
Constrained Decoding of Diffusion LLMs
with Context-Free Grammars

Niels Mündler, Jasper Dekoninck, Martin Vechev
Department of Computer Science

ETH Zurich, Switzerland
{niels.muendler,jasper.dekoninck,martin.vechev}@inf.ethz.ch

https://constrained-diffusion.ai

https://github.com/eth-sri/constrained-diffusion

Abstract

Large language models (LLMs) have shown promising performance across di-
verse domains. Many practical applications of LLMs, such as code completion
and structured data extraction, require adherence to syntactic constraints specified
by a formal language. Yet, due to their probabilistic nature, LLM output is not
guaranteed to adhere to such formal languages. To address this, prior work has
proposed constrained decoding to restrict LLM generation to particular formal
languages. However, existing works are not applicable to the emerging paradigm
of diffusion LLMs, as this requires supporting token generation in arbitrary order
instead of the traditional left-to-right order. In this paper, we address this chal-
lenge and present the first constrained decoding method for diffusion models, one
that can handle formal languages captured by context-free grammars. Our method
relies on solving a newly defined additive infilling problem, which asks whether a
partial output with holes can be completed to a valid word in the target language.
We reduce this problem to deciding whether the intersection of the target language
and a particular regular language is empty, and present an efficient decision algo-
rithm for context-free languages. Empirical results on various applications, such
as C++ code infilling and structured data extraction in JSON, demonstrate that our
method achieves near-perfect syntactic correctness while consistently preserving
or improving functional correctness. Importantly, our efficiency optimizations en-
sure that the computational overhead remains practical.

1 Introduction

Large language models (LLMs) have recently achieved promising performance across a wide range
of tasks [21, 40]. Due to their capabilities in code synthesis, they achieve impressive scores on di-
verse code benchmarks [10, 24, 27, 51] and are integrated into developer workflows as programming
copilots [18, 49]. Further, they are used for processing information into machine-readable formats
in various domains [19, 45, 46]. Despite these successes, LLMs are inherently probabilistic and
offer no guarantees about syntactic validity of generated output, providing an inherent limitation for
LLM users.

Constrained decoding A promising approach that mitigates this limitation is constrained decod-
ing [7, 34, 43, 50]. This technique leverages the formal grammar of a target language to guide the
generation process, ensuring that the output remains within the language’s bounds. Constrained
decoding leverages parsing and validation of the generated output in lockstep with the incremental
generation process, allowing the model to avoid invalid continuations without restarting inference. It
has been widely adopted in practice, with commercial providers offering the option to restrict output
to JSON or context-free grammars [2, 41].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://constrained-diffusion.ai
https://github.com/eth-sri/constrained-diffusion

int ____() { return 2 __

Input x

S → Def() {Lines}

Lines → Line ; Lines | ε
Def → <type> <name>

Constraint Language (CFG)

int foo () { return 2 __

Output x′

Update x′ ∼ M(x)

int foo() () { return 2 __

Proposal

int foo () { return 2 __

Proposal

int foo() () { return 2 .*

Regex

int foo () { return 2 .*

Regex

✗ ✓
Rejected

CFG CFG∩ ∩

Figure 1: An overview of our approach. In each step, the input consists of a partial text x with
arbitrarily many infilling regions and a context-free grammar (CFG) specifying formal constraints.
During decoding, we sample an updated input x′ from M , obtained, e.g., by inserting a token in one
of the regions in x. Our method then intersects the CFG with the regular language of all possible
completions of x′. If the intersection is empty, the update is rejected and a new x′ is sampled.
Otherwise, it is accepted and the decoding continues from x′. In the example, the invalid update
inserting "foo()" is rejected and "foo" is accepted instead.

Current limitations of constrained decoding Constrained decoding is usually applied to context-
free grammars (CFGs), which capture the syntax of common programming languages and popular
data formats, like C++ and JSON [11, 28]. In this context, they can only be applied to left-to-right
prefix completion, a common LLM generation setting. However, this setting does not capture more
advanced use cases with LLMs, such as diffusion LLMs. While Melcer et al. [34] extend constrained
decoding to completions between a fixed prefix and suffix, and Suresh et al. [48] constrain diffusion
LLMs to regular languages, no prior work supports diffusion LLM constraining with CFGs.

This work: Constrained decoding for MRI and DLMs In this work, we present a generalized
method for constrained decoding of diffusion LLMs (DLM), which also naturally subsumes the pre-
viously unaddressed setting of multi-region infilling (MRI). We first generalize the formal framework
of constrained decoding to support unordered updates of a partial output with arbitrarily many in-
filling regions, capturing both MRI and DLM. The decoding process is illustrated in Fig. 1. A model
iteratively updates, e.g., inserting a token in a specific location. We verify that the updated output
is valid by intersecting the target language’s CFG with the language of all possible partial output
completions. This intersection is non-empty if and only if a valid completion exists.

A key challenge in this approach is efficiently determining the intersection’s emptiness. To this end,
we first show that the set of possible completions is described by a regular language, allowing us to
describe the intersection using standard formal language operations. We then drastically reduce the
worst case cubic cost of checking the emptiness of the resulting intersection language using special-
ized methods for grammar size reduction and search optimizations, including a custom normal form
and an implicit search that avoids generating the entire language.

Experimentally confirmed consistent improvements Our experiments demonstrate a substantial
improvement in the reliability of formal language adherence across all evaluated settings. Specif-
ically, the algorithm guarantees valid completions in all settings, up to sampling timeouts. Addi-
tionally, it improves functional correctness by up to 7%. Importantly, our approach incurs no initial
latency and only modest runtime overhead on tested models, with inference time less than doubling
on average, enabling practical usage even for complex constraining grammars.

Key contributions Our three key contributions are: (i) a generalized formal constrained decoding
framework for the MRI and DLM settings, (ii) a novel constrained decoding algorithm for these
settings, and (iii) an extensive evaluation of our method using state-of-the-art open-weight infilling
and diffusion LLMs, demonstrating consistent improvements in syntactic and functional correctness
on C++ code generation, JSON schema extraction, and chemical molecule description.

2

PRE

FIM

MRI

DLM

int main() { __________

int ____() { return 2;}

int ____() { ______ 2;}

int ____() { ___ ___ ;}

2 1 3

(a) Generation paradigms

q0 q1

q2q3

ε int ε

Σ∗

ε () {

ε

Σ∗

ε2;}ε

D1 D2

D3

(b) NFA accepting all possible completions of the MRI example.

Figure 2: We consider three left-to-right (PRE, FIM, MRI) and one out-of-order (DLM) generation
paradigms (a). The NFA in (b) describes the language of all additive completions for the MRI task.

2 Background

We outline the necessary background relevant to this work, including generation paradigms with
LLMs, constrained decoding, and the relevant properties of regular and context-free languages.

2.1 LLM Generation Paradigms

We focus on four generation settings with LLMs illustrated in Fig. 2a. The first three approaches
are commonly used with autoregressive models and generate outputs left-to-right.

PRE, FIM and MRI The first approach, Prefix generation (PRE) completes a fixed prefix, and
is commonly used for synthesizing text or code from scratch. Second, Fill-In-the-Middle (FIM)
completes text between a given prefix and suffix, and is widely used in code completion assistants
[18, 25]. Third, Multi-Region Infilling (MRI) generalizes FIM by allowing prefix and suffix con-
straints as well as fixed segments in between, with the model infilling the gaps. This enables more
flexible editing, useful for repository-level code modifications [52].

Generation with DLMs Diffusion Language Models (DLMs) [37, 57] iteratively insert tokens
into an initially empty or partially filled sequence (x1, x2, . . . , xn) where each xi is either a to-
ken from the vocabulary V or a mask ⊥. At each step, the model predicts one or more in-
dices k of a masked token, i.e., xk = ⊥, and a token t ∈ V to produce the updated sequence
(x1, . . . , xk−1, t, xk+1, . . . , xn). This process continues until no masks remain. The number of
predicted indices and tokens per forward pass is a hyperparameter that controls a trade-off between
increased generation speed and quality [37]. In the example in Fig. 2a, the model would generate
one index and token at a time, first producing the return keyword 1 , then the function name 2 ,
and finally the return value 3 .

Constrained generation Constrained generation restricts the model to produce outputs that con-
form to predefined syntactic or structural rules, ensuring syntactically valid code or adherence to
structural patterns [43]. Formally, the model must generate an output w ∈ L, where L is a formal
language defining admissible outputs for the given task. Constrained decoding is typically imple-
mented by restricting the model’s output space at each step, either by masking invalid tokens [50] or
by sampling and rejecting invalid outputs [34].

2.2 Regular and Context-Free Languages

We briefly outline the properties and notation of regular and context-free languages that are relevant
to our method. We provide a more detailed introduction in App. A.

Regular Languages A regular language is a set of strings that can be described by a deterministic
finite automaton (DFA). A DFA is defined as a tuple (Q,Σ, δ, q0, F), where: (1) Q is a finite set
of states, (2) Σ is a finite alphabet of symbols, (3) δ : Q × Σ → Q is a transition function that
maps a state and an input symbol to the next state, (4) q0 ∈ Q is the initial state, and (5) F ⊆ Q
is the set of accepting states. The language of a DFA consists of those strings that transition the
automaton from the initial to an accepting state through the transition function. Non-deterministic
finite automata (NFA) additionally allow multiple next states for the same state and symbol and
traversing ε-transitions without consuming a symbol. An example is depicted in Fig. 2b. Every
NFA is equivalent to some DFA.

3

Context-Free Languages Context-free languages (CFLs) are a superset of regular languages, in-
cluding languages that enforce recursive structures, such as balanced parentheses or nested control
statements. They can be described by context-free grammars (CFGs). A CFG is a tuple (V,Σ, P, S),
where: (1) V is a finite set of nonterminals, (2) Σ is a finite set of terminals (with V ∩ Σ = ∅), (3)
P is a set of productions A→ α, with A ∈ V and α ∈ (V ∪Σ)∗, and (4) S ∈ V is the start symbol.
The language is defined as all strings generated by the following procedure: Starting with S, apply
a rule A→ α from P to replace nonterminal A with α, until the result contains only terminals.

3 Constrained Decoding for Infilling and Diffusion

In this section, we first define the decision problem that enables MRI and DLM generation settings,
and then introduce our algorithm for efficiently deciding the problem. We then provide adapted
constrained decoding algorithms for MRI and DLM. Finally, we show how to apply the algorithm to
LLMs, where additional challenges arise from the need to handle tokens instead of terminals.

3.1 The Constrained Infilling Problem

Algorithm 1 Constrained decoding

Input: Input x, model M , target language L
Output: Completed output x ∈ L

1 while true do
2 x′ ∼M(x)
3 if COMPLETABLE(x′, L) then
4 x← x′

5 if /∈ x then
6 return x
7 else
8 reject x′

Constrained decoding with infilling First, let us de-
fine a partial output x as a sequence of strings xi ∈ Σ∗

interleaved with infilling regions /∈ Σ, i.e., x =
x1 x2 . . . xn. In constrained decoding, illustrated in
Algorithm 1, we complete x using model M and target
language L. We iteratively sample an updated partial out-
put x′ from M (Lines 1 and 2). All updated outputs are
derived via additive modifications to x, meaning they ei-
ther insert a string into infilling regions, e.g., insert b into
a c resulting in a b c, or remove a region by merging
adjacent strings, e.g., converting a b c to a bc. We then
check whether the updated output can be completed into a valid word in L (Line 3). If not, we re-
ject the update and remove it from the model distribution, preventing the loop from resampling the
update (Line 8). However, if the update is completable, we replace x with x′ (Line 4) and return the
output if the update removes the last infilling region (Lines 5 and 6). This is valid since x is both
completable and has no infilling regions, implying x ∈ L. Because no updates remove parts of the
output, and completability is preserved in updates, Algorithm 1 terminates on completable inputs.

Deciding update validity To enable constraining additive generation, we need an incremental
verifier COMPLETABLE to determine whether the regions in a partial output can be filled to produce
a valid output in L. We formalize the decision problem solved by COMPLETABLE as follows:
Definition 1 (Constrained infilling problem). For a language L, partial output x = x1 x2 . . . xn

with xi ∈ Σ∗ and denoting infilling regions, the constrained infilling problem asks whether there
exists a list of n− 1 words y = (y1, . . . , yn−1) such that w = x1 · y1 · x2 · . . . · yn−1 · xn is in L.

Thus, with the incremental verifier deciding the constrained decision problem, we have effectively
reduced constrained decoding with infilling to the constrained infilling problem.

Applications of the constrained infilling problem We now reduce constrained decoding for MRI
and DLM generation to the constrained infilling problem. For MRI, the list of words corresponds to
the list of fixed strings xi, with infilling regions in between. For the DLM setting, we add implicit ε
tokens at the beginning and end of the partially filled sequence and then merge all consecutive non-
mask tokens to build x. For example, the sequence (a,⊥,⊥, b, c,⊥) becomes x = a bc ε. Note
that, similar to prior work [7, 50], we slightly overapproximate the space of possible completions
in these representations by allowing infillings of arbitrary size. In practice, there might be practical
limitations to the number of tokens an LLM could insert. We discuss this in more detail in App. E.

3.2 Deciding the Constrained Infilling Problem Efficiently

Overview We now give a brief overview of how to solve the constrained infilling problem effi-
ciently. The problem is determined by two separate constraints: (1) the structural constraints on
the output, described by the context-free language L, and (2) all possible completions of the partial

4

output x, which form a language Cx. For example, L could be the language of syntactically valid
C++ programs, and Cx the language of completions of partial program x =int (){ 2;}. The
infilling problem is answered positively if and only if the intersection L∩ = L ∩ Cx is not empty,
i.e., some infilling of the partial output exists to generate a valid word in L. We will show that Cx

is a regular language that we can describe with a simple DFA, and that L∩ can be described by a
context-free grammar, which we can construct from L’s grammar and Cx’s DFA. The constrained
infilling problem is then reduced to checking whether L∩ is empty, for which we design an efficient
algorithm. In the example, a word in the intersection language is int main() {return 2;}.

Constructing the regular language The language Cx of all possible completions of x =
x1 . . . xn contains all words that start with x1, end with xn, and contain the strings xi (1 ≤ i ≤ n)
in the correct order, with arbitrary symbols in between. We prove that Cx is regular by constructing
an NFA that accepts Cx. We first construct automata Di, which accept exactly xi. Then, we con-
catenate Di with an additional state qi that accepts any string in Σ∗, i.e., δ(qi, σ) = qi for all σ ∈ Σ.
For the concatenation, we add an ε-edge from the accepting states of Di to qi and from qi to the
start state of Di+1. A visualization for the prior example is shown in Fig. 2b. In our algorithm, we
construct this NFA for each update. We then transform it into an equivalent DFA and minimize the
DFA using standard methods [23].

Constructing the intersection language We leverage the well-established facts that (a) the in-
tersection L∩ of CFL L and regular language Cx is a CFL, whose grammar can be constructed
from L’s grammar G and Cx’s DFA, and (b) that the emptiness of a CFL can be checked in time
polynomial to the size of the grammar [16, 23]. However, following the standard construction, the
resulting grammar G∩ = (V∩,Σ, P∩, S∩) will have a cubic size in nonterminals and productions,
with |V∩| ∈ O(|V ||Q|2) and |P∩| ∈ O(|P ||Q|3 + |P ||Q|2|Σ|) [4, 16]. To ensure practicality, we
thus need specialized optimizations.

Efficient normalization The standard intersection algorithms require G to be transformed to
Chomsky normal form, which only allows rules of the form A → BC or A → a, where
A,B,C ∈ V and a ∈ Σ [23]. The resulting grammar may have a quadratic increase in the number of
production rules [31]. To avoid this increase, we extend the standard construction to support CFGs
in C2F+ε, a normal form that additionally allows productions of the form A→ ε and A→ B. This
normal form can be obtained with only a linear increase in production rules [31]. Our adaptations
to the standard intersection algorithm and a proof of its correctness are provided in App. B.1. In
App. B.2, we describe several further heuristics to reduce the size of the normalized CFG of G.

Avoiding nongenerating nonterminals A naive algorithm to check whether the intersection lan-
guage L∩ is empty would explore all nonterminals combinations. However, many of the nontermi-
nals in the intersection grammar are not generating, i.e., for such a nonterminal A there does not
exist a sequence of production applications A → · · · → w such that w ∈ Σ∗ [36]. We therefore
extend an efficient bottom-up search by D.W. [12] to C2F+ε that by construction only expands on
generating nonterminals, and decides emptiness in time linear to the number of nonterminals and
productions in the language. The algorithm starts with the symbols that generate terminals or empty
strings directly, i.e., all A with productions A → σ and A → ε. It marks these symbols as gen-
erating and inserts them into a queue. Next, for each symbol X in the queue, it checks whether
some production has X on the right-hand side (i.e., either A → XC, A → BX , or A → X), and
optionally checks whether the other symbol (B or C) in the production was previously marked as
generating. If so, we mark A as generating as well and add it to the queue. As soon as we mark the
start symbol S, we conclude that the language is non-empty, since there must exist a sequence of
production applications S → · · · → w, which implies w ∈ L.

Searching through the implicit intersection language Finally, we avoid constructing the entire
intersection language. Instead, we only construct the parts of the language visited during the search.
All symbols in the intersection language have the form

p
A⃗

q
for p, q ∈ Σ and A ∈ V . All production

rules in the intersection grammar are directly derived from corresponding rules in the original CFG.
Specifically, all rules of the form

p
A⃗

q
→ ε and

p
A⃗

q
→ σ are based on corresponding rules A→ ε and

A → σ in the original grammar without further dependencies, allowing us to iterate over directly
generating symbols without constructing the remaining grammar. Further, all other rules are of the

5

form
p
A⃗

q
→

p
B⃗

rr
C⃗

q
and

p
A⃗

q
→

p
B⃗

q
based on original productions A→ BC and A→ B, for all

p, q, r ∈ Q. This enables enumerating all such rules for a given
p
B⃗

r
,
r
C⃗

q
or

p
B⃗

q
during the search.

We present the corresponding pseudo-code and additional explanations in App. B.3.

Sampling a valid completion from the intersection language The algorithm presented above
decides intersection emptiness. We now extend it to return a valid completion from the intersection
language. To achieve this, we modify the algorithm to track production rules that were applied when
marking symbols as generating. These rules describe a parse tree for some word w in the intersec-
tion language. We traverse the terminals at the leaf nodes of this tree from left to right to reconstruct
a valid completion in the intersection language. This completion is used after a fixed number of
rejected updates from the LLM. Since the algorithm leverages the results from the prior emptiness
search, it can be run at no additional cost. We observe that only 0.7% of valid completions do not
appear in the first 50 selected LLM updates. Thus, we can significantly speed up the sampling pro-
cess without losing performance by inserting a randomly sampled valid completion after k rejected
updates. In our experiments, we set k to 100 to ensure we do not miss any valid completions.

3.3 Application of Constrained Infilling to LLMs

We now briefly outline how to apply the algorithm from §3.2 to LLMs, which generate arbitrary
Unicode text rather than language terminals. Full details are provided in App. C.

Lexing For typical applications of CFGs, a string of Unicode characters u is converted to terminals
x = t1 . . . tk in a process called lexing. First, note that every terminal t corresponds to a regular
language Rt over Unicode characters. During lexing, t1 is obtained by finding the terminal t such
that Rt matches a prefix p of u, i.e., u = p · s. The lexing process then recurses on u′ = s to obtain
the remainder of x, continuing until the string is empty. In principle, to apply this procedure to a
sequence with infilling regions s1⊥s2⊥ . . . sk, we would lex each consecutive string si to obtain
x = t1 . . . tn, but several caveats to this procedure need to be addressed.

Handling infilling regions First, it does not accurately handle partial terminals that border infilling
regions, since LLM tokens are Unicode strings that may not align with terminals. For example, the
partial LLM output if⊥2 could correspond to both <if> <int> and <identifier>. The ambiguity
stems from the possibility of filling the gap with, e.g., _valid, forming identifier if_valid2.

To address this, we treat the text around an infilling region as possibly belonging to an incomplete
terminal. Specifically, in the lexing process, we additionally look for terminals t such that the current
output u is a prefix of a word in Rt right before an infilling region or a suffix right after a region.
Further, we include terminals t that could span across one or more infilling regions by determining
if prefixes and suffixes can be infilled to form a single word in Rt, as in the example above. We can
thus generate all terminal sequences consistent with a partial output. If any such sequence can be
completed to a valid program, then the partial output itself admits a valid completion.

Efficiency optimizations The number of possible terminal sequences grows quickly with the num-
ber of regions and ambiguities. To improve efficiency, we introduce two optimizations. First, for
each x, we directly construct a single NFA for all possible terminal sequences. This allows us to
apply the intersection algorithm once rather than for each sequence. Second, we reduce ambigu-
ity by preprocessing terminals: whenever the accepted language of terminal t≤ is contained within
terminal t≥, we remove the overlap from t≥ and adapt the CFG to allow t≤ wherever t≥ is allowed.

Sampling a valid completion The sampling method from §3.2 returns a sequence of terminals
rather than Unicode characters. To sample a Unicode completion, we first concatenate the regular
languages of the terminals in the sampled completion. We then construct a regular language for the
current partial LLM output and intersect the two languages. Sampling a random string from this
intersection yields a valid completion at the Unicode level.

6

4 Experimental Evaluation

We evaluate our method across a range of tasks and models, first in the MRI setting, and then in
DLM, demonstrating improvements in both syntactic and functional correctness. We provide further
experimental details, ablate DLM diffusion steps, and provide a case study in App. D.

4.1 Experimental Setup

Metrics We compute two main metrics to evaluate the effectiveness of our method. First, we de-
termine the percentage of syntactically correct completions (Syntax), which indicates how many of
the obtained completions adhere to the specified grammar. We also measure functional correctness
(Functional) by either comparing the sample to a golden solution, or by reporting the percentage of
solutions that pass all test cases, pass@1, depending on the dataset. All results are averaged over
four independent runs with different seeds. We compute confidence intervals at 95%, boldface the
best method, and underline all methods over which the increase is not significant. The usual size of
the confidence interval is 1% to 2%.

Compared methods We run unconstrained LLM sampling, reported as Vanilla (Van.) and con-
strained decoding with our method (Con.). This includes sampling random completions when gener-
ation aborts, i.e., when the maximum number of 256 tokens is exceeded, or 100 updates are rejected
over the decoding process. As an ablation, we report Con.−, where these aborted instances are
marked as syntactically and functionally invalid.

4.2 Fill-In-the-Middle and Multi-Region-Infilling

Models We compare the performance of five recent open-weight infilling models, including STAR-
CODER2 7B [33], CODEGEMMA 7B [58], and the DEEPSEEK CODER Family [22], covering 7B
parameter models from three distinct model families and model sizes from 1.3B to 33B.

Tasks and benchmarks Infilling is commonly used to complete partial code [5, 15]. We therefore
evaluate our method on the C++ translation of the HumanEval dataset [10, 59], containing 164
diverse basic coding tasks. Similar to Bavarian et al. [5], we transform the dataset into an infilling
task by removing random spans from the human-written reference implementation. We evaluate
up to three removed spans, resulting in 1-MRI, being equivalent to FIM, 2-MRI, with two infilling
regions, and 3-MRI, with three infilling regions. We design a CFG for the subset of C++ syntax
needed to solve the tasks in HumanEval. We report adherence to this CFG as syntactic correctness.
Functional correctness is measured by computing the pass@1 score on provided test cases [9].

Syntactic correctness As can be seen in Table 1, our method increases syntactic correctness sig-
nificantly across all models and numbers of infilling regions. Deriving a valid completion from the
intersection language (Con.) recovers a syntactically valid completion in on average 95.8% of in-
stances. Remaining errors are due to timeouts. Constrained decoding without completions (Con.−)
increases syntactic correctness more for code with multiple regions. This coincides with models
struggling more, achieving an absolute increase of 5.2%, 22.5%, and 31.5% for 1-MRI, 2-MRI, and
3-MRI, respectively. These improvements are consistent across model families and sizes, ranging
between 17% and 21% per model.

Functional correctness In the lower half of Table 1, we observe that constraining (Con.) consis-
tently increases functional correctness, on average by 2.8%, and even without randomly sampling
valid completions (Con.−), the average increase is 2.4%. This is expected, as syntactically incorrect
completions can not be functionally correct and are effectively prevented by our method.

Runtime overhead We compare the time per token between constrained and vanilla decoding.
The median runtime overhead of constrained decoding is 125%, where the overhead on the small
DEEPSEEK CODER 1.3B is higher (320%) than on the 7B models (100%) and DEEPSEEK CODER
33B (20%). Moreover, median overhead increases with more complex infilling, growing from 67%
on 1-MRI to 205% on 3-MRI. Further details for this experiment are provided in App. D.4.

7

Table 1: Our method consistently improves the percentage of syntactically and functionally correct
infillings for varying numbers of regions in MRI under standard decoding (Van.), constrained decod-
ing (Con.−), and completing partially completed outputs (Con.).

1-MRI 2-MRI 3-MRI

Model Van. Con.− Con. Van. Con.− Con. Van. Con.− Con.

Sy
nt

ax

STARCODER2 7B 88.2 95.0 98.9 55.4 77.7 96.3 24.5 57.2 88.3
CODEGEMMA 7B 92.5 97.2 100.0 61.5 85.6 99.0 29.9 66.4 96.0
DEEPSEEK C. 1.3B 86.5 91.7 98.7 51.5 72.9 93.1 22.7 47.7 83.0
DEEPSEEK C. 6.7B 93.9 98.3 100.0 62.0 84.0 97.3 32.9 64.9 94.6
DEEPSEEK C. 33B 93.1 97.6 100.0 66.3 86.5 97.8 36.4 67.8 93.5

Fu
nc

tio
na

l STARCODER2 7B 53.8 56.1 56.3 20.5 23.7 24.2 7.5 10.3 11.0
CODEGEMMA 7B 57.1 59.6 59.6 24.8 29.0 29.2 8.7 12.6 12.8
DEEPSEEK C. 1.3B 46.5 46.4 47.2 16.1 18.4 19.2 4.9 5.4 6.5
DEEPSEEK C. 6.7B 64.8 67.1 67.3 29.8 32.7 33.2 11.9 13.5 13.5
DEEPSEEK C. 33B 69.8 71.2 71.4 29.8 34.0 34.3 12.6 14.3 15.4

4.3 Diffusion Language Models

Models We evaluate our method on the instruction-tuned versions of four state-of-the-art diffusion
language models, LLADA 8B [37], DREAM 7B [57], DREAMCODER 7B [56] and DIFFUCODER
7B [20]. We run all models with 32 steps on 256 tokens and with a temperature of 0.2.

Tasks and benchmarks As DLMs are generic text generation models with many different appli-
cations, we design three distinct and diverse tasks:

C++ Based on the dataset used in §4.2, the model should generate the entire function
specified in natural language [10, 59].

JSON The model should extract relevant information from natural language input, adhering
to a JSON-Schema specification [38].

SMILES The model should write down a chemical molecule described in natural language in
the SMILES specification language [53].

For SMILES and JSON we generate synthetic benchmarks using GEMINI-2.5-PRO [21] with verifica-
tion to ensure that the generated samples are correct and solvable, resulting in 167 and 272 instances
respectively. More details about the dataset generation procedure can be found in App. D.3.

We implement the syntax of each language as a CFG and use it to enforce and evaluate the syntactic
correctness of the generated output. For C++, we measure functional correctness using pass@1 as
in §4.2. For JSON and SMILES, correctness is evaluated by comparing to a golden solution.

Syntax errors We observe that our method consistently increases syntactic correctness for all
tasks and models, as shown in Table 2. Without sampling valid completions (Con.−), our method
increases the percentage of syntactically correct instances by 16.1%, 14.7%, and 26.0% for C++,
JSON, and SMILES, respectively. We observe that many models fail to generate syntactically correct
output even under constraints, with, for example, only 19.0% correct C++ generations for DREAM-
CODER 7B. However, sampling valid completions (Con.) recovers the failed instances, increasing
to 99.2%. In JSON, constrained decoding with completion achieves 100% syntactic correctness.
Remaining errors are due to timeouts.

Functional correctness As shown in the lower half of Table 2, the positive effect of constraining
on functional correctness is also present for DLM, with an average increase in functional correctness
without completions (Con.−) of 1.9%, and a slight additional boost with completions (Con.) to
2.2%. Notably, DREAM 7B performance on JSON increases by 6.9%. In the SMILES setting, where
models perform very poorly at only 1.5% average correctness, syntactic constraints are not able to
improve functional correctness significantly, achieving only a modest average increase of 0.2%.

8

Table 2: Constrained decoding (Con.−) consistently increases the percentage of syntactically correct
completions for DLMs over standard decoding (Van.).

C++ JSON SMILES

Model Van. Con.− Con. Van. Con.− Con. Van. Con.− Con.
Sy

nt
ax

DREAM 7B 40.5 58.7 99.4 22.4 44.9 100.0 67.5 93.7 99.4
DREAMC. 7B 11.0 19.0 99.2 73.7 86.6 100.0 73.1 94.9 100.0
LLADA 8B 13.3 36.1 99.7 77.5 89.0 100.0 58.2 91.3 100.0
DIFFUC. 7B 39.2 54.7 99.7 64.5 76.3 100.0 69.3 92.2 99.2

Fu
nc

t.

DREAM 7B 6.6 8.8 9.5 7.4 11.4 14.3 0.6 1.1 1.1
DREAMC. 7B 3.7 4.9 5.2 44.6 46.7 46.7 3.4 3.4 3.4
LLADA 8B 3.8 5.0 5.3 43.1 49.5 49.5 0.7 1.0 1.0
DIFFUC. 7B 12.5 13.7 14.8 34.3 38.0 38.2 1.1 1.1 1.1

Runtime overhead We compare the runtime to complete samples in constrained decoding with
the vanilla setting. The median completion overhead is only 30%. We observe both speed-ups of up
to 19% and slowdowns of up to 190%. Speed-ups occur when the decoding is preemptively aborted.
Further details for this experiment are provided in App. D.4.

5 Related Work

Large language models LLMs have gained traction for diverse tasks such as code generation [26]
and structured output generation [2, 30, 42]. While the most common approach trains LLMs for PRE
generation, many modern code models also support FIM settings [22, 32, 58]. More recently, diffu-
sion language models have been scaled to billion-parameter sizes and demonstrate promising perfor-
mance on a variety of tasks [20, 37, 56]. Meanwhile, LLMs are prone to errors during generation.
For example, they often make mistakes in niche programming languages [17] and fundamentally
struggle to model specific types of formal languages [13, 47].

Constrained decoding Constraining code generation to context-free languages has been explored
extensively in prior work [6, 7, 43, 54]. Most prior works apply these techniques to the PRE setting
[7, 43, 50], with some extensions to FIM and context-sensitive features [34, 35]. Suresh et al. [48]
constrain DLMs specifically, but only to regular languages. To our knowledge, constrained decoding
with CFGs has not yet been applied to the MRI or DLM paradigms. Additionally, unlike prior work
that employs masking to reject invalid tokens [6, 43, 50], our rejection sampling approach incurs no
additional latency before starting language inference, significantly reducing friction of switching to
a different CFG.

Leveraging language intersections Two similar works leverage the intersection of CFLs and reg-
ular languages. First, Fazekas et al. [14] discuss subsequence matching, which asks whether w is
a subsequence of any word in language L. This is a special case of our decision problem, with
x = ε w1 . . . w|w| ε, and can also be solved by using the emptiness check for intersection
languages. Their work is not applicable to our setting, as it only handles this special case, does not
consider practical performance, and does not consider how to handle lexing.

Second, Nederhof and Satta [36] use intersections of weighted CFGs and DFAs for parsing natural
language words, using the intersection language as a succinct representation of admissible parses of
lexeme sequences. To reduce the size of these intersections, they also filter non-generating symbols
during the intersection construction.

6 Conclusion

We presented the first constrained decoding method for diffusion models that is able to handle
context-free languages such as C++ and JSON. We showed how to reduce the problem of valid com-
pletion to an infilling decision problem solvable using formal language techniques. Our optimized
algorithm demonstrates a consistent and significant increase in syntactic and functional correctness
on a variety of benchmarks and models, while still ensuring efficiency at inference time.

9

Reproducibility Statement

We describe our implementation in detail in §4 and App. D, including details such as hyperparame-
ters and the used compute hardware. Further, all of our experiments were run with fixed seeds and
disabled optimizations that would introduce nondeterminism. To ensure complete reproducibility of
our results, we publicly release the code implementation of our method, as well as datasets, models,
and code used for the evaluation at Redacted Url. We also include the content of this released code
as an anonymized artifact for the double-blind review.

Acknowledgements

We thank Niccolò Rigi-Luperti, Thibaud Gloaguen and Jingxuan He for many excited and fruitful
discussions about this project.

References
[1] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques &

tools. 2007.
[2] Anthropic. JSON Mode, 2025. URL https://docs.anthropic.com/en/docs/

build-with-claude/tool-use#json-mode.
[3] Richard L. Apodaca. SMILES Formal Grammar. Depth-First blog post, 2020. URL https:

//depth-first.com/articles/2020/04/20/smiles-formal-grammar/.
[4] Y. Bar-Hillel, M. Perles, and E. Shamier. On formal properties of simple phrase structure

grammars. STUF, 1961. URL https://doi.org/10.1524/stuf.1961.14.14.143.
[5] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry

Tworek, and Mark Chen. Efficient Training of Language Models to Fill in the Middle. arXiv
preprint, 2022. URL https://arxiv.org/abs/2207.14255.

[6] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A
Query Language for Large Language Models. PLDI, 2023. URL https://doi.org/10.1145/
3591300.

[7] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs The Right Way:
Fast, Non-invasive Constrained Generation. In ICML, 2024. URL https://openreview.
net/forum?id=pXaEYzrFae.

[8] Blue Obelisk Project and OpenSMILES Community. OpenSMILES specification (HTML
version), 2025. URL http://opensmiles.org/opensmiles.html.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
Models are Few-shot Learners. In NeurIPS, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating
Large Language Models Trained on Code. arXiv Preprint, 2021. URL https://arxiv.org/
abs/2107.03374.

[11] Tiago Cogumbreiro. CS420: Introduction to the theory of computation, lecture 15:
Context-free grammars, 2020. URL https://cogumbreiro.github.io/teaching/cs420/
s20/lecture15.pdf.

[12] D.W. Solving the emptiness problem for a CFG in Chomsky normal form (linear). Computer
Science Stack Exchange, 2018. URL https://cs.stackexchange.com/q/92314.

[13] Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How Can Self-attention Networks Rec-
ognize Dyck-n Languages? In EMNLP, 2020. URL https://aclanthology.org/2020.
findings-emnlp.384/.

[14] Szilárd Zsolt Fazekas, Tore Koß, Florin Manea, Robert Mercaş, and Timo Specht. Subsequence
Matching and Analysis Problems for Formal Languages. In ISAAC, 2024. URL https://
drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.28.

10

https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
https://depth-first.com/articles/2020/04/20/smiles-formal-grammar/
https://depth-first.com/articles/2020/04/20/smiles-formal-grammar/
https://doi.org/10.1524/stuf.1961.14.14.143
https://arxiv.org/abs/2207.14255
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://openreview.net/forum?id=pXaEYzrFae
https://openreview.net/forum?id=pXaEYzrFae
http://opensmiles.org/opensmiles.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://cogumbreiro.github.io/teaching/cs420/s20/lecture15.pdf
https://cogumbreiro.github.io/teaching/cs420/s20/lecture15.pdf
https://cs.stackexchange.com/q/92314
https://aclanthology.org/2020.findings-emnlp.384/
https://aclanthology.org/2020.findings-emnlp.384/
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.28
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.28

[15] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code
Infilling and Synthesis, 2023. URL https://openreview.net/forum?id=hQwb-lbM6EL.

[16] William Gasarch. The Intersection of a CFG and a REG is CFG, 2014. URL https://www.
cs.umd.edu/~gasarch/COURSES/452/F14/cfgreg.pdf.

[17] Alessandro Giagnorio, Alberto Martin-Lopez, and Gabriele Bavota. Enhancing Code Gen-
eration for Low-resource Languages: No Silver Bullet. arXiv Preprint, 2025. URL https:
//doi.org/10.48550/arXiv.2501.19085.

[18] GitHub. Introducing GitHub Copilot: your AI pair programmer. GitHub
Blog, 2025. URL https://github.blog/news-insights/product-news/
introducing-github-copilot-ai-pair-programmer/.

[19] Akshay Goel, Almog Gueta, Omry Gilon, Chang Liu, Sofia Erell, Lan Huong Nguyen, Xiao-
hong Hao, Bolous Jaber, Shashir Reddy, Rupesh Kartha, Jean Steiner, Itay Laish, and Amir
Feder. Llms accelerate annotation for medical information extraction. arXiv Preprint, 2023.
URL https://arxiv.org/abs/2312.02296.

[20] Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong,
and Yizhe Zhang. DiffuCoder: Understanding and Improving Masked Diffusion Models for
Code Generation. arXiv Preprint, 2025. URL https://arxiv.org/abs/2506.20639.

[21] Google DeepMind. Gemini Pro, 2025. URL https://deepmind.google/technologies/
gemini/pro/.

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, et al. DeepSeek-Coder: When the Large Language Model Meets
Programming - The Rise of Code Intelligence. arXiv Preprint, 2024. URL https://doi.org/
10.48550/arXiv.2401.14196.

[23] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. 1979.

[24] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang,
Armando Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Con-
tamination Free Evaluation of Large Language Models for Code. In ICLR, 2025. URL
https://openreview.net/forum?id=chfJJYC3iL.

[25] JetBrains. Code completion, 2025. URL https://www.jetbrains.com/help/pycharm/
auto-completing-code.html.

[26] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A Survey on Large
Language Models for Code Generation. arXiv Preprint, 2024. URL https://doi.org/10.
48550/arXiv.2406.00515.

[27] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R. Narasimhan. SWE-bench: Can Language Models Resolve Real-world Github Is-
sues? In ICLR, 2024. URL https://openreview.net/forum?id=VTF8yNQM66.

[28] Donald E. Knuth. On the Translation of Languages from Left to Right. Inf. Control., 1965.
URL https://doi.org/10.1016/S0019-9958(65)90426-2.

[29] Greg Landrum, Paolo Tosco, Brian Kelley, Ricardo Rodriguez, David Cosgrove, Riccardo
Vianello, sriniker, Peter Gedeck, Gareth Jones, Eisuke Kawashima, Nadine Schneider, Dan
Nealschneider, Andrew Dalke, and tadhurst-cdd et al. rdkit/rdkit: Q1 2025 Release. Zenodo,
2025. URL https://doi.org/10.5281/zenodo.16439048.

[30] LangChain Developer Documentation. Structured outputs, 2025. URL https://python.
langchain.com/docs/concepts/structured_outputs/.

[31] Martin Lange and Hans Leiß. To CNF or not to CNF? An efficient yet presentable version of
the CYK algorithm. Informatica Didactica, 2009.

[32] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The
Stack v2: The Next Generation. arXiv Preprint, 2024. URL https://doi.org/10.48550/
arXiv.2402.19173.

11

https://openreview.net/forum?id=hQwb-lbM6EL
https://www.cs.umd.edu/~gasarch/COURSES/452/F14/cfgreg.pdf
https://www.cs.umd.edu/~gasarch/COURSES/452/F14/cfgreg.pdf
https://doi.org/10.48550/arXiv.2501.19085
https://doi.org/10.48550/arXiv.2501.19085
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://arxiv.org/abs/2312.02296
https://arxiv.org/abs/2506.20639
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://openreview.net/forum?id=chfJJYC3iL
https://www.jetbrains.com/help/pycharm/auto-completing-code.html
https://www.jetbrains.com/help/pycharm/auto-completing-code.html
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.5281/zenodo.16439048
https://python.langchain.com/docs/concepts/structured_outputs/
https://python.langchain.com/docs/concepts/structured_outputs/
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173

[33] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The
Stack v2: The Next Generation. arXiv Preprint, 2024. URL https://doi.org/10.48550/
arXiv.2402.19173.

[34] Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained De-
coding for Fill-in-the-middle Code Language Models via Efficient Left and Right Quotienting
of Context-sensitive Grammars. arXiv Preprint, 2024. URL https://arxiv.org/abs/2402.
17988.

[35] Niels Mündler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-
Constrained Code Generation with Language Models. In PLDI, 2025. URL https://doi.
org/10.1145/3729274.

[36] Mark-Jan Nederhof and Giorgio Satta. Probabilistic Parsing. In SCI. 2008. URL https:
//link.springer.com/chapter/10.1007/978-3-540-78291-9_7.

[37] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. arXiv preprint, 2025.
URL https://arxiv.org/abs/2502.09992.

[38] NousResearch. json-mode-eval. Hugging Face Datasets, 2024. URL https://huggingface.
co/datasets/NousResearch/json-mode-eval.

[39] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. Live functional programming
with typed holes. POPL, 2019. URL https://doi.org/10.1145/3290327.

[40] OpenAI. GPT-4 Technical Report. arXiv Preprint, 2023. URL https://doi.org/10.48550/
arXiv.2303.08774.

[41] OpenAI. Function calling - openai api: Context-free grammars, 2025. URL https:
//platform.openai.com/docs/guides/function-calling#context-free-grammars. Ac-
cessed: 2025-08-12.

[42] OpenAI. Structured Outputs, 2025. URL https://platform.openai.com/docs/guides/
structured-outputs.

[43] Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable Code Generation from Pre-trained Language Models.
In ICLR, 2022. URL https://openreview.net/forum?id=KmtVD97J43e.

[44] Julien Romero. Pyformlang: An Educational Library for Formal Language Manipulation. In
SIGCSE, 2021. URL https://doi.org/10.1145/3408877.3432464.

[45] Mara Schilling-Wilhelmi, Martiño Ríos-García, Sherjeel Shabih, María Victoria Gil, Santiago
Miret, Christoph T. Koch, José A. Márquez, and Kevin Maik Jablonka. From text to insight:
Large language models for materials science data extraction. arXiv Preprint, 2024. URL
https://arxiv.org/abs/2407.16867.

[46] Lena Schmidt, Kaitlyn Hair, Sergio Graziosi, Fiona Campbell, Claudia Kapp, Alireza Khantey-
moori, Dawn Craig, Mark Engelbert, and James Thomas. Exploring the use of a large language
model for data extraction in systematic reviews: a rapid feasibility study. arXiv Preprint, 2025.
URL https://arxiv.org/abs/2405.14445.

[47] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What Formal
Languages Can Transformers Express? A Survey. TACL, 2024. URL https://doi.org/10.
1162/tacl_a_00663.

[48] Tarun Suresh, Debangshu Banerjee, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh.
Dingo: Constrained inference for diffusion llms. arXiv Preprint, 2025. URL https://arxiv.
org/abs/2505.23061.

[49] Tabnine. Tabnine: AI Code Assistant, 2025. URL https://www.tabnine.com/.
[50] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syn-

Code: LLM Generation with Grammar Augmentation. ArXiv Preprint, 2024. URL https:
//arxiv.org/abs/2403.01632.

[51] Mark Vero, Niels Mündler, Victor Chibotaru, Veselin Raychev, Maximilian Baader, Nikola
Jovanović, Jingxuan He, and Martin Vechev. BaxBench: Can LLMs generate correct and
secure backends? In ICML, 2025. URL https://openreview.net/forum?id=il3KRr4H9u.

12

https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://arxiv.org/abs/2402.17988
https://arxiv.org/abs/2402.17988
https://doi.org/10.1145/3729274
https://doi.org/10.1145/3729274
https://link.springer.com/chapter/10.1007/978-3-540-78291-9_7
https://link.springer.com/chapter/10.1007/978-3-540-78291-9_7
https://arxiv.org/abs/2502.09992
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://doi.org/10.1145/3290327
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://platform.openai.com/docs/guides/function-calling#context-free-grammars
https://platform.openai.com/docs/guides/function-calling#context-free-grammars
https://platform.openai.com/docs/guides/structured-outputs
https://platform.openai.com/docs/guides/structured-outputs
https://openreview.net/forum?id=KmtVD97J43e
https://doi.org/10.1145/3408877.3432464
https://arxiv.org/abs/2407.16867
https://arxiv.org/abs/2405.14445
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://arxiv.org/abs/2505.23061
https://arxiv.org/abs/2505.23061
https://www.tabnine.com/
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://openreview.net/forum?id=il3KRr4H9u

[52] Jiayi Wei, Greg Durrett, and Isil Dillig. Coeditor: Leveraging repo-level diffs for code auto-
editing. In ICLR, 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/
file/77c7faab15002432ba1151e8d5cc389a-Paper-Conference.pdf.

[53] David Weininger. SMILES, a chemical language and information system. 1. Introduc-
tion to methodology and encoding rules. JCIM, 1988. URL https://doi.org/10.1021/
ci00057a005.

[54] Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models.
arXiv Preprint, 2023. URL https://doi.org/10.48550/arXiv.2307.09702.

[55] Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victo-
ria W., Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infill-
ing beyond fixed-size canvas, 2025. URL https://hkunlp.github.io/blog/2025/dreamon.

[56] Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao,
Shansan Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-Coder 7B. HKU NLP
Blog, 2025. URL https://hkunlp.github.io/blog/2025/dream-coder.

[57] Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Ling-
peng Kong. Dream 7B. HKU NLP Blog, 2025. URL https://hkunlp.github.io/blog/
2025/dream.

[58] Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, Christopher A.
Choquette-Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal, et al. CodeGemma: Open Code
Models Based on Gemma. arXiv Preprint, 2024. URL https://doi.org/10.48550/arXiv.
2406.11409.

[59] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, et al. CodeGeeX: A Pre-Trained Model for Code Generation with
Multilingual Benchmarking on HumanEval-X. In SIGKDD, 2023. URL https://dl.acm.
org/doi/10.1145/3580305.3599790.

13

https://proceedings.iclr.cc/paper_files/paper/2024/file/77c7faab15002432ba1151e8d5cc389a-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/77c7faab15002432ba1151e8d5cc389a-Paper-Conference.pdf
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.48550/arXiv.2307.09702
https://hkunlp.github.io/blog/2025/dreamon
https://hkunlp.github.io/blog/2025/dream-coder
https://hkunlp.github.io/blog/2025/dream
https://hkunlp.github.io/blog/2025/dream
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2406.11409
https://dl.acm.org/doi/10.1145/3580305.3599790
https://dl.acm.org/doi/10.1145/3580305.3599790

q0 q1 q2

a
b

b {a, b}
a

(a) A DFA where q0 is the start state, {q0, q1, q2} are
the states, and q0 and q1 are the accepting states. The
arrows represent the transition function δ.

V = {S,B} (Nonterminals)
Σ = {a, b} (Terminals)
S → aS | bB | ε
B → bB|ε

(b) A CFG with start symbol S, terminal alphabet
Σ = {a, b}, and nonterminals V = {S,B}. The
production rules are the last two lines.

Figure 3: Two representations of a formal language: a DFA (Fig. 3a) and a CFG (Fig. 3b). Both
accept strings that start with a’s and end with b’s.

A Extended Background on Formal Languages

Formal languages allow to unambiguously specify valid or invalid strings, usually for ensuring
machine-readability, i.e., in the case of JSON schemas, or when specifying the syntactic rules of
programming languages. Formal languages are, in their most general form, defined as a set of
strings over an alphabet Σ. For instance, over the alphabet Σ = {a, b}, one can define the formal
language {ε, b, aa, bb, aabb, aaaabbb, . . .} of strings consisting of any number of a’s followed by
b’s. In this section, we provide a short explanation of two key classes of formal languages: regular
and context-free languages.

A.1 Regular Languages

Regular languages are commonly encountered when describing string patterns with regular expres-
sions. For example, the language of a’s followed by b’s is described by the regular expression a*b*,
where the star denotes zero or more repetitions. A regular language can alternatively be described
through a Deterministic Finite Automaton (DFA) that accepts the language [23]. A DFA is a state
machine that processes an input string symbol by symbol, transitioning between states based on a
deterministic transition function. Thus, a string gets processed by the DFA by starting in the ini-
tial state and following the transitions associated with the current input symbol until the end of the
string is reached. A string is accepted if the DFA ends in an accepting state after processing the
entire string. Formally, a DFA is defined as a tuple (Q,Σ, δ, q0, F), where: (1) Q is the finite set of
states, (2) Σ is the finite alphabet of symbols, (3) δ : Q×Σ→ Q is the transition function that maps
a state and an input symbol to the next state, (4) q0 ∈ Q is the initial state, and (5) F ⊆ Q is the
set of accepting states. Fig. 3a depicts the DFA recognizing the previously introduced language of
strings with arbitrarily many a’s followed by b’s. Note that in this example, the transition function
δ is defined for every state and symbol combination. Per convention, omitted transitions implicitly
transfer to a state like q2, from which no accepting state can be reached.

In DFAs, the next transition is thus uniquely determined for each combination of state and input
symbol. In contrast, nondeterministic finite automata (NFAs) allow multiple transitions for a state
and input symbol combination, making it nondeterministic. One often additionally adds the option
to transition between states without consuming any input symbols, through so-called ε-transitions.
This added flexibility allows for a more concise depiction and simplifies construction, which is why
we use them throughout this work. NFAs accept a word if any possible transition according to the
input symbols leads to an accepting state. Every NFA (including ε-transitions) can be converted to
an equivalent DFA using a standard algorithm [23]. The NFAs constructed for partial LLM outputs
in our method are usually converted into a DFA of around the same number of states, even though
the worst-case equivalent DFA can have exponentially many states.

A.2 Context Free Languages

Context-Free Languages (CFLs) extend regular languages by enabling the expression of recursively
nested structures, such as balanced parentheses or properly nested control statements in code. They
are described using Context-Free Grammars (CFGs), which consist of production rules that specify
how strings in the language can be generated [23]. For most programming languages, the syntactic
rules of the language can be adequately captured by a CFG.

14

CFGs operate with two types of symbols: terminals, which are the actual characters of the language,
and nonterminals, which are used to define the language patterns. A CFG is a formal grammar that
consists of a finite set of production rules that describe how strings in the language can be generated.
Formally, a CFG is a tuple (V,Σ, P, S), where: (1) V is a finite set of nonterminal symbols, (2) Σ
is a finite set of terminal symbols (with V ∩ Σ = ∅), (3) P is a set of production rules of the form
A → α, with A ∈ V and α ∈ (V ∪ Σ)∗, and (4) S ∈ V is the start symbol. To generate a string,
one starts with S and applies rules from P until the resulting string contains only terminal symbols.
This process defines all valid strings in the language. Fig. 3b shows a CFG that generates strings
over {a, b} starting with arbitrarily many a’s followed by b’s, demonstrating that the same language
recognized by a DFA can also be described by a CFG. To generate the string aabb, one could apply
the following sequence of production rules: S → aS → aaS → aabB → aabbB → aabb.

CFGs are often specified in normal forms, which restrict the grammar to certain types of production
rules. The benefit of the resulting language is that it reduces edge cases to handle in productions and
simplifies proofs about properties of the language. The most common normal form is the Chomsky
normal form, where each production rule is of the form A → BC or A → a, with A,B,C ∈ V
and a ∈ Σ. Many other normal forms exist, such as C2F, which is based on the Chomsky normal
form but additionally allows so-called unit production rules of the form A→ B [31]. Languages in
Chomsky normal form and C2F can not produce the empty word, as they lack productions that gen-
erate the empty string ε [23]. We therefore introduce C2F+ε, which additionally allows production
rules of the form A→ ε.

B Details on Efficient Intersection Language Searches

In this section, we first detail generic optimizations to reduce the size of context-free grammars,
then provide a detailed proof of the correctness of our intersection language construction, and finally
provide some more details on the search algorithm we employ to decide emptiness.

B.1 Construction of the Intersection Language for CFGs in C2F+ε

We now provide the full constructive proof that the intersection of a CFL and a regular language
is a CFL, since it is rarely written out in the literature. We have further adapted it for grammars in
C2F+ε. It forms the basis of Algorithm 2, the core algorithm of our method.

Lemma 1. The intersection language L ∩ R between a context-free language L and the regular
language R is context-free.

Proof. We give a constructive proof by explicitly building a CFG that generates L∩R. We provide
the details omitted in the proof given by Gasarch [16] and extend it to allow grammars in C2F+ε.

Let LCFL be generated by a CFG G = (V,Σ, P, S), and let LR be accepted by a DFA
(Q,Σ, δ, q0, F). We first convert G to C2F+ε. Then, we construct a new CFG G∩ whose language
is exactly L∩ = LCFL ∩ LR.

The idea is to simulate the CFG G and DFA (Q,Σ, δ, q0, F) in parallel. Specifically, we define the
nonterminals of G∩ to be of the form

p
A⃗

q
, where A ∈ V is a nonterminal of G, and p, q ∈ Q

are states of the DFA. We then create production rules in such a way that if there exists a sequence
of productions such that

p
A⃗

q
→ · · · → w, then there exists a sequence of productions in G such

that A → · · · → w and w takes the DFA from state p to state q. We then add a start symbol S∩

and productions S∩ →
q0
S⃗

f
for all f ∈ F to ensure that L∩ contains exactly the words that can

be derived from the start symbol S of G and that also take the DFA from the start state q0 to an
accepting state f ∈ F , i.e., all words that are generated by the grammar and all words that are
accepted by the DFA.

The productions of G∩ are defined as follows (adapting [16], additional rules in green):

1. For each production A→ σ, for all p, q ∈ Q where δ(p, σ) = q, we add
p
A⃗

q
→ σ

2. For each production A→ ε, for all p ∈ Q, add
p
A⃗

p
→ ε

15

3. For each production A→ BC, and for all p, q, r ∈ Q, we add
p
A⃗

r
→

p
B⃗

qq
C⃗

r

4. For each production A→ B, for all p, q ∈ Q, add
p
A⃗

q
→

p
B⃗

q

The intuition behind the additional rules is that if the automaton is in some state q, we can "switch
the current symbol" (A → B) or "produce an empty string" (A → ε) without affecting the state.
These productions cover the two additional allowed productions in C2F+εgrammars, which are not
present in CNF grammars.

Finally, we add a new start symbol S′ with productions S′ →
q0
S⃗

f
for all f ∈ F .

We show that the language generated by the constructed CFG L∩ is equivalent to the intersection
language of the CFL LCFL and regular language LR, i.e., L∩ = LCFL ∩ LR. To do so, we first need
some additional notations:

• For any p, q ∈ Q and A ∈ V , L(
p
A⃗

q
) denotes the language generated by the nonterminal

p
A⃗

q
in the constructed CFG, i.e., the set of all words that can be derived with

p
A⃗

q
as the

start symbol. Note that L∩ =
⋃

f∈F L(
q0
S⃗

f
).

• For any A ∈ V , L(A) denotes the language generated by the nonterminal A in the original
CFG, i.e., the set of all words that can be derived with A as the start symbol. Note that
LCFL = L(S).

• For any p, q ∈ Q, L(p � q) denotes the language accepted by the DFA with start state p
and final state q, i.e., the set of all words that can be accepted by the DFA starting in state
p and ending in state q. Note that LR =

⋃
f∈F L(q0 � f).

We will show that for any p, q ∈ Q and A ∈ V

L(
p
A⃗

q
) = L(A) ∩ L(p � q).

This immediately implies that L∩ = LCFL ∩ LR, as

L∩ =
⋃
f∈F

L(
q0
S⃗

f
) =

⋃
f∈F

(L(S) ∩ L(q0 � f)) = L(S) ∩
⋃
f∈F

L(q0 � f) = LCFL ∩ LR.

We prove both inclusions separately.

(⊆) We show that for any p, q ∈ Q and A ∈ V , L(
p
A⃗

q
) ⊆ L(A)∩L(p � q). Let the generation

path of w ∈ L(
p
A⃗

q
) be defined as the sequence of productions that were used to derive w

from
p
A⃗

q
. Denote

Ln(
p
A⃗

q
) = {w ∈ L(

p
A⃗

q
) | the generation path of w has length at most n}.

We show the inclusion by induction over the length of the generation path.

n = 1. We show that L1(
p
A⃗

q
) ⊆ L(A) ∩ L(p � q). Since w is a word, the only possible

productions that can be used to derive w from
p
A⃗

q
are either rule 1 or rule 2.

In the first case, we know w = σ, A → σ is a production of the original CFG G, and
δ(p, σ) = q. Hence, w ∈ L(A) and w ∈ L(p � q). In the second case, we have
w = ε, A→ ε is a production of G, and p = q. Hence, w ∈ L(A) and w ∈ L(p � q).

n > 1. Suppose that for all p, q ∈ Q and A ∈ V , Ln−1(
p
A⃗

q
) ⊆ L(A) ∩ L(p � q). Let

w ∈ Ln(
p
A⃗

q
) be a word with a generation path of length n > 1. Then the first

production rule applied to w cannot be rules 1 and 2, as these would yield a generation
path of length one. Hence, the first rule applied must be either of the rules 3 and 4.
In the former case, we know there exist two words w1 ∈ Ln−1(

p
B⃗

r
), w2 ∈

Ln−1(
r
C⃗

q
) such that w = w1 ◦ w2. By induction, we have w1 ∈ L(B) ∩ L(p � r)

and w2 ∈ L(C)∩L(r � q). Since A→ BC is a production of G, we have w ∈ L(A)

16

as well. Furthermore, since w1 transitions the DFA from p to r and w2 transitions
from r to q, we have w ∈ L(p � q). Hence, w ∈ L(A) ∩ L(p � q).
In the latter case, we have w ∈ Ln−1(

p
B⃗

q
) for some nonterminal B ∈ V such that

A → B is a production of G. By the induction hypothesis, we have w ∈ L(B) ∩
L(p � q). Since A → B is a production of G, we have w ∈ L(A) as well. Hence,
w ∈ L(A) ∩ L(p � q).

(⊇) We show that L(
p
A⃗

q
) ⊇ L(A)∩L(p � q). Let the generation path of w now be measured

with respect to the original CFG, i.e., the sequence of productions that were used to derive
w from A. Denote

Ln(A) = {w ∈ L(A) | the generation path of w has length at most n}.
We once again show the inclusion by induction over the length of the generation path.

n = 1. We show that for any p, q ∈ Q and A ∈ V , L1(A) ∩ L(p � q) ⊆ L(
p
A⃗

q
). Since w is

a word, the only possible productions that can be used to derive w from A directly are
A→ σ or A→ ε.
In the former case, we have w = σ, and since a DFA only consumes symbols one-
by-one, there must be a corresponding state transition, i.e., δ(p, σ) = q. Hence, w ∈
L(

p
A⃗

q
) by rule 1.

In the latter case, w = ε, which immediately implies that p = q since a DFA does not
contain epsilon transitions. Hence, w ∈ L(

p
A⃗

q
) by rule 2.

n > 1. Suppose that for all p, q ∈ Q and A ∈ V , Ln−1(A) ∩ L(p � q) ⊆ L(
p
A⃗

q
). Let

w ∈ Ln(A) ∩ L(p � q) be a word with a generation path of length n > 1. Then the
first rule applied cannot be A → σ or A → ε, as these would yield a generation path
of length one. Hence, the first rule applied must be either A → BC or A → B for
some nonterminals B,C ∈ V .
In the former case, we know there exist two words w1 ∈ Ln−1(B), w2 ∈ Ln−1(C)
such that w = w1 ◦ w2 and A → BC is a production in the original CFG. Since
w ∈ L(p � q), we also know that consuming w transitions the DFA from state
p to q. We also know that, starting in q, after consuming w1, the DFA will arrive
at some intermediate state r. Clearly therefore w1 ∈ L(p � r). Moreover, since
w = w1 ◦ w2 and w ∈ L(p � q), also w2 ∈ L(r � q). By induction, we then have
w1 ∈ Ln−1(B) ∩ L(p � r) ⊆ L(

p
B⃗

r
) and similarly w2 ∈ L(

r
C⃗

q
). We know that

production
p
A⃗

q
→

p
B⃗

rr
C⃗

q
is in the intersection language, due to rule 3 quantifying

over all states in Q. Hence, w ∈ L(
p
A⃗

q
).

In the latter case, we have w ∈ Ln−1(B) and w ∈ L(p � q). By the induction
hypothesis, we have w ∈ L(

p
B⃗

q
). Since A→ B is a production of the original CFG,

we have w ∈ L(
p
A⃗

q
) as well by rule 4.

This completes the proof of the lemma.

B.2 Grammar Size Optimizations

The size of the grammar used for the intersection generation is of high importance to the overall
runtime, as the number of productions in the intersection grammar scales cubically with the number
of productions in the original grammar. While the size of the intersection grammar also depends on
the size of the intersected DFA, generic and efficient methods to minimize DFAs exist. Meanwhile
minimization of CFGs is undecidable [23].

We therefore apply several heuristics to reduce the grammar size:

• Inlinable terminal elimination: Inline the productions of nonterminals that are only used in
a single production. In particular, when B is only used in a single production A → αBβ,
with B → γ, remove B and its production and inline it into the production of A to create
A→ αγβ.

17

• Shared 2-gram elimination: For the most frequent BC such that there are several rules of
the form A→ αBCβ, (with α, β non-empty) introduce A′ → BC and rewrite A→ αA′β.
Repeat until no more such BC with more than one occurrence can be found.

• Left factoring: We eliminate shared prefixes using left factoring [1]. Specifically, if two
productions of the same nonterminal A → αβ and A → αβ′ share the prefix α, we
can introduce a new symbol A′ and replace the productions to eliminate the duplication,
concretely introducing A→ αA′ and A′ → β, A′ → β′.

After applying these heuristics, we convert the resulting CFG to C2F+εusing a standard algorithm,
consisting of several transformation steps, such as terminal elimination and binarization [31]. In
between each step, we detect and eliminate potentially constructed non-generating symbols.

B.3 Details on the Search Algorithm

We explain in detail how the search algorithm for generating nonterminals in the intersection lan-
guage works. The corresponding pseudo-code is presented in Algorithm 2 and based on the algo-
rithm presented by D.W. [12]. We leverage the construction rules of the intersection language to
conduct the search on the implicit intersection grammar, i.e., we only build the parts of the grammar
that we need to explore. Nonterminals in the intersection language have the form

p
A⃗

q
for p, q ∈ Σ

and A ∈ V . All production rules of the form
p
A⃗

q
→ ε and

p
A⃗

q
→ σ are based on the corresponding

productions A → σ (Construction 1) and A → ε (Construction 2) in the original grammar. We
leverage this insight to perform the initialization of the search, which iterates over all production
rules of this format, at the beginning of the algorithm in Lines 2–5. Further, all other productions are
of the form

p
A⃗

q
→

p
B⃗

qq
C⃗

r
and

p
A⃗

q
→

p
B⃗

q
, as constructed by Constructions 3 and 4. Importantly,

all rules for all combinations of states p, q, r exist. This allows us to enumerate all such rules for a
given symbol B or C on the fly, as done in Lines 9–17, without expending unnecessary execution
time. For example, in Line 9, we iterate over all production rules in which the nonterminal

y
X⃗

z

occurs. The two states of the DFAs already fixate two of the three states quantified over in Construc-
tion 3. Hence, given a production A→ XC in the original grammar, which uses the nonterminal X
and additional nonterminal C, we need to iterate over a single additional state variable q to evaluate
all corresponding constructed productions

y
A⃗

q
→

y
X⃗

zz
C⃗

q
.

C Lexing with LLM Tokens

The approach described in §3.2 operates directly on the formal language alphabet Σ. LLMs produce
Unicode text that can be misaligned with Σ. In this section, we describe in more detail how to handle
the resulting discrepancies.

Discrepancies between alphabet and LLM tokens For practical purposes, the alphabet Σ of
the formal language usually consists of lexemes. These represent language components abstractly,
i.e., for programming languages, they could be identifiers, literals, operators, and other syntactic
elements of the language, such as if and else. Before parsing a Unicode string, it thus first needs
to be converted into a string of lexemes. This process is called lexing.

The code generation paradigms MRI and DLM generate code on a Unicode level and thus require lex-
ing before our method can be applied. In addition to the normal lexing process, our approach needs
to handle the partial nature of the LLM outputs, taking into account potential partial lexemes and
consequently several possible lexing sequences for the same character-level output. In the remainder
of this section, we first explain how to convert the partial LLM output to a set of possible lexeme
sequences, and then how to apply the constrained infilling algorithm to these lexeme sequences.

Lexemes and lexing Each lexeme is associated with a regular language R where ΣR is the set of
Unicode characters. For example, the <number> lexeme is associated with regular expression \d+,
and the <identifier> lexeme with [a-zA-Z_]\w*. Lexing is the process of converting a Unicode-
level string into a sequence of lexemes, i.e., a sequence of strings that match the regular expressions
of the lexemes. We call such a sequence of lexemes a lexeme sequence. The lexing algorithm
extracts these sequences by iteratively matching the maximum match for all lexemes that match a
nonempty string at the beginning of the currently remaining output. Whitespace between lexemes

18

is commonly stripped. For example, the character-level string "1234 hello12" would be lexed into
the lexeme sequence (<number>,<identifier>).

Lexing partial outputs For a partial output x with infilling regions, we extract the represented
lexeme sequences for each chunk of continuous text. For instance, the output "x = 1234 hello12"
would be split into the chunks "x = 1234" and "hello12", which would be lexed into the two lex-
eme sequences (<identifier>, <=>, <number>) and (<identifier>). Note that the resulting list
of lexeme sequences is a list of words in Σ that can be directly used to construct the regular lan-
guage for the infilling problem as described in §3.2, for example here forming the infilling problem
<identifier><=><number> <identifier>.

Handling lexemes spanning infilling regions However, infilling regions complicate the lexing
process. Concretely, we need to handle strings that match lexemes partially on the border of infilling
regions.

Concretely, strings before an infilling region may end with a string that matches a prefix of some
lexeme. For example the output " 123" could be lexed as (<number>). However, the region could
be filled with token "a", resulting in the overall lexing (<identifier>). Similarly, strings may
match suffixes of lexemes after infilling regions.

Additionally, lexemes may span over an entire infilling region. For example, for the output
"123 789", the lexing would yield the lexeme sequences (<number>) and (<number>). However,
it is also possible to insert a token "456" into the region, such that the lexing of the final character-
level text is just a single lexeme sequence (<number>). In particular, for any chunk αβ ending
with a prefix β of a lexeme a and a consecutive chunk γη starting with a suffix γ of the same
lexeme <a>, then a valid corresponding lexeme sequence for the entire chunk sequence would be
(lex(α), <a>, lex(η)).

Note that we need to additionally ensure the prefix and suffix of the lexeme are compatible. For
instance, for fixed-width lexemes such as <while>, we can not insert a token into the sequence
"whi ile" to obtain a sequence with only a single lexeme, even though both "whi" and "ile" are
true prefixes and suffixes of the lexeme while. We resolve this by storing the exact partially matched
parts of the lexeme and deciding the infilling problem with respect to the lexeme’s regular language.
This effectively generalizes a similar solution to the one proposed by Melcer et al. [34], in which
they explicitly store the reached states within each prefix and suffix and ensure reachability between
them.

Lexing algorithm We use some helper operations on character-level DFAs for the lexing algo-
rithm. For DFA D, we define the function MATCH, which returns l, the number of characters in the
string that the suffix language automaton matches maximally. For example, \d+.MATCH(123) = 3
and \d+.MATCH(1hello) = 1. The function PREFIX(D) returns the true prefix language of D,
where a true prefix is a prefix that can be completed to a full match by appending at least one more
character. For example, 123 is a true prefix for \d+ but not for \d\d\d. 12 is a true prefix for both
regular expressions. The function SUFFIX(D) analogously returns the true suffix language of D.
Further, we denote as w≤i the string formed by the first i characters of w and w>i the string formed
by all characters after the first i characters in w.

The lexing algorithm applied to each chunk of continuous text in x is described in Algorithm 3. The
main mode of operation is to keep track in S of possible lexings and remainders to be processed,
starting with the empty lexing and the entire string to be processed in Line 1. The method then
iterates over all these lexings in Line 8, returns them if the remainder is empty (Line 10) or extends
them if a non-empty remainder remains (Line 11). Crucially, Lines 2–7 check whether the text starts
with the suffix of any lexeme. Additionally, Line 12 checks whether the remainder of the current
text is the prefix to some lexeme.

Applying the constrained infilling algorithm Applying the lexing algorithm to every continuous
chunk of text in the partial output results in a list of sets of lexeme sequences, or sets of words in our
infilling problem. From this list, we obtain a set of lists of words by taking the cross product of all
the sets in the list, e.g., for list ({(α, β)}, {(γ), (η)}), we would obtain the two lexeme-level partial
outputs αβ γ and αβ η.

19

Algorithm 2 Deciding intersection emptiness of a CFG and DFA. The CFG is in CNF. G.ADD(x)
inserts x into G and returns true if x was not in G previously.

Input: CFG C, DFA R = (Q,Σ, δ, q0, F)
Output: L(C) ∩ L(R) = ∅

1 G← ∅
2 for all productions A→ σ do ▷ Mark terminal and epsilon productions.
3 G← G ∪ {

p
A⃗

q
| δ(p, σ) = q}

4 for all productions A→ ε do
5 G← G ∪ {

p
A⃗

p
| p ∈ Q}

6 s← G.COPY()
7 while s ̸= ∅ do ▷ Explore all remaining productions
8

y
X⃗

z
← s.POP()

9 for all productions A→ XC, all q ∈ Q do
10 if

z
C⃗

q
∈ G and G.ADD(

y
A⃗

q
) then

11 s.ADD(
y
A⃗

q
)

12 for all productions A→ BX , all q ∈ Q do
13 if

q
B⃗

y
∈ G and G.ADD(

q
A⃗

z
) then

14 s.ADD(
q
A⃗

z
)

15 for all productions A→ X do
16 if G.ADD(

y
A⃗

z
) then

17 s.ADD(
y
A⃗

z
)

18 return G ∩ {
q0
S⃗

f
| f ∈ F} = ∅ ▷ Whether any start symbol of L(C) ∩ L(R) is generating

Algorithm 3 Extracting lexings of partial output

Input: Input string w, Terminals T
Output: Set {(xi, si, pi)}0≤i≤n of n possible lexeme sequences xi and optional partial matches to

the first (si) or last (pi) lexeme

1 S ← {(ε, w,None,None)}
2 for t ∈ T do ▷ Determine if the string starts with a suffix of any terminal
3 if SUFFIX(PREFIX(t)).MATCH(w) = |w| then ▷ If the suffix prefix spans the entire word.
4 S.ADD(t, ε, w,w)
5 l← SUFFIX(t).MATCH(w)
6 if l > 0 then ▷ If the suffix matches a non-zero prefix of w
7 S.ADD(t, w>l, w≤l,None)
8 while S ̸= ∅ do
9 (x,w, s, p)← S.POP()

10 if w = ε then yield (x, s, p)
11 for t ∈ T do
12 if PREFIX(t).MATCH(w) = |w| then ▷ If the prefix spans the entire remaining word.
13 S.ADD(x ◦ t, ε, s, w)
14 l← t.MATCH(w)
15 if l > 0 then ▷ If the suffix matches a non-zero prefix of w
16 S.ADD(x ◦ t, w>l, s,None)

20

q0 D0
1 D1

1
q1

D0
2 D1

2

D0
3 D1

3

q3

ε int ε

Σ∗
ε

ε

int

ε

identifier

ε

D1

D2

Figure 4: A union automaton in the second half of the DFA for output "123 789", accounts for
the possibility to lex the second half as either <int> or <identifier>. The resulting automaton
accepts both valid lexeme sequences <int><int> and <int><identifier>.

q0 D0
1 D1

1
q1 D0

2 D1
2

q3

ε int ε

Σ∗

ε int ε

int

D1 D2

Figure 5: A skip connection, highlighted in blue, in the DFA for output "123 789", accounts for
the possibility to lex the input as a single <int>. The resulting automaton accepts both valid lexeme
sequences for a single int and two ints with intermediate tokens. This construction can be combined
with Fig. 4.

If we decide for any of the resulting lexeme-level partial outputs that the intersection language L∩ is
non-empty, then the current character-level partial output is valid, and we can continue generation.
If no lexeme sequence results in a non-empty intersection, then we need to reject the current output.
Thus, we have to apply the infilling algorithm to each of the word lists derived from the lexing
process. In practice, we may derive a large number of lexeme sequences, as different possibilities
from text chunks get combined and result in a combinatorial explosion. To further optimize the
lexing process, we add two additional optimizations, which we describe in the following paragraphs.

Optimizing subset lexemes We avoid a combinatorial explosion of possible lexeme sequences by
automatically removing lexemes where the accepted language is a subset of the accepted language
of another lexeme. For example, in SMILES, the string "5" could be interpreted as <digit> or
as <fifteen>, which is a special lexeme only allowing numbers from 1 to 15. We resolve this by
automatically detecting lexemes α that accept a subset of valid strings of another lexeme β, and a)
remove the subset α from the accepted language of lexeme β, and b) allow the lexeme α at any
position in the grammar where either the subset token or the full token is allowed, in particular we
substitute terminal β with α | β. This optimization reduces the number of extracted sets of possible
lexeme sequences for each continuous chunk of text.

We further manually reduce the number of lexemes that overlap and lexemes that are prefixes or
suffixes of other lexemes, such as <++> and <+>, to further optimize performance.

Combining lexeme sequences to a single NFA To avoid explicitly enumerating all possible com-
binations of lexeme sequences of a string, we directly derive a single, larger NFA that accepts all
possible combinations of lexeme sequences at the same time. This NFA is structurally similar to the
NFAs of each lexeme sequence, but adds alternative paths for mergeable lexemes.

If a text chunk has two or more admissible lexings, we replace the constructed Di with an NFA
that accepts the union of admissible lexings. For example, the output "123 789" must also admit
recognizing the second chunk as the suffix of an identifier. Thus, we obtain the two sequence sets
{(<int>)} and {(<int>), (<identifier>)}. By generating a single NFA that accepts both sequences
(<int>) and (<identifier>), we can construct a single NFA by applying the concatenation con-
struction to the standard NFA for the first lexeme sequence and the unionized NFA for the second
sequence. The resulting NFA is presented in Fig. 4.

21

Another example is depicted in Fig. 5. Here, for the previously shown output "123 789", the first
chunk ends with a prefix of the lexeme <int>, and the second chunk starts with a suffix of the same
lexeme. In addition to the standard construction for the possible extracted list (<int>, <int>), we
add an <int>-edge from the second-to-last state of D0 to the second state of D1, resulting in an
alternative path that accepts the list (<int>). These paths are constructed by maintaining a list of
suffixes of the previous Di when constructing Di+1, and adding the edge if a suffix matches a prefix
of the lexing of Di+1.

In contrast to the combinatorial explosion observed when considering all possible combinations of
consecutive parsed lexeme sequences, this NFA grows only linearly in the number of sequences. We
also observe that the generated corresponding DFA has a similar number of states, confirming that
this avoids expensive combination enumeration.

D Experimental Details, Ablations and Case Study

In this section, we provide additional details about the implementation, hyperparameters, datasets,
runtime overhead, an ablation on the number of diffusion steps, and a case study.

D.1 Implementation

Overview Our implementation is written in around 7000 lines of Python and 5500 lines of Rust.
The main logic, concerning LLM sampling and CFG and DFA construction, is written in Python,
with the more computationally expensive formal language operations, such as Algorithms 2 and 3,
implemented in Rust, compiled as Python bindings. Several low-level formal language operation
implementations are inspired by the educational Python implementations by Romero [44].

Grammars Our C++ grammar covers a comprehensive but not complete subset of C++, with
all features used in the canonical solutions of the test set implemented, but advanced features like
template functions and user-defined classes are not supported. Moreover, we disallow the insertion
of multi-line comments inside function bodies, as this allows the model to generate arbitrary and
broken code that is syntactically valid as long as it is finally wrapped in the multi-line comment de-
limiters. We further restrict models in the MRI setting to not generate additional function signatures
and bodies to prevent the generation of additional main functions or test cases.

We preprocess all model outputs by marking word boundaries with special ⟨ and ⟩ tokens that do
not appear in the original text and are never generated by the model1. For example, the string int
main() is converted to ⟨int⟩ ⟨main⟩(). This enables us to check for such word boundaries inside
the grammar, i.e., being able to distinguish whether white-space was present between symbols even
after it is stripped in the lexing process.

The JSON schema grammars are obtained dynamically based on the JSON Schema for each task. We
recursively build up the grammar based on the provided specification. For SMILES, we implement
the specification described by Apodaca [3], which is a more precise and efficient variant of prior
specifications [8, 53].

D.2 Models and Hyperparameters

All methods were run four times, with seeds 0 to 4, and we report the averaged results in all tables.
We report the maximum among Van., Con.−, and Con. decoding with boldface. We underline
all results where the confidence interval of the improvement over the given method is not positive
at 95%. We limit the amount of generated tokens to 256 and time out if the generation does not
complete after 300 seconds. We run model inference on NVIDIA RTX A6000 GPUs.

Sampling algorithms and temperature All MRI models were sampled with temperature 1 and
greedy decoding. The diffusion models are sampled with a temperature of 0.2. To pick a token from
the diffusion models distribution, we use the entropy algorithm for the DREAM 7B based models,
DREAM 7B, DREAMCODER 7B, and DIFFUCODER 7B, and low confidence for the LLADA 8B
model, as recommended by the model developers.

1In particular, we use the bytes \x02 and \x03

22

Diffusion steps Diffusion language models can be run with a varying number of diffusion steps,
determining how many tokens are sampled from a single model inference [37, 57]. Lower numbers
of steps imply more tokens being sampled from each inferred distribution, which in turn is updated
less frequently. One of the key benefits of diffusion language models is to exploit this ability, result-
ing in overall faster decoding. At the same time, higher numbers of steps are usually associated with
increased accuracy on the requested task, as the model can adapt its distribution more frequently to
newly inserted tokens. When not explicitly stated otherwise, the diffusion models are run with 32
diffusion steps. Our choice of step size 32 represents a trade-off between speed and accuracy.

In each diffusion step, model inference is run once on the current state of the partially filled con-
text window. Afterwards, n

k tokens are sampled from the distribution according to the respective
algorithms (low confidence or entropy) and replace mask tokens in the context window. While
unconstrained decoding allows sampling all n

k tokens in parallel, during constrained decoding, we
iteratively sample single token-index pairs from this distribution, with rejections leading to masking
out the rejected token-index pair and resampling. When a token is accepted, we remove the token’s
index from the distribution. After n

k tokens have been accepted, we run model inference again.

D.3 Datasets

C++ We leverage the C++ translation of HumanEval in the HumanEval-X dataset [59]. It contains
164 instances of simple programming problems and canonical solutions written by humans. For
the MRI tasks, we remove between 1 and 3 randomly sized spans of 5 to 100 characters from these
canonical solutions, generating one MRI task per instance in the original dataset. If we end up with
insufficient remaining characters after removing the required number of spans, we resample sizes
and positions up to 3 times, aborting if we do not find a valid removal. Additionally, we remove
5 human-written solutions that are not valid according to our implementation of the syntax, i.e.,
because they contain multi-line comments or additional helper functions. This results in three MRI
datasets of 159, 156, and 143 samples in 1-MRI, 2-MRI and 3-MRI respectively. An example prompt
for an instance from the dataset is presented in Fig. 7. For DLM, we use all 164 tasks of the original
dataset and extract the comment before the function as an instruction for the model. An example
prompt is shown in Fig. 8.

We check the functional correctness in both settings by checking whether all test cases in the dataset
pass with the model-generated solution.

JSON Schema We extend the JSON-Schema dataset by NousResearch [38]. Concretely, the
dataset originally contains a unique schema per task. We clean the schemas by disallowing proper-
ties other than specified on the top level and repairing instances that accidentally do not require any
fields. We then extend the dataset by sampling GEMINI-2.5-PRO for 10 inputs and completions for
each schema. We filter these samples in three ways to ensure high quality.

First, we filter the resulting extracted outputs for syntactic validity according to the schema and
discard invalid generations. Second, we require GEMINI-2.5-PRO to be able to solve the task, i.e.,
the model must generate a valid JSON object that passes the schema validation if it is only given
the input and the schema. Third, we perform fuzzy matching to deduplicate the resulting samples.
This process results in 272 instances. The prompts used for generation and verification are shown in
Fig. 11 and Fig. 12. An example prompt for this task is shown in Fig. 9.

We evaluate functional correctness on this dataset by checking for exact equality between a normal-
ized JSON dump of the golden solution and the model-generated solution.

SMILES To create a benchmark for SMILES, we query GEMINI-2.5-PRO to generate pairs of
descriptions of molecules and their SMILES notation. Again, we perform three filtering steps to
ensure high quality. First, we verify that the generated molecule is valid using the Rdkit library [29].
Second, we ensure the model can generate the correct SMILES string for the molecule if it is only
given the description. Third, we filter out duplicates using fuzzy matching. This results in 167 pairs
of descriptions and SMILES strings. Prompts for this generation procedure are shown in Fig. 13 and
Fig. 14. An example prompt for this task is shown in Fig. 10.

To check the functional correctness of the model-generated molecule, we parse it using Rdkit and
check the equivalence to the molecule generated by GEMINI-2.5-PRO in canonical representation.

23

Table 3: Median overhead per token for different infilling settings in milliseconds and percent in-
crease over unconstrained generation. Larger models with higher inference time experience a lower
slowdown due to constraining. More infilling regions also increase constraining overhead.

#Regions 1-MRI 2-MRI 3-MRI

CODEGEMMA 7B 3.1↑47% 4.1↑63% 6.4↑99%
STARCODER2 7B 3.3↑59% 5.5↑98% 9.7↑190%
DEEPSEEK C. 1.3B 3.6↑158% 5.8↑245% 11.8↑557%
DEEPSEEK C. 6.7B 3.0↑58% 4.6↑90% 7.7↑153%
DEEPSEEK C. 33B 3.1↑13% 4.3↑19% 6.5↑28%

Table 4: Median time difference per completion for different diffusion models in seconds, and the
overhead over the original completion in percent. When the completion aborts pre-emptively, as no
valid completion is sampled from the model, speed-ups are possible.

Model C++ JSON SMILES

DREAM 7B 1.1↑36% 0.4↑20% 0.0↑0%
DREAMC. 7B 7.8↑190% 0.1↑5% 0.0↑1%
LLADA 8B -1.0↓19% 0.5↑9% 0.0↑1%
DIFFUC. 7B 2.2↑74% 0.1↑6% 0.0↑2%

D.4 Additional Experiments

Runtime overhead For all experiments in §4, we measure the runtime of our constraining method
and unconstrained decoding. We present a detailed comparison in Tables 3 and 4. We further
measure the average number of rejections per sample.

In MRI we compare time per token, as constrained decoding often rejects finalizing the current
output, thus making completions longer and finalization times incomparable. The median runtime
overhead of constrained decoding is 125%, where the overhead on the small DEEPSEEK CODER
1.3B is higher (320%) than on the 7B model (100%) and DEEPSEEK CODER 33B (20%). This
is both due to the lower inference time of smaller models, and due to smaller models making more
mistakes, with the average number of rejections increasing from 8.8 per instance on 33B, over 9.7 for
7B to 10.5 in 1.3B. Moreover, more infilling regions are more difficult, leading to more rejections,
growing from 4.7 on 1-MRI to 14.1 in 3-MRI. This increases the overhead from 67% to 205%
respectively.

For DLM, we compare the total runtime to finish the diffusion decoding process. The average com-
pletion overhead is only 30%, but varies strongly between domains. We observe both speed-ups of
up to 19%, for LLADA 8B on C++, where many decodings are preemptively aborted, and slow-
downs of up to 190%, for DREAMCODER 7B on the same dataset.

Ablation on diffusion steps We evaluate our method on common diffusion step numbers, from
16 to 256, where the lowest setting 16 implies that a single inference step inserts 256

16 = 8 tokens at
once, while the highest setting 256 implies that every inference step inserts only a single token.

We present the results of this ablation on DREAM 7B in Table 5 and demonstrate that our method
consistently improves syntactic correctness in all settings by on average 14%. Functional correct-
ness on JSON also significantly increases by 1.2%, while the increase in C++ is 0.7% and 0.5% in
SMILES. Moreover, the runtime overhead, shown in Table 6, decreases with the number of diffusion
steps, from 14%− 108% down to 9% or even a speed up of 3%.

D.5 Case Study

For a qualitative evaluation, we manually inspect instances where unconstrained decoding fails and
our constraining approach successfully corrects errors. We showcase three such examples in Table 7.

24

Table 5: Percent syntactically and functionally correct generations for DREAM 7B based on varying
number of diffusion steps. Our method consistently increases syntactic correctness in all settings,
even when model accuracy increases with step sizes.

C++ JSON SMILES

#Steps Van. Con.− Con. Van. Con.− Con. Van. Con.− Con.
Sy

nt
ax

16 8.1 20.3 99.2 7.3 24.4 100.0 41.1 80.5 99.7
32 40.5 58.7 99.4 22.4 44.9 100.0 67.5 93.7 99.4
64 60.1 74.7 99.8 67.4 73.2 100.0 79.2 94.9 100.0

128 81.1 90.7 100.0 90.2 94.0 100.0 80.1 95.8 100.0
256 98.2 98.2 100.0 95.2 98.2 100.0 80.7 93.4 100.0

Fu
nc

tio
na

l 16 1.4 2.7 4.9 1.5 2.3 3.4 0.6 1.1 1.1
32 6.6 8.8 9.5 7.4 11.4 14.3 0.6 1.1 1.1
64 21.0 21.8 22.4 41.8 42.1 42.8 2.4 3.0 3.0

128 24.5 23.9 24.1 50.7 51.5 51.5 3.1 4.0 4.0
256 34.1 34.1 34.8 54.8 54.8 54.8 4.9 5.2 5.2

Table 6: Time difference per completion for different step sizes on DREAM 7B diffusion, in seconds,
and the percentual overhead over the original completion. For larger numbers of diffusion steps,
overhead reduces from 14%− 108% down to 9% or even a speedup of 1%.

#Steps C++ JSON SMILES

16 1.7↑107% 2.1↑108% 0.0↑14%
32 1.1↑36% 0.4↑20% 0.0−
64 0.6↑18% 0.1↑4% -0.2↓3%
128 0.4↑10% 0.2↑4% -0.4↓3%
256 0.8↑9% -0.1↓1% 0.2↑1%

Preventing use of invalid types In Table 7a, DREAM 7B generates a summary of a financial
review for task #30 in our JSON dataset. The schema requires three values of type float. However,
the model attempts to generate these values as strings. By applying our constraining method, it
can be determined that the strings are misplaced, not constituting one of the required values, and
can not match the intended value type. All attempts at placing such strings are thus rejected during
generation. Instead, our method forces the model to generate the values without inserting quotes,
resulting in a valid and correct result.

Preventing incorrect nesting In Table 7b DREAMCODER 7B generates an invalid SMILES
molecule for task #166 by closing more parentheses than it opened. Since the CFG for SMILES
correctly handles counting of nesting levels, attempts to generate the closing parentheses are re-
jected by our method. Instead, the model decides to end the generation.

Preventing inadequate syntax In Table 7c, DEEPSEEK C. 6.7B uses conditions without paren-
theses in an if-statement when writing a string processing function in task #150 of our C++ dataset.
This confusion may stem from the dominance of Python code in training data, which does not re-
quire parentheses in if-statements. However, this is invalid according to C++ syntax. Our method
can correct this mistake successfully, resulting in a correct infilling.

E Discussion

Remaining syntax errors While our method achieves substantial improvements in syntactic cor-
rectness, using only Con.− still leaves a considerable gap until guaranteeing correctness. We at-
tribute most of this gap to the overapproximation of allowing an arbitrary number of tokens to fill
regions in the partial output, as done in prior work [7, 50]. In practice, the LLM is typically limited,
i.e., in FIM and MRI it can only generate up to the user-defined maximum number of tokens, and in
DLM it can only generate one token per mask ⊥. Examples of this issue occurring are presented in

25

1 vector<string> numerical_letter_grade(vector<float> grades){
2 vector<string> out={};
3 for (int i=0;i<grades.size();i++)
4 {
5 if (grades[i]>=3.9999) out.push_back("A+");
6 if (grades[i]>3.7001 and grades[i]<3.9999) out.push_back("A");
7 if (grades[i]>3.3001 and grades[i]<=3.7001) out.push_back("A-");
8 if (grades[i]>3.0001 and grades[i]<=3.3001) out.push_back("B+");
9 if (grades[i]>2.7001 and grades[i]<=3.0001) out.push_back("B");

10 if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-");

11 if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+");

12 if (grades[i]>1.7001 and grades[i]<=2.0001) out.push_back("C");

13 if (grades[i]>1.3001 and grades[i]<=1.7001) out.push_back("C-");

14 if (grades[i]>1.0001 and grades[i]<=1.3001) out.push_back("D+");

15 if (grades[i]>0.7001 and grades[i]<=1.0001) out.push_back("D");

16 if i]<=3.0001) out.push_back("B");
17 if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-");
18 if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+");
19 ...

(a) STARCODER2 7B exceeds the token limit in task #81 in 1-MRI.

Vanilla Constrained− Constrained

C6CCCC1) C6CCCC⊥)) C6CCCC(c(c)(c))

(b) LLADA 8B leaves a single ⊥ for completion in task #153 in SMILES.

Figure 6: Syntax errors may remain when the model has fewer tokens left to complete than would be
required to fulfil the syntactic constraints. This can happen both in MRI (a), when the model exceeds
the maximum number of generated tokens and in DLM (b), when the model has few mask tokens ⊥
remaining.

Fig. 6a for MRI, where the model exceeds the token limit of 256 tokens as it generates large amounts
of unnecessary code, and in Fig. 6b, where the DLM model needs to open several molecule branches
in a single remaining token.

One approach to resolve this issue would be to accurately model the remaining number of tokens
in our regular language construction. However, we observe in experiments that this significantly
increases the size of the regular language, as it consequently needs to keep track of the number of
inserted tokens. This drastically increases the size of the intersection language, rendering our current
implementation impractical.

Another approach would be to train the model to signal requiring additional tokens. In MRI, this
naturally occurs when the model does not generate an end-of-string token. For DLM, a special token
could be added that is replaced with two mask tokens after sampling, increasing the size of the
affected infilling region. Concurrent work by Wu et al. [55] reports that such capabilities appear to
generally improve model performance for code infilling.

Our chosen approach to mitigate the issue is to automatically fill in the output based on the formal
language constraints (Con.). However, this solution cannot rely on the model’s probability distribu-
tion to steer generation. Determining the most effective way to handle this limitation is an important
topic for future work.

Leveraging incremental parsing While we take several steps to improve the efficiency of our
method, it can still require a significant amount of time to determine the emptiness of the intersec-
tion language after each generated token. Future work may leverage the fact that the CFG for the
intersection is fixed and the DFA is only updated using small modifications. This may lead to an
approach for incrementally computing emptiness checks by reusing the results of the previous inter-
section computation. Other approaches to leverage the incremental nature of the parsing, similar to

26

the approaches of Melcer et al. [34], Ugare et al. [50], and Mündler et al. [35] would likely also be
able to decrease the worst case and practical overhead of the constraining method.

Context-sensitive language features While our method is designed for context-free languages,
an interesting future direction would be extensions to handle more powerful language classes, such
as context-sensitive languages. Similar to Melcer et al. [34] and Ugare et al. [50], simple context-
sensitive syntactic features can likely be handled by preprocessing through adequate lexers. Beyond
syntactic features, prior work suggested leveraging more semantic insights, such as type systems
[35], for constructing more powerful constraint systems. Type checkers with typed holes [39] could
be leveraged to achieve such systems.

F Prompts

In this section, we detail all prompts used for the respective models and tasks.

MRI Since models used for FIM and MRI tasks are not instruction-fine-tuned, we provide the model
with the raw code, including only a comment above the function to guide the model for completions.
We use the standard templating suggested for each model to format the prompt for FIM and MRI
completion. If MRI is not supported explicitly, we emulate it by inserting <TODO> into the remaining
infilling regions and repeatedly prompting the model for FIM completion on the first infilling region.
In order to prevent the models from generating main methods and tests in the MRI setting, we add a
main method at the end of the context that is marked with a TODO comment. An example prompt
for the 2-MRI setting is provided in Fig. 7.

DLM The models used for DLM tasks are instruction-fine-tuned, allowing us to specify the com-
pletion intent in natural language. We provide a general description of the task in the system prompt
and the specific task content as the first user prompt. The assistant response is prefilled with the
start of a code fence and, in the case of C++, with the necessary header declarations and function
signature to ensure results can be extracted and tests can be executed correctly. The prompts for
C++, JSON and SMILES tasks are presented in Fig. 8, 9 and 10 respectively.

Benchmark generation prompts As outlined in App. D, we generate the JSON and SMILES
dataset synthetically by prompting GEMINI-2.5-PRO. We provide the used prompts for generation
and validation of the generated samples in Figs. 11–14.

27

Table 7: Three examples demonstrating the impact of constrained decoding on DLM and MRI com-
pletion. Left are unconstrained completions (Van.) with problematic tokens highlighted in red ,
and right constrained completions (Con.−) with corrections highlighted in green , adapted for clar-
ity. In (a), our method forces DREAM 7B to generate values of the correct type in a summary of
a financial review for task #30 in our JSON dataset. In (b), generated by DREAMCODER 7B, our
method prevents closing more parentheses than are opened when generating a SMILES molecule for
task #166. In (c), our method forces DEEPSEEK C. 6.7B to add parentheses around a condition in
an if-statement when writing a string processing function in task #150 of our C++ dataset.

Vanilla Constrained

(a)

// summarize my financial review

{

"capitalGains": "5210.5000" ,

"interestIncome": "1340.25" ,

"totalReturn": "4.5"
}

// summarize my financial review

{

"capitalGains": 5210.5000 ,

"interestIncome": 1340.25 ,

"totalReturn": 4.5
}

(b)
// generate an allene with axial chirality

C1=CC1=CC(C(OO)O)C(OO)O)C(OO)O

// generate an allene with axial chirality

C1=CC1=CC(C(OO)O)C(OO)O

(c)

// separate the groups of nested parentheses

if (chr=='(')
{

level+=1;
current_paren+=chr;

}

else if chr==')'
{

...

// separate the groups of nested parentheses

if (chr=='(')
{

level+=1;
current_paren+=chr;

}

else if (chr==')')
{

...

28

1 region 0
2 /*
3 From a given vector of integers, generate a vector of rolling maximum element found
4 until given moment in the sequence.
5 >>> rolling_max({1, 2, 3, 2, 3, 4, 2})
6 {1, 2, 3, 3, 3, 4, 4}
7 */
8 #include<stdio.h>
9 #include<vector>

10 using namespace std;
11 vector<int> rolling_max(vector<int> numbers){
12 vector<int> out;
13

14 region 1
15 for (int i=0;i<numbers.size
16

17 region 2
18 return out;
19 }
20

21 int main(){
22 // TODO
23 }

Figure 7: Example prompt for the 2-MRI task #1. The intial comment and function signature in blue
are derived from the dataset prompt, and the remaining code snippets in green are the remainders
of the canonical solution with two randomly removed spans. We append a stub main function to
prevent the model from attempting to generate a main function of its own.

1 system
2 You are an expert in C++ programming. Solve the given problem by writing solution
3 code in C++.
4 When answering, insert the solution code in a ```cpp...``` block. Do neither include
5 test cases not a main function.
6

7 user
8 Check if in given vector of numbers, are any two numbers closer to each other than
9 given threshold.

10 >>> has_close_elements({1.0, 2.0, 3.0}, 0.5)
11 false
12 >>> has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
13 true
14

15 assistant
16 ```cpp
17 #include<stdio.h>
18 #include<vector>
19 #include<math.h>
20 using namespace std;
21 #include<algorithm>
22 #include<stdlib.h>
23 bool has_close_elements(vector<float> numbers, float threshold){

Figure 8: Example prompt for the C++ task #1. The system prompt in black is fixed, whereas the
user prompt in blue is extracted from the comment preceding the function and the assistant response
is prefilled with a codefence, and in green, headers, and the function signature of each task.

29

1

2 system
3 You are a helpful assistant that answers in JSON. Here is the JSON schema you must
4 adhere to:
5 <schema>
6 {
7 "type": "object",
8 "properties": {
9 "name": {

10 "type": "string"
11 },
12 "email": {
13 "type": "string"
14 },
15 "shippingAddress": {
16 "type": "string"
17 }
18 },
19 "required": [
20 "name",
21 "email",
22 "shippingAddress"
23],
24 "additionalProperties": false
25 }
26 </schema>
27

28 user
29 We are registering 'Global Exports Ltd.' for your services. The main contact person
30 is Samantha Davis, and her corporate email is s.davis@globalexports.co.uk. All ship-
31 ments and correspondence should be directed to our headquarters: Global Exports Ltd.,
32 12 Business Park Road, Manchester, M1 1AB, United Kingdom. We are looking forward to
33 a fruitful partner ship and are particularly interested in your international ship-
34 ping rates.
35

36 assistant
37 ```json

Figure 9: Example prompt for the JSON task. The JSON schema in green is task-specific as well as
the the user prompt in blue from which information should be extracted into the given schema. The
system prompt and prefilled assistant response are fixed.

30

1

2 system
3 You are a specialized AI assistant that generates SMILES (Simplified Molecular Input
4 Line Entry System) strings from chemical descriptions. You will be given a textual
5 description of a chemical compound or a related task. Your goal is to produce the
6 most accurate and valid SMILES string representing that description.
7

8 Your Task:
9

10 Based on the provided "input" description, generate the corresponding SMILES string.
11

12 Output Requirements:
13

14 - Provide only the SMILES string as your output.
15 - Ensure the SMILES string is syntactically valid.
16 - Represent all specified chemical features accurately (atoms, bonds, rings,
17 aromaticity, charge, isotopes, stereochemistry).
18

19 Output:
20

21 - Provide only the smiles molecule as a raw string between triple backticks (```).
22 For instance:
23 ```smiles
24 C1=CC=CC=C1
25 ```
26

27 user
28 Propan-1-amine, a primary amine with a three-carbon straight chain and the amino
29 group on the first carbon.
30

31 assistant
32 ```smiles

Figure 10: Example prompt for the SMILES task. The user prompt in blue varies per task.

31

1 user
2 Your goal is to create challenging and diverse `JSON Schema` problems. You are
3 given a JSON schema that describes a specific schema for a JSON problem.
4

5 You should generate **{num_samples}** JSON benchmark samples based on the
6 provided schema. A benchmark sample consists of a natural language description
7 describing how the JSON schema should be filled out, along with a JSON object
8 that adheres to the schema.
9

10 For each sample, provide a JSON object with the following structure:
11

12 ```json
13 {{
14 "input": "A natural language description of how the JSON schema should be
15 filled out. The input should be a natural query that a user might ask an
16 LLM. The input will be given to the LLM as a prompt, along with the JSON
17 schema. Based on this input, the LLM should generate a JSON object that
18 adheres to the schema.",
19 "output": "A JSON object that adheres to the provided schema. The output
20 should be a valid JSON object that matches the schema and reflects the
21 input description."
22 }}
23 ```
24

25 **Guidelines for generating samples:**
26

27 - **Variety**: Describe a wide range of scenarios that can be expressed using
28 the JSON schema. Ensure that the samples cover a wide range of possible
29 scenarios, and make them sound natural and plausible.
30 - **Difficulty**: User queries can and should contain distracting information
31 and longer backgrounds.
32 - **Realism**: Test cases should reflect plausible scenarios where the JSON
33 schema would be used.
34 - **Reference**: Do not reference the JSON schema in the input description. The
35 input should be a natural query that a user might ask an LLM. It should not
36 reference JSON at all.
37

38 JSON Schema:
39 {schema}
40

41 Example Input (Do not use this in your samples):
42 {input_query}
43

44 Example Output (Do not use this in your samples):
45 {output_query}

Figure 11: Prompt used to generate additional JSON Schema samples for the JSON task using
GEMINI-2.5-PRO. Several samples were generated at the same time to increase diversity.

32

1 user
2 You are a JSON Schema assistant. You will be given a textual description of how
3 a JSON schema should be filled out. Your task is to generate a JSON object that
4 adheres to the provided schema.
5

6 Your Task:
7 - Analyze the textual task.
8 - Construct a JSON object that correctly implements the task based on the
9 provided schema.

10

11 The JSON object should be a valid JSON object that matches the schema and
12 reflects the input description.
13

14 Output:
15 - Provide only the JSON object as a raw string between triple backticks
16 (```json). Ensure the JSON object satisfies the JSON schema. For instance:
17 ```json
18 {{
19 "key": "value",
20 "number": 42,
21 "array": [1, 2, 3]
22 }}
23 ```
24

25 Json Schema:
26 {schema}
27

28 Description:
29 {input_query}

Figure 12: Prompt used to verify additional JSON Schema samples for the JSON task using GEMINI-
2.5-PRO.

33

1 user
2 You are a specialized AI assistant tasked with generating benchmark samples for
3 SMILES (Simplified Molecular Input Line Entry System) string generation. Your
4 goal is to create diverse and accurate chemical structure descriptions and their
5 corresponding SMILES strings.
6

7 Please generate **{num_samples}** benchmark samples.
8

9 The difficulty of these samples should be: **{difficulty_description}**.
10 Examples of difficulty levels:
11 * **Beginner**: Simple acyclic molecules, common functional groups (e.g.,
12 ethanol, acetic acid, propanamine), small alkanes/alkenes/alkynes.
13 * **Intermediate**: Molecules with single or multiple rings (e.g., cyclohexane,
14 pyridine, naphthalene), basic stereochemistry (R/S, E/Z using `@@`, `/`, `\`),
15 common drugs or biomolecules (e.g., aspirin, glucose in its open-chain form).
16 * **Advanced**: Complex polycyclic systems (e.g., steroids, bridged compounds),
17 detailed stereochemistry, isotopic labeling, salts, mixtures, or reaction
18 SMILES (if the task is to represent a reaction).
19

20 For each sample, provide a JSON object with the following structure:
21

22 ```json
23 {{
24 "input": "A natural language description of a chemical compound or a task that
25 uniquely defines a chemical structure representable by a SMILES string.
26 This could be an IUPAC name, a common name, a structural description, or
27 a request to modify a base structure.",
28 "output": "The correct and valid SMILES string for the chemical structure
29 described in the 'input'. Correctness and validity are paramount."
30 }}
31 ```
32

33 **Guidelines for generating samples**:
34

35 - **Accuracy**: The generated SMILES string in the "output" field MUST
36 accurately represent the chemical structure described in the "input". Ensure
37 correct atom types, bond orders, connectivity, aromaticity, charges,
38 isotopes, and stereochemistry as implied by the input.
39 - **Validity**: All generated SMILES strings must be syntactically valid.
40 - **Clarity of Input**: The "input" description should be unambiguous and
41 provide enough information to define a specific chemical structure. Avoid
42 overly vague descriptions.
43 - **Variety**: Generate a diverse set of samples covering different chemical
44 families, structural features (rings, unsaturation, heteroatoms, functional
45 groups), and complexities according to the specified difficulty.
46

47 Output Format:
48

49 Return a JSON list containing the {num_samples} generated JSON objects.

Figure 13: Prompt used to generate additional samples for the SMILES task using GEMINI-2.5-PRO.
Several samples were generated at the same time to increase diversity.

34

1 user
2 You are a specialized AI assistant that generates SMILES (Simplified Molecular
3 Input Line Entry System) strings from chemical descriptions. You will be given
4 a textual description of a chemical compound or a related task. Your goal is
5 to produce the most accurate and valid SMILES string representing that
6 description.
7

8 Your Task:
9

10 Based on the provided "input" description, generate the corresponding SMILES
11 string.
12

13 Output Requirements:
14

15 - Provide only the SMILES string as your output.
16 - Ensure the SMILES string is syntactically valid.
17 - Represent all specified chemical features accurately (atoms, bonds, rings,
18 aromaticity, charge, isotopes, stereochemistry).
19

20 Output:
21

22 - Provide only the smiles molecule as a raw string between triple backticks (```).
23 For instance:
24 ```smiles
25 C1=CC=CC=C1
26 ```
27

28 {sample}

Figure 14: Prompt used to verify samples for the SMILES task using GEMINI-2.5-PRO.

35

	Introduction
	Background
	LLM Generation Paradigms
	Regular and Context-Free Languages

	Constrained Decoding for Infilling and Diffusion
	The Constrained Infilling Problem
	Deciding the Constrained Infilling Problem Efficiently
	Application of Constrained Infilling to LLMs

	Experimental Evaluation
	Experimental Setup
	Fill-In-the-Middle and Multi-Region-Infilling
	Diffusion Language Models

	Related Work
	Conclusion
	Extended Background on Formal Languages
	Regular Languages
	Context Free Languages

	Details on Efficient Intersection Language Searches
	Construction of the Intersection Language for CFGs in C2F+
	Grammar Size Optimizations
	Details on the Search Algorithm

	Lexing with LLM Tokens
	Experimental Details, Ablations and Case Study
	Implementation
	Models and Hyperparameters
	Datasets
	Additional Experiments
	Case Study

	Discussion
	Prompts

