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Abstract

Large Language Models have recently revolu-001
tionized the NLP field, while they still fall short002
in some specific down-stream tasks. In the003
work, we focus on utilizing LLMs to perform004
machine translation, where we observe that two005
patterns of errors frequently occur and drasti-006
cally affect the translation quality: language007
mismatch and repetition. The work sets out to008
explore the potential for mitigating these two009
issues by leveraging model editing methods,010
e.g., by locating FFN neurons or something011
that are responsible for the errors and deacti-012
vating them in the inference time. We find that013
directly applying such methods either limited014
effect on the targeted errors or has significant015
negative side-effect on the general translation016
quality, indicating that the located components017
may also be crucial for ensuring machine trans-018
lation with LLMs on the rails. To this end,019
we propose to refine the located components020
by fetching the intersection of the locating re-021
sults under different language settings, filtering022
out the aforementioned information that is ir-023
relevant to targeted errors. The experiment re-024
sults empirically demonstrate that our methods025
can effectively reduce the language mismatch026
and repetition ratios and meanwhile enhance027
or keep the general translation quality in most028
cases.029

1 Introduction030

Pre-trained Large Language Models (LLMs) are031

natural machine translators with in-context learn-032

ing(Brown et al., 2020; Touvron et al., 2023; Vi-033

lar et al., 2023; Bawden and Yvon, 2023; Zhang034

et al., 2023a), while they still fall behind spe-035

cialized Machine Translation (MT) systems like036

NLLB(Koishekenov et al., 2023). Previous studies037

utilise In-Context Learning (Agrawal et al., 2023)038

(ICL), instruction tuning(Xu et al., 2023; Alves039

et al., 2023) and post-editing methods(Jiao et al.,040

2023; Ki and Carpuat, 2024; Raunak et al., 2023)041

Figure 1: The illustration of the language mismatch
error (a) and the repetition error (b).

to improve the translation quality. Are there any 042

issues that were ignored in previous studies hin- 043

dering the LLM-based machine translation from 044

further development? In this work, we identify 045

two issues in the LLM-based machine translation: 046

Language Mismatch and Repetition (as shown in 047

Figure 1). We check the occurrence of these errors 048

and find that: (1) they are common errors in the 049

whole translation set (e.g., in the en→de setting, 050

language mismatch occurs in over 40% cases with 051

zero-shot prompting); (2) they are severe errors for 052

machine translation systems (e.g., repetition errors 053

usually lead to a over 50% decrease on the BLEU 054

score). 055

Nonetheless, the inherent reason for these er- 056

rors still remains unclear, let alone patching them. 057

In recent research works on model editing (Dai 058

et al., 2022; Meng et al., 2022; Todd et al., 2023), 059

they typically leverage analyzing tools like causal 060

mediation analysis (Pearl, 2014; Vig et al., 2020), 061

integrated gradient attribution (Sundararajan et al., 062

2017) to locate important component units (e.g., 063

FFN neurons, attention heads and stuff) that are 064

highly responsible for specific behavior patterns 065

of LLMs, and then precisely control these behav- 066

iors by manipulating the located components (e.g., 067
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amplifying and suppressing the activation values068

of neurons). Inspired by these works, we ask a069

research question: Can we leverage model editing070

methods to mitigate aforementioned language mis-071

match and repetition issues? We set out to adapt072

two widely-used model editing technique, Function073

Vectors (Todd et al., 2023) (FV) and Knowledge074

Neurons (Dai et al., 2022) (KN), to MT scenarios075

in an aim to locate error-relevant component units076

inside LLMs. However, our empirical results show077

that directly adapting FV and KN either has limited078

effect on the targeted errors or has significant side-079

effect on the general translation quality, which indi-080

cates that the located component units may be not081

only responsible for targeted error patterns but also082

crucial for ensuring machine translation with LLMs083

on the rails and hence manipulate them could result084

in affecting the general translation behavior.085

We then aim to filter out the error-irrelevant com-086

ponents from the located results. A natural hypoth-087

esis is that the location for the important error-088

relevant modules is supposed to be independent to089

translation language settings. Comparing the locat-090

ing results under the different translation language091

settings (de→en, en→de, zh→en and en→zh), we092

do observe that a proportion of located component093

units are shared across different language settings.094

Grounded on this observation, we propose to refine095

the located components by fetching the intersec-096

tion of the locating results under different language097

settings. The empirical results demonstrate that098

the modified methods can effectively reduce the099

language mismatch and repetition ratios and mean-100

while keep or enhance the general translation qual-101

ity in most cases.102

Our main contributions are three-fold: (1) We103

identify two patterns of errors in LLM-based MT104

that frequently occur and badly affect the transla-105

tion quality: language mismatch and repetition. (2)106

We investigate the potential for leveraging model107

editing methods (FV and KN) to reduce these er-108

rors. We find that directly adapting the editing109

methods either has limited effect on the targeted110

errors or has significant side-effect on the general111

translation quality. (3) We propose to refine the112

located modules by fetching the intersection of the113

locating results under different language settings.114

We show that with the refined locating results we115

could arouse the potential for editing methods to116

handle the language mismatch and repetition errors117

and meanwhile enhance or keep the general transla-118

tion quality in most cases. The performance of our119

methods could sometimes be comparable with tra- 120

ditional methods that adapt LLMs to MT tasks (e.g., 121

5-Shot ICL, LoRA and Full-FineTuning) without 122

additional requirements like long-context prompt- 123

ing and fine-tuning. 124

2 Related Work 125

Large Language Models for Machine Transla- 126

tion One surprising ability of LLMs is that they are 127

natural machine translators with Zero-Shot or One- 128

Shot prompt(Brown et al., 2020; Touvron et al., 129

2023; Vilar et al., 2023; Bawden and Yvon, 2023; 130

Robinson et al., 2023; Zhang et al., 2023a). How- 131

ever, there is still a gap(Xu et al., 2023) between 132

pre-trained LLM and large-scale NMT systems like 133

NLLB(Koishekenov et al., 2023) on the machine 134

translation task. To bridge this gap, previous stud- 135

ies utilise in-context learning(Moslem et al., 2023; 136

Agrawal et al., 2023; Bawden and Yvon, 2023; 137

Vilar et al., 2023), model tuning(Xu et al., 2023; 138

Alves et al., 2023; Zhang et al., 2023b), and inter- 139

action with annotation methods(Jiao et al., 2023; 140

Ki and Carpuat, 2024) to improve the translation 141

quality. Even though LLM has achieved massive 142

success in machine translation(Kocmi et al., 2023a), 143

some of the issues from LLM itself may challenge 144

machine translation, such as Hallucination(Bang 145

et al., 2023). Meanwhile, these problems from 146

LLM are challenging to detect only with MT met- 147

rics. Alves et al. (2023) find few-shot tuning can 148

improve the translation quality based on MT met- 149

rics(Papineni et al., 2002; Rei et al., 2022) but de- 150

tect the machine translation hallucination with a 151

case-based hallucination design. 152

Locating Based Model Editing Precisely locating 153

a small set of important modules (e.g., neurons (Dai 154

et al., 2022), hidden states (Todd et al., 2023), 155

MHSA (Li et al., 2024) and MLP (Meng et al., 156

2022) outputs) and editing their values to steer 157

large-scale models toward assumed behaviours 158

(e.g., updating factual associations (Meng et al., 159

2022; Hase et al., 2023), detoxifying (Wang et al., 160

2024), decreasing hallucination (Li et al., 2023), 161

switching languages (Tang et al., 2024) and patch- 162

ing reasoning errors (Li et al., 2024)) is a recently 163

emerging paradigm. Nonetheless, such techniques 164

are still largely under-explored in context of MT. 165

In this work, we investigate the potential for adapt- 166

ing two representative locating based editing ap- 167

proaches (specifically, function vectors (Todd et al., 168

2023) and knowledge neurons (Dai et al., 2022)) 169
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to the MT scenario to mitigate its two fundamental170

but crucial issues: language mismatch and repeti-171

tion (Zhang et al., 2021).172

3 Preliminary173

In this section, we detail the data preparation pro-174

cess, including the data source, prompt template,175

and dataset construction. Additionally, we provide176

information about the model and the evaluation177

metrics used to support the ensuing experiments.178

Data Source We choose three high-resource lan-179

guages: English, Chinese, German which show180

good performance on MT tasks(Robinson et al.,181

2023). For the detailed language setting, we in-182

clude two language pairs: English-Chinese and183

English-German, and four translation directions:184

en→de, de→en, en→zh and zh→en (where en,185

de, zh represent English, German and Chinese, re-186

spectively). In the data choice, we use the human-187

made dataset from general MT tasks of WMT21,188

WMT22 and WMT23 1 to ensure both high data189

quality and flexible data domain. These data make190

the machine translation approach a real-life usage191

to help us understand the current state of machine192

translation tasks using LLMs.193

Prompt Template For machine translation tasks,194

a widely-adopted (Zhang et al., 2023a; Bawden and195

Yvon, 2023; Vilar et al., 2023) K-Shot In-Context196

Learning (ICL) prompt template (taking the lan-197

guage setting of en→zh for an example) is:198

English : src1\nChinese : tgt1\n
...

English : srcK\nChinese : tgtK\n
English : srcq\nChinese :

199

Where (srci, tgti) refers to the i-th in-context trans-200

lation exemplar (srci refers to a sentence of source201

language and tgti refers to the corresponding sen-202

tence of target language.). srcq refers to the real203

sentecne of source language that needs to be trans-204

lated. We call this prompt template Lang Prompt205

and regard it as the default prompt template for the206

follow-up experiments in this paper.207

Dataset Construction In the data construction208

part, we construct the Dexps (data from WMT21)209

to provide the ICL exemplars used in the K-Shot210

prompt for machine translation tasks. We use the211

1https://github.com/wmt-conference/wmtX-news-
systems. X∈ {21, 22, 23}

WMT22 data as the Dtrain to fine-tune a model 212

or locate the critical parts in an LLM for model 213

editing methods. For the testing and validation, we 214

construct the Dtest (data from WMT23) for various 215

modifications (e.g. fine-tuning(Devlin et al., 2019) 216

or model editing methods(Todd et al., 2023; Dai 217

et al., 2022)). (Please refer to Appendix A for 218

detailed dataset information) 219

Model To support the in-depth exploration and 220

analysis of how the two kinds of errors happen. 221

We use LLaMA2-7B as our backbone language 222

model to implement the machine translation task 223

and further adaptation(Touvron et al., 2023). 224

Evaluation Metrics For the machine translation 225

metrics, we consider the overlapping-based met- 226

rics BLEU(Papineni et al., 2002) and neural-based 227

metrics COMET(Rei et al., 2022) to evaluate the 228

translation quality (For a detailed toolkit and detec- 229

tion process, please refer to Appendix B). 230

4 Language Mismatch and Repetition 231

Error in LLM-MT 232

In our initial experiments, we observe that LLM- 233

based machine translation struggles with the fol- 234

lowing two types of common errors. One is Lan- 235

guage Mismatch, referring to the language of the 236

translation result is not the target language. For 237

example, In the en→zh machine translation, the 238

target language is Chinese while the language of 239

generated sentence is still English. Another is Rep- 240

etition, referring to a substring is generated repeat- 241

edly until the end of the generation. To evaluate 242

these errors, we additionally introduce two metrics: 243

Language Mismatch Ratio (LMR) (the percentage 244

of cases occurring the language mismatch error) 245

and Repetition Ratio (RR) (the percentage of cases 246

occurring the repetition error). 247

Language mismatch and repetition error are 248

common and crucial In this paragraph, we aim 249

to find the ratio of language mismatch and repeti- 250

tion error in Zero-Shot and One-Shot. For detailed 251

language settings, we consider en→de, de→en, 252

en→zh, and zh→en. We use the Dtest and Dexps 253

as the test set and prompt exam source, respectively. 254

We choose LER and RR to represent the ratio of 255

language mismatch and repetition in a setting (e.g. 256

en→de (Zero-Shot)). For translation quality evalu- 257

ation, we choose the BLEU (Papineni et al., 2002) 258

as the metrics. We observe that language mismatch 259

is frequent in Zero-Shot and seldom in One-Shot. 260
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Repetition error cases in One-Shot are without lan-261

guage mismatch but combined with language mis-262

match in Zero-Shot. Based on our observation,263

we do experiments and analysis in Zero-Shot for264

the language mismatch and in One-Shot for the265

repetition error.266

To explore the relation between the above er-267

rors and translation quality, we split the translation268

results into four sets to evaluate the BLEU perfor-269

mance after error detection. The four sets include270

two error sets: language mismatch set and repeti-271

tion error set, one regular set (where instance with-272

out both errors), and one Origin set that includes all273

cases. The results of Table 1 illustrate: (1) the gap274

between the regular set and the original set shows275

both language mismatch and repetition error hurt276

the translation quality; (2) Language mismatch is277

the main reason for the low performance in Zero-278

Shot; (3) Even though we observe a low repetition279

ratio in One-Shot, the gap between repetition set280

and regular set shows that repetition is a severe281

error in the original set; (4) The performance gap282

between regular and error cases indicates a direct283

way to improve the translation quality by eliminat-284

ing these errors.285

Setting L(↓) OB(↑) LB(↑) RB(↑)
zh→en (Z) 0.0486 17.13 8.77 17.60
en→zh (Z) 0.3269 16.34 3.13 25.29
en→de (Z) 0.4524 12.61 1.65 21.86
de→en (Z) 0.0219 35.34 23.23 35.66
Setting R(↓) OB(↑) RRB(↑) RB(↑)
zh→en (O) 0.0035 18.87 2.13 19.06
en→zh (O) 0.0146 27.78 2.08 29.47
en→de (O) 0.0141 24.97 12.64 25.86
de→en (O) 0.0018 36.54 6.10 36.71

Table 1: The correlation between error ratio and BLEU.
(Z) represents the Zero-Shot prompting, and (O) repre-
sents the One-Shot prompting. L: language mismatch
ratio; R: repetition ratio; OB: The BLEU on the origi-
nal set; LB: The BLEU on the language mismatch set;
RRB: The BLEU on the repetition error set; RB: The
BLEU on the regular set.

5 Can we mitigate language mismatch286

and repetition via model editing?287

In this section, We aim to investigate the poten-288

tial for leveraging model editing methods (Dai289

et al., 2022; Meng et al., 2022; Todd et al., 2023)290

to precisely mitigate the aforementioned two se-291

vere issues in MT: language mismatch and repeti-292

tion. We mainly focus on two widely-used model293

editing methods: Function Vectors (FV) (Todd 294

et al., 2023) and Knowledge Neurons (KN) (Dai 295

et al., 2022), for both of them are representative 296

(i.e., Causal Mediation Analysis (Meng et al., 2022; 297

Pearl, 2014) for FV and Integrated Gradient Attri- 298

bution (Qi et al., 2019; Lundstrom et al., 2022) for 299

KN) and influential (Bai et al., 2024; Hojel et al., 300

2024; Niu et al., 2024; Chen et al., 2024). In the 301

following paragraphs, we adapt the idea of FV (cor- 302

responding to Machine translation vectors) and 303

KN (corresponding to Machine translation neu- 304

rons and Repetition neurons) to MT scenarios, in 305

an aim to both enhance the LLMs’ understanding 306

to MT (for both language mismatch and repetition 307

errors) and their specific ability to handle repetition 308

errors. 309

5.1 Machine Translation Vectors 310

In the original FV paper, the authors argue that 311

the key information of a task (e.g., task T , demon- 312

strated with few-shot In-Context Learning (ICL) 313

exemplars in the prompt) is compactly represented 314

and transported in a small set of attention heads 315

in LLMs. The original definition for FV (of 316

task T ) is the summation of these located head 317

vectors. FV can be directly added into the “residual 318

stream” (Elhage et al., 2021) of forwarding 319

computation of Transformer-based (Vaswani et al., 320

2017) LLMs to help them perform ideal behaviour 321

of task T . Therefore, a natural question is: Can 322

we use FV to enhance LLMs’ understanding 323

to MT and mitigate aforementioned language 324

mismatch and repetition issues? We use Ten- 325

Shot ICL prompts P (the template of machine 326

translation prompts is the Lang Prompt (Zhang 327

et al., 2023a) in Section 3.) to locate important 328

attention heads, where the data are sampled 329

from Dtrain. For brevity, we denote the normal 330

Ten-Shot ICL input (omitting language signs, i.e., 331

“English”, “Chinese” and “German”) as: inp = 332

[(src1, tgt1), (src2, tgt2), ..., (src10, tgt10), srcq] 333

∈ P , where src and tgt refer to sentences of 334

source and target languages respectively; index 335

1 ∼ 10 refers to ten ICL exemplars and q refers 336

to “query” (the real source sentence that requires 337

to be translated.). On its basis, we construct the 338

shuffled version of the original ICL input: ĩnp = 339

[(src1, t̃gt1), (src2, t̃gt2), ..., (src10, t̃gt10), srcq], 340

where for each ICL exemplar (srck, t̃gtk), 341

k ∈ [1..10], the target sentence t̃gtk ̸= tgtk. 342
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Extracting machine translation vectors First,343

we locate attention heads that are important to the344

MT with a Causal Mediation procedure: (1) Send345

both inp and ĩnp to the same LLMs (denoting the346

model as θ), (2) Fetch both probabilities of pre-347

dicting the ground-truth target sentence tgtq from348

models with the above two inputs: pθ(tgtq|inp)349

and pθ(tgtq|ĩnp), (3) Adopt intervention: replac-350

ing a single attention head output (e.g., for the351

i-th head in the j-th layer, the denotation is h̃ij .)352

in the shuffled run with ĩnp with the attention353

head output at the same place (hij) in the clear354

run with inp, (4) Calculate the Causal Indirect355

Effect (CIE(h̃ij → hij |inp)) of the intervention:356

pθ(tgtq|ĩnp, h̃ij → hij)− pθ(tgtq|ĩnp) and (5) Cal-357

culate the Average Indirect Effect for head hij :358

AIE(hij) = E
inp∈P

[CIE(h̃ij → hij |inp)].359

The AIE values for all heads in LLaMA2-7B360

under the language settings2 of “de→en” and361

“en→zh” are depicted in Figure2. We observe that

(a) de→en (b) en→zh

Figure 2: Heatmaps of AIE values for attention heads
in LLaMA2-7B for de→en setting (a) and en→zh set-
ting (b). x-axis and y-axis refer to the layer and head.
Brighter color refers to the head with larger AIE value.

362
for machine translation there are sparsely a few363

heads of which the corresponding AIE values strik-364

ingly stand out among 1024 heads. We select top-365

32 heads (according to their AIE values, denoted366

as H) to extract FV in the follow-up experiments.367

Let hij(inp) denote the output of attention head368

hij given the input prompt inp. Following Todd369

et al. (2023), we extract the machine translation vec-370

tor with a specific language setting (e.g., zh→en)371

Vzh→en with the following formula:372

Vzh→en = E
inp∈Pzh→en

[
∑
hi
j∈H

hij(inp)] (1)373

Editing LLMs via machine translation vectors374

We directly add the extracted the machine transla-375

2Due to the page limit, We post experiment results only
under part of the language settings results in the main text.
For the rest language settings, we post them in Appendix C,
Similarly hereinafter.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MT vectors −72.84% −37.35% −1.84%
+MT neurons −18.72% −4.28% −0.15%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+MT vectors 482.86% −23.07% −1.68%
+MT neurons 0.0% −0.35% −0.03%
+RP neurons −8.57% 0.07% 0.0%

Table 2: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of zh→en). Zero-Shot and One-Shot refer
to that using zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for
MT. For evaluation metrics, L: Language mismatch ra-
tio; R: Repetition ratio; B: BLEU and C: COMET22DA,
where B and C mainly evaluate the general translation
quality. For plain LLaMA2-7B, the results are absolute
values; for LLaMA2-7B with editing methods, the re-
sults are relative improvement percentages.

tion vector to the “residual stream” (being aligned 376

with the original paper, at 11-th layer for LLaMA2- 377

7B) in the forwarding process. The performance of 378

LLaMA2-7B (e.g., under the language setting of 379

zh→en.) after adopting machine translation vectors 380

are posted in Table 2. 381

We observe that leveraging machine translation 382

vectors (+MT vectors) can (1) reduce the language 383

mismatch errors to a large extent (−72.84%) while 384

simultaneously (2) introduce more repetition errors 385

(+482.86%) and (3) do harm to the general transla- 386

tion quality: −37.35% (Zero-Shot) and −23.07% 387

(One-Shot) for BLEU. 388

5.2 Machine Translation Neurons and 389

Repetition Neurons 390

The original KN technique is constructed on the 391

basis of Geva et al. (2021)’s observation that 392

the Feed-Forward Networks (FFNs) in the Trans- 393

former (Vaswani et al., 2017) can be viewed as key- 394

value memories, which can store the encodings 395

of a set of patterns (e.g., sentence end with spe- 396

cific words, specific topics and factual knowledge.). 397

Given a specific pattern, KN can be used to locate a 398

small set of neurons in FFNs that are the attribution 399

of this pattern and manipulate the expression of this 400

pattern by amplifying, suppressing or erasing the 401

activation values of the located neurons. We ask 402

a natural question: Can we use KN to locate and 403

manipulate skilled neurons that are responsible 404

for MT or the repetition error pattern? In the MT 405

scenarios, We denote the input prompt inp (also 406
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omitting language sign) as [srcq] (Zero-Shot) or407

[(src0, tgt0), srcq] (One-Shot) and the correspond-408

ing output as tgtq, where the (src0, tgt0) is the ICL409

exemplar (sampled from Dexps) and (srcq, tgtq) is410

the “query”, the real case used for locating neurons411

(sampled from Dtrain) or testing edited models412

(sampled from Dtest).413

Locating Important Neurons for MT We ran-414

domly sample a token t in each tgtq and use t415

to split tgtq into two parts: tgtq = (
←
tgtq,

→
tgtq)416

(t ∈
→
tgtq). To fully model the MT and mean-417

while restrict the computation, we focus on the418

probability of p(t|inp+), where t refers to the419

first token of
→
tgtq and inp+ refers to the con-420

catenation of inp and
←
tgtq. Focusing on a single421

neuron w
(l)
i (i-th intermediate neuron in the j-th422

FFN), we denote its activation value as wi
(l). Then423

we can introduce this variable into p(t|inp+) as424

p(t|inp+, w(l)
i = wi

(l)) ≜ f(wi
(l)) (fixing t and425

inp+, the probability can be viewed as an objective426

function whose only variable is the value of neuron427

w
(l)
i ). We calculate the attribution score of neuron428

w
(l)
i by Integrated Gradient (Sundararajan et al.,429

2017):430

Attr(w(l)
i |f) = wi

(l)

∫ 1

α=0

∂f(wi
(l))

∂w
(l)
i

dα. (2)431

We calculate the mean value of the attribution432

scores for each neuron with 2,000 examples in433

Dtrain and select top-5 neurons as Machine Trans-434

lation neurons (MT neurons).435

Locating Important Neurons for Repetition436

We first collect all of examples that occur the repeti-437

tion error. For a specific input prompt inp, the com-438

pletion of LLMs y can be divided into the follow-439

ing several parts: y = [ynorm, yrepe, yrepe, yrest],440

where ynorm refers to the normal generation part441

(except for the first-time generation of yrepe), yrepe442

refers to the minimal repetition unit (the first yrepe443

here is supposed to be treated as normal gener-444

ation) and yrest (the follow-up generation after445

the second-time generation of yrepe). To con-446

centrate on the repetition error, we construct a447

new input prompt inprepe = [inp, ynorm, yrepe]448

and focus on the probability of p(yrepe|inprepe).449

Similar to the MT neurons part, we define neu-450

ron w
(l)
i , its value wi

(l), its objective function451

p(yrepe|inprepe, w(l)
i = wi

(l)) ≜ frepe(wi
(l)) and452

its attribution score Attr(w(l)
i |frepe) (repetition at- 453

tribution score). A natural concern here is that the 454

objective function frepe(wi
(l)) might model the 455

pattern of generating yrepe rather than the repe- 456

tition error pattern. To exclude this concern, we 457

additionally set a comparison objective function 458

fcompare = p(yrepe|[inp, ynorm], w
(l)
i = wi

(l)) to 459

model the first-time generation (normal generation) 460

of yrepe. With fcompare, we can also get the at- 461

tribution score Attr(w(l)
i |fcompare) (comparison at- 462

tribution score) of neuron w
(l)
i . We calculate the 463

mean values of repetition and comparison attribu- 464

tion scores separately for each neuron w
(l)
i with all 465

of the cases in Dtrain that occur the repetition error. 466

We separately select top-300 neurons according to 467

mean repetition and comparison attribution score, 468

denoting the fetched sets as Nrepe and Ncompare. 469

We select 5 neurons with the largest repetition attri- 470

bution scores from Nrepe\Ncompare as the Repeti- 471

tion Neurons (RP neurons). 472

Editing LLMs via MT neurons and RP neu- 473

rons For MT neurons, we edit LLMs by ampli- 474

fying the activation values of these neurons (set 475

the new values to be twice the original ones). For 476

RP neurons, we edit LLMs by erasing the activa- 477

tion values of these neurons (set the new values to 478

be zero). The performance of LLaMA2-7B (e.g., 479

under the language setting of zh→en.) after adopt- 480

ing MT neurons and RP neurons are posted in Ta- 481

ble 2. We observe that (1) adopting MT neurons 482

can indeed help reduce language mismatch ratio to 483

some extent(−18.72%) while also bring small neg- 484

ative side-effect to the translation quality (−4.28% 485

for the BLEU score), (2) adopting MT neurons 486

nearly have no effect on the repetition ratio and (3) 487

adopting RP neurons can reduce the repetition ra- 488

tio slightly (−8.57%) without affecting the metrics 489

(BLEU and COMET22DA) of evaluating general 490

translation quality. 491

Hence a short response to the question of this 492

section is that Directly leveraging model editing 493

methods either has limited effect on errors (MT 494

neurons and RP neurons) or significant negative 495

side-effect on general translation quality (MT vec- 496

tors). Nonetheless, we do observe the potential for 497

mitigating the aforementioned errors with editing 498

methods. 499
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Figure 3: Performance ((a) for the decrease percent-
age of LMR; (b) for the improvement percentage of
COMET22DA) of intervention (blue bars) with lan-
guage settings of zh→en, en→zh and de→en on the
heads located with the language setting of en→de. The
red bars (comparison group) refer to the results for in-
tervention on random heads of the same number.

6 Modifications to FV and KN in MT500

scenarios501

In section, we mainly discuss our modifications502

(Section 6.1) to FV and KN methods (Section 5)503

to release their potential for better mitigating the504

language mismatch errors, repetition errors and505

even improving the general translation quality. Be-506

sides, we present systematical evaluation results507

for the modified editing methods and baselines in508

Section 6.2.509

6.1 Modifications510

Previous empirical results (Section 5) show that511

MT vectors are more effective to reduce language512

mismatch errors in comparison with MT neurons513

while the RP neurons are more promising for han-514

dling repetition errors, suggesting that the inher-515

ent mechanisms for the recognition of target lan-516

guage and generating strings repeatedly locate in517

MHSA heads and FFN intermediate neurons, re-518

spectively. To this end, in the follow-up experi-519

ments, we concentrate on modifying MT vectors520

to handle language mismatch errors and RP neu-521

rons to handle repetition errors. Our first modifica-522

tion is based on a natural hypothesis: The location523

for the important modules inside LLMs that are524

responsible for target language recognition and525

repetition errors is supposed to be independent to526

language settings. The hypothesis can also be527

verified to some extent by the important head locat-528

ing experiments depicted in Figure 4, where results529

for different language settings (zh→en, en→zh,530

en→de and de→en) share a large proportion of531

top heads. Moreover, we locate top-12 impor-532

tant attention heads in LLaMA2-7B under the lan-533

guage setting of en→de and apply MT vectors to534

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MTV −92.46% −0.81% 2.65%
+MTV-I −80.15% 53.5% 15.51%
+MTV-I-D −86.12% 76.82% 16.02%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+RPN −8.57% 0.07% 0.0%
+RPN-I −25.71% 0.51% −0.04%

Table 3: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of zh→en for Zero-Shot and zh→en for
One-Shot). Other notations and abbreviations are fol-
lowing Table 2.

LLaMA2-7B with these located heads under the 535

language settings of zh→en, en→zh and de→en. 536

The results of Zero-Shot translation are depicted in 537

Figure 3 (experimental group, blue bars). We addi- 538

tionally randomly select 12 heads to apply MT vec- 539

tors and the results (comparison group) are shown 540

with red bars. We observe that for both the lan- 541

guage mismatch ratio and COMET22DA, the per- 542

formance of experimental group largely exceeds 543

the performance of comparison group under all 544

three other language settings, indicating that the 545

attention heads located under a single language set- 546

ting can transfer to other language settings. Given 547

these evidences, we propose our first modification 548

to both MT vectors and RP neurons: We firstly lo- 549

cate attention heads or FFN neurons separately 550

for each language setting and then get the final 551

located results by intersecting the located results 552

for all of language settings. We denote the MT 553

vectors fetched by intersected attention heads as 554

MT Vectors-Intersection (MTV-I) and intersected 555

RP neurons as RePetition Neurons-Intersection 556

(RPN-I). We post the results for leveraging MTV-I 557

and RPN-I under the language settings of en→de 558

and zh→en in Table 3. We observe that: (1) for 559

MTV-I, the decrease percentage of language mis- 560

match error ratio (−80.15%) is slightly lower than 561

MTV (−92.46%) while improvement percentage 562

of the BLEU score (53.5%) and COMET22DA 563

score (15.51%) exceed MTV (−0.81% and 2.65%) 564

by a large margin and (2) for RPN-I, the decrease 565

percentage of repetition error ratio (−25.71%) is 566

much higher than RPN (−8.57%), suggesting that 567

intersection of different language settings can filter 568

attention heads and FFN neurons that are irrelevant 569

to language mismatch errors and repetition errors 570

out. On the basis of MTV-I, we propose another 571

slight modification: Firstly calculate the MTV-I, 572
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de→en en→de zh→en en→zh

Zero-Shot L(↓) B(↑) L(↓) B(↑) L(↓) B(↑) L(↓) B(↑)

LLaMA2-7B 0.0219 35.3448 0.4524 12.6084 0.0486 17.1288 0.3269 16.3441
+5-Shot ICL −74.89% 4.93% −92.06% 101.27% −50.0% 12.46% −82.59% 76.9%
+LoRA −83.56% 0.68% −95.25% 115.24% −79.22% 6.62% −77.58% 82.62%
+Full-FT −8.68% 2.25% −62.69% 55.41% −33.33% 3.15% −66.23% 62.64%
+MTV-I-D −33.33% −0.53% −86.12% 76.82% −54.12% −14.08% −69.9% 24.64%

One-Shot R(↓) B(↑) R(↓) B(↑) R(↓) B(↑) R(↓) B(↑)

LLaMA2-7B 0.0018 36.5445 0.0141 24.9685 0.0035 18.8714 0.0146 27.7798
+5-Shot ICL 0.0% 1.49% 14.89% 1.63% −14.29% 2.07% −17.12% 4.08%
+LoRA −77.78% −9.47% −74.47% −2.39% 5.71% 0.07% −10.27% 0.37%
+Full-FT 22.22% 1.26% −25.53% 4.9% −22.86% 2.5% 22.6% 4.47%
+RPN-I −38.89% 0.74% −27.66% 0.35% −25.71% 0.51% −19.18% −0.23%

Table 4: Overall Performance of LLaMA2-7B (and after applying model editing methods) on Dtest under all
language settings. Other notations and abbreviations are following Table 2.

then divide it evenly according to the number of573

the intersected attention heads and add them to574

those heads. We denote this manner of leverag-575

ing MTV-I as MTV-I-Distributional (MTV-I-D). We576

also post the results of leveraging MTV-I-D in Ta-577

ble 3, where the results demonstrate that MTV-I-D578

can further achiever better performance than MTV-I579

in terms of language mismatch ratio, BLEU and580

COMET22DA.581

6.2 Overall Results582

To make readers get a better sense of the LLMs583

edited with our methods (MTV-I-D and RPN-I),584

we show the overall evaluation results for both our585

methods and traditional adaptation methods, in-586

cluding 5-Shot In-Context Learning (Brown et al.,587

2020) (5-Shot ICL), Low Rank Adaptation Tun-588

ing (Hu et al., 2022) (LoRA) and Full parameter589

Supervised Fine-Tuning (Alves et al., 2023) (Full-590

FT) for LLM-based MT in Table 4. Due to the591

page limit, we only post the performance on the592

metrics of language mismatch error ratio, repetition593

error ratio and BLEU score (We find that perfor-594

mance on COMET22 score is highly aligned with595

BLEU score). We observe that: (1) Applying the596

modified editing methods, MTV-I-D and RPN-I597

can generally reduce the error ratios for both lan-598

guage mismatch (L) and repetition (R) to a large599

degree, (2) The negative side-effect on the gen-600

eral translation quality (BLEU score, B) is minor601

(except when applying MTV-I-D under the setting602

of zh→en, with a −14.08% decrease percentage603

on BLEU score). It is noteworthy that applying604

MTV-I-D can even improve the general translation605

quality to a large extent on the settings of en→de606

(76.82%) and en→zh (24.64%) and (3) The per- 607

formance of MTV-I-D and RPN-I can sometimes 608

be comparable with (and even surpass) the tradi- 609

tional methods that adapt LLMs to the MT tasks, 610

without additional requirements like long-context 611

prompting and fine-tuning. 612

7 Conclusion 613

In the work we find that two types of errors, lan- 614

guage mismatch and repetition, occur frequently 615

when performing the machine translation tasks with 616

LLMs, bringing severe negative effect on the trans- 617

lation quality. We investigate the potentials of lever- 618

aging model editing methods to mitigate these is- 619

sues and find that directly adopting function vectors 620

and knowledge neurons may either have limited im- 621

provement on the error ratio metrics or bring note- 622

worthy negative effect on the metrics that evaluate 623

general machine translation quality (e.g., BLEU 624

score), which indicates that the located attention 625

heads and FFN neurons might be too coarse to only 626

affect the error ratios without hurting the transla- 627

tion quality. To this end, we propose to refine the 628

located attention heads and neurons by fetching the 629

intersection of the locating results under different 630

language settings. Our empirical results suggest 631

that the modified function vectors and knowledge 632

neurons methods (MTV-I-D and RPN-I) can ef- 633

fectively reduce the aforementioned two types of 634

errors and even bring a positive influence on the 635

translation quality metrics in most settings, indicat- 636

ing that there indeed exist a small set of modules 637

that are highly responsible for the language mis- 638

match and the repetition errors meanwhile. 639
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Limitations640

Our work is based on open-source LLaMA series641

models (Touvron et al., 2023)3. However, the effec-642

tiveness of these findings on other models, such as643

the open-sourced Baichuan 2 (Yang et al., 2023) or644

the close-sourced GPT-4 (OpenAI, 2023), remains645

unknown.646

The model editing methods used in this paper647

require computational resources proportional to the648

size of the large language model (LLM). When649

applying our methods to a larger model, more com-650

putational resources will be necessary to achieve651

improved results. Our focus is on high-resource652

language settings for machine translation (MT).653

However, the observations and conclusions may654

differ when applied to low-resource or non-English655

language pair settings (e.g., zh→de machine trans-656

lation tasks)657

We utilise automatic metrics for error and ma-658

chine translation (MT) evaluation in our measure-659

ments. However, employing human-involved eval-660

uations (Kocmi et al., 2023b) can offer a more661

profound understanding of the machine translation662

task with large language models (LLMs).663

Ethics Statement664

This paper utilizes a pre-trained large language665

model, with its training data sourced from web666

corpora that have not undergone ethical filtering.667

Consequently, it is capable of generating toxic con-668

tent in the machine translation task (Wen et al.,669

2023). Moreover, we do not filter the source data670

or translation output in our work. Future research671

may build on our results to enhance the model, and672

we advocate for incorporating content supervision673

to prevent the dissemination of toxic content.674
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A Dataset Information1010

Table 5 shows the detailed data size for Dexps,1011

Dtrain and Dtest. We use the WMT21 test set4 as1012

the Dexps, WMT22 test set5 as Dtrain and WMT231013

test set6 asDtest.1014

The detailed data size for the K-shot (K =1015

0, 1, 5) setting is shown in Table 6. For all settings,1016

we use the lang prompt as the prompt template (1017

as shown in Section 3). For the Zero-Shot setting,1018

we directly combine the source data with the lang1019

prompt. For the One-Shot setting, we uniformly1020

sample the data from Dexps based on the length of1021

the example source to alleviate the potential length1022

4https://github.com/wmt-conference/
wmt21-news-systems

5https://github.com/wmt-conference/
wmt22-news-systems

6https://github.com/wmt-conference/
wmt23-news-systems

Setting Dexps Size Dtrain Size Dtest size
en→de 1002 2037 557
de→en 1000 1984 549
en→zh 1002 2037 2074
zh→en 1948 1875 1976

Table 5: Data size of Dexps, Dtrain, Dtest on four lan-
guage settings.

bias from prompt example(Zhang et al., 2023a). 1023

We use the most natural selection method for the 1024

Five-Shot setting by randomly selecting five exam- 1025

ples from Dexps.

Setting D0 Size D1 Size D5 size
en→de (Dtrain) 2037 12222 2037
de→en (Dtrain) 1984 9920 1984
en→zh (Dtrain) 2037 12222 2037
zh→en (Dtrain) 1875 11250 1875
en→de (Dtest) 557 3342 557
de→en (Dtest) 549 2745 549
en→zh (Dtest) 2074 12444 2074
zh→en (Dtest) 1976 11856 1976

Table 6: Data size of Zero-Shot (D0), One-Shot(D1)
and Five-Shot(D5) on four language settings. Dtrain

and Dtest represent the source data in the prompt.

1026

B Toolkits for evaluation 1027

For the language mismatch detection, we use the 1028

Polyglot toolkit7 to detect the language error. For 1029

repetition error, based on the definition of repeti- 1030

tion error, we follow two rules to judge whether 1031

a translation result is repeated: (1) the generation 1032

length reaches the max_new_tokens setting8; (2) 1033

there exists a substring happening until the end of 1034

the generation. For the machine translation metrics, 1035

we use SacreBLEU(Post, 2018), Unbabel/wmt22- 1036

comet-da9 and Unbabel/wmt22-cometkiwi-da10 to 1037

do evaluation. 1038

C The AIE values for all heads 1039

Figure 4 shows the AIE values of all heads of 1040

LLaMA2-7B on en→de, de→en, en→zh and 1041

zh→en settings. 1042

7https://github.com/aboSamoor/polyglot
8https://github.com/huggingface/tokenizers
9https://huggingface.co/Unbabel/

wmt22-comet-da
10https://huggingface.co/Unbabel/

wmt22-cometkiwi-da
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(a) en→de (b) de→en

(c) en→zh (d) zh→en

Figure 4: Heatmaps of AIE values for attention heads
in LLaMA2-7B for en→de setting (a), de→en setting
(b), en→zh setting (c) and zh→en setting (d). The x-
axis and y-axis refer to the layer and head, respectively.
Brighter color refers to the head with larger AIE value.

D Results for direct adaptation1043

The complete results of direct adaptation on four1044

language settings are shown in Table 7 (en→de), 81045

(de→en), 9 (en→zh) and 10 (zh→de).1046

These tables show that the MT vectors can de-1047

crease the language mismatch ratio while the RP1048

neurons help decrease repetition errors in all lan-1049

guage settings.1050

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.4524 12.6084 0.6113
+MT vectors −92.46% −0.81% 2.65%
+MT neurons −11.1% 1.78% 0.15%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0141 24.9685 0.7279
+MT vectors 487.94% −39.11% −10.87%
+MT neurons 4.26% −1.05% −1.06%
+RP neurons −27.66% 0.77% −0.3%

Table 7: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of en→de). Zero-Shot and One-Shot
refer to using a zero-shot prompt (for language mis-
match errors) and one-shot prompt (for repetition er-
rors) for MT tasks. For evaluation metrics, L: Language
mismatch ratio; R: Repetition ratio; B: BLEU and C:
COMET22DA, where B and C mainly evaluate the gen-
eral translation quality. For plain LLaMA2-7B, the re-
sults are absolute values; for LLaMA2-7B with editing
methods, the results are relative improvement percent-
ages.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0219 35.3448 0.7836
+MT vectors −74.89% −33.85% −5.53%
+MT neurons 8.22% 0.03% 0.23%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0018 36.5445 0.7893
+MT vectors 727.78% −33.62% −4.38%
+MT neurons 22.22% −0.35% −0.11%
+RP neurons −−% −−% −−%

Table 8: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of de→en). The −− means the same
result as the LLaMA2-7B since we do not detect any
repetition on the training set under the same language
setting. Notation and corresponding explanations can
refer to Table 7.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.3269 16.3441 0.6567
+MT vectors −70.05% 18.2% 5.07%
+MT neurons −5.32% 3.16% 0.35%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0146 27.7798 0.7444
+MT vectors 162.33% −15.29% −4.0%
+MT neurons 5.48% −4.28% −0.28%
+RP neurons −4.11% 0.55% 0.05%

Table 9: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of en→zh). Zero-Shot and One-Shot re-
fer to using a zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for
MT tasks. Notation and corresponding explanations can
refer to Table 7.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MT vectors −72.84% −37.35% −1.84%
+MT neurons −18.72% 4.28% −0.15%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+MT vectors 482.86% −23.07% −1.68%
+MT neurons 0.0% −0.35% −0.03%
+RP neurons −8.57% 0.07% 0.0%

Table 10: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of zh→en). Zero-Shot and One-Shot re-
fer to using a zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for
MT tasks. Notation and corresponding explanations can
refer to Table 7.
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E Results for improved adaptation1051

Table 12, 11, 14 and 13 show the results for im-1052

proved adaptation on en→de, de→en, en→zh and1053

zh→en respectively.1054

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0219 35.3448 0.7836
+MTV −74.89% −33.85% 0.0036%
+MTV-I −58.45% −4.84% −5.53%
+MTV-I-D −33.33% −0.53% −0.22%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0018 36.5445 0.7893
+RPN −−% −−% −−%
+RPN-I −−% −−% −−%

Table 11: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of de→en for Zero-Shot and de→en for
One-Shot). The – means the results is the same as the
LLaMA2-7B since there is no repetition cases in the
Dtrain. Other notations and abbreviations following
Table 7.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.4524 12.6084 0.6113
+MTV −92.46% −0.81% 2.65%
+MTV-I −80.15% 53.5% 15.51%
+MTV-I-D −86.12% 76.82% 16.02%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0141 24.9685 0.7279
+RPN −27.66% 0.77% −0.3%
+RPN-I −27.66% 0.35% −0.03%

Table 12: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of en→de for Zero-Shot and en→de for
One-Shot). Other notations and abbreviations following
Table 7.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MTV −92.46% −0.81% 2.65%
+MTV-I −80.15% 53.5% 15.51%
+MTV-I-D −86.12% 76.82% 16.02%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+RPN −8.57% 0.07% 0.0%
+RPN-I −25.71% 0.51% −0.04%

Table 13: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of zh→en for Zero-Shot and zh→en for
One-Shot). Other notations and abbreviations are fol-
lowing Table 10.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.3269 16.3441 0.6567
+MTV −70.05% 18.2% 5.07%
+MTV-I −67.27% 19.08% 7.54%
+MTV-I-D −69.9% 24.64% 8.82%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0146 27.7798 0.7444
+RPN −4.11% 0.55% 0.05%
+RPN-I −19.18% 0.01% −0.23%

Table 14: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of en→zh for Zero-Shot and en→zh for
One-Shot). Other notations and abbreviations are fol-
lowing Table 7.

F Implementation Details 1055

For all machine translation results on LLMs, we 1056

only maintain the first line of the generation as 1057

the translation result based on the format of lang 1058

prompt. In the real translation process, we use 1059

batch generation techniques (batch size = 4) and 1060

set the maximum generation length of tokens to 1061

400 with the Huggingface API11 to do translations 1062

for any setting in this work. 1063

Five-Shot For the Five-Shot setting, we directly 1064

use the D5 on LLaMA2-7B to run machine transla- 1065

tion task without intervention. 1066

LoRA fine-tuning LoRA (Low-Rank Adapta- 1067

tion)(Hu et al., 2022) is a parameter-efficient tuning 1068

technique generally used in natural language pro- 1069

cessing. In our work, we use the LoRA(Hu et al., 1070

2022) method to align the LLaMA2-7B model to 1071

the machine translation task. For the fine-tuning 1072

data, we combine the data of all language settings 1073

from Dtrain into D0 and D1 for Zero-Shot setting 1074

and One-Shot setting respectively. Finally, we tune 1075

two LoRA models with the trl tool12 with the self- 1076

supervised tuning method. We train one epoch with 1077

a rank of 64 and a learning rate of 2e−4 for both 1078

Zero-Shot and One-Shot. We use one NVIDIA 1079

A100 80GB Tensor Core GPU card for the SFT 1080

training; either the Zero-Shot or One-Shot costs 1081

less than a half day. 1082

Full fine-tuning We use the same data and train- 1083

ing tool in the LoRA setting for full fine-tuning. In 1084

the training process, we use the bfloat16 precious 1085

to train the model on one NVIDIA A100 80GB 1086

11https://huggingface.co/
12https://github.com/huggingface/trl
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Tensor Core GPU card for full fine-tuning with a1087

lower learning rate 1e−6 compared to LoRA.1088

We claim there is still room for improvement in1089

the LoRA or Full fine-tuning methods. However, a1090

complete understanding of the mismatch and repe-1091

tition error should also be evaluated on large-scale1092

data, which is one of the following steps for our1093

research.1094
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