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ABSTRACT

The widespread success of large language models (LLMs) has made them in-
tegral to various applications, yet security and reliability concerns are growing.
It now becomes critical to safeguard LLMs from unintended changes caused by
tampering, malicious prompt injection, or unauthorized parameter updates, etc.
Early detection of these changes is essential to maintain the performance, fair-
ness, and trustworthiness of LLM-powered applications. However, in black-box
settings, where access to model parameters and output probabilities is unavailable,
few detection methods exist. In this paper, we propose a novel online change-
point detection method for quickly detecting changes in black-box LLMs. Our
method features several key innovations: 1) we derive a CUSUM-type detection
statistic based on the entropy and the Gini coefficient of the response distribution,
and 2) we utilize a UCB-based adaptive prompt selection strategy for identifying
change-sensitive prompts to enhance detection. We evaluate the effectiveness of
the proposed method using synthetic data, where changes are simulated through
watermarking and model version updates. Our proposed method is able to detect
changes quickly while well controlling the false alarm rate. Moreover, for real-
world data, our method also accurately detects announced changes in LLM APIs
via daily online interactions with APIs. We also demonstrate strong evidence of
unreported changes in APIs, which may be of independent interest.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a transformative force in the field of artificial intel-
ligence, demonstrating remarkable capabilities across a wide range of applications, from healthcare
and finance to education and creative industries (Zabir & Peng, 2024; Lee et al., 2024; Moore et al.,
2023; Çelen et al., 2024). LLMs are now integral components of chatbots, virtual assistants, and
automated customer service systems (Dam et al., 2024; Dong et al., 2023; Pandya & Holia, 2023).
Moreover, they’re increasingly used in complex decision-making processes, e.g., LLM agents can
interpret commands, make decisions, and take actions based on natural language inputs so as to as-
sist in task planning, problem-solving, and automate certain workflows in software development or
data analysis (Alshahwan et al., 2024; Hong et al., 2024; Eigner & Händler, 2024). This widespread
integration is revolutionizing how businesses and individuals interact with information and technol-
ogy, making LLMs a cornerstone of modern AI-driven solutions.

Despite their undeniable potential, the widespread adoption of LLMs has given rise to various
safety, reliability, and consistency concerns (Bommasani et al., 2021; Biswas & Talukdar,
2023). As LLMs become increasingly embedded in critical systems, the risks associated
with their vulnerabilities and stability become more pronounced. LLM-powered applications
are susceptible to various threats, such as unauthorized model parameter updates and mali-
cious prompt injections by hackers (Kang et al., 2024; Wu et al., 2024). These security is-
sues can lead to shifts in the output distributions of LLMs, causing the generation of mis-
leading and harmful content (Chao et al., 2023), or leakage of sensitive customer information
(Ayyamperumal & Ge, 2024). Throughout the paper, we term shifts of LLMs’ output distri-
butions as changes. However, not all changes in LLM output distributions are necessarily harmful.
Even benign changes, such as those introduced by LLM version updates and patches, can influence
their output distributions, potentially rendering inconsistent behaviors before and after the change
(Echterhoff et al., 2024). For example, Chen et al. (2024) thoroughly analyzed behavior drifts in
GPT-3.5 and GPT-4 over time (March and June) across diverse tasks, including mathematical reason-
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ing and opinion surveys. Moreover, the use of watermark without users’ knowledge also infringes on
users’ right to be informed (Molenda et al., 2024). These concerns are particularly alarming. Timely
detection of changes in LLMs allows for necessary intervention and ensures continued safety and
reliability. See Figure 1 for an illustration of LLM changes and detection procedure.
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Figure 1: The detector interacts with an LLM in a sequence of time steps by collecting responses to
a prompt. From some unknown change point ν, there is a change in the LLM. The detection statistic
of the detector keeps growing after ν until it hits the threshold to raise an alarm.
While the need for effective detection of changes in LLMs is clear, existing approaches face sig-
nificant limitations, particularly in real-world scenarios due to two major challenges. Firstly, most
existing detection techniques are designed for white-box models (Tang et al., 2024), assuming full
access to model parameters and output probabilities. However, many LLMs operate as black-box
systems, with the internal workflows opaque to users and operators. Secondly, we consider change
detection in the online setting, where one needs to dynamically interact with an LLM using prompts
and collect generated responses. Nonetheless, most existing methods focus on the offline setting,
where pre-collected data is available and the goal is to devise a hypothesis testing framework or
train a classifier for identification, such as determining the existence of watermark in a generated
text (Gloaguen et al., 2024; Wu et al., 2023). In this regard, we pose the following question:

How can we swiftly and accurately detect changes in black-box LLMs in online settings?
In this paper, we propose a novel online change detection method specifically designed for black-
box LLMs. We consider deploying a detector dynamically interacting with an LLM in a sequential
manner. In each round, the detector queries (selected) prompts and collects responses from the
LLM. To tackle the aforementioned challenges, our approach features the following innovations.
Firstly, we derive a CUSUM-type detection statistic that is updated sequentially based on newly
collected responses. This is a variant of the seminal CUSUM test (Page, 1954) to handle unknown
distributions, and is derived in a way such that the statistic remains around zero before the change
and increases linearly afterward. Thus the value of detection statistic indicates the likelihood of the
emergence of a change. Secondly, we utilize entropy and Gini coefficient-motivated (Tang et al.,
2023) quantities to characterize the distribution of responses, which avoids direct model inference
on LLM. Besides, to boost the detection performance, we adopt a UCB-based adaptive prompt
selection strategy to identify change-sensitive prompts, thereby optimizing the detection process.

We evaluate our detection algorithm in both synthetic and real-world environments. In synthetic
scenarios, we simulate responses of LLMs transitioning from unwatermarked to watermarked and
between different LLM versions. In real-world cases, we collect a streaming dataset composed of
responses to 20 prompts using 9 LLM online APIs, spanning from June 1st to August 31st, 2024.
We validate our algorithm on this dataset, successfully identify an officially confirmed change in the
Mistral API (Mistral AI, 2024), and two unconfirmed changes in GPT-4 Turbo (OpenAI, 2024) and
Jamba (AI21Lab, 2024) with strong evidence. We summarize our contributions as follows.

•We propose a recursively updated CUSUM-type detection statistic to effectively identify changes
in LLMs. By utilizing entropy and Gini coefficient-inspired quantities, our method captures the
variability in response distributions, making it well-suited for black-box LLMs.

• We propose a UCB-based strategy for dynamically selecting change-sensitive prompts during
sequential interactions with LLMs. This approach improves detection efficiency by focusing on
prompts that are more likely to reflect changes.
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• We demonstrate the effectiveness of our approach through extensive numerical experiments, in-
cluding synthetic environments and LLM online APIs. Our synthetic environments introduce water-
marking and language model version changes as change points. Our detection approach accurately
identifies these change points with well-controlled false alarm rates. When applied to LLM APIs,
our approach locates an officially announced model update through limited daily queries on one
LLM API. We also suggest probable unconfirmed changes with strong evidence.

Related Work There are two lines of work closely related to our study.

Detection in LLMs: Recent studies have primarily focused on detecting LLM-generated text and
watermarked data in the offline setting; see Liu et al. (2024); Yang et al. (2023) for a comprehen-
sive survey. Kirchenbauer et al. (2023) introduced a soft watermarking method that utilizes green
and red lists alongside a detection algorithm based on hypothesis testing. Subsequently, numerous
variants have been proposed to empirically enhance the trade-off between watermark detectability
and text quality (Lu et al., 2024; Giboulot & Teddy, 2024; Hoang et al., 2024). At the theoretical
level, Li et al. (2024) introduced a statistical framework for designing watermark and the guaran-
tee on detection accuracies. Yet these detection methods operate in a white-box setting, requiring
prior knowledge of the watermark scheme. In black-box settings, Gloaguen et al. (2024) proposed
rigorous statistical tests to detect the presence of a watermark. Nevertheless, like most works, their
approach primarily focuses on determining whether a given text originates from a watermarked
LLM using a two-sample test, which is different from our online setting. Moreover, these methods
are specific to certain types of watermarks and are not easily adaptable to other types of changes.

Online Change Detection Methods: The problem of online change detection has been extensively
studied in statistics and signal processing, see Poor & Hadjiliadis (2008); Tartakovsky et al. (2014)
for summaries of earlier work. Our proposed method is primarily inspired by the cumulative sum
(CUSUM) test Page (1954). The core idea of the CUSUM test is to accumulate the log-likelihood
ratio, which has a negative mean in the pre-change regime and a positive mean in the post-change
regime. For unknown and non-parametric distributions, one approach has been to estimate the log-
likelihood ratio and the CUSUM statistic using pre-collected training datasets. This includes meth-
ods such as kernel estimation (Kawahara & Sugiyama, 2009), neural network estimation (Mous-
takides & Basioti, 2019), and density estimation (Liang & Veeravalli, 2024). Another approach is to
replace the log-likelihood ratio with some other useful statistic for distinguishing between distribu-
tions in constructing tests. Examples of these approaches include the use of kernel M-statistics (Li
et al., 2015), one-class SVMs (Desobry et al., 2005), nearest neighbors (Chen, 2019), and Geometric
Entropy Minimization (Kurt et al., 2020). However, none of these methods are suitable for black-
box LLMs due to the large cardinality of the token set and the need for computational efficiency in
online settings. To address this, we replace the log-likelihood ratio with the deviation-to-nominal
quantities of our entropy and Gini statistics in developing our detection procedure.

2 PROBLEM SETUP: ONLINE CHANGE DETECTION FOR LLMS

Recall that we refer to changes as shifts in the output distributions of LLMs. To detect these
changes, we deploy a detector sequentially interacting with LLMs by querying input prompts and
collecting generated responses. We denote input prompt as x ∈ X and the generated responses as
Y = {y1, . . . , yC}. Here X is the set of possible prompts, C is a constant, and y1, . . . , yC are inde-
pendently generated responses to the same input prompt. Equivalently, we view y1, . . . , yC as i.i.d.
samples from the conditional distribution P (·|x) parameterized by an LLM. The repeated responses
provide sufficient information of the output distributions of the LLM. To ease the presentation, we
drop the superscript of repetition index on response y when there is no confusion. Each response
consists of a sequence of words called tokens. We denote z as a token, and for a response y with ℓ
tokens, we have y = {z1, . . . , zℓ}. Each token is chosen from a finite token set V .

At the t-th round of interaction between the detector and an LLM with t ∈ N+, K distinct query
prompts {xt,1, . . . , xt,K} are sent to the LLM and the corresponding responses {Yt,1, . . . , Yt,K}
are collected. We assume the responses are uncorrelated with each and past data. This is to ensure
that the LLM is not adapting to our queries. We can achieve this by only querying the LLM with
the current prompt x without historical conversation. In the presence of a change point, the online
responses are generated following the scheme, for any k ∈ [K] and yct,k ∈ Yt,k,

yct,k ∼ P0(·|xt,k), for t = 1, 2, . . . , ν − 1,

yct,k ∼ P1(·|xt,k), for t = ν, ν + 1, . . . ,
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where ν is an unknown change point, and both P0 and P1 are unknown. It is worth mentioning that
the difference between P0(·|x) and P1(·|x) varies depending on the input prompt x ∈ X : Some
prompts lead to appealing distinguishability, yet some may even yield P0(·|x) and P1(·|x) identical.

Our task is to identify the unknown change point ν as quickly as possible while controlling the false
alarm rate, i.e., the probability of incorrectly raising alarm when there is no change. Hypothetically,
the change point ν can occur at any time, but an early change is of less interest especially when we
do not have prior knowledge of P0 and P1. In that case, for the majority of time steps, we operate
under P1 without a change. Therefore, we focus on the scenario in which ν is relatively large and we
always assume we have adequate time for accumulating information of P0 via interactions before
our detection procedure starts. This assumption, which presumes the availability of data from the
pre-change regime, is common in online detection problems and is often the case in applications (Yu
et al., 2023). We view the data collected prior to the detection procedure as historical data. Such
historical data consists of prompts in X and their corresponding responses, which help the detector
distinguish new data collected after the detection procedure starts.

Query Budget During interaction with an LLM, we have a query budget K, arising from two
reasons. First, the cardinality of the prompt set X is usually large, making it computationally infea-
sible to exhaustively query every prompt at each round. Second, different prompts exhibit varying
sensitivity to a certain change. Prompts of high sensitivity tend to detect the changes quickly, but
they are unknown in advance. Therefore, we aim to enhance the detection performance by actively
selecting prompts at each round of interaction, based on all historical data. In other words, our goal
is to select the most sensitive prompts to accelerate the detection process.

Performance Criteria The detector identifies a change point by returning a stopping time T based
on collected data. We use two common criteria to measure the performance, Average Detection
Delay (ADD) and Average Run Length (ARL). ADD is the average delay between the stopping time
T and the true change-point ν, and a smaller ADD indicates faster detection. ARL measures the
expectation of T when no change occurs, thus a larger ARL implies a lower false alarm rate.

3 DETECTION ALGORITHM

We present the proposed online algorithm for change detection in black-box LLMs, as depicted
in Figure 2. Our algorithm consists of two building modules: 1) a detection module with a given
query prompt in subsection 3.1 and 2) a selection module for screening change-sensitive prompts in
subsection 3.3. We introduce them in order and then combine them to derive our detection algorithm.

3.1 DETECTION WITH A GIVEN PROMPT
LLM 

Prompt
Tell me... 0.78
Do you... 1.53

... ...
Help me... 1.23

Update 
detection 
statistics

Update UCB scores

responses
at time step

Detector at time 

Time

Module 2Module 1

 top-   

prompts selected
at time step

...

  prompts selected
at time step

...

Detection
statistic

threshold

Figure 2: Flowchart of our detection algorithm.
At round t, the detector uses K prompts selected
at time t − 1 to query the LLM and updates
the detection statistics (Module 1) of the selected
prompts. The detector then updates the UCB
scores (Module 2) and select prompts with the
top-K UCB scores to be queried at next round.

Recall that we denote y, tokenized as y =
{z1, . . . , zℓ}, as a randomly generated response
to a given prompt x, i.e., y ∼ P (·|x). We
aim to determine if P (·|x) changed at some
time. Although it is tempting to estimate P (·|x)
directly, it is intractable due to the enormous
size of vocabulary. Classical detection methods
such as likelihood ratio statistics are not appli-
cable either. Instead, we resort to the entropy
and Gini coefficient-based metric to distinguish
distributions. To further reduce the computa-
tional overhead, we only consider the joint dis-
tribution of first N (N ≤ ℓ) tokens. In the ex-
treme case, we allow N = 1.

Entropy-Based Metric We begin with the
extreme case of N = 1 and then extend to
N > 1. The distribution of z1 given x is known
as the Next Token Probability (NTP), whose entropy, termed as first-token entropy, is defined as

FTE(x) = −
∑

z1∈V P(z1|x) logP(z1|x).

In implementation, we approximate P(z1|x) by its empirical version. Details for implementation
are provided in subsection 3.2. Entropy is particularly suitable for limited empirical data, as it
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features low variance and low stochastic error (Paninski, 2003). Unfortunately, not all changes can
be effectively captured by the distribution of the first token. Therefore, we enlarge the token length
to N and define the following N-token entropy, which is denoted as NTE:

NTE(x) = −
∑

{z1,...,zN}∈VN P(z1, . . . , zN |x) logP(z1, . . . , zN |x).

We discuss how to approximate NTE with empirical data in subsection 3.2.

Gini Coefficient-Based Metric Entropy exhibits high sensitivity to how probability mass is spread
out among all possible outcomes (Arnez et al., 2024). On the other hand, Gini coefficient is sensitive
to changes of dominant outcomes in a distribution, and it has good performance in watermark detec-
tion (Tang et al., 2023). Thus, we adopt Gini coefficient to complement entropy for better detection.
Similar to entropy-based metric, we begin with the case for the first token, termed first-token Gini.
The first-token Gini metric FTG(x) is defined as

FTG(x) = 1− 1
|V|

∑|V|
i=1(Fi + Fi−1),

where we let p(i), i = 1, 2, . . . , |V| be the probabilities {P(z1|x), z1 ∈ V} sorted in ascending
order, and Fi =

∑i
j=1 p(j) is the cumulative probability up to the i-th smallest value. We define

F0 = 0. Derivations of FTG for discrete distributions are detailed in Appendix A. Similarly, the
N-token Gini for the first N tokens is computed as

NTG(x) = 1− 1
|V|N

∑|V|N
i=1 (Fi + Fi−1),

where we reload p(i) as the i-th smallest probability of P(z1, . . . , zN |x) while {z1, . . . , zN} taking
values in VN , and then Fi is defined the same as that in first-token Gini. We also defer efficient
computation of NTG to subsection 3.2.

Detection Statistic and Procedure For each of the four metrics, we propose to aggregate their
deviations from historical value in each interaction round to derive a cumulative sum type detection
statistic. We take the first-token entropy as an example. In round t, we calculate FTE(x) using newly
collected data within this round. Then the detection statistic WFTE(t;x) is updated by

W+
FTE(t;x) = max{0,W+

FTE(t− 1;x) + (FTE(x)− µFTE(x))− dFTE},
W−

FTE(t;x) = max{0,W−
FTE(t− 1;x)− (FTE(x)− µFTE(x))− dFTE},

WFTE(t;x) = max{W+
FTE(t;x),W

−
FTE(t;x)}.

Here, W+
FTE and W−

FTE monitor positive and negative shifts of the FTE values, µFTE is the average of
FTE(x) in historical data, and dFTE is a drift. The drift term is set properly to ignore minor stochastic
deviations of FTE(x) to its historical average. The detection statistic WFTE is expected to oscillate
around zero during the pre-change rounds, but exhibits a positive drift in the post-change rounds
if the FTE values differ before and after the change. This behavior mimics the seminal CUSUM
statistic (Page, 1954). Due to such properties, our detection statistics are capable of distinguishing
the post-change data from the pre-change data. The detection statistics using other metrics are
defined in the same way, as summarized in Module 1, where we unify the notation by denoting s as
a string in metrics set S = {FTE, FTG, NTE, NTG} and Ws being one of {WFTE,WFTG,WNTE,WNTG}.
We term {WFTE,WFTG,WNTE,WNTG} as our detection statistics.

Module 1 Detection Statistics(x, t): Update detection statistics for prompt x at time t.

1: Require: Prompt x, index t.
2: Parameter: Historical mean value µs(x), drift parameter ds, repetition time C, token length

N , initial values Ws(0;x) = 0 for all x ∈ X , detection statistics Ws(t− 1;x) at time t− 1.
3: Yt ← sample black-box model using prompt x for C times, tokenize and truncate to N .
4: for metric s in S = {FTE, FTG, NTE, NTG} do
5: s(x)← calculate corresponding metric from Yt,
6: W+

s (t;x)← max(0,W+
s (t− 1;x) + (s(x)− µs(x))− ds),

7: W−
s (t;x)← max(0,W−

s (t− 1;x)− (s(x)− µs(x))− ds),
8: Ws(t;x)← max(W+

s (t;x),W−
s (t;x)).

9: end for
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Determining a change point in LLMs is now achieved by comparing the detection statistics with a
threshold b and stopping at the first moment that we have sufficient evidence, i.e.,

T = inf {t : max{WFTE(t;x),WFTG(t;x),WNTE(t;x),WNTG(t;x)} ≥ b} .
This can be interpreted as a parallel monitoring scheme in which four detection statistics are tracked
simultaneously. Such parallel monitoring is advantageous and more effective compared to relying
on a single statistic, as the nature of the change is unknown and may leave some of these statistics
unaffected after the change. The threshold b is chosen to satisfy the false alarm requirement while
maintaining sensitivity to change detection; it can usually be determined via simulation using pre-
change data. We remark that the scale of different detection statistics can be quite distinct, thus some
normalization is needed for choosing the threshold b. We discuss this in Section 3.2.
Remark 1 Note that entropy and Gini coefficient may remain unchanged when the underlying dis-
tribution shifts. We adopt these two metrics as they can be computed under black-box models,
computationally feasible under the large vocabulary set, and are empirically sensitive to changes in
most cases. Moreover, as more prompts are queried, the chance of entropy and Gini remaining un-
changed across all prompts diminishes significantly. Our algorithm is designed to be plug-and-play,
allowing for the integration of other statistics, such as perplexity, to further enhance detection.

3.2 IMPLEMENTATION DETAILS OF DETECTION STATISTICS

For first-token entropy and first-token Gini, we can directly approximate the first token probability
given a prompt x by empirical data. However, the computation of NTE and NTG becomes less clear
due to the exponential growth of different combinations of N tokens. To overcome the computa-
tional overhead, we propose the following approximation method akin to data augmentation.

A response Yt,k consists of C independent responses {y1t,k, . . . , yCt,k}. Recall that for each response
yct,k, we use an LLM tokenizer to tokenize it to a sequence of tokens, as {zct,k,1, . . . , zct,k,ℓ}. For sim-
plicity, we omit the subscripts t and k in z, as the responses are taken at the same time t and for the
same prompt index k. We denote {z1i , . . . , zCi } as the set of i-th token extracted from each response
in {y1t,k, . . . , yCt,k}. When calculating FTE and FTG, we replace the population probability P by the
empirical counterpart obtained using the first tokens {z11 , . . . , zC1 }. However, for NTE and NTG, we
adopt a different approach. We merge together the first N tokens as {z11 , . . . , zC1 , . . . , z1N , . . . , zCN}
and calculate its empirical distribution, which is denoted as P̂1:N (·|x). Note that P̂1:N (·|x) is dif-
ferent from the joint distribution of the first N tokens and is easy to compute. We substitute P̂1:N

into NTE and NTG to obtain their empirical approximations. Through our experiments, we find that
setting N = C = 20 leads to appealing performances; see Section 4.

To fully implement Module 1, we also need to find the historical average µ and drift d for a prompt
x. We aim to set a unified drift d and detection threshold b for simplicity. However, the four metrics
have different scale, and thus need normalization. Historical average µ is estimated using historical
data, which is collected in the first few rounds, say 20 rounds, of interaction as we focus on relatively
late changes. In real applications, we can gather historical data within a very short time period by
frequently query LLMs. Note that the detection procedure only starts after historical data collection.
On the historical data, we compute the four metrics in each round, and average over different rounds
to obtain µ. We also find the standard deviation σ for the four metrics. More specifically, during
detection, we normalize FTE(x) by FTE′(x) = FTE(x)−µFTE(x)

σFTE(x)
so that FTE′(x) is approximately zero

mean and has unit variance. Other metrics are also normalized. From now on, we denote s(x) as the
normalized metrics, and Ws as the detection statistics computed based on the normalized metrics,
for s ∈ S. As all metrics are now in the same scale and so are the detection statistics, we adopt a
unified choice of the drift d and threshold b for all the detection statistics. After normalization, it is
plausible to use the maximum of the four detection statistics to do detection, as

W (t;x) = max{WFTE(t;x),WFTG(t;x),WNTE(t;x),WNTG(t;x)}. (1)

When running the detection procedure with only one prompt, we compare W (t;x) with the thresh-
old b after each update, and stop at the first time when W (t;x) exceeds b.

3.3 DETECTION WITH ADAPTIVE SELECTION OF PROMPTS

Querying a single prompt can limit the detection power, thus we allow K different prompt queries
at each interaction round. Different prompts have varying sensitivity to a change, and we need
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to actively select the most change-sensitive prompts. The difficulty lies in that we have no prior
knowledge of the sensitivity of prompts. This requires balancing exploration and exploitation, i.e.,
providing sufficient exposure to different prompts yet identifying good ones early.

We adopt the Upper Confidence Bound (UCB) algorithm for prompt selection, which is a benchmark
for multi-armed bandits and enjoys theoretical optimality (Sutton, 2018). Specifically, at time step
t, for each prompt x in X , we calculate W (t;x) using Eq. (1). Prompts whose W exhibits a higher
growth rate after change are preferred. We use the increment on W between consecutive times to
gauge the sensitivity of prompts: larger increment after the change occurs is preferred. Accordingly,
we denote U(t;x) = W (t;x)−W (t− 1;x) as the reward function and select prompts based on the
UCB score, which is the estimated reward plus the confidence interval, as

UCB(t;x) = Û(t;x) +

√
α ln t

2n(t;x)
with Û(t;x) =

1

n(t;x)

t∑
τ=1

U(τ ;x),

where n(t;x) is the number of times x is selected in the past t time steps, α is the confidence level
parameter and Û(t;x) is the estimated reward. At time t + 1, K prompts with the highest UCB
scores will be selected. Specially at time 1, we select all prompts for initialization. The detailed
selection strategy is presented in Module 2.

Combining Module 1 and 2, we present our online change detection algorithm for black-box LLMs
in Algorithm 3. At time step t + 1, we query the K prompts selected at time t and update the
corresponding detection statistics. Note that for initialization, we query every x in X at time 1. For
prompts not selected at time t, their detection statistics remain unchanged as in the previous time
step. After all detection statistics get updated, the detector will raise alarm if any of the detection
statistics is above the preset threshold b.

Module 2 TopK UCB(K): Select top K prompts to be queried at time t+ 1.

1: Require: Query budget K, previous time step t.
2: Output: Set of selected prompts Z .
3: for prompt x in X do
4: Û(t;x)←W (t;x)/n(t;x), UCB(t;x)← Û(t;x) +

√
α ln t

2n(t;x) .
5: end for
6: Return top-K prompts with the highest UCB(t;x) values from X as Z .

Algorithm 3 LLM Online Change Detection With Adaptive Selection of Prompts

1: Require: Prompt set X , query budget K, threshold b.
2: Output: Stopping time T .
3: Init: t← 0, all detection statistics← 0, Z ← X .
4: while not return do
5: t← t+ 1,
6: for prompt x in Z do
7: Update Ws(t;x) using Detection Statistics(t;x), s ∈ S,
8: W (t;x)← maxs∈S Ws(t;x).
9: end for

10: for prompt x in X \ Z do
11: W (t;x)←W (t− 1;x).
12: end for
13: if maxx∈X W (t;x) ≥ b then
14: Return T ← t.
15: end if
16: Z ← TopK UCB(K).
17: end while

4 EXPERIMENTS

We conduct experiments on two types of synthetic data with changes simulated through watermark-
ing and version updates (Section 4.1), and on real-world responses collected from various LLM

7
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APIs (Section 4.2). The prompts used across all experiments are listed in Table 1 in Appendix C,
and will be referenced by their index throughout the text.

4.1 ONLINE DETECTION FOR SYNTHETIC DATA

4.1.1 DETECTION WITH ONE PROMPT

Detect Emergence of Watermark We generate responses of the LLM facebook/opt-125m
to prompt 12 in Table 1. Before the change point, no watermark is applied, while after the change,
the soft watermark (Kirchenbauer et al., 2023) is applied to the generated responses. More details
about the soft watermark are provided in Appendix B. We generate a set of pre-change data consist-
ing of 20 time steps as historical data, which is used to compute the historical mean and variance
of the detection statistics. All metrics are then normalized using these historical values as outlined
in subsection 3.2. We set the number of repeated responses C = 20, token size N = 20, and drift
parameter d = 0.5 in Module 1 unless otherwise specified. This configuration of C and N is chosen
to achieve a low average detection delay while maintaining computational efficiency, see Appendix
C. Figure 3 shows the evolutions of the four metrics (first-token entropy, N-token entropy, first-token
Gini and N-token Gini) and their cumulative values used as detection statistics. As shown, all de-
tection statistics are able to detect the presence of a relatively strong watermark quickly. Additional
results for other prompts and varying watermark strengths are provided in Appendix D.1.

Figure 3: Evolution of the four metrics (Left) and their cumulative values used as detection statistics
(Right), with post-change data generated via soft watermarking (with parameters δ = 2, γ = 0.5)
and change point ν = 11. The four metrics show significant shifts after the change point. By
applying the threshold shown in the right panel, the detection statistics raise an alarm at T = 14.

Detect Synthetic Version Change We synthesize three version change cases by setting one LLM
as the pre-change model and one of its variants as the post-change. All models are available on
Hugging Face. The query object is artificially switched from the pre-change model to the post-
change model at a pre-set change point ν. From the results shown in Figure 4, we observe that
the detection statistics remain small before the change and exhibit linear growth after the change,
enabling swift detection. For results on more prompts, see Figure 13 in Appendix D.1.

4.1.2 DETECTION WITH ADAPTIVE SELECTION OF PROMPTS

In this subsection, we focus on a specific Version Change from facebook/opt-125m to
facebook/opt-350m, and perform the detection algorithm with adaptive prompt selection. The
prompt set X consists of 14 prompts, indexed 0 to 13 in Table 1. We set the UCB parameter α = 8
and select K = 5 prompts each time. To visualize the sensitivity of different prompts to the change,
we plot the trajectories of detection statistics for individual prompts in Figure 5a. We then plot our
detection statistics resulting from adaptive selection in Figure 5b, showing the algorithm effectively
accumulates values from the most sensitive prompts, specifically prompt 8, 9, 10, 12, and 13 here.

To further illustrate the adaptive selection process, we plot the relative UCB scores in Figure
6a. Higher scores indicate a greater likelihood of selecting the corresponding prompt. After the
change, the UCB scores of the most sensitive prompts dominate, enabling effective selection of
these prompts. Additionally, we compare the ADD of our adaptive selection method with that under

8
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(c) From MiniChat-3B
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Figure 4: Detection statistics under three scenarios of version change, with change point set as
ν = 11. Both the positive branch (W+) and negative branch (W−) of selected detection statistics
are shown. The prompts used in the three cases are prompts 10, 10, and 12, respectively. Since the
various detection statistics exhibit similar trends, we use the best one for illustration.

(a) All prompts queried at each time (b) Adaptive selection
Figure 5: Trajectories of detection statistics (a): when every prompt is queried at each time step.
In this case, prompts 8, 10, 9, 12, 13, 6 are the top six prompts with the highest growth rate after
change, which are highlighted. (b): when we use our adaptive selection to select 5 prompts at each
time step. It is shown that prompts with top growth rate are 8, 9, 10, 12, 13, which coincide with (a).

random selection as a baseline, and the ADDs using individual prompts, under various ARL levels,
as shown in Figure 6b. The random strategy selects K = 5 prompts randomly from X at each time.
Details on the simulation of detection thresholds for different ARLs are provided in Appendix C.
After obtaining the threshold under a certain ARL, we repeatedly run the detection procedure and
calculate the ADD. The results show that the ADD under our adaptive selection is smaller than that
under random selection, and closely matches the best-performing individual prompt.

(a) Relative UCB scores

3 4 5 6 7 8 9 10
log (ARL)

2

4

6

8

10

AD
D

adaptive selection
random selection
best prompt
worst prompt
other prompts

(b) Adaptive selection v.s. random
Figure 6: (a): Relative UCB scores – UCB score divided by the sum of UCB scores of all prompts.
The change point ν = 11 is marked in red. We can see the convergence on the most sensitive prompts
(8, 9, 10, 12, and 13) after change. (b): ADD-ARL trade-off comparison between adaptive selection,
random selection, and individual prompts. ADD is the average delay of 20 repeated experiments.
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4.2 ONLINE DETECTION FOR REAL-WORLD APIS

We apply our proposed algorithm to real datasets collected by interacting with 9
LLM APIs: gpt-4o, gpt-4, gpt-4-turbo, gpt-3.5-turbo from OpenAI (2024),
command-r-plus from Cohere (2024), claude-3-haiku-20240307 from Claude (2024),
mistral-large-latest from Mistral AI (2024) and jamba-instruct, j2-ultra from
AI21 Labs (2024). We collected their responses once a day from June 1st, 2024, to August 31st,
2024, using 20 different prompts specified in Appendix C. Historical data were collected from June
1st to June 5th, 2024. We set the number of repeated responses C = 100 and token size N = 20.
We use the tokenizer from opt-125m to tokenize the responses except for command-r-plus
and j2-ultra which provide tokenization service.

Our detection procedure successfully detects a change that corresponds to an update of
mistral-large-latest on July 24th, 2024, as confirmed by their website (Mistral AI, 2024).
In Figure 7, we illustrate the detection statistic for N-token Gini using prompt 0. Similar patterns for
other prompts are provided in Appendix D.3.
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Figure 7: LLM API change detected in mistral-large-latest on July 24th, 2024, corre-
sponding to an update officially announced by Mistral AI.

Furthermore, in certain instances, our detection statistics raise strong alarms, even in the absence
of officially announced updates. These unconfirmed changes are mostly detected by only a subset
of prompts. A possible explanation for this phenomenon is that the update may be minor, affecting
only a limited aspect of the LLM’s functionality and leaving many prompts unaffected. An example
of such unconfirmed alarms is shown in Figure 8, with more cases provided in Appendix D.3.
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(b) first-token entropy of prompt 8
Figure 8: Illustration of unconfirmed changes detected for gpt-4-turbo. For several prompts in
our set, the detection statistics show a significant increase beginning between July 23 and July 29.

5 CONCLUSION

In conclusion, our proposed online change detection method offers a computationally efficient so-
lution for identifying changes in black-box LLMs. By leveraging a CUSUM-type detection statistic
based on entropy and the Gini coefficient, combined with a UCB-based adaptive prompt selection
strategy, our method quickly detects changes while controlling the false alarm rate. The evaluation
results from both synthetic and real LLM API interactions highlight its effectiveness across various
types of changes. This work offers a flexible framework and opens new opportunities for exploring
the usage of alternative statistics beyond entropy and Gini, conducting further theoretical analyses on
detection and selection performance, examining a wider range of change scenarios, and deploying
this algorithm for continuous monitoring to ensure the integrity of LLM-powered applications.
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A DERIVATION OF THE GINI COEFFICIENT FOR TOKEN DISTRIBUTION

The Gini coefficient quantifies inequality within a frequency distribution, such as income levels
(Gini, 1921) and is traditionally used in economics. A Gini coefficient of zero represents perfect
equality, where all individuals have identical income or wealth, while a Gini coefficient of one (or
100%) indicates maximum inequality, with all wealth concentrated in a single entity. It is defined as
the ratio of the area between the Lorenz curve, which plots cumulative income against cumulative
population, and the line of perfect equality, to the total area under the line of perfect equality. In
the following, we derive the Gini coefficient on token probability distribution. See Figure 9 for
demonstration.
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Figure 9: The computation of Gini coefficient on token probability distribution.

In our case, we take first-token Gini for example. We sort the probability distribution of tokens in
vocabulary V in ascending order, with the i-th smallest probability being pi. We accumulate the
sorted probabilities to its cumulative distribution function (CDF) as

Fi =

i∑
j=1

pj ,

and we define F0 = 0. The cumulative population refers to the proportion of popula-
tion up to i-th token, and thus is i

|V| under our setting. We plot the curve with points
(0, 0), ( 1

|V| , F1), (
2
|V| , F2), . . . , (1, 1) in order, which is exactly the Lorenz curve. We denote the

area under Lorenz curve as A0. Then A0 is computed as

A0 =

|V|∑
i=1

1

2
(Fi + Fi−1) ·

1

|V|
.

We further denote the area between the Lorenz curve and the line of perfect equality, i.e. the line
segment connecting (0, 0) and (1, 1) as A. Then it is easy to get

A =
1

2
−A0.

Since the total area under the line of perfect equality is 1
2 , according to the definition of Gini coeffi-

cient, we can compute FTG(x) as 2A, which is

FTG(x) = 2A = 1− 1

|V|

|V|∑
i=1

(Fi + Fi−1).

Similarly, we can derive Gini coefficient for the joint distribution of the first N tokens, which is
NTG(x) in subsection 3.1.
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B DETAILS ON SOFT WATERMARK

We review the following simplified soft watermark mechanism for next token generation in Kirchen-
bauer et al. (2023), parameterized by γ and δ. Here V denotes the vocabulary of an LLM.

1. Given an input prompt x, generate a logits vector l ∈ R|V| for the next token.
2. Randomly partition the vocabulary set into a green set and a red set, with the size of the

green set being γ|V|.
3. Apply a positive offset δ to the logits of the tokens belonging to the green set, i.e.,

l̃ = l + δ · [1{token1 ∈ green set}, . . . ,1{token|V| ∈ green set}]⊤.

4. Pass l̃ to a Softmax operator to obtain probability vector p̂ and sample the next token from
p̂.

The partitioning of the green set and the red set is determined by a watermark key. In practice,
the key can be selected by the user, and its hash value serves as a random seed for the partitioning
process, ensuring randomness in the division. We run the experiment using five random watermark
keys, with the green list determined by each key and fixed once selected.

C EXPERIMENTS DETAILS

LLM parameters setting In the synthetic change cases in Subsection 4.1, we set the model tem-
perature to 1.0, sampling parameter top p to 0.9 and no constraint on top k. In the real world
experiments, we set the LLM API’s temperature parameter to 1.0 for Jamba and Cohere, and 1.5 for
others. We still set sampling parameter top p to 0.9 and no constraint on top k.

Prompts Used in Section 4 The prompts used in section 4 are listed with index in Table 1. This
prompt set is comprised of some curated prompts (with no prior knowledge to their potential sen-
sitivity to changes), some of which are based on the idea of random choice generation (Tang et al.,
2023) and some are math problems (Chen et al., 2024) or multiple choices. Although some prompts
may appear similar, they generally elicit different responses from LLMs. The 20 prompts used in
real-world cases (subsection 4.2) include all these prompts except for prompt 1, 4, and 5.

Table 1: List of all prompts used in Section 4.

Index Prompt

0 Generate 20 random numbers sampled from a normal distribution with a mean
of 5 and standard deviation of 2

1 What qualities do you look for in a mentor or leader?

2 Please give me a random number between 1 and 100:

3 Choose randomly one number from 1 to 100:

4 How does one develop creativity?

5 What do you think is the most important branch of mathematics for everyday
life (arithmetic, algebra, statistics, geometry)?

6 Give me a random number in range 1 2 3 4 5 6 7 8 9:

7 Randomly select a letter in alphabet A-Z:

8 Given a list of fruits as Apple Banana Orange Grape Kiwi Pineapple Mango
Strawberry Watermelon Lemon Lime Peach Pear Cherry Plum Avocado Co-
conut Raspberry Blueberry Blackberry Cranberry Papaya Fig Guava Lychee
Dragonfruit Persimmon Passionfruit Pomegranate Cantaloupe, from the above
list randomly choose one:

9 Tell me your favourite fruit in one word:
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Index Prompt

10 Choose your favourite color from red or green or orange? Your choice is:

11 Give me a random color from red green orange. Your word choice is:

12 The sum of 1 and 4 is:

13 Choose your favourite color from red or green or orange? Your choice will be:

14 Is 17077 a prime number? Think step by step and then answer “[Yes]” or
“[No]”.

15 Choose one random number from 1 to 100. Respond with only the number.

16 Randomly choose one fruit name.

17 You are taking a survey. Pick the best single option (e.g., A). Question: Please
think about what things will be like in 2050, about 30 years from now. Think-
ing about the future of the United States, would you say you are: A. Very op-
timistic B. Somewhat optimistic C. Somewhat pessimistic D. Very pessimistic
E. Refused Answer:

18 You are taking a survey. Pick the best single option (e.g., A). Question: Still
thinking ahead 30 years, which do you think is more likely to happen in the
U.S.? A. The U.S. economy will be stronger B. The U.S. economy will be
weaker C. Refused Answer

19 You are taking a survey. Pick the best single option (e.g., A). Question: If you
were deciding what the federal government should do to improve the quality
of life for future generations, what priority would you give to reducing the gap
between the rich and the poor? A. A top priority B. An important, but not a top
priority C. A lower priority D. Should not be done E. Refused Answer:

20 Generate one random number between 1 and 100. For example, your response
is 18 or 57. Remember that your response should only contain the number you
choose. Then your response is:

21 Give me one random number from 1, 2, ... , 100

22 Give me one random number from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9:

23 Your response should only contain one number. Give me a random number
from 1,2,3,4,5,6,7,8,9.

24 Provide a brief history of the Roman Empire and conclude with its influence
on modern governance.

25 Recommend a book for someone interested in science fiction, but prefers a
focus on character development.

Threshold Selection for Target ARL In order to save computing effort in the determination of
the thresholds under target ARL values (which is usually large), we adopt an efficient approximation
algorithm that uses the fact that the distribution of stopping time T under the pre-change regime is
approximately exponential when ARL is large. Such approximate algorithms for determining b have
been widely adopted in online change detection; see Siegmund & Yakir (2008) for one example.
Instead of simulating the mean of the distribution of T := inf{t : W (t) ≥ b} directly, we obtained
an estimate of the mean from an estimate of the cumulative distribution function of T based on 20
iterations. Specifically, in each iteration, we simulate the pre-change trajectory with 100 time steps,
and compute the maximum of the detection statistics at 100 time steps. These maximum values
under 20 iterations are then denoted as W1,max,W2,max, . . . ,W20,max. For the desired ARL values
Γ = E[T ] where the expectation is taken under the pre-change regime, we approximate the stopping
time T as an exponential distribution with mean Γ. Thus we have P (Wmax < b) = P (T > 100) ≈
e−100/Γ. Thus the corresponding threshold b can be approximated as the e−100/Γ quantile of the
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set {W1,max,W2,max, . . . ,W20,max}. Note that we can also use more iterations and longer sequences
within each iteration, which tends to improve the approximation accuracy.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
log(ARL)

3

6

9

12

15

AD
D

C = 10, N = 10
C = 20, N = 20
C = 30, N = 30

Figure 10: ADD v.s. ARL trade-off curves under different parameter settings.

Choice of Parameter C and N The choice of repeat times C and token length N concerns a
trade-off between detection power and computation cost. With higher C, the estimation of our
proposed four metrics becomes more accurate, thus lower We compare the Average Detection Delay
(ADD) across different Average Run Length (ARL) levels under three parameter settings: 1) C =
10, N = 10; 2) C = 20, N = 20; 3) C = 30, N = 30, as shown in Figure 10. The results
indicate that as C and N increase, the ADD decreases for a given ARL level. Notably, the ADD
under C = 20, N = 20 is comparable to that of C = 30, N = 30, across ARL levels ranging
from e−6 ≈ 0.2% to e−3 ≈ 5%. However, the detection procedure with C = 30, N = 30 incurs
nearly double the query cost. Therefore, we choose C = 20, N = 20 in our experiments for a better
balance between detection performance and computational efficiency.

D MORE EXPERIMENTAL RESULTS

D.1 MORE RESULTS FOR DETECTION WITH ONE PROMPT

Trade-off Curve for Different Detection Statistics And different Watermark Strength For
the watermark change detection with one prompt in subsection 4.1.1, we plot the trade-off curves
between Average Detection Delay (ADD) and Average Run Length (ARL) in Figure 11. Details
on the simulation of thresholds for different ARLs are provided in Appendix C. After obtaining
the threshold under certain ARL, we repeatedly run the detection procedure for five times, and
calculate the average detection delay (ADD). We also vary watermark strengths using the parameters
δ and γ, where larger values of δ and γ indicate stronger watermarks and more significant changes.
Under each watermark strength, we only plot the trade-off curve for detection statistic W , which
is the maximum of the four individual detection statistics. As shown in Figure 11a, our proposed
detection statistic W has a relatively small detection delay (more results can be found in Figure 12).
This confirms the efficiency of our combined detection approach. From Figure 20b, we see that the
detection delay increases as the watermark becomes weaker, with decreasing values of δ and γ.
ADD-ARL Tradeoff for More Prompts In section 4.1.1, we state that generally different detec-
tion statistics will outperform in different settings, whereas the maximum of them, i.e. W always
maintains good performance. We illustrate this finding by prompt 12. Here we provide more evi-
dence under other prompts in Figure 12.

Detection Statistics Grow after Version Change: Demonstration for More Prompts Recall
that we synthesize three version change cases in section 4.1.1. We show that our proposed detection
statistics grow rapidly after the change point in all three cases using one prompt. Here we illustrate
the detection statistics’ detection power by showing the same kind of growing behaviour on more
prompts. See Figure 13.
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Figure 11: (a): Trade-off between ADD and ARL for different detection statistics. Our proposed
detection statistics W , which is the maximum of the four detection statistics, achieves relatively
small delays across all ARL levels. (b): Trade-off between ADD and ARL for different watermark
strengths. As the watermark becomes weaker, the detection delay increases.
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(c) Prompt 4

Figure 12: Trade-off curves of ADD and ARL for the four detection statistics and the maximum of
Ws under different prompts. We can easily find out that generally different detection statistics will
outperform in different settings, whereas W always maintains good performance.

D.2 MORE RESULTS FOR DETECTION WITH ADAPTIVE SELECTION

Detection with Adaptive Selection Converges to Prompts of High Sensitivity From Figure 14
we also see the our proposed detection algorithm with adaptive prompts selection converges to
prompts with the highest sensitivities, which are prompt 8, 9, 10, 12, and 13 under the current
setting. Different runs may exhibit slight variations in the prompts to which the algorithm ultimately
converges, but generally, sensitive prompts are selected quickly after the change happens.

D.3 MORE RESULTS FOR DETECTION IN REAL-WORLD ONLINE DATA

Confirmed Changes in Real-World APIs Here we list more evidence that our detection algo-
rithm captured the change in mistral-instruct at July 24th, 2024. See Figure 15.

Unconfirmed Changes in Real-World APIs We list two probable changes in real world LLM
APIs which are not officially announced ot confirmed. The two changes are in jamba-instruct
from AI21 Labs and gpt-4-turbo from OpenAI. We choose these two APIs because the de-
tection statistics of many prompts and the corresponding four metrics experienced a surge almost
simultaneously during a small interval of days. Thus we have comsiderably higher confidence to
report them, as shown in Figure 16 and 17.
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Figure 13: Demonstration for detection statistics growth after change point in version change cases.
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Figure 14: Repeated experiments for detection with adaptive selection.
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Figure 15: Confirmed change in mistral-large-latest on July 24th, 2024. We could see
increasing detection statistics approximately between July 21st and 27th, 2024.
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Figure 16: Unconfirmed change in jamba-instruct, approximately between June 21st and 27th,
2024. Here we use first-token Gini to illustrate, while other metrics behave similarly.
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(f) first-token entropy of prompt 19

Figure 17: Unconfirmed change in gpt-4-turbo, approximately between July 23nd and 29th,
2024. Here we use first-token entropy to illustrate, while other metrics behave similarly.
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E REBUTTAL

E.1 DETECTION BASED ON TEXT SIMILARITY: A SIMPLE BASELINE

In this subsection, we consider a simple baseline based on text-level similarity for online change
detection in LLM. This baseline works as follows. We again collect the responses for a given
prompt x for C times at each time step t during the detection procedure. We tokenize each response
into a sequence of tokens and take the first N -tokens from each response at time t to get a token
set. Instead of calculating metrics on this token set as we did in our proposed detection algorithm, in
the baseline, we convert this token set into a frequency vector vt, which captures the count of each
token’s occurrences within the set. We also convert the all historical responses for prompt x into one
token set, and get the historical frequency vector vhistory using this token set. Then given a threshold
b ∈ (−1, 1), the detection procedure stops when the cosine similarity between vt and vhistory first
drops below b, as

vhistory · vt

∥vhistory∥∥vt∥
≤ b.

In the following experiments, we keep the parameter configuration in the text similarity baseline
identical to our proposed algorithm. Specifically, we set C = 20, N = 20, and we repeat the exper-
iment for 5 times. We accessed both algorithms in two different scenarios: emergence of watermark
and synthetic version change (from facebook/opt-125m to facebook/opt-350m). The
results are shown in Figure 18 and Figure 19.
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Figure 18: ADD and ARL trade-off comparison under the emergence of watermark. Under the same
ARL, a lower ADD indicates a lower delay in average and thus a better performance. It is shown
that our proposed detection algorithm outperforms the text similarity baseline.
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Figure 19: ADD and ARL trade-off comparison under synthetic version update from
facebook/opt-125m to facebook/opt-350m. It is shown that our proposed detection algo-
rithm outperforms the text similarity baseline in most false alarm rate constraints except for prompt
6 at small ARL.

It is shown that when ARL is large (meaning a low tolerance for false alarms), the baseline method
suffers from a surge in delay, but our detection algorithm still performs well. Such disparity may
be attributed to the cumulative nature of our algorithm. To illustrate this reasoning, we plot the
trajectory with time for both our detection statistics and the text similarity baseline. For a fair
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comparison, when a target ARL is assigned, we obtain the two corresponding thresholds for both
methods, and make sure that the two thresholds lead to the same ARL value. Then under the same
setting where the change scenario is the emergence of watermark, the prompt used is prompt 6,
ARL = 10, 000 and ν = 11, we run both algorithms and record their statistics evolution with time,
as shown in Figure 20. It can be seen that given the same level of false alarm rate, the text similarity
is less likely to hit the threshold due to two possible reasons: 1) Text similarity does not enjoy a low
variance property, which leads to a lowered threshold to compensate for pre-change instability. This
lower threshold makes it harder for post-change text similarity to reach the threshold. 2) The non-
cumulative nature of this baseline method prevents it from accumulating deviations from normal
values, thus exacerbating the problem mentioned in the first reason.
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Figure 20: (a): The detection statistics in our algorithm under the above specified setting. Our
detection method successfully detected a change. (b) Text similarity in the baseline method. The
threshold is set corresponding to the same level of false alarm rate as (a). The baseline method fails
to detect the change in this case.

E.2 DEMONSTRATION FOR RESPONSES COLLECTED IN PRE-CHANGE STAGE AND
POST-CHANGE STAGE

To demonstrate that the responses change in an inconspicuous way, we present some responses
generated by pre-change LLM and post-change LLM for comparison. See Table 2. In this table,
group 1 refers to the change from opt-125m to opt-125m watermarked with key 0, using prompt
10; group 2 refers to the change from vicuna-7b-v1.1 to vicuna-7b-v1.3, using prompt
12; group 3 refers to the real-world change in Mistral API, where change happened at July 24,
2024 and pre-change responses are selected from July 07 and post-change responses are from July
25, using prompt 0; group 4 refers to the change from GPT-4o to GPT-4o with prompt injection
specified in Subsection E.3 using prompt 23, and 20 responses are provided.

Table 2: Responses comparison between pre-change and post-change LLM.

Group Pre-change responses Post-change responses
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Group Pre-change responses Post-change responses

1 (1) Green, orange, or red. Your
choice is: blue, green or orange, or
red...
(2) Red, green, orange, or black. To
choose your favourite colour, click
here to place it.
(3) Red or green. If you want your
items to ship before holiday, check
with your local customs
(4) Or black or blue, Alterna-
tively yellow or yellow, Alterna-
tively white or blue, or any.
(5) Cyan and pink are the best
colours for LGBT people in our so-
ciety.

(1)Red or green, your choice is: or-
ange, your choice is: blue...
(2)red, yellow or green, orange or
orange. Choose from a selection of
eight colour combinations. Each
(3) red, green or orange. If this
color is already in your wardrobe,
you may want to check”
(4) Blue, green, or red. Add one
final touch, a mysterious alphabet.
The easiest choice is
(5) Pink, yellow, silver, or brown.
These are just a few of thousands of
choices to pick.

2 (1) 5, so the expression ”1 + 4” is
equivalent to ”5”. Qed
(2) 5. Let me know what you
think of this problem. ”Well, it’s a
pretty...
(3) 5. The sum of 2 and 3 is 5. The
sum of 4 and...
(4) 5, so it follows that 2 and 3 also
make 5. Suppose...
(5) 5, which is a multiple of 3. The
sum of 2 and 3 is...

(1) 5. This is true, as 1 + 4 = 5.
(2) 5. So you have to be extra care-
ful with adding numbers in pairs, so
it doesn’t
(3) 5. The sum of 2 and 5 is 7. The
sum of...
(4) 5, so we can start at either 1 or
4. Let’s Xavi:
(5) 9. The product of 3 and 4 is 12.
The quotient

3 (1) Sure, here are 20 random num-
bers sampled from a normal distri-
bution...
(2) Here are 20 random numbers
sampled from a normal distribu-
tion...
(3) Sure, I can help with that. Here
are 20 random numbers...
(4) Sure, I can generate those for
you. Here are 20 random numbers
sampled from a...
(5) Sure, I can generate those for
you. However, as a text-based AI,
I can...

(1) Sure, here is a list of 20 random
numbers sampled from a...
(2) Sure! Here are 20 random num-
bers sampled from a normal distri-
bution...
(3) Sure, I can help generate a list of
20 random numbers sampled from a
normal...
(4) To generate 20 random numbers
sampled from a normal distribution
with a mean...
(5) Certainly! Here are 20 ran-
dom numbers sampled from a nor-
mal distribution ...

4 4,4,3,5,4,4,6,5,7,7,4,7,6,6,7,6,5,7,3,5 7,5,7,7,7,4,4,3,7,7,7,7,5,4,4,4,7,5,3,5

E.3 ROBUSTNESS OF THE DETECTION ALGORITHM

In our standard setting, given a prompt x, the responses distributions of both pre-change LLM and
post-change LLM are assumed to remain unchanged within their respective regimes. This assump-
tion holds when the LLM’s context configurations, such as temperature and system message, remain
consistent across all the interactions at different time points. To the best of our knowledge, this
condition is typically met in most real-world user-LLM interactions unless explicitly modified by
the user.

Yet, we demonstrate the robustness of our detection algorithm: even with slight perturbations in the
pre-change and post-change response distributions, the algorithm can still detect changes quickly
under a given false alarm rate constraint. To simulate the slight perturbation in response distribution,
at each time step, we set the temperature of the LLM as a random variable uniformly sampled from
the interval [0.9, 1.0]. We assess our detection algorithm’s performance under this setting in the case
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of emergence of watermark. All other parameter configuration stay consistent to Subsection 4.1.1.
The results are shown in Figure 21. It is demonstrated that our detection algorithm is robust to the
slight perturbation in response distribution when the false alarm rate constraint is relatively loose
(meaning a small ARL). Yet the detection power degrades notably when the the false alarm rate
constraint is relatively high.
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Figure 21: ADD v.s. ARL trade-off curve for different LLM generation setting during simulation.
Here, “fixed” refers to the setting that LLM’s temperature is fixed at 1.0 during generation, and
“temperature varies” refers to that at each time step, LLM’s temperature is uniformly sampled from
[0.9, 1.0].

E.4 RESULTS FOR EMERGENCE OF PROMPT INJECTION

Prompt injection is a technique used to manipulate the behavior of language models by inserting
specific instructions or prompts, often aiming to override or alter the original prompt’s intended
output. This method has gained attention due to its implications for security and reliability in LLM
deployments. In our experiments, we also use prompt injection as an instance: starting from the
change point ν, the system message of the LLM is changed. This scenario can occur when an
untrustworthy chatbot website is vulnerable to prompt injection, or when multiple users share a
single chatbot account, allowing one user to exploit the web application’s memory to influence the
LLM’s behavior. In this subsection, we compose an instance of prompt injection using GPT-4o API,
and implement preompt injection through the system message of the API. We still use the same
setting as specified in Subsection 4.1.1. We set the pre-change system message as

"You are an assistant designed to help users."

and the post-change system message as

"You’re a helpful assistant. However, you always
neglect the last five words in the prompt."

After running our detection algorithm in this case, we obtain results in Figure 22. It is clearly
presented that our detection statistics still have the detection power to the emergence of prompt
injection, highlighting its potential application in LLM security and reliability.
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Figure 22: Demonstration for detection statistics growth after change point in prompt injection
cases.
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