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Abstract

The application of large language models001
(LLMs) in healthcare holds significant promise002
for enhancing clinical decision-making, medi-003
cal research, and patient care. However, their004
integration into real-world clinical settings005
raises critical concerns around trustworthiness,006
particularly around dimensions of truthfulness,007
privacy, safety, robustness, fairness, and ex-008
plainability. These dimensions are essential for009
ensuring that LLMs generate reliable, unbiased,010
and ethically sound outputs. While researchers011
have recently begun developing benchmarks012
and evaluation frameworks to assess LLM trust-013
worthiness, the trustworthiness of LLMs in014
healthcare remains underexplored, lacking a015
systematic review that provides a comprehen-016
sive understanding and future insights. This017
survey addresses that gap by providing a com-018
prehensive review of current methodologies019
and solutions aimed at mitigating risks across020
key trust dimensions. We analyze how each021
dimension affects the reliability and ethical de-022
ployment of healthcare LLMs, synthesize on-023
going research efforts and identify critical gaps024
in existing approaches. We also identify emerg-025
ing challenges posed by evolving paradigms,026
such as multi-agent collaboration, multi-modal027
reasoning, and the development of small open-028
source medical models. Our goal is to guide029
future research toward more trustworthy, trans-030
parent, and clinically viable LLMs.031

1 Introduction032

The application of LLMs in healthcare is advanc-033

ing rapidly, with the potential to transform clini-034

cal decision-making, medical research, and patient035

care. However, incorporating them into healthcare036

systems poses several key challenges that need to037

be addressed to ensure their reliable and ethical use.038

As highlighted in Bi et al. (2024), a major concern039

is the trustworthiness of AI-enhanced biomedical040

insights. This encompasses improving model ex- 041

plainability and interpretability, enhancing robust- 042

ness against adversarial attacks, mitigating biases 043

across diverse populations, and ensuring strong 044

data privacy protections. Key concerns include 045

truthfulness, privacy, safety, robustness, fairness, 046

and explainability, each of which plays a vital role 047

in the reliability and trustworthiness of AI-driven 048

healthcare solutions. 049

Truthfulness, defined as "the accurate represen- 050

tation of information, facts, and results by an AI 051

system" (Huang et al., 2024), is critical in health- 052

care, as inaccuracies can lead to misdiagnoses or 053

inappropriate treatment recommendations. Ensur- 054

ing that generated information is both accurate 055

and aligned with verified medical knowledge is 056

essential. Additionally, privacy concerns arise 057

from the risk of exposing sensitive patient data 058

during model training and usage, potentially lead- 059

ing to breaches or violations of regulations such 060

as HIPAA (Health Insurance Portability and Ac- 061

countability Act) and GDPR (General Data Pro- 062

tection Regulation). Ensuring patient confiden- 063

tiality while leveraging LLMs for diagnostics and 064

treatment recommendations is a critical challenge. 065

Safety, defined as “ensuring that LLMs do not an- 066

swer questions that can harm patients or health- 067

care providers in healthcare settings” (Han et al., 068

2024b), further underscores the necessity of imple- 069

menting stringent safeguards to mitigate harm. Ro- 070

bustness refers to an LLM’s ability to consistently 071

generate accurate, reliable, and unbiased outputs 072

across diverse clinical scenarios while minimizing 073

errors, hallucinations, and biases. It also encom- 074

passes the model’s resilience against adversarial 075

attacks, ensuring that external manipulations do 076

not compromise its integrity. A truly robust LLM 077

in healthcare must demonstrate stability, reliability, 078

and fairness, even when faced with noisy, ambigu- 079

ous, or adversarial inputs. Similarly, fairness and 080

bias must be addressed to prevent discriminatory 081
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Figure 1: Overview of research trends, dataset usage, and model types across key trustworthiness dimensions in
healthcare LLM studies: (a) Temporal Trends in Trustworthiness Dimensions Addressed in Medical LLM Studies
(2022–2025); (b) Distribution of Dataset Types Across Trustworthiness Dimensions in Healthcare LLM Studies; (c)
Distribution of Model Types Across Trustworthiness Dimensions in Healthcare LLM Studies.

patterns in model outputs, which could lead to un-082

equal treatment recommendations and exacerbate083

healthcare disparities. Furthermore, the explain-084

ability of LLMs, which ensures that model outputs085

are interpretable and transparent, plays a vital role086

in fostering trust and allowing informed decision-087

making by healthcare professionals. Lack of trans-088

parency in model reasoning complicates clinical089

adoption and raises accountability concerns.090

Tackling these challenges is essential for the091

trustworthy and ethical implementation of LLMs in092

healthcare. Recently, researchers have begun devel-093

oping benchmarks and evaluation frameworks to094

systematically assess the trustworthiness of LLMs095

(Huang et al., 2024). The trustworthiness of096

LLMs in healthcare is gaining increasing atten-097

tion due to its significant social impact. However,098

there is currently no systematic review that pro-099

vides a comprehensive understanding and future in-100

sights into this area. To bridge this gap, we present101

a comprehensive survey that explores these trust-102

related dimensions in detail, reviewing existing103

benchmarks, and methodologies aimed at improv-104

ing the trustworthiness of LLMs in healthcare.105

2 Datasets, Models, and Tasks106

2.1 Inclusion & Exclusion Criteria107

We initiated our survey with a comprehensive lit-108

erature search targeting studies on the trustwor-109

thiness of LLMs in healthcare. Our search strat-110

egy employed diverse keyword combinations and111

was directed toward top-tier conferences and jour-112

nals, prioritizing publications from 2022 onward.113

Detailed inclusion and exclusion criteria are pro-114

vided in Appendix A. Fig 1(a) illustrates how the115

number of papers addressing each key trustworthi-116

ness dimension in healthcare LLMs has changed117

over time from 2022 to 2025. From Figure 1(a),118

interest in trustworthiness dimensions peaked in 119

2024, particularly for Fairness and Bias (16 papers) 120

and Privacy (11 papers), reflecting a strong recent 121

push toward ethical and secure AI in healthcare. 122

Truthfulness and Explainability maintained steady 123

growth through 2023 and 2024. These trends sug- 124

gest a rising concern with fairness and privacy in 125

recent years, possibly driven by real-world deploy- 126

ment risks and regulatory pressure. 127

2.2 Datasets 128

The datasets used in studies of trust in LLMs for 129

healthcare are categorized by the dimensions of 130

trustworthiness they address in Appendix B, where 131

we highlight key details such as data type, content, 132

task, and dimensions of trustworthiness. The con- 133

tent of each dataset specifies its composition, while 134

the task refers to the main problem to be solved for 135

which the dataset is utilized. The data type varies 136

across studies and includes web-scraped data, cu- 137

rated domain-specific datasets, public text corpora, 138

synthetic data, real-world data, and private datasets, 139

providing a comprehensive overview of their rele- 140

vance to healthcare applications. 141

Figure 1(b) shows the number of studies using 142

three major dataset types—Med-QA (blue), Med- 143

Gen (orange), and Med-IE (green)—in relation to 144

six trustworthiness dimensions: Truthfulness, Pri- 145

vacy, Safety, Robustness, Fairness and Bias, and 146

Explainability. Figure 1(b) shows how three ma- 147

jor dataset types—Med-QA, Med-Gen, and Med- 148

IE—are used across six trust dimensions. Truth- 149

fulness is most studied with both Med-QA and 150

Med-Gen. Med-QA is also common in fairness 151

and explainability, while Med-Gen contributes to 152

safety and privacy. Med-IE, though less used over- 153

all, is more prominent in robustness and explain- 154

ability. This highlights the dominance of Med-QA 155
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Truthfulness

Benchmarks Med-HALT (Pal et al., 2023), PubHealthTab (Akhtar et al., 2022), HEALTHVER (Sarrouti et al., 2021)

Mitigation Methods
Self Reflection (Ji et al., 2023), MEDAL (Li et al., 2024), Faithful Reasoning (Tan et al., 2024), HEALTHVER (Sarrouti et al., 2021),

CRITIC (Gou et al., 2024), SEND (Mohammadzadeh et al., 2024)

Evaluation and Detection Methods
Med-HALT (Pal et al., 2023), Med-HVL (Yan et al., 2024), Semantic Entropy (Farquhar et al., 2024),

SEPs (Han et al., 2024a), Faithful Reasoning (Tan et al., 2024), PubHealthTab (Akhtar et al., 2022), HEALTHVER (Sarrouti et al., 2021),

CRITIC (Gou et al., 2024), Cross-Examination (Cohen et al., 2023), MAD (Smit et al., 2023)

Privacy

Benchmarks SecureSQL (Song et al., 2024)

Enhance Methods
Federated Learning (Zhao et al., 2024a),

Differential Privacy (Singh et al., 2024), De-identification (Liu et al., 2023b), Mitigating Memorization (Yang et al., 2024a), APNEAP (Wu et al., 2024)

Evaluation Methods
SecureSQL (Song et al., 2024), Memorize Fine-tuning Data (Yang et al., 2024a), clinical Note De-identification (Altalla’ et al., 2025),

Memorization (Yang et al., 2024a), Textual Data Sanitization (Xin et al., 2024)

Safety

Benchmarks Med-harm (Han et al., 2024c), Medsafetybench (Han et al., 2024b)

Enhance Methods UNIWIZ (Das and Srihari, 2024), Data-Poisoning Attack (Han et al., 2024e)

Evaluation Methods
Med-harm (Han et al., 2024c), Medsafetybench (Han et al., 2024b), Misinformation Attacks (Han et al., 2024d), MEDIC (Kanithi et al., 2024),

GLiR Attack (Leemann et al., 2024), Data-Poisoning Attack (Han et al., 2024e)

Robustness

Benchmarks Detecting Anomalies (Rahman et al., 2024), RobustQA (Han et al., 2023), RABBITS (Gallifant et al., 2024)

Enhance Methods
LLM-TTA (O’Brien et al., 2024), Detecting Anomalies (Rahman et al., 2024), Secure Your Model (Tang et al., 2024), MEDSAGE (Binici et al., 2025),

Out-of-Context Prompting (Cotta and Maddison, 2024)

Evaluation Methods
Stumbling Blocks (Wang et al., 2024), Detecting Anomalies (Rahman et al., 2024),

Instruction Phrasings (Ceballos-Arroyo et al., 2024), RobustQA (Han et al., 2023), RABBITS (Gallifant et al., 2024)

Fairness and Bias

Benchmarks BiasMedQA (Schmidgall et al., 2024), EquityMedQA (Pfohl et al., 2024), Superficial Fairness Alignment (Wei et al., 2024), FairMedFM (Jin et al., 2024)

Mitigation Methods

BiasMedQA (Schmidgall et al., 2024), Reinforcement Learning with Clinician Feedback (Zack et al., 2024), Instruction Fine-tuning (Singhal et al., 2023),

Hurtful Words (Zhang et al., 2020), Mitigate Cognitive Biases (Ke et al., 2024), CI4MRC (Zhu et al., 2023), Bias of Disease Prediction (Zhao et al., 2024b),

Racial and LGBTQ+ Biases (Xie et al., 2024), Out-of-Context Prompting (Cotta and Maddison, 2024), Attribute Neutral Modeling (Hu et al., 2024),

Personalized Alignment Techniques (Kirk et al., 2024)Evaluating Biases in Context-Dependent (Patel et al., 2024)

Evaluation and Detection Methods

Evaluation Study (Zack et al., 2024), BiasMedQA (Schmidgall et al., 2024), Hurtful Words (Zhang et al., 2020), Race-based Medicine (Omiye et al., 2023),

Detect Debunked Stereotypes (Swaminathan et al., 2024), EquityMedQA (Pfohl et al., 2024), Superficial Fairness Alignment (Wei et al., 2024),

Examines Biased AI (Adam et al.), Identify Biases (Yang et al., 2024b), Quantifying Cognitive Biases (Lin and Ng, 2023),

Biases in Biomedical MLM (Kim et al., 2023), Bias of Disease Prediction (Zhao et al., 2024b), Racial and LGBTQ+ Biases (Xie et al., 2024),

FairMedFM (Jin et al., 2024)

Explanability

Benchmarks FaReBio (Fang et al., 2024), Pathway2Text (Yang et al., 2022)

Enhance Methods

Knowledge Graphs (Shariatmadari et al., 2024), Medical Imaging Explainability (Ghosh et al., 2023), MedExQA (Kim et al., 2024),

Retrieval and Reasoning on KGs (Ji et al., 2024), DDCoT (Zheng et al., 2023), A ChatGPT Aided Explainable Framework (Liu et al., 2023a),

Medical Concept-Driven Attention (Wang et al., 2022), FaReBio (Fang et al., 2024),

LLM-GCE (He et al., 2024), kNN-Graph2Text (Yang et al., 2022), RAG-IM (Mahbub et al., 2024), MedThink (Gai et al., 2025)

Figure 2: Summary of the recent research across various dimensions of trustworthiness of LLMs in healthcare.

and Med-Gen, with Med-IE offering value in spe-156

cific areas of trustworthiness.157

2.3 Models158

The models assessed in studies on trust in LLMs for159

the healthcare domain are outlined, along with their160

trustworthiness dimensions, in Appendix C, where161

we summarized key details such as the model name,162

release year, openness, architecture, task, and the163

institution responsible for its development. Figure164

1(c) illustrates the proportions of different model165

types—open-source, closed-source, and architec-166

tures including encoder-only, decoder-only, and167

encoder-decoder—used in research addressing var-168

ious trustworthiness aspects of LLMs in health-169

care: Explainability, Fairness and Bias, Robustness,170

Safety, Privacy, and Truthfulness. From Figure171

1(c), it is clear that Decoder-only and Open-source172

models are the most commonly used across all trust-173

worthiness dimensions—especially in robustness,174

explainability, and truthfulness—highlighting their175

accessibility and alignment with generative tasks.176

Closed-source models appear more in fairness and177

privacy studies, while Encoder-only and Encoder-178

decoder models are used less frequently, mostly in179

fairness and truthfulness evaluations. 180

2.4 Tasks 181

The tasks covered various primary focuses of 182

LLMs in healthcare. Inspired from the survey by 183

Liu et al. (2024a), these tasks include: 184

Medical Information Extraction (Med-IE) 185

Med-IE extracts structured medical data from un- 186

structured sources such as EHRs, clinical notes, 187

and research articles. Key tasks include entity 188

recognition (identifying diseases, symptoms, and 189

treatments), relationship extraction (understand- 190

ing entity connections), event extraction (detecting 191

clinical events and attributes), information sum- 192

marization (condensing medical records), and ad- 193

verse drug event detection (identifying medication- 194

related risks). 195

Medical Question Answering (Med-QA) Med- 196

QA systems interpret and respond to complex 197

medical queries from patients, clinicians, and re- 198

searchers. Their core functions include query un- 199

derstanding (interpreting user questions), infor- 200

mation retrieval (finding relevant data in medical 201

databases), and inference and reasoning (drawing 202
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conclusions, inferring relationships, and predicting203

outcomes based on retrieved data).204

Medical Natural Language Inference (Med-205

NLI) Med-NLI analyzes the logical relationships206

between medical texts. Key tasks include tex-207

tual entailment (determining if one statement log-208

ically follows another), contradiction detection209

(identifying conflicting statements), neutral rela-210

tionship identification (recognizing unrelated state-211

ments), and causality recognition (inferring cause-212

and-effect relationships).213

Medical Text Generation (Med-Gen) Med-Gen214

focuses on generating and summarizing medical215

content. Its key applications include text summa-216

rization (condensing lengthy documents into con-217

cise summaries) and content generation (producing218

new medical descriptions or knowledge based on219

input data).220

3 Trustworthiness of LLMs in Healthcare221

We examine the challenges related to the trustwor-222

thiness of LLMs in healthcare, outlining key strate-223

gies for identifying and mitigating these concerns.224

From our literature review screening, we identified225

truthfulness, privacy, safety, robustness, fairness226

and bias, and explainability as key trustworthiness227

dimensions of LLMs as highlighted in TrustLLM228

(Huang et al., 2024), particularly in healthcare. Fig-229

ure 2 provides a summary of the recent research on230

trust in LLMs for healthcare across key dimensions231

of trustworthiness.232

3.1 Truthfulness233

Findings in Truthfulness

Current solutions like self-reflection and fact-
checking frameworks reduce hallucinations,
but they remain limited in scalability and gen-
eralizability. Existing methods lack robust
grounding in long-form clinical contexts. En-
suring truthfulness will require hybrid verifi-
cation pipelines that combine retrieval, reason-
ing, and multi-agent self-correction.

234

Ensuring the truthfulness of LLMs in healthcare235

is critical, as inaccurate or fabricated information236

can directly harm clinical decisions. Hallucinations237

typically emerge from biased data, poor contextual238

reasoning, or reliance on unverifiable sources (Ah-239

mad et al., 2023), prompting the need for mecha-240

nisms that support factual correctness, source at-241

tribution, and uncertainty estimation. Recent ef- 242

forts tackle these challenges through benchmark- 243

ing, post-hoc correction, uncertainty quantification, 244

and improved evidence synthesis—each targeting 245

different aspects of factual reliability in medical 246

LLMs. 247

Several benchmarks have emerged to quantify 248

and categorize hallucinations. The Med-HALT 249

benchmark (Pal et al., 2023) evaluates hallucina- 250

tion types using reasoning-based tests (e.g., “False 251

Confidence”) and memory checks. In multimodal 252

settings, Med-HVL (Yan et al., 2024) distinguishes 253

between Object Hallucination and Domain Knowl- 254

edge Hallucination. 255

To mitigate hallucinations, post-hoc correction 256

techniques are gaining traction. MEDAL (Li et al., 257

2024) presents a model-agnostic self-correction 258

module that improves summarization outputs with- 259

out retraining. Similarly, interactive feedback 260

strategies like self-reflection loops (Ji et al., 2023) 261

allow LLMs to iteratively refine their responses. 262

Uncertainty quantification approaches provide 263

complementary detection tools. Farquhar et al. 264

(2024) apply semantic entropy to flag low- 265

confidence responses, while SEPs (Han et al., 266

2024a) offer a lightweight, hidden-state-based ap- 267

proximation suited for clinical use. 268

Recent efforts also examine the trustworthiness 269

of evidence synthesis pipelines. Zhang et al. (2024) 270

highlight risks when LLMs generate clinical sum- 271

maries without grounding, emphasizing the need 272

for transparency in literature retrieval and evidence 273

aggregation. Debate-based evaluation, as explored 274

in MAD (Smit et al., 2023), introduces multi-agent 275

deliberation to vet factual consistency in medical 276

QA. Finally, SEND (Mohammadzadeh et al., 2024) 277

introduces a neuron dropout technique to detoxify 278

hallucination-prone neurons during training, aim- 279

ing to improve inherent model truthfulness. 280

Factual accuracy is critical for trust in health- 281

care LLMs, where clinical safety relies on reliable, 282

verifiable outputs. Yet, current models often pro- 283

duce ungrounded content and lack source trace- 284

ability. Recent work addresses this through medi- 285

cal claim benchmarks, self-correction, automated 286

fact-checking, multi-turn verification, and multi- 287

perspective reasoning—advancing transparency, 288

factuality, and clinical relevance. 289

To support systematic validation, Akhtar et al. 290

(2022) introduce PubHealthTab, a table-based 291

dataset for checking public health claims against 292

noisy evidence, while Sarrouti et al. (2021) propose 293
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HEALTHVER, a benchmark for evidence-based294

fact-checking tailored to medical claims. These295

resources enable structured evaluation of LLM out-296

puts and form the foundation for improving medi-297

cal claim verification.298

Beyond static benchmarks, dynamic self-299

correction methods have shown promise. Gou et al.300

(2024) propose CRITIC, a framework inspired by301

human fact-checking, in which LLMs iteratively302

assess and revise their own responses. This process303

mimics expert reasoning and introduces a layer304

of critical reflection into model outputs. Comple-305

menting this, Cohen et al. (2023) present a cross-306

examination approach, where a second "examiner"307

model engages in multi-turn dialogue to probe308

for factual inconsistencies in the original response.309

While CRITIC emphasizes human-like evaluation,310

cross-examination leverages interaction between311

models to simulate external verification.312

To further reduce hallucinations and improve313

factual consistency, Tan et al. (2024) introduce314

a method that incorporates multiple scientific315

perspectives when resolving conflicting argu-316

ments, strengthening LLMs’ reasoning capabilities317

through broader contextual understanding.318

3.2 Privacy319

Findings in Privacy

LLMs continue to pose serious privacy risks
due to memorization and ineffective de-
identification. While techniques like differ-
ential privacy and federated learning offer
partial protection, they often degrade perfor-
mance. Future solutions must enable fine-
grained, instance-level privacy risk estimation
across training and inference stages.

320

LLMs in healthcare pose significant privacy321

risks throughout their lifecycle, from pre-training322

to deployment, due to their tendency to memo-323

rize and potentially regenerate sensitive data such324

as protected health information (PHI) (Das et al.,325

2024; Pan et al., 2020). Key threats include data326

memorization, insufficient de-identification, and327

the privacy-utility trade-offs of fine-tuning meth-328

ods. This section examines current vulnerabilities,329

mitigation strategies, and emerging approaches for330

achieving privacy-preserving healthcare LLMs.331

Data memorization is a core concern, especially332

in domain-specific models like Medalpaca (Han333

et al., 2025), which are more likely to retain PHI334

and pose heightened re-identification risks (Yang 335

et al., 2024a). Structured attacks like those demon- 336

strated in SecureSQL (Song et al., 2024) reveal that 337

even chain-of-thought (CoT) prompting provides 338

only marginal defense against leakage. 339

Pre-training privacy measures include de- 340

identification techniques like GPT-4 masking (Liu 341

et al., 2023b) and synthetic note generation (Altalla’ 342

et al., 2025), though these offer limited protection. 343

Xin et al. (2024) caution that such methods may 344

create a false sense of security, as subtle semantic 345

cues can still lead to PHI leakage. 346

Fine-tuning methods such as federated learning 347

(Zhao et al., 2024a) and differential privacy (Singh 348

et al., 2024) provide stronger safeguards by decen- 349

tralizing data or adding noise to protect individual 350

records. However, these methods often compro- 351

mise model performance or scalability (Liu et al., 352

2024a). 353

Emerging techniques seek to reduce this trade- 354

off. APNEAP (Wu et al., 2024) introduces activa- 355

tion patching for privacy neuron editing, reducing 356

leakage without harming utility. Complementarily, 357

Chen and Esmaeilzadeh (2024) offer a broader sur- 358

vey of privacy risks and solutions across generative 359

AI use cases in healthcare. 360

Ethical and personalization challenges further 361

complicate privacy design. Zhui et al. (2024) em- 362

phasize building privacy-conscious frameworks in 363

medical education, while Kirk et al. (2024) cau- 364

tion that overly personalized alignment strategies 365

may inadvertently violate user privacy, advocating 366

instead for bounded personalization. 367

3.3 Safety 368

Findings in Safety

Medical LLMs can generate harmful or mis-
leading content even after safety fine-tuning.
Existing benchmarks reveal vulnerabilities to
adversarial prompts and embedded misinfor-
mation. Ensuring safety requires proactive
alignment strategies and multi-stage evalua-
tion pipelines that simulate realistic clinical
misuse scenarios.

369

Ensuring the safety of LLMs in healthcare is vi- 370

tal, as harmful outputs can lead to serious clinical 371

consequences. Key concerns include the ease of 372

injecting persistent falsehoods into model weights, 373

inadequate performance on harmful prompts, trade- 374

offs between safety alignment and hallucination, 375
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and privacy-related vulnerabilities that can esca-376

late safety risks. This section explores current377

benchmarks, safety alignment strategies, and the378

overlap between safety and privacy threats. Han379

et al. (2024d) show that modifying just 1.1% of380

an LLM’s weights can embed lasting biomedical381

falsehoods without affecting overall performance.382

Similarly, Han et al. (2024e) find that poisoning383

only 0.001% of training data can introduce per-384

sistent misinformation, highlighting the need for385

robust safeguards during training and deployment.386

To systematically evaluate harmful outputs,387

benchmarks like MedSafetyBench (Han et al.,388

2024b) and Med-Harm (Han et al., 2024c) use389

adversarial and real-world queries to test model390

responses. Results show that even medically fine-391

tuned LLMs often fail safety criteria unless specif-392

ically optimized. MEDIC (Kanithi et al., 2024)393

broadens this evaluation across dimensions such as394

reasoning and reliability, offering a holistic safety395

diagnostic tool.396

Safety alignment remains challenging due to its397

tension with other objectives. UNIWIZ (Das and398

Srihari, 2024) combines safety-driven training with399

fact-grounded retrieval to reduce unsafe outputs400

while maintaining factual accuracy. However, over-401

alignment induces hallucinations, whereas under-402

alignment allows unsafe behaviors, demonstrating403

the delicate balance required for clinical reliability.404

Finally, privacy threats intersect with safety risks.405

Leemann et al. (2024) show that membership in-406

ference attacks, like Gradient Likelihood Ratio407

(GLiR), can detect whether individual patient data408

was used in training. This not only violates privacy409

but also raises safety concerns, as misuse of sensi-410

tive information can misguide clinical outcomes.411

3.4 Robustness412

Findings in Robustness

LLMs are fragile under distribution shifts, ad-
versarial prompts, and instruction variations.
Despite advances in adversarial testing and
test-time adaptation, most defenses are brit-
tle or task-specific. Achieving robustness de-
mands context-aware evaluation, multi-agent
training, and resilience to real-world perturba-
tions.

413

Ensuring the robustness of LLMs is essential for414

their safe deployment in healthcare, where models415

must perform reliably across diverse clinical sce-416

narios. Key challenges include adversarial vulnera- 417

bility, sensitivity to domain shifts and instruction 418

variations, and prompt-based attacks. To address 419

these issues, recent work explores adversarial test- 420

ing, test-time adaptation, prompt security, data aug- 421

mentation, and instruction robustness strategies. 422

Adversarial robustness is addressed through syn- 423

thetic data generation. Yuan et al. (2023) and Wang 424

et al. (2024) introduce adversarial test samples tai- 425

lored to the medical domain, such as synthetic 426

anomaly cases and boundary stress testing, to as- 427

sess model resilience. Alberts et al. (2023) empha- 428

size the importance of aligning adversarial testing 429

methods with real-world medical complexities. In 430

parallel, Gallifant et al. (2024) reveal that simply 431

substituting generic and brand drug names within 432

biomedical benchmarks leads to performance drops 433

of up to 10%, highlighting the fragility of LLMs to 434

clinically trivial lexical shifts. 435

Uncertainty quantification offers another avenue 436

for robustness. LLM-TTA (O’Brien et al., 2024) 437

explores test-time adaptation techniques to enhance 438

model performance on rare or unfamiliar cases, 439

common in medical diagnostics. This approach 440

complements adversarial robustness by identifying 441

instances where models are likely to err. 442

Instruction robustness is examined by Ceballos- 443

Arroyo et al. (2024), who find that specialized 444

medical models may be more fragile than general- 445

purpose models when instructions are reworded, 446

suggesting that excessive domain adaptation may 447

reduce flexibility. 448

Prompt security is enhanced by Tang et al. 449

(2024), who introduce a framework that strengthens 450

LLM robustness with cryptographic prompt authen- 451

tication, mitigating vulnerabilities associated with 452

prompt injections and adversarial attacks. 453

Data augmentation techniques are employed in 454

MEDSAGE (Binici et al., 2025), which uses LLM- 455

generated synthetic dialogues to simulate ASR er- 456

rors, improving the robustness of medical dialogue 457

summarization systems. Similarly, RobustQA (Han 458

et al., 2023) benchmarks the robustness of domain 459

adaptation for open-domain question answering 460

across diverse domains, facilitating the evaluation 461

of ODQA’s domain robustness. 462

Lastly, prompt engineering strategies, such as 463

out-of-context prompting, are explored by Cotta 464

and Maddison (2024), who demonstrate that ap- 465

plying random counterfactual transformations can 466

improve the fairness and robustness of LLM pre- 467

dictions without additional data or fine-tuning. 468

6



3.5 Fairness and Bias469

Findings in Fairness

Biases in race, gender, and identity persist
across medical LLM outputs. While new
benchmarks and mitigation methods help,
many remain narrow in scope or poorly
aligned with clinical realities. Fairness must
be pursued through intersectional audits, inclu-
sive datasets, and collaboration with impacted
communities.

470

Ensuring fairness in LLMs is critical for equi-471

table healthcare, as biased predictions can reinforce472

existing disparities in access, diagnosis, and treat-473

ment. Key areas of concern include demographic474

bias (e.g., race, gender, identity), automated detec-475

tion of these biases, mitigation strategies based on476

model accessibility, and the need for ethical clarity477

and conceptual frameworks. Recent work spans478

benchmark creation, debiasing techniques, prompt479

interventions, and calls for more transparent fair-480

ness evaluations.481

Bias identification remains a foundational step.482

Studies show that LLMs can replicate and even am-483

plify racial, gender, and identity-based biases. For484

example, Omiye et al. (2023), Zack et al. (2024),485

and Kim et al. (2023) highlight persistent demo-486

graphic biases in medical responses. Zhao et al.487

(2024b) find that diagnostic recommendations vary488

unfairly by demographic group, while Xie et al.489

(2024) reveal systematic inequities in outputs con-490

cerning race and LGBTQ+ identities. Patel et al.491

(2024) further demonstrate that LLMs can reinforce492

social and gender-based stereotypes in sensitive493

areas such as sexual and reproductive health, un-494

derscoring the risks in context-dependent medical495

interactions.496

Detection and benchmarking tools help quan-497

tify and monitor these disparities. Swaminathan498

et al. (2024) propose tools for identifying race-499

based stereotypes in medical Q&A. Benchmarks500

such as BiasMedQA (Schmidgall et al., 2024), Eq-501

uityMedQA (Pfohl et al., 2024), and FairMedFM502

(Jin et al., 2024) offer frameworks for testing model503

behavior across diverse patient profiles and clinical504

contexts.505

Mitigation strategies differ by model accessibil-506

ity. For open-source models, techniques like adver-507

sarial debiasing (Zhang et al., 2020), causal inter-508

vention (CI4MRC) (Zhu et al., 2023), multi-agent509

collaboration (Ke et al., 2024), and attribute-neutral510

modeling (Hu et al., 2024) are applied to reduce 511

bias. Data augmentation (Parray et al., 2023) and 512

bias-aware embedding assessments (Lin and Ng, 513

2023) provide further tools to enhance fairness in 514

pretraining and inference. 515

Closed-source models present unique challenges 516

due to limited transparency. In these cases, fair- 517

ness is addressed via instruction fine-tuning (Sing- 518

hal et al., 2023), external prompt engineering 519

(Schmidgall et al., 2024), or bounded personaliza- 520

tion strategies (Kirk et al., 2024), though these are 521

less interpretable and harder to audit. 522

Ethical and conceptual considerations also play 523

a role. Wei et al. (2024) call for distinguishing 524

between intrinsic and behavioral fairness, while 525

Zhui et al. (2024) and Cotta and Maddison (2024) 526

promote fairness through education and prompt 527

design. Finally, Adam et al. and Yang et al. (2024b) 528

warn that unchecked bias can distort care decisions 529

and patient trust, emphasizing the stakes of fairness 530

in real-world applications. 531

3.6 Explanability 532

Findings in Explainability

Despite progress in rationale generation and at-
tention visualization, most explainability tools
lack clinical relevance or faithfulness. Cur-
rent methods often fail to align with clinician
reasoning. Future work must bridge this gap
with domain-specific frameworks and causal
or counterfactual explanation techniques.

533

The lack of explainability in LLMs hinders clin- 534

ical adoption by limiting transparency and trust. 535

Recent research explores both intrinsic (model- 536

integrated) and post-hoc (output-interpretation) 537

techniques to make LLM reasoning more inter- 538

pretable. These methods span a wide range 539

of modalities including text, graphs, tables, and 540

images—and often incorporate domain-specific 541

knowledge or human-centered reasoning to bridge 542

model outputs and clinical expectations. 543

Intrinsic explainability methods enhance trans- 544

parency by aligning model attention with medi- 545

cal knowledge. For example, Shariatmadari et al. 546

(2024) integrate knowledge graphs with atten- 547

tion visualization, while Wang et al. (2022) use 548

Wikipedia-derived medical concepts to guide atten- 549

tion for code prediction, resulting in more concept- 550

consistent outputs. Similarly, structure-to-text mod- 551

els like Pathway2Text (Yang et al., 2022) convert 552
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biomedical graphs into interpretable narratives, sup-553

porting more intuitive understanding of complex554

structured inputs.555

Post-hoc strategies focus on generating faithful556

rationales and justifications. FaReBio (Fang et al.,557

2024) highlights how summarization faithfulness558

suffers with increased abstractiveness and intro-559

duces a benchmark to evaluate reasoning fidelity.560

In the molecular domain, LLM-GCE (He et al.,561

2024) generates counterfactuals for Graph Neural562

Networks (GNNs) using dynamic feedback to en-563

sure chemically valid, interpretable explanations.564

Several methods target zero-shot interpretabil-565

ity without task-specific fine-tuning. RAG-IM566

(Mahbub et al., 2024) enables table-based clini-567

cal predictions with natural language justifications,568

while Liu et al. (2023a) embed ChatGPT into a di-569

agnostic workflow with integrated interpretability570

components. Retrieval-based systems such as Re-571

trieval + KG (Ji et al., 2024) and DDCoT (Zheng572

et al., 2023) further enhance reasoning by chaining573

knowledge-grounded prompts across modalities.574

Explainability in imaging and multimodal con-575

texts is also gaining traction. MedThink (Gai et al.,576

2025) fuses visual and textual inputs to improve577

multimodal reasoning, and MedExQA (Kim et al.,578

2024) supplies detailed rationales for visual ques-579

tion answering. Ghosh et al. (2023) decomposes580

black-box decisions into expert modules with first-581

order logic (FOL) reasoning.582

4 Future Directions583

While core trust dimensions—truthfulness, pri-584

vacy, robustness, fairness, explainability, and585

safety—have been the focus of recent work, emerg-586

ing model paradigms such as multi-agent systems,587

multi-modal models, and small open-source LLMs588

introduce new trust challenges underexplored.589

Multi-Agent LLMs Multi-agent LLMs enable590

distributed reasoning through collaboration be-591

tween specialized agents, offering improved ro-592

bustness and self-correction. However, they also593

raise concerns around coordination, error propa-594

gation, and the interpretability of inter-agent com-595

munication. Trustworthy multi-agent systems will596

require protocols for communication, verification,597

and evaluation that ensure factual alignment and598

fairness. For example, Lu et al. (2024) introduce599

TriageAgent, a clinical multi-agent framework with600

role-specific LLMs for diagnosis and decision-601

making. While it shows benefits like structured602

collaboration and early stopping, it also reveals 603

trust challenges including inconsistent agent con- 604

fidence, limited transparency, and error propaga- 605

tion—highlighting the need for stronger verifica- 606

tion and alignment in high-stakes settings. 607

Multimodal Foundation Models Multi-modal 608

LLMs combine text, images, and structured data, 609

better reflecting real-world clinical inputs but com- 610

plicating trust evaluation. Challenges include cross- 611

modal hallucination, misalignment, and reduced 612

explainability. Addressing these issues will re- 613

quire modality-specific assessments, interpretable 614

fusion strategies, and fairness testing across both 615

textual and visual modalities. For example, Liu 616

et al. (2024b) evaluate open-source multimodal 617

LLMs for genomics and proteomics, highlight- 618

ing issues with factual consistency and alignment 619

across modalities—underscoring the importance 620

of structured evaluation and interpretable model 621

design in biomedical contexts. 622

Small Open-Source LLMs Small open-source 623

medical LLMs are gaining traction for their trans- 624

parency, adaptability, and lower computational de- 625

mands, making them attractive for deployment in 626

resource-constrained or privacy-sensitive settings. 627

However, their reduced capacity often leads to in- 628

creased hallucinations, weaker safety alignment, 629

and heightened privacy risks during fine-tuning on 630

limited clinical data. Ensuring their trustworthi- 631

ness requires lightweight hallucination mitigation, 632

privacy-preserving training, and scalable evalua- 633

tion pipelines. Despite their growing use, few stud- 634

ies directly examine these trust issues in small med- 635

ical LLMs, as most existing research focuses on 636

larger or general-purpose models—leaving a criti- 637

cal gap in the literature. 638

5 Conclusion 639

As large language models continue to expand their 640

role in healthcare, ensuring their trustworthiness re- 641

mains a critical challenge. This survey reviewed six 642

core dimensions—truthfulness, privacy, safety, ro- 643

bustness, fairness, and explainability—highlighting 644

key methods, benchmarks, and limitations in cur- 645

rent research. While recent advances have laid 646

important groundwork, most existing solutions re- 647

main narrowly scoped and lack integration across 648

dimensions, limiting their effectiveness in real- 649

world clinical settings. 650
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Limitations651

This survey provides a comprehensive overview of652

the challenges associated with LLMs in healthcare,653

but it primarily focuses on existing methodologies,654

leaving out emerging technologies that could ad-655

dress these issues in new ways. It also lacks prac-656

tical insights into the real-world implementation657

of these solutions, such as deployment challenges,658

cost considerations, and system integration, which659

would make the findings more applicable to health-660

care settings.661

While the paper addresses privacy and safety, it662

does not fully explore broader ethical issues like663

informed consent, patient autonomy, and human664

oversight. Additionally, the survey focuses on cur-665

rent research without delving into the long-term666

societal and health impacts of LLM deployment,667

such as changes in doctor-patient relationships, pa-668

tient trust, and healthcare workflows.669
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A Inclusion & Exclusion Criteria Details1150

We conducted an extensive search to identify peer-1151

reviewed papers that address the trustworthiness1152

of LLMs in the healthcare domain. Our search1153

strategy involved a wide range of keyword combi-1154

nations related to LLMs and core trust dimensions,1155

including: trustworthiness, truthfulness, privacy,1156

safety, robustness, fairness, bias, and explainability.1157

We targeted both domain-specific and general AI1158

venues, focusing on recent publications from 20221159

onward.1160

Specifically, we searched across top-tier con-1161

ferences and journals, including ACL, EMNLP,1162

NAACL, ICML, NeurIPS, ICLR, KDD, AAAI, IJ-1163

CAI, Nature, and Science, using platforms such as1164

Google Scholar, Nature, and Science. A full list of1165

keyword queries used in our search is provided be-1166

low. These queries combined domain terms (medi-1167

cal, clinical) with trust-related dimensions, applied1168

across both “large language models” and “founda-1169

tion models.” Examples include:1170

• large language models, medical, explainability1171

• large language models, medical, explainable1172

• foundation model, medical, explainability1173

• large language models, clinical, explainability1174

• large language models, medical, truthfulness1175

• large language models, medical, trustworthiness1176

• foundation model, medical, trustworthiness1177

• large language models, clinical, truthfulness1178

• large language models, clinical, safety1179

• large language models, medical, safety1180

• foundation model, medical, safety1181

• large language models, clinical, fairness1182

• large language models, medical, fairness1183

• foundation model, medical, fairness1184

• large language models, clinical, robustness1185

• foundation model, medical, robustness1186

• large language models, medical, robustness1187

• large language models, clinical, privacy1188

• large language models, medical, privacy 1189

• foundation model, medical, privacy 1190

• large language models, clinical, ethics 1191

• large language models, medical, ethics 1192

• foundation model, medical, ethics 1193

In total, our initial search returned approxi- 1194

mately 15,322 results, including duplicates and 1195

non-relevant papers. Our filtering process pro- 1196

ceeded in three stages: 1197

• Duplicate removal – approximately 11,172 1198

papers eliminated. 1199

• Relevance screening – we excluded papers 1200

that: (a) did not focus on trustworthiness as- 1201

pects (e.g., architecture design or multi-modal 1202

fusion techniques), (b) were not specific to the 1203

healthcare domain, or (c) were unpublished 1204

preprints (e.g., arXiv manuscripts). 1205

• Final selection – we curated a final set of 1206

62 papers that directly addressed trust-related 1207

challenges in healthcare LLMs, focusing on 1208

one or more of the following dimensions: 1209

truthfulness, privacy, safety, robustness, fair- 1210

ness, bias, and explainability. 1211
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B Comparison of Datasets1212

We systematically collected and analyzed 381213

datasets relevant to the study of trust in LLMs1214

for healthcare. Table 1 provides a comprehensive1215

summary, highlighting key attributes such as data1216

type, content, associated tasks, and the specific1217

trustworthiness dimensions they address. These1218

datasets vary widely, including web-scraped data,1219

curated domain-specific datasets, public text cor-1220

pora, synthetic data, real-world data, and private1221

datasets. Each dataset’s content specifies its compo-1222

sition, while its associated task defines its primary1223

research application. Additionally, we categorize1224

the datasets based on critical trustworthiness dimen-1225

sions—truthfulness, privacy and safety, robustness,1226

fairness and bias, and explainability—offering a1227

structured evaluation of their contributions to build-1228

ing reliable and trustworthy healthcare AI.1229
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Datasets Data Type Content Task Dimensions

MultiMedQA Combination of
Public and Syn-
thetic Data, Curated
Domain-Specific
Dataset

208,000 entries. A benchmark
combining six existing medi-
cal questions answering datasets
spanning professional medicine,
research and consumer queries
and a new dataset of medi-
cal questions searched online,
HealthSearchQA.

(Med-QA) Tasks including
Medical Question Answer-
ing, Clinical Reasoning,
Evidence-Based Medicine,
Multilingual and Multi-
modal Support, Bias and
Safety Analysis

Fairness
and Bias

BiasMedQA Curated Domain-
Specific Datasets

1273 USMLE questions (Med-QA) Replicate com-
mon clinically relevant cog-
nitive biases

Fairness
and Bias

EquityMedQA Curated domain-
specific datasets
and synthetic data

4,619 examples. Cover a wide
range of medical topics to sur-
face biases that could harm
health equity, including im-
plicit and explicit adversarial
questions addressing biases like
stereotypes, lack of structural
explanations, and withholding
information.

(Med-QA) Evaluate the per-
formance of LLMs in gen-
erating unbiased, equitable
medical responses.

Fairness
and Bias

SQuAD Curated Domain-
Specific Dataset

Consists of over 100,000
question-answer pairs derived
from more than 500 articles
from Wikipedia. Each question
is paired with a segment of text
from the corresponding article,
serving as the answer.

(Med-QA)To develop mod-
els that can read a passage
and answer questions about
it, assessing the model’s
ability to understand and ex-
tract information from the
text.

Fairness
and Bias

MIMIC- III Public text corpora,
real-world data

De-identified health-related data
from over 40,000 critical care
patients, including demograph-
ics, vital signs, laboratory
tests, medications, and caregiver
notes.

(Med-IE) Epidemiological
studies, clinical decision-
rule improvement, machine
learning in healthcare.

Fairness
and Bias,
Explain-
ability,
Robustness

MedQA Curated Domain-
Specific Datasets

194,000 multiple-choice
medical exam questions. A
benchmark that includes ques-
tions drawn from the United
States Medical License Exam
(USMLE).

(Med-QA) Exam the physi-
cians to test their ability to
make clinical decisions

Fairness
and Bias,
Robustness,
Explain-
ability,
Truth-
fulness,
Privacy

PMC-Patients Curated dataset de-
rived from public
text corpora.

Contains 167,000 patient sum-
maries extracted from 141,000
PMC articles

(Med-IE) Designed to
benchmark ReCDS systems
through two primary tasks:
Patient-to-Article Retrieval
(PAR), Patient-to-Patient
Retrieval (PPR)

Robustness

MedSafetyBench Curated domain-
specific dataset and
synthetic (gener-
ated using GPT-4,
Llama-2-7b-chat,
and adversarial
techniques).

1,800 harmful medical requests
violating medical ethics, along
with 900 corresponding safe re-
sponses. The dataset is struc-
tured based on the Principles
of Medical Ethics from the
American Medical Association
(AMA).

(Med-Gen) Assess the med-
ical safety of LLMs by test-
ing whether they refuse to
comply with harmful med-
ical requests. Fine-tune
LLMs using medical safety
demonstrations to enhance
their alignment with ethical
medical guidelines.

Safety
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UNIWIZ Synthetic and cu-
rated data, includ-
ing: 17,638 quality-
controlled conversa-
tions, and 10,000
augmented prefer-
ence data

17,638 conversations and
10,000 augmented preference
data. Features conversations
that integrate safety and
knowledge alignment. A
"safety-priming" method was
employed to generate syn-
thetic safety data, and factual
information was injected into
conversations by retrieving
content from curated sources.

(Med-Gen) Fine-tune large
language models to enhance
their performance in gener-
ating safe and knowledge-
grounded conversations.

Safety

SciFact Curated Domain-
Specific Dataset.

2,011 claims. Includes claims
and corresponding evidence ab-
stracts, each annotated with
labels indicating whether the
claim is supported or refuted,
along with rationales justifying
the decision.

(Med-Gen) To verify the ve-
racity of scientific claims by
identifying supporting or re-
futing evidence within ab-
stracts and providing justi-
fications for these decisions.

Truthfulness

PubHealthTab Curated Domain-
Specific Dataset

Contains 1,942 real-world pub-
lic health claims, each paired
with evidence tables extracted
from over 300 websites.

(Med-Gen) Facilitates
evidence-based fact-
checking by providing
claims and corresponding
evidence tables for verifica-
tion.

Truthfulness

LAMA Curated Domain-
Specific Dataset.

24,223 entries of knowledge
sources. Comprises a set of
knowledge sources, each con-
taining a collection of facts.

(Med-Gen) To probe pre-
trained language models to
determine the extent of their
factual and commonsense
knowledge.

Truthfulness

TriviaQA Curated Domain-
Specific Dataset.

Consists of over 650,000
question-answer pairs, each
linked to a set of supporting
documents. The questions are
sourced from trivia websites,
and the answers are derived
from the corresponding docu-
ments.

(Med-QA) Training and
evaluating models on read-
ing comprehension, specifi-
cally focusing on the ability
to extract and reason over
information from provided
documents to answer ques-
tions.

Truthfulness

Natural Ques-
tions (NQ)

Real data 99.80 GB, with downloaded
files accounting for 45.07 GB
and the generated dataset oc-
cupying 54.73 GB. consists of
real anonymized queries from
Google’s search engine users,
paired with answers derived
from entire Wikipedia articles.

(Med-QA) To develop
and evaluate question-
answering systems that can
read and comprehend entire
Wikipedia articles to find
answers to user queries.

Truthfulness

PopQA Curated Domain-
Specific Dataset.

consists of 14,000 QA pairs,
each associated with fine-
grained Wikidata entity IDs,
Wikipedia page views, and
relationship type information.

(Med-QA) Designed for
open-domain question an-
swering tasks, focusing on
evaluating the effectiveness
of language models in re-
trieving and utilizing factual
knowledge.

Truthfulness

FEVER Curated Domain-
Specific Dataset.

comprises 185,000 claims, each
paired with evidence from
Wikipedia articles. These claims
are categorized as supported, re-
futed, or not verifiable.

(Med-Gen) Fact extraction
and verification, where mod-
els are trained to determine
the veracity of claims based
on provided evidence.

Truthfulness

17

https://aclanthology.org/2024.findings-acl.102.pdf
https://github.com/allenai/scifact?utm_source=chatgpt.com
https://aclanthology.org/2022.findings-naacl.1/?utm_source=chatgpt.com
https://github.com/facebookresearch/LAMA?utm_source=chatgpt.com
https://aclanthology.org/P17-1147/
https://aclanthology.org/Q19-1026/
https://aclanthology.org/Q19-1026/
https://arxiv.org/abs/2212.10511
https://fever.ai/dataset/fever.html


Datasets Data Type Content Task Dimensions

HEALTHVER Curated Domain-
Specific Dataset.

contains 14,330 evidence-claim
pairs labeled as SUPPORTS,
REFUTES, or NEUTRAL, de-
rived from real-world health
claims, mainly about COVID-
19, verified against scientific ar-
ticles.

(Med-Gen) Training and
evaluating models on the
task of verifying the truthful-
ness of health-related claims
by assessing their align-
ment with scientific evi-
dence. This involves clas-
sifying claims as supported,
refuted, or neutral based on
the provided evidence.

Truthfulness

Med-HALT Synthetic and Real
Data, Curated
Domain-Specific
Dataset, and Public
Dataset

59,254 entries. Consist of
Reasoning-Based Assessments,
Memory-Based Assessments,
Medical Scenarios, Evaluation
Metrics

(Med-Gen) Tasks including
Evaluation of Hallucination
in Medical AI, Reliability
Benchmarking, Error Analy-
sis, Mitigation Development

Truthfulness

MedICaT Public Text Corpora
And Real Data (cu-
rated from publicly
available biomedi-
cal literature)

217,060 figures extracted from
131,410 open-access papers.
Contains medical images (e.g.,
radiographs, charts, and dia-
grams) paired with captions ex-
tracted from biomedical litera-
ture. Also, includes metadata
about the source and context of
the images.

(Med-Gen) Task including
Medical Image Captioning,
Text-Image Retrieval, Medi-
cal Reasoning

Truthfulness

BioASQ Curated Domain-
Specific Dataset;
Real Data.

3,743 training questions and 500
test questions. The dataset com-
prises English-language biomed-
ical questions, each accompa-
nied by reference answers and
related materials. These ques-
tions are designed to reflect real
information needs of biomedical
experts, making the dataset both
realistic and challenging.

(Med-QA) The primary task
is Biomedical Question An-
swering (QA), which in-
volves systems providing ac-
curate answers to questions
based on biomedical data.
The dataset supports various
QA tasks, including yes/no,
factoid, list, and summary
questions.

Truthfulness

FactualBio Synthetic Data;
Public Text Cor-
pora.

collection of biographies of indi-
viduals notable enough to have
Wikipedia pages but lacking ex-
tensive detailed coverage. The
dataset was generated using
GPT-4 and includes biographies
of 21 individuals randomly sam-
pled from the WikiBio dataset.

(Med-Gen) Evaluating the
factual accuracy of language
models, particularly in the
context of biography gener-
ation. It serves as a bench-
mark for detecting halluci-
nations and assessing the
factual consistency of gen-
erated text.

Truthfulness

PubMedQA Curated Domain-
Specific Dataset.

Consists of over 1,000 question-
answer pairs derived from
PubMed abstracts, focusing on
various biomedical topics.

(Med-QA) Evaluates the
ability of models to compre-
hend and extract informa-
tion from biomedical texts
to answer specific questions.

Truthfulness

MedQuAD Curated Domain-
Specific Dataset.

The dataset encompasses 37
question types, such as Treat-
ment, Diagnosis, and Side Ef-
fects, associated with diseases,
drugs, and other medical entities
like tests.

(Med-QA) Designed for
medical question answering,
the dataset aids in develop-
ing and evaluating systems
that can understand and re-
spond to medical inquiries.

Truthfulness

LiveMedQA2017 Curated Domain-
Specific Dataset

Consists of 634 question-answer
pairs corresponding to National
Library of Medicine (NLM)
questions

(Med-QA) Medical ques-
tion answering, focusing on
consumer health questions
received by the U.S. Na-
tional Library of Medicine.

Truthfulness
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MASH-QA Curated Domain-
Specific Dataset.

Approximately 25,000 question-
answer pairs sourced from
WebMD, covering a wide range
of healthcare topics.

(Med-QA) Designed for
multiple-answer span ex-
traction in healthcare ques-
tion answering.

Truthfulness

SecureSQL Curated domain-
specific dataset

Comprises meticulously anno-
tated samples, including both
positive and negative instances.
The dataset encompasses 57
databases across 34 diverse do-
mains, each associated with spe-
cific security conditions.

(Med-IE) Evaluate and an-
alyze data leakage risks in
LLMs, particularly concern-
ing SQL query generation
and execution.

Privacy

Medical
Meadow

curated domain-
specific dataset

It comprises approximately 1.5
million data points across var-
ious tasks, including question-
answer pairs generated from
openly available medical data
using models like OpenAI’s

(Med-Gen) Designed to en-
hance large language mod-
els (LLMs) for medical ap-
plications

Privacy

Electronic
Health Records
(EHR) at
(KHCC)

Private dataset gpt-3.5-turbo (Med-IE) Clinical research,
outcome analysis.

Privacy

MedVQA Curated domain-
specific dataset

794 image-question-answer
triplets. A collection of medical
visual question answering pairs,
designed to train and evaluate
models that interpret medical
images and answer related
questions.

(Med-QA) Visual question
answering, medical image
understanding.

Explainability

MedExQA Curated domain-
specific dataset

965 multiple-choice medical
questions. A dataset focused on
medical examination questions
and answers, intended to aid in
the development of AI models
for medical exam preparation
and assessment.

(Med-QA) Question answer-
ing, educational assessment.

Explainability

MedMCQA Curated domain-
specific dataset

194,000 multiple-choice ques-
tions from AIIMS and NEET
PG entrance exams, covering
2,400 healthcare topics across
21 medical subjects. A multiple-
choice question-answering
dataset in the medical domain,
aimed at training models to
handle medical examinations
and practice questions.

(Med-QA) Multiple-choice
question answering, medi-
cal education.

Explainability

TCM Medi-
cal Licensing
Examina-
tion(MLE)

Curated domain-
specific dataset

600 multiple-choice questions.
A dataset comprising questions
and answers from Traditional
Chinese Medicine licensing ex-
aminations.

(Med-QA) Educational as-
sessment, question answer-
ing.

Explainability
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Pneumonia
Dataset

Curated domain-
specific dataset

5,863 images. Medical images
(such as chest X-rays) labeled
for the presence or absence of
pneumonia, used for training di-
agnostic models.

(Med-IE) Image classifica-
tion, disease detection.

Explainability

Montgomery
Dataset

Curated domain-
specific dataset

X-ray Set comprises 138
posterior-anterior chest X-ray
images, with 80 normal and
58 abnormal cases indicative
of tuberculosis. Chest X-ray
images with manual segmenta-
tions of the lung fields, useful
for pulmonary research.

(Med-IE) Image segmenta-
tion, tuberculosis detection.

Explainability

Shenzhen
Dataset

Curated domain-
specific dataset

Chest X-ray dataset comprises
662 frontal chest X-rays, includ-
ing 326 normal cases and 336
cases with manifestations of tu-
berculosis. Chest X-ray images
collected in Shenzhen, China,
with annotations for tuberculo-
sis manifestations.

(Med-IE) Disease classifica-
tion, image analysis.

Explainability

IDRID Dataset Curated domain-
specific dataset

1,113 images. Retinal images
with annotations for diabetic
retinopathy lesions, intended for
retinal image analysis.

(Med-IE) Image segmenta-
tion, disease grading.

Explainability

MIMIC IV Curated Real-World
Clinical Dataset

Over 300,000 hospital admis-
sions from Beth Israel Dea-
coness Medical Center covering
de-identified EHR data includ-
ing demographics, vital signs,
medications, diagnoses, and
clinical notes

(Med-IE / Med-QA / Med-
Gen) Used for tasks such
as medical code prediction,
patient outcome forecasting,
clinical summarization, and
question answering

Explainability

Table 1: This table provides a structured comparison of datasets used in studies on trust in LLMs for healthcare. The
datasets are categorized by data type (e.g., web-scraped, curated domain-specific, synthetic, real-world, or private
datasets), content (e.g., medical literature, patient records, clinical guidelines, QA pairs), task (e.g., clinical decision
support, medical question-answering, document summarization, biomedical fact-checking, chatbot training), and
dimensions of trustworthiness (e.g., truthfulness, privacy, safety, robustness, fairness, bias, explainability). This
comparison highlights how each dataset contributes to the development of trustworthy LLMs in medical AI.
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C Comparison of Models1230

We systematically gathered and analyzed 81 mod-1231

els relevant to studies on trust in LLMs for health-1232

care. Table 2 provides a comprehensive summary1233

of the LLMs evaluated in these studies, detailing1234

key aspects such as model name, release year, open-1235

ness, architecture, and the institution responsible1236

for its development. Additionally, it specifies the1237

primary task each model is designed for, includ-1238

ing medical question-answering, clinical decision1239

support, and biomedical text summarization. To1240

further assess their reliability, we categorize the1241

models based on the dimensions of trustworthiness1242

they address, such as truthfulness, privacy, safety,1243

robustness, fairness and bias, and explainability.1244

This structured overview offers valuable insights1245

into how different LLMs are designed and evalu-1246

ated to enhance trust in healthcare AI applications.1247
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Models Release
Year

Institution Openness Architecture Primary Task Dimensions

SciBERT 2019 Allen Institute
for AI

Open-
source

Encoder-
only

Pre-trained language model special-
ized for scientific text, particularly
biomedical and computer science lit-
erature.

Fairness and
Bias

PaLM-2 2023 Google Closed-
source

Decoder-
only

Multilingual language understanding
and generation, with a focus on rea-
soning and coding tasks.

Fairness and
Bias

Mixtral-
8x70B

2023 Mistral AI Open-
source

Decoder-
only

Ensemble of language models aimed
at improving performance across di-
verse language tasks.

Fairness and
Bias, Safety

Med-PaLM 2023 Google Health Closed-
source

Decoder-
only

Specializing in healthcare-related
question answering, clinical diagno-
sis support, and medical literature in-
terpretation.

Fairness and
Bias

Med-PaLM 2 2024 Google Health Closed-
source

Encoder-
decoder

Updated version of Med-PaLM, fur-
ther improving healthcare-related
tasks with enhanced accuracy and re-
liability in medical information re-
trieval, clinical reasoning, and deci-
sion support.

Fairness and
Bias

Llama-13B 2023 Meta Open-
source

Decoder-
only

Designed for natural language under-
standing and generation tasks, such
as text summarization, machine trans-
lation, and conversational AI.

Fairness and
Bias

XLNet 2019 Google Re-
search

Open-
source

Encoder-
only

It is used for text classification, ques-
tion answering, and language model-
ing tasks.

Fairness and
Bias

DeBERTa 2020 Microsoft Re-
search

Open-
source

Encoder-
only

Improves BERT and RoBERTa by en-
hancing the attention mechanism. It
performs well in a variety of NLP
tasks, such as sentence classification,
question answering, and named en-
tity recognition.

Fairness and
Bias

Llama-7B 2023 Meta Open-
source

Decoder-
only

Focused on general-purpose natural
language understanding and gener-
ation, with potential fine-tuning for
specific domains like medicine, law,
and technology.

Fairness and
Bias, Truthful-
ness

Llama 2
70Bchat

2023 Meta Plat-
forms

Open-
source

Decoder-
only

Open-source conversational AI
model designed for dialogue and
instruction-following tasks.

Fairness and
Bias, Truthful-
ness, Safety,
Robustness,

GPT-3.5 2022 OpenAI Closed-
source

Decoder-
only

Enhanced language processing capa-
bilities, building upon GPT-3.

Fairness and
Bias, Truthful-
ness, Safety,
Robustness,
Privacy

GPT2 2019 OpenAI Open-
source

Decoder-
only

Text generation Fairness and
Bias, Robust-
ness
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PMC Llama
13B

2023 Allen Institute
for AI

Open-
source

Decoder-
only

Specialized in medical literature un-
derstanding and generation.

Fairness and
Bias, Robust-
ness

GPT-4 2023 OpenAI Closed-
source

Decoder-
only

Advanced language generation and
understanding across various do-
mains.

Fairness and
Bias, Safety,
Robustness,
Explainability,
Privacy

BERT 2018 Google AI
Language

Open-
source

Encoder-
only

Pre-trained Transformer model for a
wide range of NLP tasks, such as text
classification, NER, QA, etc.

Fairness and
Bias, Safety,
Robustness,
Truthfulness

LLAMA 2
CHAT

2023 Meta AI Open-
source

Decoder-
only

Language modeling Robustness,
Explainability

MEDALPACA
(7B)

2023 medalpaca Open-
source

Decoder-
only

Medical domain language model fine-
tuned for question-answering and
medical dialogue tasks.

Robustness,
Privacy

CLINICAL
CAMEL
(13B)

2023 the AI and
healthcare
community

Open-
source

Decoder-
only

Fine-tuned for clinical applications.
It is designed to assist with tasks like
medical text classification, clinical
decision support, information extrac-
tion from medical records, and an-
swering clinical questions.

Robustness

GPT-2 XL 2019 OpenAI Open-
source

Decoder-
only

Large-scale language model for text
generation and understanding.

Robustness

T5-Large 2020 Google Re-
search

Open-
source

Encoder-
decoder

It treats all NLP tasks as text-to-text
tasks, meaning both the input and out-
put are in the form of text, and it’s
used for tasks like translation, sum-
marization, and question answering.

Robustness

claude-3.5-
sonnet

2024 Anthropic Closed-
source

Decoder-
only

It is a variant of Claude, specialized
in tasks such as conversational AI,
creative writing, poetry generation,
and other text-based applications.

Robustness

OpenBioLLM-
70B

2024 OpenBioAI Open-
source

Decoder-
only

It is designed to handle tasks such
as biological information extraction,
gene sequence analysis, protein fold-
ing predictions, and other bioinfor-
matics applications.

Robustness

BioMistral-
7B

2023 Mistral AI Open-
source

Decoder-
only

Focused on biomedical and
healthcare-related text. Its tasks
include medical question answering,
clinical document analysis, and
medical text summarization.

Robustness

Medllama3-
v20

2024 MedAI Labs Open-
source

Decoder-
only

Designed to assist in healthcare tasks
like clinical reasoning, medical ques-
tion answering, and patient record
analysis.

Robustness
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ASCLEPIUS
(7B)

2023 Asclepius AI Open-
source

Decoder-
only

Developed for clinical and medical
applications, specializing in tasks
like diagnosing medical conditions
from symptoms, medical text sum-
marization, and extracting structured
information from clinical documents.

Robustness,
Explainability

ALPACA
(7B)

2023 Stanford Uni-
versity

Open-
source

Decoder-
only

Fine-tuned version of the LLaMA
model aimed at providing high-
quality responses to questions, with
an emphasis on maintaining ethical
and accurate conversational capabili-
ties in diverse domains.

Robustness

Google’s Bard 2023 Google Closed-
source

Encoder-
decoder

Conversational AI tool, focused on
providing detailed, accurate, and cre-
ative responses to user queries. It can
handle a variety of tasks, including
web search, content generation, and
complex QA.

Robustness

Text- Davinci-
003

2022 OpenAI Closed-
source

Decoder-
only

It is an advanced variant of GPT-3.
It is designed for a wide range of
natural language understanding and
generation tasks, such as answering
questions, summarizing text, creative
writing, translation, and code genera-
tion.

Robustness,
Truthfulness

LLaMa 2-7B 2023 Meta (for-
merly Face-
book AI
Research)

Open-
source

Decoder-
only

Designed to be a general-purpose
AI for a wide range of tasks such
as text generation, question answer-
ing, and summarization, with specific
fine-tuning for medical and technical
domains.

Robustness,
Truthfulness,
Privacy

ChatGPT 2022 OpenAI Closed-
source

Decoder-
only

Conversational AI Robustness,
Truthfulness,
Explainability,
Privacy

Llama-3.1 2024 Meta AI Open-
source

Decoder-
only

Multilingual large language model
designed for a variety of natural lan-
guage processing tasks.

Safety, privacy

ClinicalCamel-
70b

2023 the AI and
healthcare
community

Open-
source

Decoder-
only

Medical language model designed
for clinical research applications.

Safety, Ex-
plainability

Med42-70b 2023 M42 Health Open-
source

Decoder-
only

Clinical large language model provid-
ing high-quality answers to medical
questions.

Safety, Ex-
plainability

GPT-4o 2024 OpenAI Closed-
source

Decoder-
only

Multimodal large language model ca-
pable of processing and generating
text, audio, and images in real time.

Safety, Privacy,
Explainability

Mistral 2023 Mistral AI Open-
source

Decoder-
only

Language model optimized for code
generation and reasoning tasks.

Safety, Robust-
ness, Explain-
ability

Meditron (7)
(70b)

2023 École Poly-
technique
Fédérale de
Lausanne
(EPFL)

Open-
source

Decoder-
only

Medical language model fine-tuned
for clinical decision support and med-
ical reasoning.

Safety, Robust-
ness, Explain-
ability
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https://huggingface.co/starmpcc/Asclepius-Llama2-7B
https://huggingface.co/starmpcc/Asclepius-Llama2-7B
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/ra83205/google-bard-api
https://github.com/gabrielsants/openai-davinci-003
https://github.com/gabrielsants/openai-davinci-003
https://huggingface.co/meta-llama/Llama-2-7b
https://openai.com/index/chatgpt/
https://github.com/meta-llama/llama3
https://huggingface.co/wanglab/ClinicalCamel-70B
https://huggingface.co/wanglab/ClinicalCamel-70B
https://github.com/m42-health/med42
https://openai.com/index/hello-gpt-4o/
https://github.com/mistralai/mistral-inference
https://github.com/epfLLM/meditron
https://github.com/epfLLM/meditron
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Year

Institution Openness Architecture Primary Task Dimensions

Claude-2.1 2023 Anthropic Closed-
source

Decoder-
only

General-purpose language model for
a wide range of natural language un-
derstanding and generation tasks.

Safety, Robust-
ness

GPT-J 2021 EleutherAI Open-
source

Decoder-
only

Open-source language model for text
generation and understanding.

Safety, Robust-
ness

Vicuna 2023 UC Berkeley
and Microsoft
Research

Open-
source

Decoder-
only

Conversational AI Safety, Robust-
ness, Truthful-
ness

Medalpaca-
13b

2023 medalpaca Open-
source

Decoder-
only

Medical domain language model fine-
tuned for question-answering and
medical dialogue tasks.

Safety, Truth-
fulness,
Privacy

GPT-3 2020 OpenAI Closed-
source

Decoder-
only

Natural language understanding and
generation

Truthfulness,
Explainability

ALBERT 2019 Google Re-
search

Open-
source

Encoder-
only

Lighter version of BERT that re-
duces parameters for efficiency while
maintaining performance. It excels
in tasks such as text classification,
named entity recognition, and ques-
tion answering.

Truthfulness

RoBERTa 2019 Facebook AI
Research

Open-
source

Encoder-
only

Optimized variant of BERT that re-
moves the Next Sentence Prediction
task and trains with more data and for
longer periods. It is used for tasks
like question answering, sentiment
analysis, and text classification.

Truthfulness

BlueBERT 2019 NIH and
Stanford
University

Open-
source

Encoder-
only

BERT-based model pre-trained on
clinical and biomedical text. It is
designed for healthcare-related tasks,
including clinical text classification,
named entity recognition, and medi-
cal question answering.

Truthfulness

ClinicalBERT 2019 University of
Pennsylvania

Open-
source

Encoder-
only

Variant of BERT fine-tuned on clin-
ical texts, tailored for clinical NLP
tasks like named entity recognition,
clinical event extraction, and ques-
tion answering in the medical do-
main.

Truthfulness

TAPAS 2020 Google Re-
search

Open-
source

Encoder-
only

Designed for answering questions
based on tabular data. It is used for
tasks like extracting structured infor-
mation from tables and processing
queries in tabular datasets.

Truthfulness

LLaMA-2
13B

2023 Meta Open-
source

Decoder-
only

Advanced variant of Meta’s LLaMA
series, designed for text generation,
question answering, summarization,
and other NLP tasks.

Truthfulness,
Explainability,
Privacy

MPT 2023 MosaicML Open-
source

Decoder-
only

General-purpose LLM for text gener-
ation, summarization, language un-
derstanding, and reasoning tasks.
Fine-tuned for downstream applica-
tions such as chatbot development,
code generation, and other NLP
tasks.

Truthfulness
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https://www.anthropic.com/news/claude-2-1
https://huggingface.co/docs/transformers/en/model_doc/gptj
https://github.com/eddieali/Vicuna-AI-LLM
https://huggingface.co/medalpaca/medalpaca-13b
https://huggingface.co/medalpaca/medalpaca-13b
https://openai.com/index/gpt-3-apps/
https://github.com/google-research/albert
https://huggingface.co/docs/transformers/en/model_doc/roberta
https://github.com/ncbi-nlp/bluebert
https://github.com/kexinhuang12345/clinicalBERT
https://github.com/google-research/tapas
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-13b
https://github.com/mosaicml/llm-foundry
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BLIP2 2023 Salesforce Open-
source

Encoder-
decoder

Bootstrapping language-image pre-
training, designed to bridge vision-
language models with large language
models for improved visual under-
standing and generation.

Truthfulness

InstructBLIP-
7b/13b

2023 Salesforce Open-
source

Encoder-
decoder

Visual instruction-tuned versions
of BLIP-2, utilizing Vicuna-7B
and Vicuna-13B language mod-
els, respectively, to enhance vision-
language understanding through in-
struction tuning.

Truthfulness

LLaVA1.5-
7b/13b

2023 Microsoft Open-
source

Encoder-
decoder

Large language and vision assistant
models with 7B and 13B parame-
ters, respectively, designed for mul-
timodal tasks by integrating visual
information into language models.

Truthfulness

mPLUGOwl2 2023 Zhejiang Uni-
versity

Open-
source

Encoder-
decoder

Multimodal pre-trained language
model designed to handle various
vision-language tasks, including im-
age captioning and visual question
answering.

Truthfulness

XrayGPT 2023 University of
Toronto

Open-
source

Decoder-
only

Specialized model for generating ra-
diology reports from chest X-ray im-
ages, aiming to assist in medical im-
age interpretation.

Truthfulness

MiniGPT4 2023 King Abdul-
lah University
of Science and
Technology

Open-
source

Decoder-
only

A lightweight multimodal model de-
signed to align vision and language
models efficiently, facilitating tasks
like image captioning and visual
question answering.

Truthfulness

RadFM 2023 Stanford Uni-
versity

Open-
source

Decoder-
only

Foundation model tailored for radiol-
ogy, focusing on interpreting medical
images and integrating findings with
clinical language models.

Truthfulness

Alpaca-LoRA 2023 Stanford Uni-
versity

Open-
source

Decoder-
only

It focuses on achieving good perfor-
mance in tasks such as question an-
swering and personalized dialogue.

Truthfulness

Robin- medi-
cal

2023 Robin Health Open-
source

Decoder-
only

Fine-tuned for medical applications,
including clinical decision support,
medical question answering, and
health record analysis.

Truthfulness

Flan-T5 2021 Google Re-
search

Open-
source

Encoder-
decoder

Optimized for tasks like question an-
swering, text summarization, and sen-
tence classification, across a variety
of domains.

Truthfulness,
Explainability

BioBERT 2019 Korea Univer-
sity

Open-
source

Encoder-
only

Biomedical language representation
learning, enhancing performance on
tasks like named entity recognition,
relation extraction, and question an-
swering within the biomedical do-
main.

Truthfulness

Falcon In-
struct (7B and
40B)

2023 Technology
Innovation
Institute (TII),
UAE.

Open-
source

Decoder-
only

Instruction-tuned language model de-
signed to follow user instructions ef-
fectively.

Truthfulness,
Robustness
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https://huggingface.co/docs/transformers/main/model_doc/blip-2
https://huggingface.co/Salesforce/instructblip-vicuna-7b?utm_source=chatgpt.com
https://huggingface.co/Salesforce/instructblip-vicuna-7b?utm_source=chatgpt.com
https://github.com/haotian-liu/LLaVA
https://github.com/haotian-liu/LLaVA
https://github.com/X-PLUG/mPLUG-Owl?tab=readme-ov-file
https://github.com/mbzuai-oryx/XrayGPT
https://github.com/Vision-CAIR/MiniGPT-4
https://github.com/chaoyi-wu/RadFM
https://github.com/tloen/alpaca-lora
https://github.com/Integral-Healthcare/robin-ai-reviewer
https://github.com/Integral-Healthcare/robin-ai-reviewer
https://huggingface.co/docs/transformers/en/model_doc/flan-t5
https://github.com/dmis-lab/biobert?tab=readme-ov-file
https://github.com/falconry/falcon
https://github.com/falconry/falcon
https://github.com/falconry/falcon
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Mistral In-
struct (7B)

2023 Mistral AI Open-
source

Decoder-
only

Instruction-tuned language model de-
signed to follow user instructions ef-
fectively.

Truthfulness,
Robustness

Falcon 2023 Technology
Innovation
Institute (TII),
UAE.

Open-
source

Decoder-
only

General-purpose language model op-
timized for text understanding, gen-
eration, question answering, and rea-
soning tasks. Focused on efficient
deployment for industry-scale appli-
cations.

Truthfulness,
Robustness

LLaVA-Med 2024 Microsoft Open-
source

Encoder-
decoder

Large language and vision assistant
for biomedicine, trained to handle vi-
sual instruction tasks in the biomedi-
cal field, aiming for capabilities simi-
lar to GPT-4.

Truthfulness,
Explainability

Claude-3 2024 Anthropic Closed-
source

Decoder-
only

General-purpose LLM (QA, dia-
logue, reasoning, summarization)

Explainability

GPT-4o-mini 2024 OpenAI Closed-
source

Decoder-
only

Natural language processing (NLP),
text generation, and understanding.

Explainability

ASCLEPIUS
(13B)

2023 Asclepius AI Open-
source

Decoder-
only

Medical NLP, clinical text analysis,
and healthcare-related tasks.

Explainability

MedViLaM 2023 Cite Open-
source

Encoder-
decoder

Medical vision-language tasks, com-
bining image and text analysis for
healthcare.

Explainability

Med-MoE 2023 Cite Open-
source

Decoder-
only

Medical NLP, leveraging Mixture of
Experts (MoE) for specialized health-
care tasks.

Explainability

Gemini Pro 2023 Google Deep-
Mind

Closed-
source

Decoder-
only

Multi-modal NLP, combining text,
image, and other data types for ad-
vanced AI tasks

Explainability

Gemini-1.5 2024 Google Deep-
Mind

Closed-
source

Decoder-
only

Multimodal reasoning, long-context
understanding, QA, generation

Explainability

AlpaCare (7B)
(13B)

2023 Cite Open-
source

Decoder-
only

Healthcare-focused NLP, clinical text
analysis, and medical decision sup-
port

Explainability

Yi (6B) 2023 01.AI (China) Open-
source

Decoder-
only

General-purpose NLP, text genera-
tion, and fine-tuning for specific ap-
plications.

Explainability
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https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://github.com/falconry/falcon
https://github.com/microsoft/LLaVA-Med?utm_source=chatgpt.com
https://claude.ai/login?returnTo=%2F%3F
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://huggingface.co/starmpcc/Asclepius-13B
https://huggingface.co/starmpcc/Asclepius-13B
https://github.com/MedHK23/MedViLaM
https://github.com/jiangsongtao/Med-MoE
https://deepmind.google/technologies/gemini/pro/
https://gemini.google.com/app
https://github.com/XZhang97666/AlpaCare
https://github.com/XZhang97666/AlpaCare
https://huggingface.co/01-ai/Yi-6B
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Phi-2 (2.7B) 2023 Microsoft Open-
source

Decoder-
only

Lightweight NLP, text generation,
and fine-tuning for specific tasks.

Explainability

SOLAR
(10.7B)

2023 Upstage AI Open-
source

Decoder-
only

General-purpose NLP, text genera-
tion, and fine-tuning for specific do-
mains.

Explainability

InternLM2
(7B)

2023 Shanghai AI
Laboratory
(China)

Open-
source

Decoder-
only

General-purpose NLP, text genera-
tion, and fine-tuning for specific ap-
plications.

Explainability

Llama3-( 8B
and 70B)

2024 Meta Open-
source

Decoder-
only

General-purpose NLP, text genera-
tion, and fine-tuning for specific ap-
plications.

Privacy, Ex-
plainability

CodeLlama-(
7B, 13B, and
34B)

2023 Meta Open-
source

Decoder-
only

Code generation, code completion,
and programming assistance.

Privacy

Mixtral-8x7B
and 8x22B

2023 Mistral AI Open-
source

Decoder-
only

General-purpose NLP, text genera-
tion, and fine-tuning for specific do-
mains.

Privacy

Qwen-(7B,
14B, 32B,
72B)-Chat

2023 Alibaba Open-
source

Decoder-
only

Chat-oriented NLP, conversational
AI, and text generation.

Privacy

GLM-4 2024 Tsinghua Uni-
versity

Open-
source

Encoder-
decoder

Advanced NLP, text generation, and
multi-modal tasks.

Privacy

Table 2: Detailed Comparison of GPT Models Evaluated for Trust in Healthcare LLMs, Including Model Name,
Release Year, Institution, Openness, Architecture, Primary Tasks (e.g., Medical Question-Answering, Clinical Deci-
sion Support, Biomedical Text Summarization, Medical Report Generation), and Key Trustworthiness Dimensions
(Truthfulness, Privacy, Safety, Robustness, Fairness and Bias, Explainability).
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https://huggingface.co/microsoft/phi-2
https://huggingface.co/upstage/SOLAR-10.7B-v1.0
https://huggingface.co/upstage/SOLAR-10.7B-v1.0
https://github.com/InternLM/InternLM
https://github.com/InternLM/InternLM
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/codellama
https://huggingface.co/codellama
https://huggingface.co/codellama
https://mistral.ai/en/news/mixtral-8x22b
https://mistral.ai/en/news/mixtral-8x22b
https://huggingface.co/Qwen/Qwen1.5-72B-Chat
https://huggingface.co/Qwen/Qwen1.5-72B-Chat
https://huggingface.co/Qwen/Qwen1.5-72B-Chat
https://open.bigmodel.cn/dev/api/normal-model/glm-4
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