
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE DETECTION FOR BLACK-BOX LARGE LAN-
GUAGE MODELS WITH ADAPTIVE PROMPT SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The widespread success of large language models (LLMs) has made them in-
tegral to various applications, yet security and reliability concerns are growing.
It now becomes critical to safeguard LLMs from unintended changes caused by
tampering, malicious prompt injection, or unauthorized parameter updates, etc.
Early detection of these changes is essential to maintain the performance, fair-
ness, and trustworthiness of LLM-powered applications. However, in black-box
settings, where access to model parameters and output probabilities is unavailable,
few detection methods exist. In this paper, we propose a novel online change-
point detection method for quickly detecting changes in black-box LLMs. Our
method features several key innovations: 1) we derive a CUSUM-type detection
statistic based on the entropy and the Gini coefficient of the response distribution,
and 2) we utilize a UCB-based adaptive prompt selection strategy for identifying
change-sensitive prompts to enhance detection. We evaluate the effectiveness of
the proposed method using synthetic data, where changes are simulated through
watermarking and model version updates. Our proposed method is able to detect
changes quickly while well controlling the false alarm rate. Moreover, for real-
world data, our method also accurately detects announced changes in LLM APIs
via daily online interactions with APIs. We also demonstrate strong evidence of
unreported changes in APIs, which may be of independent interest.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a transformative force in the field of artificial intel-
ligence, demonstrating remarkable capabilities across a wide range of applications, from healthcare
and finance to education and creative industries (Zabir & Peng, 2024; Lee et al., 2024; Moore et al.,
2023; Çelen et al., 2024). LLMs are now integral components of chatbots, virtual assistants, and
automated customer service systems (Dam et al., 2024; Dong et al., 2023; Pandya & Holia, 2023).
Moreover, they’re increasingly used in complex decision-making processes, e.g., LLM agents can
interpret commands, make decisions, and take actions based on natural language inputs so as to as-
sist in task planning, problem-solving, and automate certain workflows in software development or
data analysis (Alshahwan et al., 2024; Hong et al., 2024; Eigner & Händler, 2024). This widespread
integration is revolutionizing how businesses and individuals interact with information and technol-
ogy, making LLMs a cornerstone of modern AI-driven solutions.

Despite their undeniable potential, the widespread adoption of LLMs has given rise to various
safety, reliability, and consistency concerns (Bommasani et al., 2021; Biswas & Talukdar,
2023). As LLMs become increasingly embedded in critical systems, the risks associated
with their vulnerabilities and stability become more pronounced. LLM-powered applications
are susceptible to various threats, such as unauthorized model parameter updates and mali-
cious prompt injections by hackers (Kang et al., 2024; Wu et al., 2024). These security is-
sues can lead to shifts in the output distributions of LLMs, causing the generation of mis-
leading and harmful content (Chao et al., 2023), or leakage of sensitive customer information
(Ayyamperumal & Ge, 2024). Throughout the paper, we term shifts of LLMs’ output distri-
butions as changes. However, not all changes in LLM output distributions are necessarily harmful.
Even benign changes, such as those introduced by LLM version updates and patches, can influence
their output distributions, potentially rendering inconsistent behaviors before and after the change
(Echterhoff et al., 2024). For example, Chen et al. (2024) thoroughly analyzed behavior drifts in
GPT-3.5 and GPT-4 over time (March and June) across diverse tasks, including mathematical reason-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ing and opinion surveys. Moreover, the use of watermark without users’ knowledge also infringes on
users’ right to be informed (Molenda et al., 2024). These concerns are particularly alarming. Timely
detection of changes in LLMs allows for necessary intervention and ensures continued safety and
reliability. See Figure 1 for an illustration of LLM changes and detection procedure.

Time …

What fruit do you like best?

As a model, Sorry, I ... I can’t tell... Apple, because ... Grapes. I ...

…

threshold

alarm
delay

change point

De
te

ct
io

n
st

at
is

tic
My favourite ...

Figure 1: The detector interacts with an LLM in a sequence of time steps by collecting responses to
a prompt. From some unknown change point ν, there is a change in the LLM. The detection statistic
of the detector keeps growing after ν until it hits the threshold to raise an alarm.
While the need for effective detection of changes in LLMs is clear, existing approaches face sig-
nificant limitations, particularly in real-world scenarios due to two major challenges. Firstly, most
existing detection techniques are designed for white-box models (Tang et al., 2024), assuming full
access to model parameters and output probabilities. However, many LLMs operate as black-box
systems, with the internal workflows opaque to users and operators. Secondly, we consider change
detection in the online setting, where one needs to dynamically interact with an LLM using prompts
and collect generated responses. Nonetheless, most existing methods focus on the offline setting,
where pre-collected data is available and the goal is to devise a hypothesis testing framework or
train a classifier for identification, such as determining the existence of watermark in a generated
text (Gloaguen et al., 2024; Wu et al., 2023). In this regard, we pose the following question:

How can we swiftly and accurately detect changes in black-box LLMs in online settings?
In this paper, we propose a novel online change detection method specifically designed for black-
box LLMs. We consider deploying a detector dynamically interacting with an LLM in a sequential
manner. In each round, the detector queries (selected) prompts and collects responses from the
LLM. To tackle the aforementioned challenges, our approach features the following innovations.
Firstly, we derive a CUSUM-type detection statistic that is updated sequentially based on newly
collected responses. This is a variant of the seminal CUSUM test (Page, 1954) to handle unknown
distributions, and is derived in a way such that the statistic remains around zero before the change
and increases linearly afterward. Thus the value of detection statistic indicates the likelihood of the
emergence of a change. Secondly, we utilize entropy and Gini coefficient-motivated (Tang et al.,
2023) quantities to characterize the distribution of responses, which avoids direct model inference
on LLM. Besides, to boost the detection performance, we adopt a UCB-based adaptive prompt
selection strategy to identify change-sensitive prompts, thereby optimizing the detection process.

We evaluate our detection algorithm in both synthetic and real-world environments. In synthetic
scenarios, we simulate responses of LLMs transitioning from unwatermarked to watermarked and
between different LLM versions. In real-world cases, we collect a streaming dataset composed of
responses to 20 prompts using 9 LLM online APIs, spanning from June 1st to August 31st, 2024.
We validate our algorithm on this dataset, successfully identify an officially confirmed change in the
Mistral API (Mistral AI, 2024), and two unconfirmed changes in GPT-4 Turbo (OpenAI, 2024) and
Jamba (AI21Lab, 2024) with strong evidence. We summarize our contributions as follows.

•We propose a recursively updated CUSUM-type detection statistic to effectively identify changes
in LLMs. By utilizing entropy and Gini coefficient-inspired quantities, our method captures the
variability in response distributions, making it well-suited for black-box LLMs.

• We propose a UCB-based strategy for dynamically selecting change-sensitive prompts during
sequential interactions with LLMs. This approach improves detection efficiency by focusing on
prompts that are more likely to reflect changes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We demonstrate the effectiveness of our approach through extensive numerical experiments, in-
cluding synthetic environments and LLM online APIs. Our synthetic environments introduce water-
marking and language model version changes as change points. Our detection approach accurately
identifies these change points with well-controlled false alarm rates. When applied to LLM APIs,
our approach locates an officially announced model update through limited daily queries on one
LLM API. We also suggest probable unconfirmed changes with strong evidence.

Related Work There are two lines of work closely related to our study.

Detection in LLMs: Recent studies have primarily focused on detecting LLM-generated text and
watermarked data in the offline setting; see Liu et al. (2024); Yang et al. (2023) for a comprehen-
sive survey. Kirchenbauer et al. (2023) introduced a soft watermarking method that utilizes green
and red lists alongside a detection algorithm based on hypothesis testing. Subsequently, numerous
variants have been proposed to empirically enhance the trade-off between watermark detectability
and text quality (Lu et al., 2024; Giboulot & Teddy, 2024; Hoang et al., 2024). At the theoretical
level, Li et al. (2024) introduced a statistical framework for designing watermark and the guaran-
tee on detection accuracies. Yet these detection methods operate in a white-box setting, requiring
prior knowledge of the watermark scheme. In black-box settings, Gloaguen et al. (2024) proposed
rigorous statistical tests to detect the presence of a watermark. Nevertheless, like most works, their
approach primarily focuses on determining whether a given text originates from a watermarked
LLM using a two-sample test, which is different from our online setting. Moreover, these methods
are specific to certain types of watermarks and are not easily adaptable to other types of changes.

Online Change Detection Methods: The problem of online change detection has been extensively
studied in statistics and signal processing, see Poor & Hadjiliadis (2008); Tartakovsky et al. (2014)
for summaries of earlier work. Our proposed method is primarily inspired by the cumulative sum
(CUSUM) test Page (1954). The core idea of the CUSUM test is to accumulate the log-likelihood
ratio, which has a negative mean in the pre-change regime and a positive mean in the post-change
regime. For unknown and non-parametric distributions, one approach has been to estimate the log-
likelihood ratio and the CUSUM statistic using pre-collected training datasets. This includes meth-
ods such as kernel estimation (Kawahara & Sugiyama, 2009), neural network estimation (Mous-
takides & Basioti, 2019), and density estimation (Liang & Veeravalli, 2024). Another approach is to
replace the log-likelihood ratio with some other useful statistic for distinguishing between distribu-
tions in constructing tests. Examples of these approaches include the use of kernel M-statistics (Li
et al., 2015), one-class SVMs (Desobry et al., 2005), nearest neighbors (Chen, 2019), and Geometric
Entropy Minimization (Kurt et al., 2020). However, none of these methods are suitable for black-
box LLMs due to the large cardinality of the token set and the need for computational efficiency in
online settings. To address this, we replace the log-likelihood ratio with the deviation-to-nominal
quantities of our entropy and Gini statistics in developing our detection procedure.

2 PROBLEM SETUP: ONLINE CHANGE DETECTION FOR LLMS

Recall that we refer to changes as shifts in the output distributions of LLMs. To detect these
changes, we deploy a detector sequentially interacting with LLMs by querying input prompts and
collecting generated responses. We denote input prompt as x ∈ X and the generated responses as
Y = {y1, . . . , yC}. Here X is the set of possible prompts, C is a constant, and y1, . . . , yC are inde-
pendently generated responses to the same input prompt. Equivalently, we view y1, . . . , yC as i.i.d.
samples from the conditional distribution P (·|x) parameterized by an LLM. The repeated responses
provide sufficient information of the output distributions of the LLM. To ease the presentation, we
drop the superscript of repetition index on response y when there is no confusion. Each response
consists of a sequence of words called tokens. We denote z as a token, and for a response y with ℓ
tokens, we have y = {z1, . . . , zℓ}. Each token is chosen from a finite token set V .

At the t-th round of interaction between the detector and an LLM with t ∈ N+, K distinct query
prompts {xt,1, . . . , xt,K} are sent to the LLM and the corresponding responses {Yt,1, . . . , Yt,K}
are collected. We assume the responses are uncorrelated with each and past data. This is to ensure
that the LLM is not adapting to our queries. We can achieve this by only querying the LLM with
the current prompt x without historical conversation. In the presence of a change point, the online
responses are generated following the scheme, for any k ∈ [K] and yct,k ∈ Yt,k,

yct,k ∼ P0(·|xt,k), for t = 1, 2, . . . , ν − 1,

yct,k ∼ P1(·|xt,k), for t = ν, ν + 1, . . . ,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where ν is an unknown change point, and both P0 and P1 are unknown. It is worth mentioning that
the difference between P0(·|x) and P1(·|x) varies depending on the input prompt x ∈ X : Some
prompts lead to appealing distinguishability, yet some may even yield P0(·|x) and P1(·|x) identical.

Our task is to identify the unknown change point ν as quickly as possible while controlling the false
alarm rate, i.e., the probability of incorrectly raising alarm when there is no change. Hypothetically,
the change point ν can occur at any time, but an early change is of less interest especially when we
do not have prior knowledge of P0 and P1. In that case, for the majority of time steps, we operate
under P1 without a change. Therefore, we focus on the scenario in which ν is relatively large and we
always assume we have adequate time for accumulating information of P0 via interactions before
our detection procedure starts. This assumption, which presumes the availability of data from the
pre-change regime, is common in online detection problems and is often the case in applications (Yu
et al., 2023). We view the data collected prior to the detection procedure as historical data. Such
historical data consists of prompts in X and their corresponding responses, which help the detector
distinguish new data collected after the detection procedure starts.

Query Budget During interaction with an LLM, we have a query budget K, arising from two
reasons. First, the cardinality of the prompt set X is usually large, making it computationally infea-
sible to exhaustively query every prompt at each round. Second, different prompts exhibit varying
sensitivity to a certain change. Prompts of high sensitivity tend to detect the changes quickly, but
they are unknown in advance. Therefore, we aim to enhance the detection performance by actively
selecting prompts at each round of interaction, based on all historical data. In other words, our goal
is to select the most sensitive prompts to accelerate the detection process.

Performance Criteria The detector identifies a change point by returning a stopping time T based
on collected data. We use two common criteria to measure the performance, Average Detection
Delay (ADD) and Average Run Length (ARL). ADD is the average delay between the stopping time
T and the true change-point ν, and a smaller ADD indicates faster detection. ARL measures the
expectation of T when no change occurs, thus a larger ARL implies a lower false alarm rate.

3 DETECTION ALGORITHM

We present the proposed online algorithm for change detection in black-box LLMs, as depicted
in Figure 2. Our algorithm consists of two building modules: 1) a detection module with a given
query prompt in subsection 3.1 and 2) a selection module for screening change-sensitive prompts in
subsection 3.3. We introduce them in order and then combine them to derive our detection algorithm.

3.1 DETECTION WITH A GIVEN PROMPT
LLM

Prompt
Tell me... 0.78
Do you... 1.53

... ...
Help me... 1.23

Update
detection
statistics

Update UCB scores

responses
at time step

Detector at time

Time

Module 2Module 1

 top-

prompts selected
at time step

...

 prompts selected
at time step

...

Detection
statistic

threshold

Figure 2: Flowchart of our detection algorithm.
At round t, the detector uses K prompts selected
at time t − 1 to query the LLM and updates
the detection statistics (Module 1) of the selected
prompts. The detector then updates the UCB
scores (Module 2) and select prompts with the
top-K UCB scores to be queried at next round.

Recall that we denote y, tokenized as y =
{z1, . . . , zℓ}, as a randomly generated response
to a given prompt x, i.e., y ∼ P (·|x). We
aim to determine if P (·|x) changed at some
time. Although it is tempting to estimate P (·|x)
directly, it is intractable due to the enormous
size of vocabulary. Classical detection methods
such as likelihood ratio statistics are not appli-
cable either. Instead, we resort to the entropy
and Gini coefficient-based metric to distinguish
distributions. To further reduce the computa-
tional overhead, we only consider the joint dis-
tribution of first N (N ≤ ℓ) tokens. In the ex-
treme case, we allow N = 1.

Entropy-Based Metric We begin with the
extreme case of N = 1 and then extend to
N > 1. The distribution of z1 given x is known
as the Next Token Probability (NTP), whose entropy, termed as first-token entropy, is defined as

FTE(x) = −
∑

z1∈V P(z1|x) logP(z1|x).

In implementation, we approximate P(z1|x) by its empirical version. Details for implementation
are provided in subsection 3.2. Entropy is particularly suitable for limited empirical data, as it

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

features low variance and low stochastic error (Paninski, 2003). Unfortunately, not all changes can
be effectively captured by the distribution of the first token. Therefore, we enlarge the token length
to N and define the following N-token entropy, which is denoted as NTE:

NTE(x) = −
∑

{z1,...,zN}∈VN P(z1, . . . , zN |x) logP(z1, . . . , zN |x).

We discuss how to approximate NTE with empirical data in subsection 3.2.

Gini Coefficient-Based Metric Entropy exhibits high sensitivity to how probability mass is spread
out among all possible outcomes (Arnez et al., 2024). On the other hand, Gini coefficient is sensitive
to changes of dominant outcomes in a distribution, and it has good performance in watermark detec-
tion (Tang et al., 2023). Thus, we adopt Gini coefficient to complement entropy for better detection.
Similar to entropy-based metric, we begin with the case for the first token, termed first-token Gini.
The first-token Gini metric FTG(x) is defined as

FTG(x) = 1− 1
|V|

∑|V|
i=1(Fi + Fi−1),

where we let p(i), i = 1, 2, . . . , |V| be the probabilities {P(z1|x), z1 ∈ V} sorted in ascending
order, and Fi =

∑i
j=1 p(j) is the cumulative probability up to the i-th smallest value. We define

F0 = 0. Derivations of FTG for discrete distributions are detailed in Appendix A. Similarly, the
N-token Gini for the first N tokens is computed as

NTG(x) = 1− 1
|V|N

∑|V|N
i=1 (Fi + Fi−1),

where we reload p(i) as the i-th smallest probability of P(z1, . . . , zN |x) while {z1, . . . , zN} taking
values in VN , and then Fi is defined the same as that in first-token Gini. We also defer efficient
computation of NTG to subsection 3.2.

Detection Statistic and Procedure For each of the four metrics, we propose to aggregate their
deviations from historical value in each interaction round to derive a cumulative sum type detection
statistic. We take the first-token entropy as an example. In round t, we calculate FTE(x) using newly
collected data within this round. Then the detection statistic WFTE(t;x) is updated by

W+
FTE(t;x) = max{0,W+

FTE(t− 1;x) + (FTE(x)− µFTE(x))− dFTE},
W−

FTE(t;x) = max{0,W−
FTE(t− 1;x)− (FTE(x)− µFTE(x))− dFTE},

WFTE(t;x) = max{W+
FTE(t;x),W

−
FTE(t;x)}.

Here, W+
FTE and W−

FTE monitor positive and negative shifts of the FTE values, µFTE is the average of
FTE(x) in historical data, and dFTE is a drift. The drift term is set properly to ignore minor stochastic
deviations of FTE(x) to its historical average. The detection statistic WFTE is expected to oscillate
around zero during the pre-change rounds, but exhibits a positive drift in the post-change rounds
if the FTE values differ before and after the change. This behavior mimics the seminal CUSUM
statistic (Page, 1954). Due to such properties, our detection statistics are capable of distinguishing
the post-change data from the pre-change data. The detection statistics using other metrics are
defined in the same way, as summarized in Module 1, where we unify the notation by denoting s as
a string in metrics set S = {FTE, FTG, NTE, NTG} and Ws being one of {WFTE,WFTG,WNTE,WNTG}.
We term {WFTE,WFTG,WNTE,WNTG} as our detection statistics.

Module 1 Detection Statistics(x, t): Update detection statistics for prompt x at time t.

1: Require: Prompt x, index t.
2: Parameter: Historical mean value µs(x), drift parameter ds, repetition time C, token length

N , initial values Ws(0;x) = 0 for all x ∈ X , detection statistics Ws(t− 1;x) at time t− 1.
3: Yt ← sample black-box model using prompt x for C times, tokenize and truncate to N .
4: for metric s in S = {FTE, FTG, NTE, NTG} do
5: s(x)← calculate corresponding metric from Yt,
6: W+

s (t;x)← max(0,W+
s (t− 1;x) + (s(x)− µs(x))− ds),

7: W−
s (t;x)← max(0,W−

s (t− 1;x)− (s(x)− µs(x))− ds),
8: Ws(t;x)← max(W+

s (t;x),W−
s (t;x)).

9: end for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Determining a change point in LLMs is now achieved by comparing the detection statistics with a
threshold b and stopping at the first moment that we have sufficient evidence, i.e.,

T = inf {t : max{WFTE(t;x),WFTG(t;x),WNTE(t;x),WNTG(t;x)} ≥ b} .
This can be interpreted as a parallel monitoring scheme in which four detection statistics are tracked
simultaneously. Such parallel monitoring is advantageous and more effective compared to relying
on a single statistic, as the nature of the change is unknown and may leave some of these statistics
unaffected after the change. The threshold b is chosen to satisfy the false alarm requirement while
maintaining sensitivity to change detection; it can usually be determined via simulation using pre-
change data. We remark that the scale of different detection statistics can be quite distinct, thus some
normalization is needed for choosing the threshold b. We discuss this in Section 3.2.
Remark 1 Note that entropy and Gini coefficient may remain unchanged when the underlying dis-
tribution shifts. We adopt these two metrics as they can be computed under black-box models,
computationally feasible under the large vocabulary set, and are empirically sensitive to changes in
most cases. Moreover, as more prompts are queried, the chance of entropy and Gini remaining un-
changed across all prompts diminishes significantly. Our algorithm is designed to be plug-and-play,
allowing for the integration of other statistics, such as perplexity, to further enhance detection.

3.2 IMPLEMENTATION DETAILS OF DETECTION STATISTICS

For first-token entropy and first-token Gini, we can directly approximate the first token probability
given a prompt x by empirical data. However, the computation of NTE and NTG becomes less clear
due to the exponential growth of different combinations of N tokens. To overcome the computa-
tional overhead, we propose the following approximation method akin to data augmentation.

A response Yt,k consists of C independent responses {y1t,k, . . . , yCt,k}. Recall that for each response
yct,k, we use an LLM tokenizer to tokenize it to a sequence of tokens, as {zct,k,1, . . . , zct,k,ℓ}. For sim-
plicity, we omit the subscripts t and k in z, as the responses are taken at the same time t and for the
same prompt index k. We denote {z1i , . . . , zCi } as the set of i-th token extracted from each response
in {y1t,k, . . . , yCt,k}. When calculating FTE and FTG, we replace the population probability P by the
empirical counterpart obtained using the first tokens {z11 , . . . , zC1 }. However, for NTE and NTG, we
adopt a different approach. We merge together the first N tokens as {z11 , . . . , zC1 , . . . , z1N , . . . , zCN}
and calculate its empirical distribution, which is denoted as P̂1:N (·|x). Note that P̂1:N (·|x) is dif-
ferent from the joint distribution of the first N tokens and is easy to compute. We substitute P̂1:N

into NTE and NTG to obtain their empirical approximations. Through our experiments, we find that
setting N = C = 20 leads to appealing performances; see Section 4.

To fully implement Module 1, we also need to find the historical average µ and drift d for a prompt
x. We aim to set a unified drift d and detection threshold b for simplicity. However, the four metrics
have different scale, and thus need normalization. Historical average µ is estimated using historical
data, which is collected in the first few rounds, say 20 rounds, of interaction as we focus on relatively
late changes. In real applications, we can gather historical data within a very short time period by
frequently query LLMs. Note that the detection procedure only starts after historical data collection.
On the historical data, we compute the four metrics in each round, and average over different rounds
to obtain µ. We also find the standard deviation σ for the four metrics. More specifically, during
detection, we normalize FTE(x) by FTE′(x) = FTE(x)−µFTE(x)

σFTE(x)
so that FTE′(x) is approximately zero

mean and has unit variance. Other metrics are also normalized. From now on, we denote s(x) as the
normalized metrics, and Ws as the detection statistics computed based on the normalized metrics,
for s ∈ S. As all metrics are now in the same scale and so are the detection statistics, we adopt a
unified choice of the drift d and threshold b for all the detection statistics. After normalization, it is
plausible to use the maximum of the four detection statistics to do detection, as

W (t;x) = max{WFTE(t;x),WFTG(t;x),WNTE(t;x),WNTG(t;x)}. (1)

When running the detection procedure with only one prompt, we compare W (t;x) with the thresh-
old b after each update, and stop at the first time when W (t;x) exceeds b.

3.3 DETECTION WITH ADAPTIVE SELECTION OF PROMPTS

Querying a single prompt can limit the detection power, thus we allow K different prompt queries
at each interaction round. Different prompts have varying sensitivity to a change, and we need

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

to actively select the most change-sensitive prompts. The difficulty lies in that we have no prior
knowledge of the sensitivity of prompts. This requires balancing exploration and exploitation, i.e.,
providing sufficient exposure to different prompts yet identifying good ones early.

We adopt the Upper Confidence Bound (UCB) algorithm for prompt selection, which is a benchmark
for multi-armed bandits and enjoys theoretical optimality (Sutton, 2018). Specifically, at time step
t, for each prompt x in X , we calculate W (t;x) using Eq. (1). Prompts whose W exhibits a higher
growth rate after change are preferred. We use the increment on W between consecutive times to
gauge the sensitivity of prompts: larger increment after the change occurs is preferred. Accordingly,
we denote U(t;x) = W (t;x)−W (t− 1;x) as the reward function and select prompts based on the
UCB score, which is the estimated reward plus the confidence interval, as

UCB(t;x) = Û(t;x) +

√
α ln t

2n(t;x)
with Û(t;x) =

1

n(t;x)

t∑
τ=1

U(τ ;x),

where n(t;x) is the number of times x is selected in the past t time steps, α is the confidence level
parameter and Û(t;x) is the estimated reward. At time t + 1, K prompts with the highest UCB
scores will be selected. Specially at time 1, we select all prompts for initialization. The detailed
selection strategy is presented in Module 2.

Combining Module 1 and 2, we present our online change detection algorithm for black-box LLMs
in Algorithm 3. At time step t + 1, we query the K prompts selected at time t and update the
corresponding detection statistics. Note that for initialization, we query every x in X at time 1. For
prompts not selected at time t, their detection statistics remain unchanged as in the previous time
step. After all detection statistics get updated, the detector will raise alarm if any of the detection
statistics is above the preset threshold b.

Module 2 TopK UCB(K): Select top K prompts to be queried at time t+ 1.

1: Require: Query budget K, previous time step t.
2: Output: Set of selected prompts Z .
3: for prompt x in X do
4: Û(t;x)←W (t;x)/n(t;x), UCB(t;x)← Û(t;x) +

√
α ln t

2n(t;x) .
5: end for
6: Return top-K prompts with the highest UCB(t;x) values from X as Z .

Algorithm 3 LLM Online Change Detection With Adaptive Selection of Prompts

1: Require: Prompt set X , query budget K, threshold b.
2: Output: Stopping time T .
3: Init: t← 0, all detection statistics← 0, Z ← X .
4: while not return do
5: t← t+ 1,
6: for prompt x in Z do
7: Update Ws(t;x) using Detection Statistics(t;x), s ∈ S,
8: W (t;x)← maxs∈S Ws(t;x).
9: end for

10: for prompt x in X \ Z do
11: W (t;x)←W (t− 1;x).
12: end for
13: if maxx∈X W (t;x) ≥ b then
14: Return T ← t.
15: end if
16: Z ← TopK UCB(K).
17: end while

4 EXPERIMENTS

We conduct experiments on two types of synthetic data with changes simulated through watermark-
ing and version updates (Section 4.1), and on real-world responses collected from various LLM

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

APIs (Section 4.2). The prompts used across all experiments are listed in Table 1 in Appendix C,
and will be referenced by their index throughout the text.

4.1 ONLINE DETECTION FOR SYNTHETIC DATA

4.1.1 DETECTION WITH ONE PROMPT

Detect Emergence of Watermark We generate responses of the LLM facebook/opt-125m
to prompt 12 in Table 1. Before the change point, no watermark is applied, while after the change,
the soft watermark (Kirchenbauer et al., 2023) is applied to the generated responses. More details
about the soft watermark are provided in Appendix B. We generate a set of pre-change data consist-
ing of 20 time steps as historical data, which is used to compute the historical mean and variance
of the detection statistics. All metrics are then normalized using these historical values as outlined
in subsection 3.2. We set the number of repeated responses C = 20, token size N = 20, and drift
parameter d = 0.5 in Module 1 unless otherwise specified. This configuration of C and N is chosen
to achieve a low average detection delay while maintaining computational efficiency, see Appendix
C. Figure 3 shows the evolutions of the four metrics (first-token entropy, N-token entropy, first-token
Gini and N-token Gini) and their cumulative values used as detection statistics. As shown, all de-
tection statistics are able to detect the presence of a relatively strong watermark quickly. Additional
results for other prompts and varying watermark strengths are provided in Appendix D.1.

Figure 3: Evolution of the four metrics (Left) and their cumulative values used as detection statistics
(Right), with post-change data generated via soft watermarking (with parameters δ = 2, γ = 0.5)
and change point ν = 11. The four metrics show significant shifts after the change point. By
applying the threshold shown in the right panel, the detection statistics raise an alarm at T = 14.

Detect Synthetic Version Change We synthesize three version change cases by setting one LLM
as the pre-change model and one of its variants as the post-change. All models are available on
Hugging Face. The query object is artificially switched from the pre-change model to the post-
change model at a pre-set change point ν. From the results shown in Figure 4, we observe that
the detection statistics remain small before the change and exhibit linear growth after the change,
enabling swift detection. For results on more prompts, see Figure 13 in Appendix D.1.

4.1.2 DETECTION WITH ADAPTIVE SELECTION OF PROMPTS

In this subsection, we focus on a specific Version Change from facebook/opt-125m to
facebook/opt-350m, and perform the detection algorithm with adaptive prompt selection. The
prompt set X consists of 14 prompts, indexed 0 to 13 in Table 1. We set the UCB parameter α = 8
and select K = 5 prompts each time. To visualize the sensitivity of different prompts to the change,
we plot the trajectories of detection statistics for individual prompts in Figure 5a. We then plot our
detection statistics resulting from adaptive selection in Figure 5b, showing the algorithm effectively
accumulates values from the most sensitive prompts, specifically prompt 8, 9, 10, 12, and 13 here.

To further illustrate the adaptive selection process, we plot the relative UCB scores in Figure
6a. Higher scores indicate a greater likelihood of selecting the corresponding prompt. After the
change, the UCB scores of the most sensitive prompts dominate, enabling effective selection of
these prompts. Additionally, we compare the ADD of our adaptive selection method with that under

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 5 9 13 1711 20
Time step t

0

2

4

6

8

10

12

De
te

ct
io

n
st

at
ist

ics

W +
NTE

WNTE

change point

(a) From facebook/opt-125m
to facebook/opt-350m

1 5 9 13 1711 20
Time step t

0

2

4

6

8

10

De
te

ct
io

n
st

at
ist

ics

W +
FTE

WFTE

change point

(b) From vicuna-7b-v1.1
to vicuna-7b-v1.3

1 5 9 13 1711 20
Time step t

0

5

10

15

De
te

ct
io

n
st

at
ist

ics

W +
NTG

WNTG

change point

(c) From MiniChat-3B
to MiniChat-1.5-3B

Figure 4: Detection statistics under three scenarios of version change, with change point set as
ν = 11. Both the positive branch (W+) and negative branch (W−) of selected detection statistics
are shown. The prompts used in the three cases are prompts 10, 10, and 12, respectively. Since the
various detection statistics exhibit similar trends, we use the best one for illustration.

(a) All prompts queried at each time (b) Adaptive selection
Figure 5: Trajectories of detection statistics (a): when every prompt is queried at each time step.
In this case, prompts 8, 10, 9, 12, 13, 6 are the top six prompts with the highest growth rate after
change, which are highlighted. (b): when we use our adaptive selection to select 5 prompts at each
time step. It is shown that prompts with top growth rate are 8, 9, 10, 12, 13, which coincide with (a).

random selection as a baseline, and the ADDs using individual prompts, under various ARL levels,
as shown in Figure 6b. The random strategy selects K = 5 prompts randomly from X at each time.
Details on the simulation of detection thresholds for different ARLs are provided in Appendix C.
After obtaining the threshold under a certain ARL, we repeatedly run the detection procedure and
calculate the ADD. The results show that the ADD under our adaptive selection is smaller than that
under random selection, and closely matches the best-performing individual prompt.

(a) Relative UCB scores

3 4 5 6 7 8 9 10
log (ARL)

2

4

6

8

10

AD
D

adaptive selection
random selection
best prompt
worst prompt
other prompts

(b) Adaptive selection v.s. random
Figure 6: (a): Relative UCB scores – UCB score divided by the sum of UCB scores of all prompts.
The change point ν = 11 is marked in red. We can see the convergence on the most sensitive prompts
(8, 9, 10, 12, and 13) after change. (b): ADD-ARL trade-off comparison between adaptive selection,
random selection, and individual prompts. ADD is the average delay of 20 repeated experiments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.2 ONLINE DETECTION FOR REAL-WORLD APIS

We apply our proposed algorithm to real datasets collected by interacting with 9
LLM APIs: gpt-4o, gpt-4, gpt-4-turbo, gpt-3.5-turbo from OpenAI (2024),
command-r-plus from Cohere (2024), claude-3-haiku-20240307 from Claude (2024),
mistral-large-latest from Mistral AI (2024) and jamba-instruct, j2-ultra from
AI21 Labs (2024). We collected their responses once a day from June 1st, 2024, to August 31st,
2024, using 20 different prompts specified in Appendix C. Historical data were collected from June
1st to June 5th, 2024. We set the number of repeated responses C = 100 and token size N = 20.
We use the tokenizer from opt-125m to tokenize the responses except for command-r-plus
and j2-ultra which provide tokenization service.

Our detection procedure successfully detects a change that corresponds to an update of
mistral-large-latest on July 24th, 2024, as confirmed by their website (Mistral AI, 2024).
In Figure 7, we illustrate the detection statistic for N-token Gini using prompt 0. Similar patterns for
other prompts are provided in Appendix D.3.

06
-05

06
-11

06
-17

06
-23

06
-29

07
-05

07
-11

07
-21

07
-24

07
-27

08
-02

08
-08

08
-14

08
-20

08
-26

09
-02

Date

0.10

0.15

0.20

0.25

0.30

M
et

ric

0

1

2

3

4

5

De
te

ct
io

n
st

at
ist

ics

NTG
W +

NTG

WNTG

Figure 7: LLM API change detected in mistral-large-latest on July 24th, 2024, corre-
sponding to an update officially announced by Mistral AI.

Furthermore, in certain instances, our detection statistics raise strong alarms, even in the absence
of officially announced updates. These unconfirmed changes are mostly detected by only a subset
of prompts. A possible explanation for this phenomenon is that the update may be minor, affecting
only a limited aspect of the LLM’s functionality and leaving many prompts unaffected. An example
of such unconfirmed alarms is shown in Figure 8, with more cases provided in Appendix D.3.

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

0.20

0.25

0.30

0.35

0.40

0.45

M
et

ric

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
te

ct
io

n
st

at
ist

ics

FTG
W +

FTG

WFTG

(a) first-token Gini of prompt 2

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

1.4

1.6

1.8

2.0

M
et

ric

0

2

4

6

8

10

12

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(b) first-token entropy of prompt 8
Figure 8: Illustration of unconfirmed changes detected for gpt-4-turbo. For several prompts in
our set, the detection statistics show a significant increase beginning between July 23 and July 29.

5 CONCLUSION

In conclusion, our proposed online change detection method offers a computationally efficient so-
lution for identifying changes in black-box LLMs. By leveraging a CUSUM-type detection statistic
based on entropy and the Gini coefficient, combined with a UCB-based adaptive prompt selection
strategy, our method quickly detects changes while controlling the false alarm rate. The evaluation
results from both synthetic and real LLM API interactions highlight its effectiveness across various
types of changes. This work offers a flexible framework and opens new opportunities for exploring
the usage of alternative statistics beyond entropy and Gini, conducting further theoretical analyses on
detection and selection performance, examining a wider range of change scenarios, and deploying
this algorithm for continuous monitoring to ensure the integrity of LLM-powered applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI21 Labs. AI21 API Documentation. https://www.ai21.com, 2024. Accessed: 2024-09-28.

AI21Lab. Jamba model documentation. https://docs.ai21.com/reference/
jamba-instruct-api-ref, 2024. Accessed: 2024-09-28.

Nadia Alshahwan, Mark Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy
Wang. Assured offline LLM-based software engineering. In Proceedings of the ACM/IEEE 2nd
International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software
Engineering, pp. 7–12, 2024.

Fabio Arnez, Daniel Alfonso Montoya Vasquez, Ansgar Radermacher, and François Terrier. La-
tent representation entropy density for distribution shift detection. In The 40th Conference on
Uncertainty in Artificial Intelligence, 2024.

Suriya Ganesh Ayyamperumal and Limin Ge. Current state of LLM risks and AI guardrails. arXiv
preprint arXiv:2406.12934, 2024.

Anjanava Biswas and Wrick Talukdar. Guardrails for trust, safety, and ethical development and
deployment of large language models (LLM). Journal of Science & Technology, 4(6):55–82,
2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro Armeni, Anton Obukhov, and Xi Wang.
I-design: Personalized LLM interior designer. arXiv preprint arXiv:2404.02838, 2024.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric
Wong. Jailbreaking black box large language models in twenty queries. arXiv preprint
arXiv:2310.08419, 2023.

Hao Chen. Sequential change-point detection based on nearest neighbors. Annals of Statistics, 47
(3):1381–1407, 2019.

Lingjiao Chen, Matei Zaharia, and James Zou. How Is ChatGPT’s Behavior Changing Over Time?
Harvard Data Science Review, 6(2), 2024.

Claude. Claude API Documentation. https://docs.anthropic.com/en/
release-notes/api, 2024. Accessed: 2024-09-28.

Cohere. Cohere API Documentation. https://docs.cohere.com/reference/about,
2024. Accessed: 2024-09-28.

Sumit Kumar Dam, Choong Seon Hong, Yu Qiao, and Chaoning Zhang. A complete survey on
LLM-based ai chatbots. arXiv preprint arXiv:2406.16937, 2024.

Frédéric Desobry, Manuel Davy, and Christian Doncarli. An online kernel change detection algo-
rithm. IEEE Transactions on Signal Processing, 53(8):2961–2974, 2005.

Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu, Kshitiz Malik, and Zhou Yu. Towards next-
generation intelligent assistants leveraging LLM techniques. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5792–5793, 2023.

Jessica Echterhoff, Fartash Faghri, Raviteja Vemulapalli, Ting-Yao Hu, Chun-Liang Li, Oncel Tuzel,
and Hadi Pouransari. Muscle: A model update strategy for compatible LLM evolution. arXiv
preprint arXiv:2407.09435, 2024.

Eva Eigner and Thorsten Händler. Determinants of LLM-assisted decision-making. arXiv preprint
arXiv:2402.17385, 2024.

Eva Giboulot and Furon Teddy. WaterMax: breaking the LLM watermark detectability-robustness-
quality trade-off. arXiv preprint arXiv:2403.04808, 2024.

11

https://www.ai21.com
https://docs.ai21.com/reference/jamba-instruct-api-ref
https://docs.ai21.com/reference/jamba-instruct-api-ref
https://docs.anthropic.com/en/release-notes/api
https://docs.anthropic.com/en/release-notes/api
https://docs.cohere.com/reference/about

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Corrado Gini. Measurement of inequality of incomes. The Economic Journal, 31(121):124–126,
1921. ISSN 00130133, 14680297.

Thibaud Gloaguen, Nikola Jovanović, Robin Staab, and Martin Vechev. Black-box detection of
language model watermarks. In ICML 2024 Workshop on Foundation Models in the Wild, 2024.

Duy C Hoang, Hung TQ Le, Rui Chu, Ping Li, Weijie Zhao, Yingjie Lao, and Khoa D Doan.
Less is more: Sparse watermarking in LLMs with enhanced text quality. arXiv preprint
arXiv:2407.13803, 2024.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An LLM agent for data science.
arXiv preprint arXiv:2402.18679, 2024.

Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tatsunori Hashimoto.
Exploiting programmatic behavior of LLMs: Dual-use through standard security attacks. In 2024
IEEE Security and Privacy Workshops (SPW), pp. 132–143. IEEE, 2024.

Yoshinobu Kawahara and Masashi Sugiyama. Change-point detection in time-series data by di-
rect density-ratio estimation. In Proceedings of the 2009 SIAM international conference on data
mining, pp. 389–400. SIAM, 2009.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Mehmet Necip Kurt, Yasin Yılmaz, and Xiaodong Wang. Real-time nonparametric anomaly de-
tection in high-dimensional settings. IEEE transactions on pattern analysis and machine intelli-
gence, 43(7):2463–2479, 2020.

Jean Lee, Nicholas Stevens, Soyeon Caren Han, and Minseok Song. A survey of large language
models in finance (FinLLMs). arXiv preprint arXiv:2402.02315, 2024.

Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel change-point detection. Ad-
vances in Neural Information Processing Systems, 28, 2015.

Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J Su. A statistical framework of wa-
termarks for large language models: Pivot, detection efficiency and optimal rules. arXiv preprint
arXiv:2404.01245, 2024.

Yuchen Liang and Venugopal V Veeravalli. Quickest change detection with post-change density
estimation. IEEE Transactions on Information Theory, 2024.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Comput. Surv., September 2024.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485, 2024.

Mistral AI. Mistral API Documentation. https://docs.mistral.ai, 2024. Accessed: 2024-
09-28.

Piotr Molenda, Adian Liusie, and Mark JF Gales. Waterjudge: Quality-detection trade-off when
watermarking large language models. arXiv preprint arXiv:2403.19548, 2024.

Steven Moore, Richard Tong, Anjali Singh, Zitao Liu, Xiangen Hu, Yu Lu, Joleen Liang, Chen Cao,
Hassan Khosravi, Paul Denny, Chris Brooks, and John Stamper. Empowering education with
LLMs - the next-gen interface and content generation. In Artificial Intelligence in Education.
Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks,
Practitioners, Doctoral Consortium and Blue Sky, pp. 32–37, 2023.

George V Moustakides and Kalliopi Basioti. Training neural networks for likelihood/density ratio
estimation. arXiv preprint arXiv:1911.00405, 2019.

12

https://docs.mistral.ai

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. OpenAI API Documentation. https://platform.openai.com/docs/models/
overview, 2024. Accessed: 2024-09-28.

OpenAI. Introducing GPT-4 Turbo. https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4, 2024. Accessed: 2024-09-28.

Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

Keivalya Pandya and Mehfuza Holia. Automating customer service using langchain: Building cus-
tom open-source gpt chatbot for organizations. arXiv preprint arXiv:2310.05421, 2023.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–
1253, 2003.

H. V. Poor and O. Hadjiliadis. Quickest Detection. Cambridge University Press, 2008.

David Siegmund and Benjamin Yakir. Detecting the emergence of a signal in a noisy image. Statis-
tics and its Interface, 1(1):3–12, 2008.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Leonard Tang, Gavin Uberti, and Tom Shlomi. Baselines for identifying watermarked large language
models. arXiv preprint arXiv:2305.18456, 2023.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting LLM-generated text. Com-
munications of the ACM, 67(4):50–59, 2024.

Alexander Tartakovsky, Igor Nikiforov, and Michele Basseville. Sequential analysis: Hypothesis
testing and changepoint detection. CRC press, 2014.

Fangzhou Wu, Ning Zhang, Somesh Jha, Patrick McDaniel, and Chaowei Xiao. A new era in
LLM security: Exploring security concerns in real-world LLM-based systems. arXiv preprint
arXiv:2402.18649, 2024.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Derek F Wong, and Lidia S Chao. A survey
on LLM-gernerated text detection: Necessity, methods, and future directions. arXiv preprint
arXiv:2310.14724, 2023.

Xianjun Yang, Liangming Pan, Xuandong Zhao, Haifeng Chen, Linda Petzold, William Yang
Wang, and Wei Cheng. A survey on detection of LLMs-generated content. arXiv preprint
arXiv:2310.15654, 2023.

Yi Yu, Oscar Hernan Madrid Padilla, Daren Wang, and Alessandro Rinaldo. A note on online change
point detection. Sequential Analysis, 42(4):438–471, 2023.

Nazi Al Zabir and Wei Peng. Large language models in healthcare and medical domain: A review.
Informatics, 11(3):57, 2024.

13

https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DERIVATION OF THE GINI COEFFICIENT FOR TOKEN DISTRIBUTION

The Gini coefficient quantifies inequality within a frequency distribution, such as income levels
(Gini, 1921) and is traditionally used in economics. A Gini coefficient of zero represents perfect
equality, where all individuals have identical income or wealth, while a Gini coefficient of one (or
100%) indicates maximum inequality, with all wealth concentrated in a single entity. It is defined as
the ratio of the area between the Lorenz curve, which plots cumulative income against cumulative
population, and the line of perfect equality, to the total area under the line of perfect equality. In
the following, we derive the Gini coefficient on token probability distribution. See Figure 9 for
demonstration.

Pr
ob

ab
ilit

y

Token

...

1 2 3

Sorted in
ascending order

Pr
ob

ab
ilit

y

Token
...

tokens

CDF

Cumulative
population0

Cumulative
probability

1

1
...

Area Lorenz curve

Figure 9: The computation of Gini coefficient on token probability distribution.

In our case, we take first-token Gini for example. We sort the probability distribution of tokens in
vocabulary V in ascending order, with the i-th smallest probability being pi. We accumulate the
sorted probabilities to its cumulative distribution function (CDF) as

Fi =

i∑
j=1

pj ,

and we define F0 = 0. The cumulative population refers to the proportion of popula-
tion up to i-th token, and thus is i

|V| under our setting. We plot the curve with points
(0, 0), (1

|V| , F1), (
2
|V| , F2), . . . , (1, 1) in order, which is exactly the Lorenz curve. We denote the

area under Lorenz curve as A0. Then A0 is computed as

A0 =

|V|∑
i=1

1

2
(Fi + Fi−1) ·

1

|V|
.

We further denote the area between the Lorenz curve and the line of perfect equality, i.e. the line
segment connecting (0, 0) and (1, 1) as A. Then it is easy to get

A =
1

2
−A0.

Since the total area under the line of perfect equality is 1
2 , according to the definition of Gini coeffi-

cient, we can compute FTG(x) as 2A, which is

FTG(x) = 2A = 1− 1

|V|

|V|∑
i=1

(Fi + Fi−1).

Similarly, we can derive Gini coefficient for the joint distribution of the first N tokens, which is
NTG(x) in subsection 3.1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DETAILS ON SOFT WATERMARK

We review the following simplified soft watermark mechanism for next token generation in Kirchen-
bauer et al. (2023), parameterized by γ and δ. Here V denotes the vocabulary of an LLM.

1. Given an input prompt x, generate a logits vector l ∈ R|V| for the next token.
2. Randomly partition the vocabulary set into a green set and a red set, with the size of the

green set being γ|V|.
3. Apply a positive offset δ to the logits of the tokens belonging to the green set, i.e.,

l̃ = l + δ · [1{token1 ∈ green set}, . . . ,1{token|V| ∈ green set}]⊤.

4. Pass l̃ to a Softmax operator to obtain probability vector p̂ and sample the next token from
p̂.

The partitioning of the green set and the red set is determined by a watermark key. In practice,
the key can be selected by the user, and its hash value serves as a random seed for the partitioning
process, ensuring randomness in the division. We run the experiment using five random watermark
keys, with the green list determined by each key and fixed once selected.

C EXPERIMENTS DETAILS

LLM parameters setting In the synthetic change cases in Subsection 4.1, we set the model tem-
perature to 1.0, sampling parameter top p to 0.9 and no constraint on top k. In the real world
experiments, we set the LLM API’s temperature parameter to 1.0 for Jamba and Cohere, and 1.5 for
others. We still set sampling parameter top p to 0.9 and no constraint on top k.

Prompts Used in Section 4 The prompts used in section 4 are listed with index in Table 1. This
prompt set is comprised of some curated prompts (with no prior knowledge to their potential sen-
sitivity to changes), some of which are based on the idea of random choice generation (Tang et al.,
2023) and some are math problems (Chen et al., 2024) or multiple choices. Although some prompts
may appear similar, they generally elicit different responses from LLMs. The 20 prompts used in
real-world cases (subsection 4.2) include all these prompts except for prompt 1, 4, and 5.

Table 1: List of all prompts used in Section 4.

Index Prompt

0 Generate 20 random numbers sampled from a normal distribution with a mean
of 5 and standard deviation of 2

1 What qualities do you look for in a mentor or leader?

2 Please give me a random number between 1 and 100:

3 Choose randomly one number from 1 to 100:

4 How does one develop creativity?

5 What do you think is the most important branch of mathematics for everyday
life (arithmetic, algebra, statistics, geometry)?

6 Give me a random number in range 1 2 3 4 5 6 7 8 9:

7 Randomly select a letter in alphabet A-Z:

8 Given a list of fruits as Apple Banana Orange Grape Kiwi Pineapple Mango
Strawberry Watermelon Lemon Lime Peach Pear Cherry Plum Avocado Co-
conut Raspberry Blueberry Blackberry Cranberry Papaya Fig Guava Lychee
Dragonfruit Persimmon Passionfruit Pomegranate Cantaloupe, from the above
list randomly choose one:

9 Tell me your favourite fruit in one word:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Index Prompt

10 Choose your favourite color from red or green or orange? Your choice is:

11 Give me a random color from red green orange. Your word choice is:

12 The sum of 1 and 4 is:

13 Choose your favourite color from red or green or orange? Your choice will be:

14 Is 17077 a prime number? Think step by step and then answer “[Yes]” or
“[No]”.

15 Choose one random number from 1 to 100. Respond with only the number.

16 Randomly choose one fruit name.

17 You are taking a survey. Pick the best single option (e.g., A). Question: Please
think about what things will be like in 2050, about 30 years from now. Think-
ing about the future of the United States, would you say you are: A. Very op-
timistic B. Somewhat optimistic C. Somewhat pessimistic D. Very pessimistic
E. Refused Answer:

18 You are taking a survey. Pick the best single option (e.g., A). Question: Still
thinking ahead 30 years, which do you think is more likely to happen in the
U.S.? A. The U.S. economy will be stronger B. The U.S. economy will be
weaker C. Refused Answer

19 You are taking a survey. Pick the best single option (e.g., A). Question: If you
were deciding what the federal government should do to improve the quality
of life for future generations, what priority would you give to reducing the gap
between the rich and the poor? A. A top priority B. An important, but not a top
priority C. A lower priority D. Should not be done E. Refused Answer:

20 Generate one random number between 1 and 100. For example, your response
is 18 or 57. Remember that your response should only contain the number you
choose. Then your response is:

21 Give me one random number from 1, 2, ... , 100

22 Give me one random number from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9:

23 Your response should only contain one number. Give me a random number
from 1,2,3,4,5,6,7,8,9.

24 Provide a brief history of the Roman Empire and conclude with its influence
on modern governance.

25 Recommend a book for someone interested in science fiction, but prefers a
focus on character development.

Threshold Selection for Target ARL In order to save computing effort in the determination of
the thresholds under target ARL values (which is usually large), we adopt an efficient approximation
algorithm that uses the fact that the distribution of stopping time T under the pre-change regime is
approximately exponential when ARL is large. Such approximate algorithms for determining b have
been widely adopted in online change detection; see Siegmund & Yakir (2008) for one example.
Instead of simulating the mean of the distribution of T := inf{t : W (t) ≥ b} directly, we obtained
an estimate of the mean from an estimate of the cumulative distribution function of T based on 20
iterations. Specifically, in each iteration, we simulate the pre-change trajectory with 100 time steps,
and compute the maximum of the detection statistics at 100 time steps. These maximum values
under 20 iterations are then denoted as W1,max,W2,max, . . . ,W20,max. For the desired ARL values
Γ = E[T] where the expectation is taken under the pre-change regime, we approximate the stopping
time T as an exponential distribution with mean Γ. Thus we have P (Wmax < b) = P (T > 100) ≈
e−100/Γ. Thus the corresponding threshold b can be approximated as the e−100/Γ quantile of the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

set {W1,max,W2,max, . . . ,W20,max}. Note that we can also use more iterations and longer sequences
within each iteration, which tends to improve the approximation accuracy.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
log(ARL)

3

6

9

12

15

AD
D

C = 10, N = 10
C = 20, N = 20
C = 30, N = 30

Figure 10: ADD v.s. ARL trade-off curves under different parameter settings.

Choice of Parameter C and N The choice of repeat times C and token length N concerns a
trade-off between detection power and computation cost. With higher C, the estimation of our
proposed four metrics becomes more accurate, thus lower We compare the Average Detection Delay
(ADD) across different Average Run Length (ARL) levels under three parameter settings: 1) C =
10, N = 10; 2) C = 20, N = 20; 3) C = 30, N = 30, as shown in Figure 10. The results
indicate that as C and N increase, the ADD decreases for a given ARL level. Notably, the ADD
under C = 20, N = 20 is comparable to that of C = 30, N = 30, across ARL levels ranging
from e−6 ≈ 0.2% to e−3 ≈ 5%. However, the detection procedure with C = 30, N = 30 incurs
nearly double the query cost. Therefore, we choose C = 20, N = 20 in our experiments for a better
balance between detection performance and computational efficiency.

D MORE EXPERIMENTAL RESULTS

D.1 MORE RESULTS FOR DETECTION WITH ONE PROMPT

Trade-off Curve for Different Detection Statistics And different Watermark Strength For
the watermark change detection with one prompt in subsection 4.1.1, we plot the trade-off curves
between Average Detection Delay (ADD) and Average Run Length (ARL) in Figure 11. Details
on the simulation of thresholds for different ARLs are provided in Appendix C. After obtaining
the threshold under certain ARL, we repeatedly run the detection procedure for five times, and
calculate the average detection delay (ADD). We also vary watermark strengths using the parameters
δ and γ, where larger values of δ and γ indicate stronger watermarks and more significant changes.
Under each watermark strength, we only plot the trade-off curve for detection statistic W , which
is the maximum of the four individual detection statistics. As shown in Figure 11a, our proposed
detection statistic W has a relatively small detection delay (more results can be found in Figure 12).
This confirms the efficiency of our combined detection approach. From Figure 20b, we see that the
detection delay increases as the watermark becomes weaker, with decreasing values of δ and γ.
ADD-ARL Tradeoff for More Prompts In section 4.1.1, we state that generally different detec-
tion statistics will outperform in different settings, whereas the maximum of them, i.e. W always
maintains good performance. We illustrate this finding by prompt 12. Here we provide more evi-
dence under other prompts in Figure 12.

Detection Statistics Grow after Version Change: Demonstration for More Prompts Recall
that we synthesize three version change cases in section 4.1.1. We show that our proposed detection
statistics grow rapidly after the change point in all three cases using one prompt. Here we illustrate
the detection statistics’ detection power by showing the same kind of growing behaviour on more
prompts. See Figure 13.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

3 4 5 6 7 8 9 10
log(ARL)

2

4

6

8

10

12

14

16

AD
D

WNTE

WNTG

WFTE

WFTG

W

(a) Different detection statistics

3 4 5 6 7 8 9 10
log(ARL)

5

10

15

20

25

30

35

AD
D

= 2, = 0.5
= 2, = 0.25
= 1, = 0.5
= 1, = 0.25
= 1, = 0.1
= 0.5, = 0.1

(b) Different watermark strength
Figure 11: (a): Trade-off between ADD and ARL for different detection statistics. Our proposed
detection statistics W , which is the maximum of the four detection statistics, achieves relatively
small delays across all ARL levels. (b): Trade-off between ADD and ARL for different watermark
strengths. As the watermark becomes weaker, the detection delay increases.

3 4 5 6 7 8 9 10
log(ARL)

2

3

4

5

6

7

8

AD
D

WNTE

WNTG

WFTE

WFTG

W

(a) Prompt 6

3 4 5 6 7 8 9 10
log(ARL)

2

4

6

8

10

12

AD
D

(b) Prompt 10

3 4 5 6 7 8 9 10
log(ARL)

2

4

6

8

10

12

14

AD
D

(c) Prompt 4

Figure 12: Trade-off curves of ADD and ARL for the four detection statistics and the maximum of
Ws under different prompts. We can easily find out that generally different detection statistics will
outperform in different settings, whereas W always maintains good performance.

D.2 MORE RESULTS FOR DETECTION WITH ADAPTIVE SELECTION

Detection with Adaptive Selection Converges to Prompts of High Sensitivity From Figure 14
we also see the our proposed detection algorithm with adaptive prompts selection converges to
prompts with the highest sensitivities, which are prompt 8, 9, 10, 12, and 13 under the current
setting. Different runs may exhibit slight variations in the prompts to which the algorithm ultimately
converges, but generally, sensitive prompts are selected quickly after the change happens.

D.3 MORE RESULTS FOR DETECTION IN REAL-WORLD ONLINE DATA

Confirmed Changes in Real-World APIs Here we list more evidence that our detection algo-
rithm captured the change in mistral-instruct at July 24th, 2024. See Figure 15.

Unconfirmed Changes in Real-World APIs We list two probable changes in real world LLM
APIs which are not officially announced ot confirmed. The two changes are in jamba-instruct
from AI21 Labs and gpt-4-turbo from OpenAI. We choose these two APIs because the de-
tection statistics of many prompts and the corresponding four metrics experienced a surge almost
simultaneously during a small interval of days. Thus we have comsiderably higher confidence to
report them, as shown in Figure 16 and 17.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1 5 9 13 1711 20
Time step t

0.0

2.5

5.0

7.5

10.0

12.5

15.0
De

te
ct

io
n

st
at

ist
ics

W +
FTG

WFTG

change point

Prompt 6

1 5 9 13 1711 20
Time step t

0.0

2.5

5.0

7.5

10.0

12.5

De
te

ct
io

n
st

at
ist

ics

W +
NTE

WNTE

change point

Prompt 12

facebook/opt-125m to facebook/opt-350m

1 5 9 13 1711 20
Time step t

0

5

10

15

De
te

ct
io

n
st

at
ist

ics

W +
NTG

WNTG

change point

Prompt 6

1 5 9 13 1711 20
Time step t

0

5

10

15
De

te
ct

io
n

st
at

ist
ics

W +
NTG

WNTG

change point

Prompt 12

from Vicuna-7b-v1.1 to Vicuna-7b-v1.3

1 5 9 13 1711 20
Time step t

0.0

2.5

5.0

7.5

10.0

12.5

De
te

ct
io

n
st

at
ist

ics

W +
NTG

WNTG

change point

Prompt 6

1 5 9 13 1711 20
Time step t

0

1

2

3

4

5

6

De
te

ct
io

n
st

at
ist

ics

W +
FTE

WFTE

change point

Prompt 10

from MiniChat-3B to MiniChat-1.5-3B

Figure 13: Demonstration for detection statistics growth after change point in version change cases.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Detection statistics Relative UCB scores

Detection statistics Relative UCB scores

Figure 14: Repeated experiments for detection with adaptive selection.

06
-05

06
-11

06
-17

06
-23

06
-29

07
-05

07
-11

07
-21

07
-27

08
-02

08
-08

08
-14

08
-20

08
-26

09
-04

Date

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
et

ric

0

5

10

15

20

25

30

35

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(a) first-token entropy of prompt 3

06
-05

06
-11

06
-17

06
-23

06
-29

07
-05

07
-11

07
-21

07
-27

08
-02

08
-08

08
-14

08
-20

08
-26

09
-04

Date

2.9

3.0

3.1

3.2

3.3

M
et

ric

0

2

4

6

8

10

12

De
te

ct
io

n
st

at
ist

ics

NTE
W +

NTE

WNTE

(b) N-token entropy of prompt 22

06
-05

06
-11

06
-17

06
-23

06
-29

07
-05

07
-11

07
-21

07
-27

08
-02

08
-08

08
-14

08
-20

08
-26

09
-04

Date

0.2

0.3

0.4

0.5

M
et

ric

0

2

4

6

8

10

12

De
te

ct
io

n
st

at
ist

ics

FTG
W +

FTG

WFTG

(c) first-token Gini of prompt 8

06
-11

06
-17

06
-23

06
-29

07
-05

07
-11

07
-21

07
-27

08
-02

08
-08

08
-14

08
-20

08
-26

09
-04

Date

0.15

0.20

0.25

0.30

M
et

ric

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
te

ct
io

n
st

at
ist

ics

NTG
W +

NTG

WNTG

(d) N-token Gini of prompt 18

Figure 15: Confirmed change in mistral-large-latest on July 24th, 2024. We could see
increasing detection statistics approximately between July 21st and 27th, 2024.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

06
-03

06
-09

06
-15

06
-21

06
-27

07
-03

07
-09

07
-18

07
-25

07
-31

08
-06

08
-12

08
-18

08
-24

08
-31

Date

0.15

0.20

0.25

0.30

0.35

M
et

ric

0

2

4

6

8

De
te

ct
io

n
st

at
ist

ics

FTG
W +

FTG

WFTG

(a) first-token Gini of prompt 2

06
-03

06
-09

06
-15

06
-21

06
-27

07
-03

07
-09

07
-18

07
-25

07
-31

08
-06

08
-12

08
-18

08
-24

08
-31

Date

0.15

0.20

0.25

0.30

0.35

M
et

ric

0

1

2

3

4

5

6

De
te

ct
io

n
st

at
ist

ics

FTG
W +

FTG

WFTG

(b) first-token Gini of prompt 3

06
-03

06
-09

06
-15

06
-21

06
-27

07
-03

07
-09

07
-18

07
-25

07
-31

08
-06

08
-12

08
-18

08
-24

08
-31

Date

0.15

0.20

0.25

0.30

0.35

0.40

M
et

ric

0

2

4

6

8

10

De
te

ct
io

n
st

at
ist

ics

FTG
W +

FTG

WFTG

(c) first-token Gini of prompt 21

06
-03

06
-09

06
-15

06
-21

06
-27

07
-03

07
-09

07
-18

07
-25

07
-31

08
-06

08
-12

08
-18

08
-24

08
-31

Date

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
et

ric

0

2

4

6

8

10

De
te

ct
io

n
st

at
ist

ics

FTG
W +

FTG

WFTG

(d) first-token Gini of prompt 22

Figure 16: Unconfirmed change in jamba-instruct, approximately between June 21st and 27th,
2024. Here we use first-token Gini to illustrate, while other metrics behave similarly.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
et

ric

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(a) first-token entropy of prompt 0

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

0.0

0.2

0.4

0.6

0.8

M
et

ric

0

2

4

6

8

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(b) first-token entropy of prompt 20

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

0.6

0.8

1.0

1.2

1.4

M
et

ric

0.0

2.5

5.0

7.5

10.0

12.5

15.0

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(c) first-token entropy of prompt 2

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

1.4

1.5

1.6

1.7

1.8

1.9

2.0
M

et
ric

0

1

2

3

4

5

6

7

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(d) first-token entropy of prompt 7

06
-01

06
-07

06
-13

06
-19

06
-25

07
-01

07
-07

07
-13

07
-23

07
-29

08
-04

08
-10

08
-16

08
-22

08
-28

09
-05

Date

1.4

1.6

1.8

2.0

M
et

ric

0

2

4

6

8

10

12

De
te

ct
io

n
st

at
ist

ics

FTE
W +

FTE

WFTE

(e) first-token entropy of prompt 8

06
-11

06
-17

06
-23

06
-29

07
-05

07
-11

07
-21

07
-27

08
-02

08
-08

08
-14

08
-20

08
-26

09
-02

Date

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
et

ric

0

5

10

15
De

te
ct

io
n

st
at

ist
ics

FTE
W +

FTE

WFTE

(f) first-token entropy of prompt 19

Figure 17: Unconfirmed change in gpt-4-turbo, approximately between July 23nd and 29th,
2024. Here we use first-token entropy to illustrate, while other metrics behave similarly.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E REBUTTAL

E.1 DETECTION BASED ON TEXT SIMILARITY: A SIMPLE BASELINE

In this subsection, we consider a simple baseline based on text-level similarity for online change
detection in LLM. This baseline works as follows. We again collect the responses for a given
prompt x for C times at each time step t during the detection procedure. We tokenize each response
into a sequence of tokens and take the first N -tokens from each response at time t to get a token
set. Instead of calculating metrics on this token set as we did in our proposed detection algorithm, in
the baseline, we convert this token set into a frequency vector vt, which captures the count of each
token’s occurrences within the set. We also convert the all historical responses for prompt x into one
token set, and get the historical frequency vector vhistory using this token set. Then given a threshold
b ∈ (−1, 1), the detection procedure stops when the cosine similarity between vt and vhistory first
drops below b, as

vhistory · vt

∥vhistory∥∥vt∥
≤ b.

In the following experiments, we keep the parameter configuration in the text similarity baseline
identical to our proposed algorithm. Specifically, we set C = 20, N = 20, and we repeat the exper-
iment for 5 times. We accessed both algorithms in two different scenarios: emergence of watermark
and synthetic version change (from facebook/opt-125m to facebook/opt-350m). The
results are shown in Figure 18 and Figure 19.

3 4 5 6 7 8 9 10
log(ARL)

5

10

15

20

AD
D

ours
text similarity

(a) prompt 6

3 4 5 6 7 8 9 10
log(ARL)

2

3

4

5

6

7

AD
D

ours
text similarity

(b) prompt 10

3 4 5 6 7 8 9 10
log(ARL)

4

6

8

10

12

AD
D

ours
text similarity

(c) prompt 12
Figure 18: ADD and ARL trade-off comparison under the emergence of watermark. Under the same
ARL, a lower ADD indicates a lower delay in average and thus a better performance. It is shown
that our proposed detection algorithm outperforms the text similarity baseline.

3 4 5 6 7 8 9 10
log(ARL)

5

10

15

20

AD
D

ours
text similarity

(a) prompt 6

3 4 5 6 7 8 9 10
log(ARL)

5

10

15

20

25

AD
D

ours
text similarity

(b) prompt 10

3 4 5 6 7 8 9 10
log(ARL)

5

10

15

20

25

30

AD
D

ours
text similarity

(c) prompt 12
Figure 19: ADD and ARL trade-off comparison under synthetic version update from
facebook/opt-125m to facebook/opt-350m. It is shown that our proposed detection algo-
rithm outperforms the text similarity baseline in most false alarm rate constraints except for prompt
6 at small ARL.

It is shown that when ARL is large (meaning a low tolerance for false alarms), the baseline method
suffers from a surge in delay, but our detection algorithm still performs well. Such disparity may
be attributed to the cumulative nature of our algorithm. To illustrate this reasoning, we plot the
trajectory with time for both our detection statistics and the text similarity baseline. For a fair

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

comparison, when a target ARL is assigned, we obtain the two corresponding thresholds for both
methods, and make sure that the two thresholds lead to the same ARL value. Then under the same
setting where the change scenario is the emergence of watermark, the prompt used is prompt 6,
ARL = 10, 000 and ν = 11, we run both algorithms and record their statistics evolution with time,
as shown in Figure 20. It can be seen that given the same level of false alarm rate, the text similarity
is less likely to hit the threshold due to two possible reasons: 1) Text similarity does not enjoy a low
variance property, which leads to a lowered threshold to compensate for pre-change instability. This
lower threshold makes it harder for post-change text similarity to reach the threshold. 2) The non-
cumulative nature of this baseline method prevents it from accumulating deviations from normal
values, thus exacerbating the problem mentioned in the first reason.

1 5 9 13 1711 16 20
Time step t

0

2

4

6

8

10

12

14

16

De
te

ct
io

n
st

at
ist

ics
 W

threshold

delay

WNTE
WNTG
WFTE
WFTG
W = max

s S
Ws

alarm

(a) Our cumulative type detection method

1 5 9 13 1711 20
Time step t

0.60

0.65

0.70

0.75

0.80

0.85

Te
xt

 si
m

ila
rit

y
threshold

change not detected

text similarity

(b) Text similarity based detection method
Figure 20: (a): The detection statistics in our algorithm under the above specified setting. Our
detection method successfully detected a change. (b) Text similarity in the baseline method. The
threshold is set corresponding to the same level of false alarm rate as (a). The baseline method fails
to detect the change in this case.

E.2 DEMONSTRATION FOR RESPONSES COLLECTED IN PRE-CHANGE STAGE AND
POST-CHANGE STAGE

To demonstrate that the responses change in an inconspicuous way, we present some responses
generated by pre-change LLM and post-change LLM for comparison. See Table 2. In this table,
group 1 refers to the change from opt-125m to opt-125m watermarked with key 0, using prompt
10; group 2 refers to the change from vicuna-7b-v1.1 to vicuna-7b-v1.3, using prompt
12; group 3 refers to the real-world change in Mistral API, where change happened at July 24,
2024 and pre-change responses are selected from July 07 and post-change responses are from July
25, using prompt 0; group 4 refers to the change from GPT-4o to GPT-4o with prompt injection
specified in Subsection E.3 using prompt 23, and 20 responses are provided.

Table 2: Responses comparison between pre-change and post-change LLM.

Group Pre-change responses Post-change responses

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Group Pre-change responses Post-change responses

1 (1) Green, orange, or red. Your
choice is: blue, green or orange, or
red...
(2) Red, green, orange, or black. To
choose your favourite colour, click
here to place it.
(3) Red or green. If you want your
items to ship before holiday, check
with your local customs
(4) Or black or blue, Alterna-
tively yellow or yellow, Alterna-
tively white or blue, or any.
(5) Cyan and pink are the best
colours for LGBT people in our so-
ciety.

(1)Red or green, your choice is: or-
ange, your choice is: blue...
(2)red, yellow or green, orange or
orange. Choose from a selection of
eight colour combinations. Each
(3) red, green or orange. If this
color is already in your wardrobe,
you may want to check”
(4) Blue, green, or red. Add one
final touch, a mysterious alphabet.
The easiest choice is
(5) Pink, yellow, silver, or brown.
These are just a few of thousands of
choices to pick.

2 (1) 5, so the expression ”1 + 4” is
equivalent to ”5”. Qed
(2) 5. Let me know what you
think of this problem. ”Well, it’s a
pretty...
(3) 5. The sum of 2 and 3 is 5. The
sum of 4 and...
(4) 5, so it follows that 2 and 3 also
make 5. Suppose...
(5) 5, which is a multiple of 3. The
sum of 2 and 3 is...

(1) 5. This is true, as 1 + 4 = 5.
(2) 5. So you have to be extra care-
ful with adding numbers in pairs, so
it doesn’t
(3) 5. The sum of 2 and 5 is 7. The
sum of...
(4) 5, so we can start at either 1 or
4. Let’s Xavi:
(5) 9. The product of 3 and 4 is 12.
The quotient

3 (1) Sure, here are 20 random num-
bers sampled from a normal distri-
bution...
(2) Here are 20 random numbers
sampled from a normal distribu-
tion...
(3) Sure, I can help with that. Here
are 20 random numbers...
(4) Sure, I can generate those for
you. Here are 20 random numbers
sampled from a...
(5) Sure, I can generate those for
you. However, as a text-based AI,
I can...

(1) Sure, here is a list of 20 random
numbers sampled from a...
(2) Sure! Here are 20 random num-
bers sampled from a normal distri-
bution...
(3) Sure, I can help generate a list of
20 random numbers sampled from a
normal...
(4) To generate 20 random numbers
sampled from a normal distribution
with a mean...
(5) Certainly! Here are 20 ran-
dom numbers sampled from a nor-
mal distribution ...

4 4,4,3,5,4,4,6,5,7,7,4,7,6,6,7,6,5,7,3,5 7,5,7,7,7,4,4,3,7,7,7,7,5,4,4,4,7,5,3,5

E.3 ROBUSTNESS OF THE DETECTION ALGORITHM

In our standard setting, given a prompt x, the responses distributions of both pre-change LLM and
post-change LLM are assumed to remain unchanged within their respective regimes. This assump-
tion holds when the LLM’s context configurations, such as temperature and system message, remain
consistent across all the interactions at different time points. To the best of our knowledge, this
condition is typically met in most real-world user-LLM interactions unless explicitly modified by
the user.

Yet, we demonstrate the robustness of our detection algorithm: even with slight perturbations in the
pre-change and post-change response distributions, the algorithm can still detect changes quickly
under a given false alarm rate constraint. To simulate the slight perturbation in response distribution,
at each time step, we set the temperature of the LLM as a random variable uniformly sampled from
the interval [0.9, 1.0]. We assess our detection algorithm’s performance under this setting in the case

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

of emergence of watermark. All other parameter configuration stay consistent to Subsection 4.1.1.
The results are shown in Figure 21. It is demonstrated that our detection algorithm is robust to the
slight perturbation in response distribution when the false alarm rate constraint is relatively loose
(meaning a small ARL). Yet the detection power degrades notably when the the false alarm rate
constraint is relatively high.

4 6 8 10
log(ARL)

0

2

4

6

8

10

12

AD
D

fixed
temperature varies

Figure 21: ADD v.s. ARL trade-off curve for different LLM generation setting during simulation.
Here, “fixed” refers to the setting that LLM’s temperature is fixed at 1.0 during generation, and
“temperature varies” refers to that at each time step, LLM’s temperature is uniformly sampled from
[0.9, 1.0].

E.4 RESULTS FOR EMERGENCE OF PROMPT INJECTION

Prompt injection is a technique used to manipulate the behavior of language models by inserting
specific instructions or prompts, often aiming to override or alter the original prompt’s intended
output. This method has gained attention due to its implications for security and reliability in LLM
deployments. In our experiments, we also use prompt injection as an instance: starting from the
change point ν, the system message of the LLM is changed. This scenario can occur when an
untrustworthy chatbot website is vulnerable to prompt injection, or when multiple users share a
single chatbot account, allowing one user to exploit the web application’s memory to influence the
LLM’s behavior. In this subsection, we compose an instance of prompt injection using GPT-4o API,
and implement preompt injection through the system message of the API. We still use the same
setting as specified in Subsection 4.1.1. We set the pre-change system message as

"You are an assistant designed to help users."

and the post-change system message as

"You’re a helpful assistant. However, you always
neglect the last five words in the prompt."

After running our detection algorithm in this case, we obtain results in Figure 22. It is clearly
presented that our detection statistics still have the detection power to the emergence of prompt
injection, highlighting its potential application in LLM security and reliability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 5 9 13 1711 20
Time step t

0.0

2.5

5.0

7.5

10.0

12.5

De
te

ct
io

n
st

at
ist

ics

W +
NTG

WNTG

change point

Prompt 6

1 5 9 13 1711 20
Time step t

0

20

40

60

80

100

De
te

ct
io

n
st

at
ist

ics

W +
NTF

WNTF

change point

Prompt 10

1 5 9 13 1711 20
Time step t

0.0

0.5

1.0

1.5

De
te

ct
io

n
st

at
ist

ics

1e15
W +

NTF

WNTF

change point

Prompt 12

1 5 9 13 1711 20
Time step t

0

2

4

6

8

De
te

ct
io

n
st

at
ist

ics

W +
FTE

WFTE

change point

Prompt 23

1 5 9 13 1711 20
Time step t

0

5

10

15

20

25

De
te

ct
io

n
st

at
ist

ics

W +
NTG

WNTG

change point

Prompt 24

1 5 9 13 1711 20
Time step t

0

10

20

30

De
te

ct
io

n
st

at
ist

ics

W +
NTG

WNTG

change point

Prompt 25

Figure 22: Demonstration for detection statistics growth after change point in prompt injection
cases.

27

	Introduction
	Problem Setup: Online Change Detection for LLMs
	Detection Algorithm
	Detection with A Given Prompt
	Implementation Details of Detection Statistics
	Detection with Adaptive Selection of Prompts

	Experiments
	Online Detection for Synthetic Data
	Detection With One Prompt
	Detection With Adaptive Selection of Prompts

	Online Detection for Real-World APIs

	Conclusion
	Derivation of The Gini Coefficient for Token Distribution
	Details on Soft Watermark
	Experiments details
	More Experimental Results
	More Results for Detection with One Prompt
	More Results for Detection with Adaptive Selection
	More Results for Detection in Real-World Online Data

	Rebuttal
	Detection Based on Text Similarity: A Simple Baseline
	Demonstration for Responses Collected in Pre-change Stage and Post-change Stage
	Robustness of the Detection Algorithm
	Results for Emergence of Prompt Injection

