERATION

The diffusion model shows great potential in motion generation tasks (Tevet et al., 2022; Zhang et al.,
2024; Zhou et al., 2023; Rempe et al., 2023; Li et al., 2023a; Tanaka & Fujiwara, 2023; Xu et al.,
2023; Diller & Dai, 2024; Chen et al., 2024; Xu et al., 2024b; Karunratanakul et al., 2024). The most
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direct approach to modeling pθ(x
f |m,xl) is to use a conditional diffusion model. However, using

the leader’s motion as conditional input and solely relying on learned network parameters to generate
follower motion does not guarantee the physical realism of the interaction between the leader and
follower. To address this issue, we further propose an Interaction Refine Guidance sampling strategy
to encourage accurate contact and avoid penetration. The overview of our method is shown in Figure
4. Given music feature m, leader dance xl, Diffusion Time Step N and sampled noise xf

N as input,
the Denoise Nework predict x̂f at each diffusion step. Then, we use the Interaction Refine Guidance
to refine x̂f to x̃f . Next, we add noise to x̃f and diffuse it to xf

N−1. After repeating this process for
N times, we can obtain the final predicted x̂f as output.
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Figure 4: The right part shows our entire network, while the left part details the Denoise Network.

Interaction Diffusion Model. We utilize a conditional diffusion model (Ho et al., 2020) as our
backbone. The diffusion model consists of a forward diffusion process that progressively adds noise
to the clean data and a reverse diffusion process which is trained to reverse this process. The forward
diffusion process introduces noise for N steps formulated using a Markov chain:

q(xf
n|x

f
n−1) := N (xf

n;
√

1− βnx
f
n−1, βnI), (2)

q(xf
1:N |xf

0 ) :=

N∏
n=1

q(xf
n|x

f
n−1), (3)

where βn represents a fixed variance schedule and I is an identity matrix. The reverse diffusion
process employs a learnable Denoise Network fθ to denoise gradually. To facilitate the inclusion
of loss functions for optimizing interactive motion during training, we directly predict clean data
x̂f (Tevet et al., 2022; Liang et al., 2024), which can be formulated as:

Lrecon = Exf ,n||fθ(xf
n, n,m,xl)− xf ||22. (4)

The Diffusion Transformer (DiT) shows excellent performance in image, video, and motion genera-
tion tasks (Peebles & Xie, 2023; Liu et al., 2024; Liang et al., 2024). Thus, we use DiT to construct
the Interactive Decoder block, as detailed in the supplementary material.

Auxiliary Losses. We introduce several auxiliary losses to enhance training stability and phys-
ical realism like previous works (Liang et al., 2024). We recover the global position pl ∈
RT×(55+655)×3,pf ∈ RT×(55+655)×3 of human joints and vertices from the proposed canonical
motion representation xl,xf , where 55 is the number of human joints, 655 is the number of down-
sampled human surface vertices. Then, to improve the smoothness of the generated dance, we add
the velocity loss Lvel and acceleration loss Lacc:

Lvel =
∥∥∥pf

vel − p̂f
vel

∥∥∥2
2
,Lacc =

∥∥pf
acc − p̂f

acc

∥∥2
2
, (5)

where pf
vel,p

f
acc are the velocity and acceleration computed from pf . To optimize the quality of

foot-ground contact, we further add a foot contact loss Lfoot =
∥∥∥p̂foot

vel ⊙ ĉfoot
∥∥∥, where p̂foot

vel is the
corresponding foot joints velocity of generated follower motion. Inspired by InterGen (Liang et al.,
2024), to optimize the physical realism of interactive motion, we add the Distance Matrix loss LDM

and Relative Orientation loss LRO as follows:

LDM =
∥∥∥(M(pl, p̂f )−M(pl,p

f
))⊙ I(M(pl,pf ) < M̄)

∥∥∥2
2
,

LRO = ||O(xl, x̂f )−O(xl,xf )||22,
(6)
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where M denotes the joint distance map of the leader and follower, and I is an indicator function
used to mask the loss. This loss is activated only when the distance between the two people is
less than the distance threshold M̄ . ⊙ indicates Hadamard product. O indicates the relative angle
between the two dancers around the Y-axis. We also introduce a contact loss Lcon, utilizing contact
labels to encourage accurate interaction between two dancers,

Lcon = ||Mmin(p
l, p̂f )⊙ cpl||22 + ||Mmin(p̂

f ,pl)⊙ ĉpf ||22, (7)

where {Mmin(p
l, p̂f )}i denotes the shortest distance from {pl}i to p̂f . cpl, ĉpf represents the

contact label in the motion representation of xl, x̂f . These loss functions help the network learn the
interactive motion between dancers. Our overall training object is the weighted sum of these losses:

Ltotal = Lrecon + λvelLvel + λaccLacc + λDMLDM + λROLRO + λconLcon + λfootLfoot.
(8)

Interaction Refine Guidance. We find that the above conditional diffusion model generates fol-
lower dances that perform well in terms of motion smoothness and self-motion realism, and can also
roughly interact with the leader. However, there are still many artifacts, such as contact floating or
penetration, especially in strong interactive movements. Therefore, we propose a diffusion-based
sampling guidance strategy that calculates contact guidance gradients ∇Lcon and penetration guid-
ance gradients ∇Gpene. Then we use these gradients to guide the denoising process at each diffusion
step, achieving more accurate contact and suppressing penetration. Lcon is also the contact optimiza-
tion loss function formulated as Equ. 7. Its gradient can be used to guide the denoising process to
avoid contact floating issues explicitly. To tackle the penetration problems, we compute the Signed
Distance Field (SDF) between the follower’s surface vertices and the leader’s mesh using the COAP
(Mihajlovic et al., 2022; Zhang et al., 2023) model. By querying each joint and surface vertex of the
follower, the penetration cost function is defined as:

Gpene(x
f
n) =

1

|pf
n|

∑
q∈pf

n

σ
(
fΘ(q|S)

)
IfΘ(pf

n|S)>0 (9)

where pf
n is the point set recovered from xf

n and fΘ(q|S) is the COAP model used to compute the
signed distance between point q and the leader mesh S, σ(·) stands for the sigmoid function. At each
denoise step, the gradient of Lcon and Gpene are utilized to guide the diffusion denoising process:

x̃f
n = x̂f

n + acon∇Lcon(x̂
f
n) + apene∇Gpene(x̂

f
n) (10)

where acon and apene are scale factors and x̃f
n is the motion representation after guidance.

5 EXPERIMENTS

Implementation Details. The initial learning rate is 1e-4, with a weight decay of 2e-5. The model
trains for 1000 epochs. The number of heads in multi-head attention is uniformly set to 8. In the
ablation study, all variants are trained for 500 epochs under the same experimental settings, except
for the conditions being investigated. The training is conducted on 4 NVIDIA 4090 GPUs, taking
approximately 22 hours in total. The inference time averages 1.6 seconds with a batch size of 8.

Evaluation Metrics. 1) Frechet Inception Distance (FID). We use FID to measure the degree of
closeness between the generated motion of the follower and the ground truth. 2) Diversity (Div).
We use Div to assess the average feature distance of generated dances. FID and Div are calculated
on kinematic (Onuma et al., 2008) and graphical (Müller et al., 2005) features, and described as
FIDk,FIDg,Divk,Divg respectively. 3) Cross Distance (cd). Following Duolando(Siyao et al.,
2024), we compute pairwise distances between ten joints of the leader and follower (including the
pelvis, knees, feet, shoulders, head, and wrists) as interaction features, and use these features to
calculate FIDcd and Divcd. 4) Contact Frequency (CF). CF represents the ratio of contact frames
to all frames. We define contact as vertices distances between dancers being less than 1cm. 5)
Penetration Rate (PR). We use the ratio of penetration vertices to all vertices as the Penetration
Rate. 6) Beat Echo Degree (BED). Following Duolando(Siyao et al., 2024), we use BED to measure
the rhythm consistency between two dancers. 7) Beat-Align Score (BAS). We follow AIST++(Li
et al., 2021a) and use BAS to assess the rhythm matching between music and dance.
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Table 3: Comparisons of reactive dance generation,all methods train&test on the InterDance dataset.

Method Motion Quality Interaction Quality Rhythmic

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑) BAS(↑)
Ground Truth 10.41 2.17 15.47 7.38 1.4 10.94 0.55% 9.91% 0.3404 0.1882

EDGE (Tseng et al., 2023) 55751.37 37.7 13.74 4.08 5.62 10.79 0.12% 2.15% 0.2524 0.2309
GCD (Le et al., 2023a) 202.12 19.34 6.16 4.70 4.06 11.34 0.28% 2.23% 0.2432 0.2025

InterGen (Liang et al., 2024) 114.39 12.05 8.82 5.74 1.79 11.29 0.41% 5.55% 0.3506 0.1987
Duolando (Siyao et al., 2024) 86.79 8.14 10.13 6.07 4.19 9.78 0.19% 3.49% 0.2608 0.1995

Ours 65.96 8.02 10.53 6.07 1.51 10.89 0.36% 6.99% 0.3644 0.1992

Figure 5: Qualitative comparisons of reactive dance generation, blue is the generated follower.

5.1 QUANTITATIVE AND QUALITATIVE EVALUATION

Quantitative Comparisons. We compare our method with several state-of-the-art approaches from
related fields on our InterDance dataset, all of which are adapted for benchmarking in the context
of react dance generation. In the field of solo dance generation, we choose EDGE (Tseng et al.,
2023) for comparison. For group dance generation, we select the latest GCD (Le et al., 2023a)
for comparison. For text-driven human interaction generation, we select InterGen (Liang et al.,
2024). We also evaluate against Duolando (Siyao et al., 2024), currently the only available method
for generating react dance. As shown in Table 3, our method demonstrates superior performance
compared with previous approaches, particularly in quality-related FID and Div metrics. In terms of
contact metrics CF, our method achieves a significant improvement of 4.84% compared to EDGE,
demonstrating our advantages in interaction generation. Although the motions generated by EDGE
and GCD have low PR metric, their CF remains poor. The text-driven interactive generation method,
InterGen, performs well on interaction quality but relatively poorly on motion quality due to the
variation in signal modalities. Compared with Duolando, which is carefully designed for reactive
dance generation, our method performs better in most metrics. This is because Duolando employs a
two-stage training framework that stores motions in a codebook, making it difficult to optimize fine-
grained interactions. In contrast, our method explicitly optimizes interactions within the original
motion space during sampling.

Qualitative Comparisons. We provide visualizations of the results generated by different methods
in Figure 5. This figure demonstrates that while GCD (Le et al., 2023a) initially generates relatively
good follower motions, it later exhibits shifts in the relative positions of the dancers. InterGen (Liang
et al., 2024) produces monotonous motions that fail to appropriately respond to the leader. Although
the results of Duolando (Siyao et al., 2024) are relatively good, it also suffers from significant contact
floating or penetration issues. In contrast, our method produces more responsive and interactively
coherent motions, achieving superior contact quality and mitigating penetration problems.

8
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Figure 6: Reactive dance generation user
study.

User Study. To obtain subjective evaluations of the
generated results from different methods, we recruit 40
participants for a user study. Each participant watches
40 pairs of videos with 30 fps 1280x1024 resolution.
One video generated by our method and the other by
either the ground truth or another method. Among
these 40 participants, 26 have no dance background,
while 14 have a dance background. We randomize the
order of the dances to ensure fairness. We ask partici-
pants the following questions: Which dance has better
overall motion quality? Which dance has better interaction? Which dance has better coordination
with the music? As depicted in Figure 6, our method outperforms all other methods in more than
85% of cases. This further demonstrates the effectiveness of our approach.

5.2 ABLATION STUDY

We conduct ablation studies on the reactive dance generation task using the InterDance dataset.

Motion Representation. To validate the effectiveness of our proposed motion representation in
generating human interactive dances, we conduct a series of experiments. 1) Joints denotes the nor-
mal motion representation of 55 human joints and 2) Vertices indicates adding 655 surface points
to the motion representation. 3) Canonical means transforming motion into canonical space. The
corresponding experimental results are shown in Table 4. Generating dance using only 55 joints
results in good motion quality but performs poorly on interaction quality. This is because interac-
tion requires finer perceptual granularity, and using only 55 joints loses much critical information
about the human surface. Therefore, we addressed this issue by adding surface vertices points to the
motion representation, which greatly improved the FIDcd from 26.73 to 8.11 and lowered the PR.
Although this indeed improved the quality of interaction, the additional 655 vertices also increased
the difficulty of dance modeling, leading to a decrease in motion quality. To resolve this, we fur-
ther processed the joints and vertices into canonical space to simplify dance modeling, ultimately
achieving good results in both motion quality and interaction quality.

Table 4: Effect of the proposed motion representation.

Joints Vertices Canonical Motion Quality Interaction Quality

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑)
✓ 83.75 8.51 10.43 6.32 26.73 8.17 0.78% 8.33% 0.3699
✓ ✓ 102.26 10.16 11.27 6.21 10.94 13.17 0.36% 4.21% 0.3692
✓ ✓ ✓ 88.82 8.41 10.74 6.36 8.11 10.45 0.36% 5.98% 0.3961

Interaction Losses. We evaluate the impact of different components of the interaction loss function
on the model performance. The results in Table 5 show that using only LDM can yield good genera-
tion results, but it performs poorly on FIDcd. This is because the LDM only calculates distances and
has a weak perception of angles. Therefore, we include the LRO, which constrains the relative tra-
jectories of dancers in vector form, resulting in a significant improvement in FIDcd. After adding the
Lcontact, both motion quality and interaction quality are greatly improved, as contact loss directly
encourages reasonable interaction between dancers.

Table 5: Effect of Interaction losses.

LDM LRO Lcontact
Motion Quality Interaction Quality

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑)
✓ 86.71 8.31 10.69 6.44 8.55 10.35 0.37% 5.61% 0.3664
✓ ✓ 94.27 9.65 10.53 6.41 5.61 10.43 0.36% 5.74% 0.3603
✓ ✓ ✓ 78.65 8.19 10.75 6.38 4.49 10.61 0.39% 6.62% 0.3831

Interaction Refine Guidance. To assess the effectiveness of our diffusion guidance sampling strat-
egy, we set four distinct settings to do ablation studies as Table 6 shows. The results indicate that
contact guidance can facilitate accurate contact between dancers and improve the interaction quality,
but it is ineffective in addressing penetration issues. Penetration suppression guidance can suppress
penetration occurrences, reducing penetration rate from 0.45% to 0.35%, but it may also lead to a
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Table 6: Effect of the Interaction Refine Guidance.

contact-guide pene-guide Motion Quality Interaction Quality

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑)
88.25 9.85 10.61 6.49 9.55 10.35 0.43% 6.07% 0.3803

✓ 87.52 9.05 10.63 6.48 9.02 10.46 0.45% 6.33% 0.3885
✓ 86.41 9.17 10.60 6.43 9.18 10.47 0.35% 5.91% 0.3822

✓ ✓ 86.18 9.07 10.66 6.47 8.74 10.51 0.34% 6.12% 0.3843

Figure 7: The visual comparison of the effects before and after using the diffusion guidance strategy.

decrease in some interaction metrics. The coordinated use of both can minimize the occurrence of
penetration phenomena while ensuring the quality of interaction, thereby enhancing dance realism.

5.3 DUET DANCE GENERATION

The task of duet dance generation is to generate a two-person dance from given music. Directly
generating duet dances has lower interaction quality due to the lack of leader guidance. By replacing
the input leader dance xl with sampled noise xl

N and requiring the denoise network to predict
both x̂l and x̂f , our method can achieve duet dance generation. Table 7 shows that our method
improves both motion and interaction quality over other approaches. All methods are trained on the
InterDance train set. Please refer to the supplementary material for more details.

Table 7: Quantitative comparisons of duet dance generation on the InterDance dataset.

Method Motion Quality Interaction Quality Rhythmic

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑) BAS(↑)
Ground Truth 7.42 1.21 15.32 7.20 1.40 10.94 0.54% 9.91% 0.3471 0.1901

EDGE (Tseng et al., 2023) 2566.12 67.81 36.52 5.78 110.16 4.21 1.25% 3.03% 0.2503 0.2189
GCD (Le et al., 2023a) 81.24 14.63 9.86 5.26 43.46 8.28 0.65% 6.06% 0.2664 0.2045

InterGen (Liang et al., 2024) 107.96 14.06 8.54 4.83 73.37 7.96 0.44% 6.56% 0.2451 0.2135
Duolando (Siyao et al., 2024) 77.29 10.37 10.25 5.64 110.82 12.99 0.09% 1.92% 0.2416 0.2071

Ours 72.27 8.07 9.94 5.82 36.84 7.92 0.18% 2.93% 0.2677 0.1998

6 CONCLUSION AND LIMITATION

In this work, we introduce InterDance, which includes a large-scale, high-quality duet dance dataset
and a reactive/duet dance generation method. To enhance the quality of the generated interactive
dance, we train the diffusion model using our proposed new motion representation and optimize in-
teraction quality with diffusion guidance techniques. Our method shows excellent results, as demon-
strated by both quantitative and qualitative experiments. However, there are still limitations, such
as the trade-off between quality and scale in our dataset, inefficient for generating long-sequence
duet dances in our method. The potential societal impact is that, as dance generation and human
interaction technology become more advanced, highly realistic virtual humans might lead users to
become so immersed in the virtual world that they detach from real-world participation.

7 REPRODUCIBILITY STATEMENT

We have elucidated our design in the paper including the dataset construction process (Section 3),
model structure (Section 4), and the training and testing details (Section 5). More details of the duet
dance generation, interactive decoder, user study and instructions for dancers are in the appendix.
To facilitate the reproduction, we will make our code, dataset, and weights publicly available.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Simon Alexanderson, Rajmund Nagy, Jonas Beskow, and Gustav Eje Henter. Listen, denoise, action!
audio-driven motion synthesis with diffusion models. ACM Transactions on Graphics (TOG), 42
(4):1–20, 2023.

Rui Chen, Mingyi Shi, Shaoli Huang, Ping Tan, Taku Komura, and Xuelin Chen. Taming diffusion
probabilistic models for character control. In ACM SIGGRAPH 2024 Conference Papers, pp.
1–10, 2024.

Christian Diller and Angela Dai. Cg-hoi: Contact-guided 3d human-object interaction generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
19888–19901, 2024.

Nima Ghorbani and Michael J Black. Soma: Solving optical marker-based mocap automatically. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11117–11126,
2021.

Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, and Philipp Slusallek.
Remos: 3d motion-conditioned reaction synthesis for two-person interactions. In European Con-
ference on Computer Vision (ECCV), volume 2, pp. 3, 2024.

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
diverse and natural 3d human motions from text. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5152–5161, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn,
and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1334–1345, 2024.

Nhat Le, Tuong Do, Khoa Do, Hien Nguyen, Erman Tjiputra, Quang D Tran, and Anh Nguyen.
Controllable group choreography using contrastive diffusion. ACM Transactions on Graphics
(TOG), 42(6):1–14, 2023a.

Nhat Le, Thang Pham, Tuong Do, Erman Tjiputra, Quang D Tran, and Anh Nguyen. Music-driven
group choreography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 8673–8682, 2023b.

Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang,
and Jan Kautz. Dancing to music. Advances in neural information processing systems, 32, 2019.

Buyu Li, Yongchi Zhao, Shi Zhelun, and Lu Sheng. Danceformer: Music conditioned 3d dance gen-
eration with parametric motion transformer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 1272–1279, 2022.

Jiaman Li, Yihang Yin, Hang Chu, Yi Zhou, Tingwu Wang, Sanja Fidler, and Hao Li. Learning to
generate diverse dance motions with transformer. arXiv preprint arXiv:2008.08171, 2020.

Jiaman Li, Alexander Clegg, Roozbeh Mottaghi, Jiajun Wu, Xavier Puig, and C Karen Liu. Con-
trollable human-object interaction synthesis. arXiv preprint arXiv:2312.03913, 2023a.

Ronghui Li, Junfan Zhao, Yachao Zhang, Mingyang Su, Zeping Ren, Han Zhang, Yansong Tang,
and Xiu Li. Finedance: A fine-grained choreography dataset for 3d full body dance generation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10234–10243,
2023b.

Ronghui Li, YuXiang Zhang, Yachao Zhang, Hongwen Zhang, Jie Guo, Yan Zhang, Yebin Liu,
and Xiu Li. Lodge: A coarse to fine diffusion network for long dance generation guided by the
characteristic dance primitives. arXiv preprint arXiv:2403.10518, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music condi-
tioned 3d dance generation with aist++. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 13401–13412, 2021a.

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music condi-
tioned 3d dance generation with aist++. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 13401–13412, 2021b.

Han Liang, Wenqian Zhang, Wenxuan Li, Jingyi Yu, and Lan Xu. Intergen: Diffusion-based multi-
human motion generation under complex interactions. International Journal of Computer Vision,
pp. 1–21, 2024.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
Amass: Archive of motion capture as surface shapes. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 5442–5451, 2019.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and
Oriol Nieto. librosa: Audio and music signal analysis in python. In SciPy, pp. 18–24, 2015.

Marko Mihajlovic, Shunsuke Saito, Aayush Bansal, Michael Zollhoefer, and Siyu Tang. Coap:
Compositional articulated occupancy of people. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13201–13210, 2022.
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A MORE DETAILS OF INTERDANCE DATASET

As shown in Table 1, we summarize the dance data for different genres in terms of total duration
(in minutes), number of frames, number of sequences, and their percentage of the entire InterDance
dataset.

B MORE RETRIEVAL BASED SIMPLE BASELINES

As shown in Table 2, We add NN-motion and NN-music as expanded baselines following Ng
et al. (2022). Since NN-motion and NN-music are directly retrieved from the training set, they
exhibit high quantitative metrics. However, the simple retrieval ignores interactive motion, making
it impossible for the generated follower dancer to perform alongside the leader. The follower’s
dance movements lack even basic interaction with the leader in cases. The calculation methods for
NN motion and NN music metrics are as follows:

NN-motion: Given an input leader motion, we find its nearest neighbor from the training set and use
its corresponding follower segment as the prediction.The distance is calculated based on the MSE
distance of the motion clips.

NN-music: Given an input music clip on InterDance test set, we find its nearest neighbor music clip
from the training set and use its corresponding follower motion as the prediction. The distance is

1
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Table 1: More Details of InterDance Dataset
Genre Minutes Frames Sequence number Percentage

Jive 8.20 59006 3 3.48%
Chacha 11.25 81000 4 4.78%
HanTang 15.44 111154 6 6.56%
Kpop 53.79 387262 21 22.84%
Jazz 6.61 47,610 4 2.81%
Samba 10.69 76982 6 4.54%
Waltz 10.79 77,674 8 4.58%
Rumba 27.11 195162 7 11.51%
Dai 11.95 86034 6 5.07%
HipHop 31.87 229432 10 13.53%
Wei 11.78 84822 6 5.00%
ShenYun 18.44 132758 8 7.83%
DunHuang 6.41 46172 3 2.72%
Urban 6.58 47390 4 2.80%
Miao 4.58 32,978 3 1.95%

calculated based on the MSE distance of the music features extracted by the advanced music feature
extractor Jukebox (Dhariwal et al., 2020).

Table 2: Quantitative comparisons of duet dance generation on the InterDance dataset, with ex-
panded retrieval based baseline of NN-motion and NN-music.

Method Motion Quality Interaction Quality Rhythmic

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑) BAS(↑)
Ground Truth 7.42 1.21 15.32 7.20 1.40 10.94 0.54% 9.91% 0.3471 0.1901

NN-motion 48.4 7.17 13.22 8.19 2.07 10.81 0.52% 5.54% 0.2356 0.1904
NN-music 24.01 4.34 16.53 6.78 14.07 12.76 0.18% 3.04% 0.1966 0.1890

EDGE (Tseng et al., 2023) 2566.12 67.81 36.52 5.78 110.16 4.21 1.25% 3.03% 0.2503 0.2189
GCD (Le et al., 2023) 81.24 14.63 9.86 5.26 43.46 8.28 0.65% 6.06% 0.2664 0.2045

InterGen (Liang et al., 2024) 107.96 14.06 8.54 4.83 73.37 7.96 0.44% 6.56% 0.2451 0.2135
Duolando (Siyao et al., 2024) 77.29 10.37 10.25 5.64 110.82 12.99 0.09% 1.92% 0.2416 0.2071

Ours 72.27 8.07 9.94 5.82 36.84 7.92 0.18% 2.93% 0.2677 0.1998

C MORE DETAILS OF DUET DANCE GENERATION
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Figure 1: The architecture of our method’s variant for duet dance generation.

Our method also supports generating duet dance directly from music without needing given leader
dance xl as input. The duet dance generation task need to model pθ(xl,xf |m). The overview
of our method for duet dance generation is shown in Figure 1. Given music feature m, Diffusion
Time Step N and sampled noise (xl

N ,xf
N ) as input, the Denoise Nework predict (x̂l, x̂f ) at each

diffusion step. Then, we use the Interaction Refine Guidance to refine (x̂l, x̂f ) to (x̃l, x̃f ). Next,
we add noise to (x̃l, x̃f ) and diffuse it to (xl

N−1,x
f
N−1). After repeating this process for N times,
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we can obtain the final predicted (x̂l, x̂f ) as output. The diffusion reconstruction loss function can
be formulated as:

Lrecon = E(xl,xf ,n)||fθ(xl
n,x

f
n, n,m)− (xl,xf )||22. (1)

For the auxiliary losses described in the main paper, simply replace xl with the predicted x̂l to train
the duet dance generation network.

D MORE DETAILS OF THE INTERACTIVE DECODER BLOCK
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Figure 2: The detailed architecture of the Interactive Decoder Block. ‘emb’ is the embedding of
music and diffusion time step.

The Interactive Decoder Block primarily consists of two Diffusion Transformers (DiT) and utilizes
the cross-attention layer as the communication mechanism between the leader and the follower. The
detailed network structure is shown in Figure 2. The Interactive Decoder Block also supports duet
dance generation, which involves generating dances for two people directly based on music. For
the duet dance generation task, we simply replace xl with xl

N and configure the Interactive Decoder
Block to output both x̂f and x̂f simultaneously.

E INPUT SIGNAL ANALYSIS

Due to the react dance generation task involving both music and leader motion as inputs, we de-
signed experiments to explore the role of different signals in dance generation. The experimental
results are shown in Table 3. The w/o. motion and w/o. music represent training without using
the leader’s motion sequence or music signal, respectively. The mask motion and mask music
represent masking the leader’s motion sequence or music signal to zero during testing (the model
is trained with both leader motion and music). The experimental results indicate that the leader’s
motion sequence plays a more critical role in interactive motion generation compared to background
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music signals. Training the follower generation model based solely on music or blocking the leader’s
motion signals in a trained model both result in significant declines in motion quality and interac-
tion quality. The impact of missing music signals is primarily reflected in the BAS metric, which
is strongly related to music rhythm. Additionally, the absence of music signals also affects motion
quality and interaction quality to some extent.

Table 3: Effect of input signals, tested on reactive dance generation.

Method Motion Quality Interaction Quality Rhythmic

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) CF(↑) PR(↓) BED(↑) BAS(↑)
w/o. motion 176.78 32.54 7.13 4.11 7.49 12.31 0.17% 2.73% 0.2397 0.2072
w/o. music 97.15 10.88 9.29 5.86 1.23 11.11 0.41% 6.42% 0.3735 0.1821

mask motion 191.74 27.26 5.43 4.14 4.01 11.19 0.17% 2.45% 0.2356 0.1963
mask music 79.95 9.81 10.05 6.01 0.99 11.19 0.35% 5.59% 0.3555 0.1803

Ours 65.96 8.02 10.53 6.07 1.51 10.89 0.36% 6.99% 0.3644 0.1992

F MORE EXPERIMENTAL RESULTS OF INTERACTION QUALITY.

In the main paper, we employ the contact metric CF to represent the percentage of frames in which
the distance between dancers is below a certain threshold. However, this metric is highly suscepti-
ble to outliers and weak interactions, preventing it from accurately reflecting the quality of contact.
To address this issue, we propose three new metrics, contact leader rate (CLR), contact follower
rate (CFR), and contact vertices rate (CVR), which calculate the proportion of vertices where the
distance between dancers is below the threshold. This approach mitigates the influence of isolated
points on the evaluation results. CLR represents the proportion of leader vertices in contact, while
CVR is the average of CLR and CFR (the proportion of follower vertices in contact). The exper-
imental results for the aforementioned metrics are displayed in Table 4. Our method exceeds all
others regarding contact metrics, achieving more than twice the performance of Duolando, which is
specifically designed for generating react dances.

G EXTENDED EXPERIMENTS ON DD100 DATASET.

To validate the applicability of our method on other datasets and explore the potential benefits of
the InterDance dataset for testing on other datasets, we conducted a series of experiments. The ex-
perimental results are shown in Table 5, with metrics calculated on the DD100 test set. InterDance
and DD100 indicate whether the training is conducted on these two datasets. Fine-tuning refers to
pre-training on the InterDance dataset followed by fine-tuning on the DD100 dataset.

When trained solely on DD100, our method demonstrates high motion quality and interaction qual-
ity. Pre-training on InterDance and then fine-tuning on DD100 leads to improvements in various
metrics compared to training only on DD100, showing that our InterDance dataset provides valuable
prior knowledge for generating interactive dances. When trained on both InterDance and DD100

Table 4: Detailed results of contact metrics for various methods under the reactive dance generation
task, tested on our InterDance dataset.

Method CF(↑) CLR(↑) CFR(↑) CVR(↑)
Ground Truth 9.9051% 0.0599% 0.0667% 0.0633%

GCD 2.3293% 0.0104% 0.0095% 0.0099%
EDGE 2.1502% 0.0076% 0.0076% 0.0076%

InterGen 5.5506% 0.0274% 0.0229% 0.0251%
Duolando 3.4017% 0.0101% 0.0105% 0.0103%

Ours 6.9801% 0.0486% 0.0377% 0.0432%
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Table 5: Experiments on the test set of DD100 Dataset. DD100 and InterDance indicate whether
these datasets (train set) are used for training. Fine-tuning refers to pre-training on InterDance
followed by fine-tuning on DD100.

DD100 InterDance Fine-tuning Motion Quality Interaction Quality

FIDk(↓) FIDg(↓) Divk(↑) Divg(↑) FIDcd(↓) Divcd(↑) PR(↓) CF(↑) BED(↑)
✓ 17.99 42.29 14.45 10.14 1.57 10.05 2.14% 32.71% 0.4758
✓ ✓ ✓ 15.39 42.17 14.57 10.17 1.46 10.24 1.59% 39.99% 0.4832
✓ ✓ 14.96 65.97 14.75 11.37 1.16 10.40 1.57% 36.78% 0.4899

GT 3.61 0.82 17.12 7.61 1.35 10.81 1.07% 41.95% 0.5094

datasets, the model achieves optimal performance on most metrics, further demonstrating the high
quality and diversity of our dataset.

H INSTRUCTIONS FOR DANCERS

During data collection, we provided the dancers with some guidance, as listed below:

(1) Motion Capture Equipment: Dancers wear motion capture equipment according to specified
procedures and body positions. Dancers don motion capture equipment following specified proce-
dures and body positions.

(2) Initialization Pose: Prior to the official performance, dancers must adopt an A pose to initialize
the motion capture system.

(3) Starting Position: Performances commence from the center of the stage, with movement being
both encouraged and permitted.

(4) Pair Interactions: Dancers perform in pairs, maximizing interaction during the dance.

(5) Clarity of Movements: Movements should be clear and distinct, utilizing highly recognizable
actions.

(6) Harmony with Music: Careful attention must be paid to synchronizing dance movements with
the music beat and ensuring stylistic harmony between the dance and the music.

I USER STUDY SCREENSHOTS

We conduct our user study through Feishu Docs. The screenshot is shown in Figure 3

Figure 3: Screenshot of our user study.
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