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Abstract

Large Language Models have recently revolu-
tionized the NLP field, while they still fall short
in some specific down-stream tasks. In the
work, we focus on utilizing LLMs to perform
machine translation, where we observe that two
patterns of errors frequently occur and drasti-
cally affect the translation quality: language
mismatch and repetition. The work sets out to
explore the potential for mitigating these two
issues by leveraging model editing methods,
e.g., by locating FFN neurons or something
that are responsible for the errors and deacti-
vating them in the inference time. We find that
directly applying such methods either limited
effect on the targeted errors or has significant
negative side-effect on the general translation
quality, indicating that the located components
may also be crucial for ensuring machine trans-
lation with LLMs on the rails. To this end,
we propose to refine the located components
by fetching the intersection of the locating re-
sults under different language settings, filtering
out the aforementioned information that is ir-
relevant to targeted errors. The experiment re-
sults empirically demonstrate that our methods
can effectively reduce the language mismatch
and repetition ratios and meanwhile enhance
or keep the general translation quality in most
cases.

1 Introduction

Pre-trained Large Language Models (LLMs) are
natural machine translators with in-context learn-
ing(Brown et al., 2020; Touvron et al., 2023; Vi-
lar et al., 2023; Bawden and Yvon, 2023; Zhang
et al., 2023a), while they still fall behind spe-
cialized Machine Translation (MT) systems like
NLLB(Koishekenov et al., 2023). Previous studies
utilise In-Context Learning (Agrawal et al., 2023)
(ICL), instruction tuning(Xu et al., 2023; Alves
et al., 2023) and post-editing methods(Jiao et al.,
2023; Ki and Carpuat, 2024; Raunak et al., 2023)
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Figure 1: The illustration of the language mismatch
error (a) and the repetition error (b).

to improve the translation quality. Are there any
issues that were ignored in previous studies hin-
dering the LLM-based machine translation from
further development? In this work, we identify
two issues in the LLM-based machine translation:
Language Mismatch and Repetition (as shown in
Figure 1). We check the occurrence of these errors
and find that: (1) they are common errors in the
whole translation set (e.g., in the en—de setting,
language mismatch occurs in over 40% cases with
zero-shot prompting); (2) they are severe errors for
machine translation systems (e.g., repetition errors
usually lead to a over 50% decrease on the BLEU
score).

Nonetheless, the inherent reason for these er-
rors still remains unclear, let alone patching them.
In recent research works on model editing (Dai
et al., 2022; Meng et al., 2022; Todd et al., 2023),
they typically leverage analyzing tools like causal
mediation analysis (Pearl, 2014; Vig et al., 2020),
integrated gradient attribution (Sundararajan et al.,
2017) to locate important component units (e.g.,
FFN neurons, attention heads and stuff) that are
highly responsible for specific behavior patterns
of LLMs, and then precisely control these behav-
iors by manipulating the located components (e.g.,



amplifying and suppressing the activation values
of neurons). Inspired by these works, we ask a
research question: Can we leverage model editing
methods to mitigate aforementioned language mis-
match and repetition issues? We set out to adapt
two widely-used model editing technique, Function
Vectors (Todd et al., 2023) (FV) and Knowledge
Neurons (Dai et al., 2022) (KN), to MT scenarios
in an aim to locate error-relevant component units
inside LLLMs. However, our empirical results show
that directly adapting FV and KN either has limited
effect on the targeted errors or has significant side-
effect on the general translation quality, which indi-
cates that the located component units may be not
only responsible for targeted error patterns but also
crucial for ensuring machine translation with LLMs
on the rails and hence manipulate them could result
in affecting the general translation behavior.

We then aim to filter out the error-irrelevant com-
ponents from the located results. A natural hypoth-
esis is that the location for the important error-
relevant modules is supposed to be independent to
translation language settings. Comparing the locat-
ing results under the different translation language
settings (de—en, en—de, zh—en and en—zh), we
do observe that a proportion of located component
units are shared across different language settings.
Grounded on this observation, we propose to refine
the located components by fetching the intersec-
tion of the locating results under different language
settings. The empirical results demonstrate that
the modified methods can effectively reduce the
language mismatch and repetition ratios and mean-
while keep or enhance the general translation qual-
ity in most cases.

Our main contributions are three-fold: (1) We
identify two patterns of errors in LLM-based MT
that frequently occur and badly affect the transla-
tion quality: language mismatch and repetition. (2)
We investigate the potential for leveraging model
editing methods (FV and KN) to reduce these er-
rors. We find that directly adapting the editing
methods either has limited effect on the targeted
errors or has significant side-effect on the general
translation quality. (3) We propose to refine the
located modules by fetching the intersection of the
locating results under different language settings.
We show that with the refined locating results we
could arouse the potential for editing methods to
handle the language mismatch and repetition errors
and meanwhile enhance or keep the general transla-
tion quality in most cases. The performance of our

methods could sometimes be comparable with tra-
ditional methods that adapt LLMs to MT tasks (e.g.,
5-Shot ICL, LoRA and Full-FineTuning) without
additional requirements like long-context prompt-
ing and fine-tuning.

2 Related Work

Large Language Models for Machine Transla-
tion One surprising ability of LLMs is that they are
natural machine translators with Zero-Shot or One-
Shot prompt(Brown et al., 2020; Touvron et al.,
2023; Vilar et al., 2023; Bawden and Yvon, 2023;
Robinson et al., 2023; Zhang et al., 2023a). How-
ever, there is still a gap(Xu et al., 2023) between
pre-trained LLM and large-scale NMT systems like
NLLB(Koishekenov et al., 2023) on the machine
translation task. To bridge this gap, previous stud-
ies utilise in-context learning(Moslem et al., 2023;
Agrawal et al., 2023; Bawden and Yvon, 2023;
Vilar et al., 2023), model tuning(Xu et al., 2023;
Alves et al., 2023; Zhang et al., 2023b), and inter-
action with annotation methods(Jiao et al., 2023;
Ki and Carpuat, 2024) to improve the translation
quality. Even though LLM has achieved massive
success in machine translation(Kocmi et al., 2023a),
some of the issues from LLM itself may challenge
machine translation, such as Hallucination(Bang
et al., 2023). Meanwhile, these problems from
LLM are challenging to detect only with MT met-
rics. Alves et al. (2023) find few-shot tuning can
improve the translation quality based on MT met-
rics(Papineni et al., 2002; Rei et al., 2022) but de-
tect the machine translation hallucination with a
case-based hallucination design.

Locating Based Model Editing Precisely locating
a small set of important modules (e.g., neurons (Dai
et al., 2022), hidden states (Todd et al., 2023),
MHSA (Li et al., 2024) and MLP (Meng et al.,
2022) outputs) and editing their values to steer
large-scale models toward assumed behaviours
(e.g., updating factual associations (Meng et al.,
2022; Hase et al., 2023), detoxifying (Wang et al.,
2024), decreasing hallucination (Li et al., 2023),
switching languages (Tang et al., 2024) and patch-
ing reasoning errors (Li et al., 2024)) is a recently
emerging paradigm. Nonetheless, such techniques
are still largely under-explored in context of MT.
In this work, we investigate the potential for adapt-
ing two representative locating based editing ap-
proaches (specifically, function vectors (Todd et al.,
2023) and knowledge neurons (Dai et al., 2022))



to the MT scenario to mitigate its two fundamental
but crucial issues: language mismatch and repeti-
tion (Zhang et al., 2021).

3 Preliminary

In this section, we detail the data preparation pro-
cess, including the data source, prompt template,
and dataset construction. Additionally, we provide
information about the model and the evaluation
metrics used to support the ensuing experiments.

Data Source We choose three high-resource lan-
guages: English, Chinese, German which show
good performance on MT tasks(Robinson et al.,
2023). For the detailed language setting, we in-
clude two language pairs: English-Chinese and
English-German, and four translation directions:
en—de, de—en, en—zh and zh—en (where en,
de, zh represent English, German and Chinese, re-
spectively). In the data choice, we use the human-
made dataset from general MT tasks of WMT?21,
WMT22 and WMT23 ! to ensure both high data
quality and flexible data domain. These data make
the machine translation approach a real-life usage
to help us understand the current state of machine
translation tasks using LLMs.

Prompt Template For machine translation tasks,
a widely-adopted (Zhang et al., 2023a; Bawden and
Yvon, 2023; Vilar et al., 2023) K-Shot In-Context
Learning (ICL) prompt template (taking the lan-
guage setting of en—zh for an example) is:

English : srcp\nChinese : tgt1\n

English : srci \nChinese : tgtx\n
English : src,\nChinese :

Where (src;, tgt;) refers to the i-th in-context trans-
lation exemplar (src; refers to a sentence of source
language and tgt; refers to the corresponding sen-
tence of target language.). src, refers to the real
sentecne of source language that needs to be trans-
lated. We call this prompt template Lang Prompt
and regard it as the default prompt template for the
follow-up experiments in this paper.

Dataset Construction In the data construction
part, we construct the D, (data from WMT21)
to provide the ICL exemplars used in the K-Shot
prompt for machine translation tasks. We use the

"https://github.com/wmt-conference/wmtX-news-
systems. Xe {21, 22,23}

WMT?22 data as the Dyyqn to fine-tune a model
or locate the critical parts in an LLM for model
editing methods. For the testing and validation, we
construct the Dy, (data from WMT23) for various
modifications (e.g. fine-tuning(Devlin et al., 2019)
or model editing methods(Todd et al., 2023; Dai
et al., 2022)). (Please refer to Appendix A for
detailed dataset information)

Model To support the in-depth exploration and
analysis of how the two kinds of errors happen.
We use LLaMA2-7B as our backbone language
model to implement the machine translation task
and further adaptation(Touvron et al., 2023).

Evaluation Metrics For the machine translation
metrics, we consider the overlapping-based met-
rics BLEU(Papineni et al., 2002) and neural-based
metrics COMET(Rei et al., 2022) to evaluate the
translation quality (For a detailed toolkit and detec-
tion process, please refer to Appendix B).

4 Language Mismatch and Repetition
Error in LLM-MT

In our initial experiments, we observe that LLM-
based machine translation struggles with the fol-
lowing two types of common errors. One is Lan-
guage Mismatch, referring to the language of the
translation result is not the target language. For
example, In the en—zh machine translation, the
target language is Chinese while the language of
generated sentence is still English. Another is Rep-
etition, referring to a substring is generated repeat-
edly until the end of the generation. To evaluate
these errors, we additionally introduce two metrics:
Language Mismatch Ratio (LMR) (the percentage
of cases occurring the language mismatch error)
and Repetition Ratio (RR) (the percentage of cases
occurring the repetition error).

Language mismatch and repetition error are
common and crucial In this paragraph, we aim
to find the ratio of language mismatch and repeti-
tion error in Zero-Shot and One-Shot. For detailed
language settings, we consider en—de, de—en,
en—zh, and zh—en. We use the Dicsr and Degps
as the test set and prompt exam source, respectively.
We choose LER and RR to represent the ratio of
language mismatch and repetition in a setting (e.g.
en—de (Zero-Shot)). For translation quality evalu-
ation, we choose the BLEU (Papineni et al., 2002)
as the metrics. We observe that language mismatch
is frequent in Zero-Shot and seldom in One-Shot.



Repetition error cases in One-Shot are without lan-
guage mismatch but combined with language mis-
match in Zero-Shot. Based on our observation,
we do experiments and analysis in Zero-Shot for
the language mismatch and in One-Shot for the
repetition error.

To explore the relation between the above er-
rors and translation quality, we split the translation
results into four sets to evaluate the BLEU perfor-
mance after error detection. The four sets include
two error sets: language mismatch set and repeti-
tion error set, one regular set (where instance with-
out both errors), and one Origin set that includes all
cases. The results of Table 1 illustrate: (1) the gap
between the regular set and the original set shows
both language mismatch and repetition error hurt
the translation quality; (2) Language mismatch is
the main reason for the low performance in Zero-
Shot; (3) Even though we observe a low repetition
ratio in One-Shot, the gap between repetition set
and regular set shows that repetition is a severe
error in the original set; (4) The performance gap
between regular and error cases indicates a direct
way to improve the translation quality by eliminat-
ing these errors.

Setting L) OB() LB(M RB()
zh—en(Z) 0.04386 17.13 877  17.60
en—zh (Z) 03269 1634 313 2529
en—de (Z) 04524 1261 165  21.86
de—en(Z) 00219 3534 2323  35.66
Setting R(J) OB(1) RRB(1) RB(?)
zh—en (0) 00035 1887 2.13  19.06
en—zh (0) 00146 27.78  2.08  29.47
en—de (0) 00141 2497 12.64 2586
de—en (0) 0.0018 3654 610  36.71

Table 1: The correlation between error ratio and BLEU.
(Z) represents the Zero-Shot prompting, and (O) repre-
sents the One-Shot prompting. L: language mismatch
ratio; R: repetition ratio; OB: The BLEU on the origi-
nal set; LB: The BLEU on the language mismatch set;
RRB: The BLEU on the repetition error set; RB: The
BLEU on the regular set.

5 Can we mitigate language mismatch
and repetition via model editing?

In this section, We aim to investigate the poten-
tial for leveraging model editing methods (Dai
et al., 2022; Meng et al., 2022; Todd et al., 2023)
to precisely mitigate the aforementioned two se-
vere issues in MT: language mismatch and repeti-
tion. We mainly focus on two widely-used model

editing methods: Function Vectors (FV) (Todd
et al., 2023) and Knowledge Neurons (KN) (Dai
et al., 2022), for both of them are representative
(i.e., Causal Mediation Analysis (Meng et al., 2022;
Pearl, 2014) for FV and Integrated Gradient Attri-
bution (Qi et al., 2019; Lundstrom et al., 2022) for
KN) and influential (Bai et al., 2024; Hojel et al.,
2024; Niu et al., 2024; Chen et al., 2024). In the
following paragraphs, we adapt the idea of FV (cor-
responding to Machine translation vectors) and
KN (corresponding to Machine translation neu-
rons and Repetition neurons) to MT scenarios, in
an aim to both enhance the LLMs’ understanding
to MT (for both language mismatch and repetition
errors) and their specific ability to handle repetition
errors.

5.1 Machine Translation Vectors

In the original FV paper, the authors argue that
the key information of a task (e.g., task 7, demon-
strated with few-shot In-Context Learning (ICL)
exemplars in the prompt) is compactly represented
and transported in a small set of attention heads
in LLMs. The original definition for FV (of
task 7)) is the summation of these located head
vectors. FV can be directly added into the “residual
stream” (Elhage et al., 2021) of forwarding
computation of Transformer-based (Vaswani et al.,
2017) LLMs to help them perform ideal behaviour
of task 7. Therefore, a natural question is: Can
we use FV to enhance LLMs’ understanding
to MT and mitigate aforementioned language
mismatch and repetition issues? We use Ten-
Shot ICL prompts P (the template of machine
translation prompts is the Lang Prompt (Zhang
et al., 2023a) in Section 3.) to locate important
attention heads, where the data are sampled
from Dypqin. For brevity, we denote the normal
Ten-Shot ICL input (omitting language signs, i.e.,
“English”, “Chinese” and “German”) as: inp =
[(srer, tgth), (sreg, tgta), ..., (sreio, tgtion), STeqg)
€ P, where src and tgt refer to sentences of
source and target languages respectively; index
1 ~ 10 refers to ten ICL exemplars and q refers
to “query” (the real source sentence that requires
to be translated.). On its basis, we construct the
shuffled Aveirsion of tIE/original ICL iE_II&l/t: mp =
[(sre, tgty), (sree, tgta), ..., (srcio, tgtio), %]
where for each ICL exemplar (srcg,tgty),
k € [1..10], the target sentence tgt # tgty.



Extracting machine translation vectors First,
we locate attention heads that are important to the
MT with a Causal Mediation procedure: (1) Send
both inp and % to the same LLMs (denoting the
model as ), (2) Fetch both probabilities of pre-
dicting the ground-truth target sentence tgt, from
models with the above two inputs: pg(tgt,|inp)
and py (tgtq|z'f'r\z§), (3) Adopt intervention: replac-
ing a single attention head output (e.g., for the
t-th head in the j-th layer, the denotation is h;.)

in the shuffled run with zfﬁ; with the attention
head output at the same place (h;) in the clear
run with inpiv(4) Calculate the Causal Indirect

Effect (CIE(h} — h|inp)) of the intervention:
po(tgtylinp, hi — %) — py(tgty|inp) and (5) Cal-
culate the Average Indirect Effect for head h;'-:
AIE(hY) = E [CIE(R% — hilinp)].
J inpeP J J

The AIE values for all heads in LLaMA2-7B
under the language settings’ of “de—en” and
“en—zh” are depicted in Figure2. We observe that

(b) en—zh

(a) de—en

Figure 2: Heatmaps of AIE values for attention heads
in LLaMA2-7B for de—en setting (a) and en—zh set-
ting (b). x-axis and y-axis refer to the layer and head.
Brighter color refers to the head with larger AIE value.

for machine translation there are sparsely a few
heads of which the corresponding AIE values strik-
ingly stand out among 1024 heads. We select top-
32 heads (according to their AIE values, denoted
as ‘H) to extract FV in the follow-up experiments.

Let h; (inp) denote the output of attention head
h;- given the input prompt inp. Following Todd
etal. (2023), we extract the machine translation vec-
tor with a specific language setting (e.g., zh—en)
Vzh—sen With the following formula:

Vi = E [Y_ Ri(inp)] (1)

NPEPzh—sen h; cH

Editing LLMs via machine translation vectors
We directly add the extracted the machine transla-

’Due to the page limit, We post experiment results only
under part of the language settings results in the main text.
For the rest language settings, we post them in Appendix C,
Similarly hereinafter.

Zero-Shot L) B(1) Cc
LLaMA2-7B 0.0486 17.1288 0.722
+MT vectors —72.84% —37.35% —1.84%
+MT neurons —18.72% —4.28% —0.15%
One-Shot R({)) B(1) CcM
LLaMA2-7B 0.0035 18.8714 0.7376
+MT vectors  482.86% —23.07% —1.68%
+MT neurons 0.0% -0.35% —0.03%
+RP neurons  —8.57% 0.07% 0.0%

Table 2: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D4 (under the lan-
guage setting of zh—en). Zero-Shot and One-Shot refer
to that using zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for
MT. For evaluation metrics, L: Language mismatch ra-
tio; R: Repetition ratio; B: BLEU and C: COMET22DA,
where B and C mainly evaluate the general translation
quality. For plain LLaMA2-7B, the results are absolute
values; for LLaMA2-7B with editing methods, the re-
sults are relative improvement percentages.

tion vector to the “residual stream” (being aligned
with the original paper, at 11-th layer for LLaMA2-
7B) in the forwarding process. The performance of
LLaMAZ2-7B (e.g., under the language setting of
zh—en.) after adopting machine translation vectors
are posted in Table 2.

We observe that leveraging machine translation
vectors (+MT vectors) can (1) reduce the language
mismatch errors to a large extent (—72.84%) while
simultaneously (2) introduce more repetition errors
(+482.86%) and (3) do harm to the general transla-
tion quality: —37.35% (Zero-Shot) and —23.07%
(One-Shot) for BLEU.

5.2 Machine Translation Neurons and
Repetition Neurons

The original KN technique is constructed on the
basis of Geva et al. (2021)’s observation that
the Feed-Forward Networks (FFNs) in the Trans-
former (Vaswani et al., 2017) can be viewed as key-
value memories, which can store the encodings
of a set of patterns (e.g., sentence end with spe-
cific words, specific topics and factual knowledge.).
Given a specific pattern, KN can be used to locate a
small set of neurons in FFNs that are the attribution
of this pattern and manipulate the expression of this
pattern by amplifying, suppressing or erasing the
activation values of the located neurons. We ask
a natural question: Can we use KN to locate and
manipulate skilled neurons that are responsible
Jor MT or the repetition error pattern? In the MT
scenarios, We denote the input prompt inp (also



omitting language sign) as [src,] (Zero-Shot) or
[(srco, tgto), sreq] (One-Shot) and the correspond-
ing output as tgt,, where the (srcp, tgtp) is the ICL
exemplar (sampled from D) and (srcy, tgty) is
the “query”, the real case used for locating neurons
(sampled from Dy;qi) or testing edited models
(sampled from Dyegy).

Locating Important Neurons for MT We ran-
domly sample a token ¢ in each tgt, and use ¢

— =

to split tgt, into two parts: tgt, = (tgty,tgty)
—

(t € tgty). To fully model the MT and mean-

while restrict the computation, we focus on the
probability of p(t|inp™), where t refers to the

_>
first token of tgt, and inp™ refers to the con-
—
catenation of ¢np and tgt,. Focusing on a single

neuron wgl) (¢-th intermediate neuron in the j-th
FFN), we denote its activation value as Wi(l). Then
we can introduce this variable into p(t|inp™) as

p(tlinp™wl) = w®) £ f(w;®) (fixing ¢ and
inp™, the probability can be viewed as an objective

function whose only variable is the value of neuron
wl(-l)). We calculate the attribution score of neuron

wl(l) by Integrated Gradient (Sundararajan et al.,
2017):

P —
Attr(w®| ) = w70 / of@i ) (“’&) Jia. @
a=0 8wl

We calculate the mean value of the attribution
scores for each neuron with 2,000 examples in
Dirain and select top-5 neurons as Machine Trans-
lation neurons (MT neurons).

Locating Important Neurons for Repetition
We first collect all of examples that occur the repeti-
tion error. For a specific input prompt inp, the com-
pletion of LLMs y can be divided into the follow-
ing several parts: y = [ynmwm Yrepes Yrepe yrest}’
where yporm refers to the normal generation part
(except for the first-time generation of Yrepe), Yrepe
refers to the minimal repetition unit (the first y,¢pe
here is supposed to be treated as normal gener-
ation) and y,.s; (the follow-up generation after
the second-time generation of ¥,¢p.). To con-
centrate on the repetition error, we construct a
new input prompt inprepe = [INP, Ynorms Yrepe)
and focus on the probability of p(Yrepe|inprepe)-
Simila(r)to the MT neurons part, we define neu-
l

ron w; ’,

p(yrepe |inprepe> wg

its value w; V), its objective function
D= w70y 2 frepe(@i®) and

its attribution score Attr(wgl) | frepe) (repetition at-
tribution score). A natural concern here is that the
objective function fcp. (w; ") might model the
pattern of generating y,.,. rather than the repe-
tition error pattern. To exclude this concern, we
additionally set a comparison objective function
fcompare = p(yrepe| [in]% ynorm]7 wfl) = Wz(l)) to
model the first-time generation (normal generation)
of Yrepe. With feompare, We can also get the at-

tribution score Attr(wz(l) | feompare) (comparison at-

tribution score) of neuron wgl). We calculate the
mean values of repetition and comparison attribu-
tion scores separately for each neuron wgl) with all
of the cases in Dy,qiy, that occur the repetition error.
We separately select top-300 neurons according to
mean repetition and comparison attribution score,
denoting the fetched sets as N,«epe and Ncompwe.
We select 5 neurons with the largest repetition attri-
bution scores from /\/}epe \Ncompare as the Repeti-
tion Neurons (RP neurons).

Editing LLLMs via MT neurons and RP neu-
rons For MT neurons, we edit LLMs by ampli-
fving the activation values of these neurons (set
the new values to be twice the original ones). For
RP neurons, we edit LLMs by erasing the activa-
tion values of these neurons (set the new values to
be zero). The performance of LLaMA2-7B (e.g.,
under the language setting of zh—en.) after adopt-
ing MT neurons and RP neurons are posted in Ta-
ble 2. We observe that (1) adopting MT neurons
can indeed help reduce language mismatch ratio to
some extent(—18.72%) while also bring small neg-
ative side-effect to the translation quality (—4.28%
for the BLEU score), (2) adopting MT neurons
nearly have no effect on the repetition ratio and (3)
adopting RP neurons can reduce the repetition ra-
tio slightly (—8.57%) without affecting the metrics
(BLEU and COMET22DA) of evaluating general
translation quality.

Hence a short response to the question of this
section is that Directly leveraging model editing
methods either has limited effect on errors (MT
neurons and RP neurons) or significant negative
side-effect on general translation quality (MT vec-
tors). Nonetheless, we do observe the potential for
mitigating the aforementioned errors with editing
methods.
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Figure 3: Performance ((a) for the decrease percent-
age of LMR; (b) for the improvement percentage of
COMET22DA) of intervention (blue bars) with lan-
guage settings of zh—en, en—zh and de—en on the
heads located with the language setting of en—de. The
red bars (comparison group) refer to the results for in-
tervention on random heads of the same number.

6 Modifications to FV and KN in MT
scenarios

In section, we mainly discuss our modifications
(Section 6.1) to FV and KN methods (Section 5)
to release their potential for better mitigating the
language mismatch errors, repetition errors and
even improving the general translation quality. Be-
sides, we present systematical evaluation results
for the modified editing methods and baselines in
Section 6.2.

6.1 Modifications

Previous empirical results (Section 5) show that
MT vectors are more effective to reduce language
mismatch errors in comparison with MT neurons
while the RP neurons are more promising for han-
dling repetition errors, suggesting that the inher-
ent mechanisms for the recognition of target lan-
guage and generating strings repeatedly locate in
MHSA heads and FFN intermediate neurons, re-
spectively. To this end, in the follow-up experi-
ments, we concentrate on modifying MT vectors
to handle language mismatch errors and RP neu-
rons to handle repetition errors. Our first modifica-
tion is based on a natural hypothesis: The location
for the important modules inside LLMs that are
responsible for target language recognition and
repetition errors is supposed to be independent to
language settings. The hypothesis can also be
verified to some extent by the important head locat-
ing experiments depicted in Figure 4, where results
for different language settings (zh—en, en—zh,
en—de and de—en) share a large proportion of
top heads. Moreover, we locate top-12 impor-
tant attention heads in LLaMA?2-7B under the lan-
guage setting of en—de and apply MT vectors to

Zero-Shot L) B(1) cm
LLaMA2-7B 0.0486 17.1288 0.722
+MTV —-92.46% —0.81% 2.65%
+MTV-1 —80.15% 53.5% 15.51%
+MTV-1-D —-86.12% 76.82% 16.02%
One-Shot R{) B(1) Cc
LLaMA2-7B 0.0035 18.8714  0.7376
+RPN —-8.57% 0.07% 0.0%
+RPN-I —-25.71% 0.51% —0.04%

Table 3: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D;.,; (under the lan-
guage settings of zh—en for Zero-Shot and zh—en for
One-Shot). Other notations and abbreviations are fol-
lowing Table 2.

LLaMA2-7B with these located heads under the
language settings of zh—en, en—zh and de—en.
The results of Zero-Shot translation are depicted in
Figure 3 (experimental group, blue bars). We addi-
tionally randomly select 12 heads to apply MT vec-
tors and the results (comparison group) are shown
with red bars. We observe that for both the lan-
guage mismatch ratio and COMET22DA, the per-
formance of experimental group largely exceeds
the performance of comparison group under all
three other language settings, indicating that the
attention heads located under a single language set-
ting can transfer to other language settings. Given
these evidences, we propose our first modification
to both MT vectors and RP neurons: We firstly lo-
cate attention heads or FFN neurons separately
Jor each language setting and then get the final
located results by intersecting the located results
Jor all of language settings. We denote the MT
vectors fetched by intersected attention heads as
MT Vectors-Intersection (MTV-I) and intersected
RP neurons as RePetition Neurons-Intersection
(RPN-I). We post the results for leveraging MTV-1
and RPN-I under the language settings of en—de
and zh—en in Table 3. We observe that: (1) for
MTV-I, the decrease percentage of language mis-
match error ratio (—80.15%) is slightly lower than
MTV (—92.46%) while improvement percentage
of the BLEU score (53.5%) and COMET22DA
score (15.51%) exceed MTV (—0.81% and 2.65%)
by a large margin and (2) for RPN-I, the decrease
percentage of repetition error ratio (—25.71%) is
much higher than RPN (—8.57%), suggesting that
intersection of different language settings can filter
attention heads and FFN neurons that are irrelevant
to language mismatch errors and repetition errors
out. On the basis of MTV-I, we propose another
slight modification: Firstly calculate the MTV-I,



de—en en—de zh—en en—zh

Zero-Shot L) B(1) L) B(T) L) B(1) L) B(1)
LLaMA2-7B 0.0219 35.3448 0.4524 12.6084 0.0486 17.1288 0.3269 16.3441
+5-Shot ICL  —74.89%  4.93% —92.06% 101.27% —50.0% 12.46%  —82.59%  76.9%
+LoRA —83.56% 0.68%  —95.25% 115.24% —79.22% 6.62% —T77.58%  82.62%
+Full-FT —8.68% 2.25% —62.69% 55.41% —33.33% 3.15% —66.23%  62.64%
+MTV-I-D -33.33% —0.53% —86.12% 76.82% —54.12% —14.08% —69.9%  24.64%
One-Shot R({) B(T) R() B(T) R{) B(1) R() B(1)
LLaMA2-7B 0.0018 36.5445 0.0141 24.9685 0.0035 18.8714 0.0146 27.7798
+5-Shot ICL 0.0% 1.49% 14.89% 1.63% —14.29% 2.07% —-17.12%  4.08%
+LoRA —T77.78% —-947% —-74.47% —2.39% 5.71% 0.07% -10.27%  0.37%
+Full-FT 22.22% 1.26%  —25.53% 4.9% —22.86% 2.5% 22.6% 4.47%
+RPN-I —-38.89% 0.74% —27.66% 0.35% —25.71% 0.51% -19.18% —0.23%

Table 4: Overall Performance of LLaMA2-7B (and after applying model editing methods) on D;.s; under all
language settings. Other notations and abbreviations are following Table 2.

then divide it evenly according to the number of
the intersected attention heads and add them to
those heads. We denote this manner of leverag-
ing MTV-1 as MTV-I-Distributional (MTV-1-D). We
also post the results of leveraging MTV-I-D in Ta-
ble 3, where the results demonstrate that MTV-I-D
can further achiever better performance than MTV-I
in terms of language mismatch ratio, BLEU and
COMET22DA.

6.2 Opverall Results

To make readers get a better sense of the LL.Ms
edited with our methods (MTV-I-D and RPN-I),
we show the overall evaluation results for both our
methods and traditional adaptation methods, in-
cluding 5-Shot In-Context Learning (Brown et al.,
2020) (5-Shot ICL), Low Rank Adaptation Tun-
ing (Hu et al., 2022) (LoRA) and Full parameter
Supervised Fine-Tuning (Alves et al., 2023) (Full-
FT) for LLM-based MT in Table 4. Due to the
page limit, we only post the performance on the
metrics of language mismatch error ratio, repetition
error ratio and BLEU score (We find that perfor-
mance on COMET22 score is highly aligned with
BLEU score). We observe that: (1) Applying the
modified editing methods, MTV-I-D and RPN-I
can generally reduce the error ratios for both lan-
guage mismatch (L) and repetition (R) to a large
degree, (2) The negative side-effect on the gen-
eral translation quality (BLEU score, B) is minor
(except when applying MTV-I-D under the setting
of zh—en, with a —14.08% decrease percentage
on BLEU score). It is noteworthy that applying
MTV-I-D can even improve the general translation
quality to a large extent on the settings of en—de

(76.82%) and en—zh (24.64%) and (3) The per-
formance of MTV-I-D and RPN-I can sometimes
be comparable with (and even surpass) the tradi-
tional methods that adapt LLMs to the MT tasks,
without additional requirements like long-context
prompting and fine-tuning.

7 Conclusion

In the work we find that two types of errors, lan-
guage mismatch and repetition, occur frequently
when performing the machine translation tasks with
LLMs, bringing severe negative effect on the trans-
lation quality. We investigate the potentials of lever-
aging model editing methods to mitigate these is-
sues and find that directly adopting function vectors
and knowledge neurons may either have limited im-
provement on the error ratio metrics or bring note-
worthy negative effect on the metrics that evaluate
general machine translation quality (e.g., BLEU
score), which indicates that the located attention
heads and FFN neurons might be too coarse to only
affect the error ratios without hurting the transla-
tion quality. To this end, we propose to refine the
located attention heads and neurons by fetching the
intersection of the locating results under different
language settings. Our empirical results suggest
that the modified function vectors and knowledge
neurons methods (MTV-I-D and RPN-I) can ef-
fectively reduce the aforementioned two types of
errors and even bring a positive influence on the
translation quality metrics in most settings, indicat-
ing that there indeed exist a small set of modules
that are highly responsible for the language mis-
match and the repetition errors meanwhile.



Limitations

Our work is based on open-source LLaMA series
models (Touvron et al., 2023)3. However, the effec-
tiveness of these findings on other models, such as
the open-sourced Baichuan 2 (Yang et al., 2023) or
the close-sourced GPT-4 (OpenAl, 2023), remains
unknown.

The model editing methods used in this paper
require computational resources proportional to the
size of the large language model (LLM). When
applying our methods to a larger model, more com-
putational resources will be necessary to achieve
improved results. Our focus is on high-resource
language settings for machine translation (MT).
However, the observations and conclusions may
differ when applied to low-resource or non-English
language pair settings (e.g., zh—de machine trans-
lation tasks)

We utilise automatic metrics for error and ma-
chine translation (MT) evaluation in our measure-
ments. However, employing human-involved eval-
uations (Kocmi et al., 2023b) can offer a more
profound understanding of the machine translation
task with large language models (LLMs).

Ethics Statement

This paper utilizes a pre-trained large language
model, with its training data sourced from web
corpora that have not undergone ethical filtering.
Consequently, it is capable of generating toxic con-
tent in the machine translation task (Wen et al.,
2023). Moreover, we do not filter the source data
or translation output in our work. Future research
may build on our results to enhance the model, and
we advocate for incorporating content supervision
to prevent the dissemination of toxic content.
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A Dataset Information

Table 5 shows the detailed data size for Deyps,
Dirain and Dyesr. We use the WMT21 test set* as
the Deyps, WMT22 test set’ as Dyyqin, and WMT23
test set® asDyest.

The detailed data size for the K-shot (K =
0,1, 5) setting is shown in Table 6. For all settings,
we use the lang prompt as the prompt template (
as shown in Section 3). For the Zero-Shot setting,
we directly combine the source data with the lang
prompt. For the One-Shot setting, we uniformly
sample the data from D, based on the length of
the example source to alleviate the potential length

*https://github.com/wmt-conference/
wmt21-news-systems

5https://github.com/wmt—conference/
wmt22-news-systems

6https://github.com/wmt—conference/
wmt23-news-systems
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Setting | Degps Size | Dirain Size | Diest size
en—de | 1002 2037 557
de—en | 1000 1984 549
en—zh | 1002 2037 2074
zh—en | 1948 1875 1976

Table 5: Data size of Deyps, Dirains Diest on four lan-
guage settings.

bias from prompt example(Zhang et al., 2023a).
We use the most natural selection method for the
Five-Shot setting by randomly selecting five exam-
ples from Deys.

Setting Dy Size | Dy Size | D5 size
en—de (Dyrgin) | 2037 12222 2037
de—en (Dyrgin) | 1984 9920 1984
en—zh (Dyrain) | 2037 12222 2037
zh—en (Dyygin) | 1875 11250 1875
en—de (Dyest) | 557 3342 557
de—en (Dyest) | 549 2745 549
en—zh (Dyest) | 2074 12444 2074
zh—en (Dyest) | 1976 11856 1976

Table 6: Data size of Zero-Shot (Dg), One-Shot(D;)
and Five-Shot(D5) on four language settings. Dyyqin
and Dy, represent the source data in the prompt.

B Toolkits for evaluation

For the language mismatch detection, we use the
Polyglot toolkit” to detect the language error. For
repetition error, based on the definition of repeti-
tion error, we follow two rules to judge whether
a translation result is repeated: (1) the generation
length reaches the max_new_tokens setting®; (2)
there exists a substring happening until the end of
the generation. For the machine translation metrics,
we use SacreBLEU(Post, 2018), Unbabel/wmt22-
comet-da’ and Unbabel/wmt22-cometkiwi-da'” to
do evaluation.

C The AIE values for all heads

Figure 4 shows the AIE values of all heads of
LLaMA2-7B on en—de, de—en, en—zh and
zh—en settings.

7https://github.com/aboSamoor/polyglot

8https://github.com/huggingface/tokenizers

9https://huggingface.co/Unbabel/
wmt22-comet-da

10https://huggingface.co/Unbabel/
wmt22-cometkiwi-da
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(b) de—en

Locating heads for V of MT (Language seting: 2h-en)

(d) zh—en

(c) en—zh

Figure 4: Heatmaps of AIE values for attention heads
in LLaMA2-7B for en—de setting (a), de—en setting
(b), en—zh setting (c¢) and zh—en setting (d). The x-
axis and y-axis refer to the layer and head, respectively.
Brighter color refers to the head with larger AIE value.

D Results for direct adaptation

The complete results of direct adaptation on four
language settings are shown in Table 7 (en—de), 8
(de—en), 9 (en—zh) and 10 (zh—de).

These tables show that the MT vectors can de-
crease the language mismatch ratio while the RP
neurons help decrease repetition errors in all lan-
guage settings.

Zero-Shot L) B(1) C)
LLaMA2-7B 0.0219 35.3448 0.7836
+MT vectors  —74.89% —33.85% —5.53%
+MT neurons  8.22% 0.03% 0.23%
One-Shot RQ) B(D ch
LLaMA2-7B 0.0018 36.5445 0.7893
+MT vectors  727.78% —33.62% —4.38%
+MT neurons  22.22% —-0.35% —0.11%
+RP neurons  — — % - —% ——%

Table 8: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D4 (under the lan-
guage setting of de—en). The —— means the same
result as the LLaMA2-7B since we do not detect any
repetition on the training set under the same language
setting. Notation and corresponding explanations can
refer to Table 7.

Zero-Shot L) B(1) C)
LLaMA2-7B 0.3269 16.3441 0.6567
+MT vectors —T70.06%  18.2% 5.07%
+MT neurons  —5.32% 3.16% 0.35%
One-Shot R() B(1) Cc
LLaMA2-7B 0.0146 27.7798 0.7444
+MT vectors  162.33% —15.29% —4.0%
+MT neurons  5.48% —4.28%  —0.28%
+RP neurons  —4.11% 0.55% 0.05%

Table 9: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D4 (under the lan-
guage setting of en—zh). Zero-Shot and One-Shot re-
fer to using a zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for

Zero-Shot L) B(1) cm MT tasks. Notation and corresponding explanations can

LLaMA2-7B 0.4524  12.6084  0.6113 refertoTable7.

+MT vectors —92.46% —0.81% 2.65%

+MT neurons —11.1% 1.78% 0.15%  Zero-Shot L)) B(1) Cc

One-Shot R() B(1) cm LLaMA2-7B 0.0486 17.1288 0.722

LLaMA2-7B__ 0.0141 24.9685 0.7279  +MTvectors —72.84% —37.35% —1.84%

+MT vectors ~ 487.94% —39.11% —10.87% _+MT newrons —18.72%  4.28%  —0.15%

+MT neurons  4.26% —-1.05%  —1.06%  One-Shot R(}) B(1) Cc

+RP neurons —27.66%  0.77% —0.3%  LLaMA2-7B  0.0035 18.8714  0.7376
Table 7: Performance of LLaMA2-7B (and after ap- +MT vectors ~ 482.86% —23.07% —1.68%
plying model editing methods) on D, (under the lan- +MT neurons 0.0% -0.35% —0.03%
guage setting of en—de). Zero-Shot and One-Shot +RP neurons  —8.57% 0.07% 0.0%

refer to using a zero-shot prompt (for language mis-
match errors) and one-shot prompt (for repetition er-
rors) for MT tasks. For evaluation metrics, L: Language
mismatch ratio; R: Repetition ratio; B: BLEU and C:
COMET22DA, where B and C mainly evaluate the gen-
eral translation quality. For plain LLaMA2-7B, the re-
sults are absolute values; for LLaMA2-7B with editing
methods, the results are relative improvement percent-
ages.

Table 10: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D4 (under the lan-
guage setting of zh—en). Zero-Shot and One-Shot re-
fer to using a zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for
MT tasks. Notation and corresponding explanations can
refer to Table 7.
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E Results for improved adaptation Zero-Shot L) B(1) Ch)
. LLaMA2-7B 0.3269 16.3441  0.6567
Table 12, 11, %4 and 13 show the results for im- +MTV _70.05% 18.9% 5.07%
proved adaptatl.on on en—de, de—en, en—zh and +MTV-1 _67.97%  19.08%  7.54%
zh—en respectively. +MTV-I-D  —69.9% 24.64% 8.82%
Zero-Shot L) B(1) C(t)  One-Shot R() B(1) cm
LLaMA2-7B  0.0219  35.3448  0.7836 LLaMA2-7B  0.0146  27.7798  0.7444
+MTV —74.89% —33.85% 0.0036% +RPN —411%  0.55%  0.05%
+MTV-I —58.45%  —4.84%  —5.53% +RPN-I —19.18% 0.01% —0.23%
+MTV-I-D -33.33% —0.53%  —0.22% Table 14: Performance of LLaMA2-7B (and after ap-
One-Shot R(]) B(1) Cc?) plying model editing methods) on D, (under the lan-
LLaMA2-7B 0.0018 36.5445 0.7803 Buage settings of en—zh for Zero-Shot and en—zh for
One-Shot). Other notations and abbreviations are fol-
RPN —=% =% - =% lowing Table 7.
+RPN-I ——% —% ——%

Table 11: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D;.4; (under the lan-
guage settings of de—en for Zero-Shot and de—en for
One-Shot). The — means the results is the same as the
LLaMAZ2-7B since there is no repetition cases in the
Dirain. Other notations and abbreviations following
Table 7.

Zero-Shot L) B(1) cm
LLaMA2-7B 0.4524  12.6084 0.6113
+MTV -92.46% —0.81%  2.65%
+MTV-1 —80.15%  53.5%  15.51%
+MTV-1-D —86.12% 76.82% 16.02%
One-Shot R{)) B(1) C)
LLaMA2-7B  0.0141  24.9685  0.7279
+RPN —-27.66% 0.77%  —0.3%
+RPN-I -27.66% 0.35% —0.03%

Table 12: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D;.s; (under the lan-
guage settings of en—de for Zero-Shot and en—de for
One-Shot). Other notations and abbreviations following
Table 7.

Zero-Shot L) B(1) C
LLaMA2-7B 0.0486 17.1288 0.722
+MTV -92.46% —0.81% 2.65%
+MTV-I —80.15%  53.5%  15.51%
+MTV-I-D —-86.12% 76.82% 16.02%
One-Shot R{) B(1) CM
LLaMA2-7B 0.0035 18.8714  0.7376
+RPN —8.57% 0.07% 0.0%
+RPN-I -25.71% 051% —0.04%

Table 13: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on D;.4; (under the lan-
guage settings of zh—en for Zero-Shot and zh—en for
One-Shot). Other notations and abbreviations are fol-
lowing Table 10.
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F Implementation Details

For all machine translation results on LLMs, we
only maintain the first line of the generation as
the translation result based on the format of lang
prompt. In the real translation process, we use
batch generation techniques (batch size = 4) and
set the maximum generation length of tokens to
400 with the Huggingface API!! to do translations
for any setting in this work.

Five-Shot For the Five-Shot setting, we directly
use the D5 on LLaMA2-7B to run machine transla-
tion task without intervention.

LoRA fine-tuning LoRA (Low-Rank Adapta-
tion)(Hu et al., 2022) is a parameter-efficient tuning
technique generally used in natural language pro-
cessing. In our work, we use the LoRA(Hu et al.,
2022) method to align the LLaMA2-7B model to
the machine translation task. For the fine-tuning
data, we combine the data of all language settings
from Dyyq;p, into Dy and D; for Zero-Shot setting
and One-Shot setting respectively. Finally, we tune
two LoRA models with the trl tool'? with the self-
supervised tuning method. We train one epoch with
a rank of 64 and a learning rate of 2e~* for both
Zero-Shot and One-Shot. We use one NVIDIA
A100 80GB Tensor Core GPU card for the SFT
training; either the Zero-Shot or One-Shot costs
less than a half day.

Full fine-tuning We use the same data and train-
ing tool in the LoRA setting for full fine-tuning. In
the training process, we use the bfloat16 precious
to train the model on one NVIDIA A100 80GB

11https: //huggingface.co/
Zhttps://github.com/huggingface/trl
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Tensor Core GPU card for full fine-tuning with a
lower learning rate 1e~% compared to LoRA.

We claim there is still room for improvement in
the LoRA or Full fine-tuning methods. However, a
complete understanding of the mismatch and repe-
tition error should also be evaluated on large-scale
data, which is one of the following steps for our
research.
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