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Abstract
The progress in materials science and drug discov-
ery is impeded by the availability of labeled data
and the high costs of manual annotation, driving
the need for efficient strategies to capture molec-
ular representations and enable accurate predic-
tions. Pretrained Graph Neural Networks have
shown promise in capturing universal molecular
representations, but adapting them to task-specific
applications remains challenging. In this paper,
we propose Multilevel Informed Prompt-Tuning
(MIPT), a novel framework for effectively tailor-
ing pretrained models to molecule-related tasks.
MIPT utilizes a lightweight, multi-level prompt
learning module to capture node-level and graph-
level task-specific knowledge, ensuring adapt-
able and efficient tuning. Additionally, a noise
penalty mechanism is introduced to address mis-
matches between pretrained representations and
downstream tasks, reducing irrelevant or noisy in-
formation. Experimental results show that MIPT
surpasses all baselines, aligning graph space and
task space while achieving significant improve-
ments in molecule-related tasks, demonstrating
its scalability and versatility for molecular tasks.

1. Introduction
Machine learning (ML) has demonstrated significant po-
tential to revolutionize the discovery and development of
new materials (Chibani & Coudert, 2020), drugs (Shen &
Nicolaou, 2019), and chemical processes (Taskinen & Yliru-
usi, 2003). However, the rapid growth in these fields is
hindered by the scarcity of labeled molecular data and the
high cost of manual annotation. These challenges have
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driven interest in strategies that efficiently capture molecu-
lar properties and enable accurate predictions with minimal
supervision. Pretrained Graph Neural Networks (GNNs),
designed to learn universal molecular representations, offer
a promising solution. Yet, adapting these representations to
task-specific applications remains a key challenge, necessi-
tating efficient and flexible tuning methods. The pretrain-
and-finetune paradigm (Hu et al., 2019) has been proposed
to address this challenge, but the gap between pre-training
objectives and downstream tasks often hinders effective
knowledge transfer, leading to suboptimal performance.

Prompt-based learning (Sun et al., 2023b; Li et al., 2024)
has recently emerged as a powerful method for bridging
this semantic gap. By aligning downstream tasks with
pre-trained feature spaces, prompts facilitate knowledge
transfer, improving accuracy and efficiency in applications
such as molecular property prediction. Graph prompts,
in particular, have shown efficacy in narrowing this gap.
Some approaches use manually customized prompts (Wang
et al., 2024), incorporating task-specific substructures or
functional groups, while others explore universal prompts,
such as GPF (Fang et al., 2024), which are applicable
across all nodes, enhancing task adaptability and gener-
alization while reducing computational costs. Additionally,
in-context learning methods like PRODIGY (Huang et al.,
2024) leverage label nodes to construct prompt graphs, trans-
forming downstream tasks into link prediction problems
and enhancing contextual learning. These approaches col-
lectively provide more flexible and efficient solutions for
downstream applications.

Despite these advances, significant challenges remain in
applying prompts to pre-trained GNNs. Many existing
graph prompts are unable to optimize for specific tasks
and exhibit limited scalability. While manually designed
prompts (Wang et al., 2024) offer task-specific flexibility,
their reliance on predefined templates limits adaptability.
Similarly, universal prompts, such as GPF-plus (Fang et al.,
2024), struggle to capture the diversity of all nodes, and as-
signing distinct prompts to each node incurs high computa-
tional costs (Sun et al.). Some studies address these issues by
introducing label nodes to construct graph prompt (Huang
et al., 2024), but this approach can disrupt node depen-
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dencies and alter graph topology, potentially reducing pre-
diction accuracy. Moreover, the large number of tunable
parameters in pre-trained GNNs, combined with the limited
availability of labeled molecular data, makes downstream
fine-tuning less effective. These limitations highlight the
need for adaptable, scalable, and efficient prompt designs to
fully leverage the potential of pre-trained GNNs.

On the other hand, while prompts are effective in enhanc-
ing generalization, they may inadvertently introduce task-
irrelevant noise, which can hinder the model’s ability to
prioritize critical features, ultimately leading to suboptimal
performance in specific tasks. For instance, in graph classi-
fication, prompts may overemphasize edge or node details
while neglecting the overall graph structure. Similarly, pre-
trained GNNs, despite capturing broad feature distributions,
may fail to align with task-specific requirements, such as
mismatches between node-level pre-trained features and
subgraph-level features needed downstream, causing overfit-
ting and reduced accuracy. Additionally, downstream tasks
often exhibit biases, prioritizing high-probability features
while ignoring low-probability tail samples. Effectively
bridging the gap between generalized pre-trained knowl-
edge and domain-specific needs presents a critical challenge,
necessitating highly adaptive approaches to mitigate noise,
address feature mismatches, and align with task-specific
biases for enhanced performance.

Based on the above observations, this paper aims to address
the following challenges: (i) While prompts are designed
to bridge the gap between pre-training and downstream
tasks, universal prompts frequently exhibit limited intuitive
interpretability and poor scalability. Consequently, effec-
tive prompt design necessitates integrating graph-specific
information, capturing their adaptability to graph structures,
and ensuring efficient scalability. (ii) Although prompts are
intended to guide models towards task adaptation, their ap-
plication may inadvertently introduce task-irrelevant noise
due to suboptimal feature modeling, thereby compromising
performance. Therefore, it is crucial to effectively extract
salient features, mitigate noise interference, and enhance the
model’s robustness and adaptability to downstream tasks.

In this paper, we propose a novel framework, Multilevel
Informed Prompt Tuning (MIPT), to enhance pretrained
GNNs for molecule-related tasks. The framework employs
a lightweight multi-level prompt learning network to cap-
ture task-specific knowledge at both node and graph levels,
enabling effective adaptation to diverse scenarios. Further-
more, a noise penalty mechanism is introduced to align
distributions and facilitate knowledge transfer across graph
spaces. Experiments on public datasets demonstrate that
MIPT achieves superior performance in molecular property
prediction while requiring fewer trainable parameters.

Our contributions can be summarized as below:

• We introduced a novel framework called Multilevel
Informed Prompt Tuning (MIPT), which leverages a
lightweight multi-level prompt learning module to effec-
tively capture task-specific knowledge at both the node
and graph levels, enabling efficient adaptation of pre-
trained GNNs to molecular tasks.

• We incorporates a noise penalty mechanism to address
mismatches between pretrained representations and down-
stream tasks, effectively reducing irrelevant or noisy in-
formation and enhancing task performance.

• Experimental results demonstrate that MIPT surpasses
baseline model, excelling in aligning graph and task space
modalities, while showcasing scalability and versatility
across a wide range of molecule-related tasks.

2. Related Works
2.1. Pre-trained GNNs

Pretraining and fine-tuning are widely used to transfer
knowledge from related tasks and enhance model gener-
alization. Pretraining trains on large-scale data via self-
supervised or supervised tasks, followed by fine-tuning
on smaller labeled datasets. In molecular GNNs, various
self-supervised tasks capture chemical rules and patterns
at node, subgraph, and graph levels (Xia et al., 2022b).
However, pretrained GNNs face challenges in extracting
task-relevant knowledge and often suffer from overfitting
during fine-tuning (Xia et al., 2022a). Unlike NLP and CV,
pretrained GNNs do not consistently improve downstream
performance (Sun et al., 2022b), partly due to limited re-
search on selecting effective self-supervised tasks. Most
studies adopt only a few tasks for pretraining, resulting in
GNN models excelling in specific downstream tasks but
lacking consistency (Sun et al., 2022b). Moreover, recent
findings suggest self-supervised pretraining sometimes fails
to outperform non-pretrained methods (Sun et al., 2022b).
Overall, pretrained GNNs offer limited advantages over
non-pretrained models. Recent approaches have attempted
to improve fine-tuning using regularization (Xuhong et al.,
2018) or update constraints (Houlsby et al., 2019; Xia et al.,
2022a; Zhang et al., 2022).

2.2. Graph Prompt Learning

Despite the advances in pre-trained models, bridging this
gap between pre-trained and fine-tuned models has become
a critical focus in recent research. GPPT (Sun et al., 2022a)
introduced a learnable prompt mechanism for graphs, specif-
ically targeting node classification tasks. While effective in
this specific domain, its design lacks generalizability and
cannot adapt to other downstream tasks. Building upon
this, Graph Prompt (Liu et al., 2023) proposed a novel
task-specific learnable prompt, which guides the ReadOut
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operation of each downstream task using an appropriate
aggregation scheme. However, this approach faces chal-
lenges in multitasking scenarios, as differences across tasks
make it difficult to identify a universal prompt pattern, ul-
timately limiting its effectiveness. All in One (Sun et al.,
2023a) addressed the issue of multitasking by designing
a unified training framework for joint multi-task prompts.
While this approach leverages meta-learning to accommo-
date a large variety of tasks, it is computationally expensive
and exhibits limited generalization capabilities across di-
verse tasks. GPF and its extended version, GPF-plus (Fang
et al., 2024), introduced learnable prompts at the node level,
aiming for versatility across different downstream tasks.
This approach effectively balances adaptability and compu-
tational efficiency, presenting a more practical solution for
a broad range of task requirements.

3. Preliminaries
3.1. Problem Formulation

Notations. Let G = (V, E) ∈ G denotes a graph, where
V ={v1, ..., vN} represents the set of nodes, and E ⊆ V×V
represents the set of edges. G is associated with a node fea-
ture matrix X ∈ RN×F where F is the feature dimension,
and an adjacency matrix A ∈ RN×N where Aij = 1 if and
only if (vi, vj) ∈ E and Aij = 0 otherwise.

Problem Definition. Given a pre-trained GNN f , a learn-
able projection layer g, and a downstream task dataset
D = {(G1, y1), (G2, y2), . . . , (Gm, ym)} , our objective is
to fine-tune the parameters of the prompt pg and the pro-
jection layer g to effectively bridge the gap between the
pre-trained GNN f and the downstream task. Specifically,
the aim is to maximize the likelihood of accurately predict-
ing the ground truth labels y associated with the downstream
task, formulated as follows:

max
pg,g

Ppg,g(y | G) (1)

3.2. Molecule Representation Learning.

We adopt the Graph Isomorphism Network (GIN) (Xu
et al., 2018) as the backbone for our models, leveraging its
strong expressive power and effectiveness in graph-related
tasks. In fact, our framework is model-agnostic, enabling
seamless integration with various existing molecular pre-
diction model as downstream models. The pre-training
process is designed to learn general-purpose graph repre-
sentations by optimizing auxiliary objectives on large-scale,
unlabeled graph data. This process primarily follows two
paradigms: self-supervised learning and contrastive learn-
ing (Zhou et al., 2024).

Consider a molecule graph G = (V, E). Typically, the pre-
dictor ρ can be expressed as f ◦ g , comprising two compo-

nents: a GNN encoder f : G → Rd, which generates molec-
ular representations, and a projection layer g : Rd → Y . In
this context, the projection layer serves as a downstream
classifier, predicting labels from the generated representa-
tions. Specifically, the encoder f operates in two stages. The
first stage utilizes a GNN to learn node-level representations
h
(k)
v as formulated as follows:

h(k)
v = ϕ(k)

(
h(k−1)
v , φ(k)

({
h(k−1)
u : u ∈ N (v)

}))
(2)

where h
(k)
v represents the node embedding of node v at the

k-th layer, N (v) is the set of neighbors of node v, φ(k)(·)
is the aggregation function at the k-th iteration, and ϕ(k)(·)
is the combination function at the k-th iteration. The node
embeddings are initialized as h(0)

v = Xv , where Xv denotes
the input features of node v.

To ensure effective feature updates, the feature transforma-
tion at layer k can be expressed as:

h(k)
v = MLP(k)

(
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N [v]

h(k−1)
u


(3)

where ϵ(k) is a learnable parameter, MLP(k) represents a
multi-layer perceptron applied at the k-th layer, and N [v]
includes the neighbors of node v along with the node itself.

Secondly, at the final layer K, the GNN aggregates the
learned node embeddings using a READOUT function:

hv = READOUT({hK
v : v ∈ V}) (4)

where READOUT can be implemented as a sum, mean, or
maximum over all node embeddings in the graph.

4. Method
This section provides a thorough explanation of the pro-
posed MIPT framework, detailing its technical design and
the motivations behind its development. MIPT is specifi-
cally designed to address two primary challenges observed
in current prompt-tuning approaches: (i) Universal prompts
often lack the necessary flexibility and interpretability to
adapt to diverse task-specific requirements, and (ii) prompts
can inadvertently introduce task-irrelevant noise, which can
significantly degrade overall model performance.

To tackle these issues, we present a comprehensive overview
of the framework’s core components: the multi-level graph-
informed prompts and denoising prompt mechanisms. The
overall architecture is illustrated in Figure 1.

4.1. Parameter-efficient Tuning for Node Encoder

Efficient Tuning with LoRA Update. To address the gap
between pre-training objectives and downstream task re-
quirements, we propose an efficient fine-tuning approach
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Figure 1. Comprehensive overview of the MIPT framework. Our proposed framework synergistically combines efficient node fine-tuning
and a unified distribution denoising mechanism, thereby providing an efficient and robust solution for local-global prompt-tuning across
varied scenarios.

that integrates a low-rank adaptation matrix for learning
task-specific embeddings. This method prioritizes features
pertinent to downstream tasks while preserving the expres-
siveness of the pre-trained model. For the frozen pre-trained
GNN weight matrix W0 ∈ Rd×k, the parameter update
∆W is represented using a low-rank decomposition. The
feature update process, as described in Eq. 5, is reformulated
as:

h(k)
v = (W

(k)
0 +∆W (k))

∑
v

(
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N [v]

h(k−1)
u


(5)

here, W0 denotes the weight matrix of the pre-trained MLP
layer, and ∆W represents the low-rank adaptation. The
parameter ∆W is further expressed as:

∆W (k) = B(k)A(k) (6)

where A ∈ Rr×d and B ∈ Rd×r are low-rank matrices
with r ≪ d. The low-rank structure of ∆W ensures that
the additional parameter number is minimal, thus enhancing
computational efficiency. These trainable low-rank matrices
are injected into the node MLP layer to approximate weight
updates effectively.
Proposition 4.1. For a pretrained GNN model f , with pa-
rameters W, node features X, there satisfies that incor-
porating LoRA parameters into the linear transformation
during node updates does not alter the underlying graph
structure.

A detailed proof for proposition 4.1 refers to Appendix A.

4.2. Multilevel Graph-Informed Prompt

For downstream prediction tasks, obtaining task-specific
graph representations hg is essential, as graph-level em-
beddings directly influence model performance. However,
existing pooling operations fail to satisfy the expressiveness
conditions (Bianchi & Lachi, 2023). To address this, we pro-
pose Multilevel Graph-Informed Prompt (MGIP), a novel
method that extracts features from node-level embeddings
and constructs low-rank graph prompt after aggregation. By
encoding domain-specific information directly into hg , our
approach enhances the adaptability and efficiency of graph
representations.

Random Node Masking. Let h∗
v ∈ R|V |×d be the node

embeddings with LoRA tuning initialized using Kaiming
initialization (He et al., 2016). Subsequently, we employ a
random masking method to process h∗

v, aiming to enhance
the model’s robustness and its ability to identify critical
subgraphs. This method involves three main steps: segment-
ing, filling, and random masking, ensuring both structural
and representational variability are effectively captured. We
initialize a binary matrix M ∈ {0, 1}b×Smax , where b is the
batch size and Smax is the maximum number of nodes in the
batch. To ensure all samples in the batch share the same
input dimensions, we apply a zero-padding operation to the
node representations of each sample. The padding is defined
as:

Mi,j =

{
1, if j < si

0, otherwise
(7)

where si represents the size of the i-th graph. A random

4



MIPT: Multilevel Informed Prompt Tuning for Robust Molecular Property Prediction

masking matrix R ∈ {0, 1}b×Smax is generated, with each
element sampled from a Bernoulli distribution: Ri,j ∼
Bernoulli(1−p), where p is the masking probability (e.g., p
= 0.2). The final mask matrix is updated as: M←M⊙R,
where ⊙ denotes element-wise multiplication. The updated
mask is applied to the node v to produce the masked embed-
dings h′

v:

h′
v =

{
h∗
v, if Mi,j = 1

0, otherwise
(8)

where j in Mi,j is the i-th graph of the j-th node. By com-
bining deterministic segmentation with random masking,
this approach balances structural consistency with variabil-
ity, encouraging the model to identify key subgraphs and
improving generalization. This process ensures the graph
representations retain critical information while being robust
to structural noise.

Global-Local Information Maximization. To obtain the
global representation of the entire graph, we utilize a readout
function Γ : h′

v ∈ R|V|×d → h′
g ∈ Rd (i.e., h′

g = Γ(h′
v),

hg = Γ(hv)), which aggregates the local features into
a global context. To improve discriminative power, con-
trastive learning (CL) is introduced to maximize mutual
information between original and masked features. The
contrastive learning loss function is formulated as:

Lcont =

− 1

N

N∑
i=1

log
exp

(
φ
(
h′g,i,hg,i

))
exp

(
φ
(
h′g,i,hg,i

))
+

∑N
j=1,i̸=j exp

(
φ
(
h′g,j ,hg,j

))
(9)

φ(·) = (h′
g,i)

⊤(hg,i)/τ (10)

where τ is the temperature parameter. CL enhances the cor-
relation between local node representations and global graph
representations, improving the multi-level expressiveness of
graph embeddings.

Graph Informed Prompt Generation. Then, we propose
the initialization of graph prompt is guided by graph masked
feature. To capture domain-specific graph features, we in-
troduce a lightweight prompt function, denoted as Φ(·), to
provide implicit prompts pg . Formally, this prompt function,
is defined as follows:

Φ(h′
g) = WB(WA · h′

g) (11)

The trainable parameters of this prompt function are de-
noted as WA ∈ Rd′×r and WB ∈ Rr×d′

, where r ≪ d′.
The domain-specific prompt is combined with the graph
features from pretrained encoder, creating rich information
that enables the effective identification of context-specific
changes in critical structures. This, in turn, facilitates pre-
cise modeling of structural correlations.

Task-specific Projection Head. After that, the refined
graph representation, hG = CONCAT(hg, pg), is subse-
quently passed through a projection head to produce the

final output:
ŷ = g(hG) (12)

where g is the prediction function. This modification enables
downstream models to efficiently leverage the prompts pg
for adaptation to new data and tasks.

4.3. Optimization

In the prompt-tuning phase, we specifically update the pa-
rameters of the prompt and downstream by performing a
limited training on an unseen dataset. This approach enables
downstream models to efficiently adapt to new data.

Training Procedures. To train the model, a task-specific
projection head is used.

Li
cls = logP

(
yi | g (hG)

)
(13)

For graph classification, the loss is typically the binary cross-
entropy loss:

Lcls(gθ) = −
N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

(14)
where N is the number of training samples, yi is the true
label, and ŷi is the predicted label of i-th sample.

Noise Penalty Mechanism. Building on Arpit et al. (2017),
it has been demonstrated that deep neural networks (DNNs)
initially learn simpler and more generalizable patterns dur-
ing the early stages of training, before gradually overfitting
to noisy or degenerate samples. Inspired by this observation,
we model the confidence distribution of samples based on
their classification loss (Shi et al., 2024). Specifically, we
employ a two-component Gaussian Mixture Model (GMM)
to represent the loss distribution derived from Eq. (13):

p(Lcls | θ) =
T∑

t=1

πtΦ(Lcls | t) (15)

where hG is pretrained molecular features, g(·) is down-
stream task with parameters θ, and πt and Φ(Lcls | t) repre-
sent the mixture coefficient and the probability density of
the t-th Gaussian component, respectively.

The GMM, Φ(Lcls | t) → p, is utilized to model the pos-
terior probability, denoted as wi(0 ≤ wi ≤ 1), which is
computed to quantify the confidence of the i -th sample:

wi = p
(
t | Li

cls

)
(16)

where k is the Gaussian component with the smaller mean,
and p

(
t | Li

cls

)
represents the posterior probability of Li

cls

under the t-th component. The confidence ŵi is then up-
dated as follows:

ŵi =

{
1, if wi > µ

0, otherwise
(17)
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Here, µ is the average of wi, i.e. mean(wi). With the confi-
dence ŵ effectively capturing high-relevant representation,
we introduce the Noise Prompts Penalty (NPP) loss, LNPP ,
to suppress the influence of redundancy noise features. The
loss is defined as:

LNPP = − 1

N

N∑
i=1

ŵi logP
(
yi | g (hG)

)
(18)

This mechanism leverages ŵ to penalize noisy features,
ensuring that the model focuses on clean and reliable rep-
resentations, thereby improving its robustness and overall
performance.

Final Objectives. The overall training objective for the
downstream task is illustrated as follows:

Ltotal = LNPP + Lcont (19)

The model parameters θ are updated by minimizing Ltotal

using gradient-based optimization.

Compute the gradient of Ltotal with respect to the model
parameters:

∇θLtotal = ∇θLNPP +∇θLcont (20)

θ ← θ − η∇θLtotal, (21)

where η is the learning rate. The parameters of GMM
are updated in alternating steps using the Expectation-
Maximization (EM) algorithm, with the pseudocode pro-
vided in the Appendix 1.

The training process alternates between updating the model
parameters θ and the GMM parameters until convergence.
By progressively refining both components, the model learns
to focus on reliable samples, while reducing the impact of
noisy prompts, ultimately improving the robustness and
accuracy of predictions.

Proposition 4.2. (Robustness of NPP) Given a classifica-
tion task where prompts pg are used to adapt a pretrained
model f(·), the incorporation of the NPP loss LNPP im-
proves robustness by selectively reducing the influence of
noisy prompt.

A detailed proof for proposition 4.2 is given in Appendix
B.1.

5. Experiments
In this section, we present an extensive set of experiments
to evaluate the performance of our model. The analysis
is structured around addressing the following key research
questions:

• RQ1: How does the efficiency of MIPT compare to that
of prompt-tuning and end-to-end training approaches?

• RQ2: Does MIPT effective in generalizing pre-trained
models to new molecular property prediction datasets and
tasks?

• RQ3: What impact do the key components of MIPT have
on the performance of downstream models?

• RQ4: How do hyperparameters influence the perfor-
mance of MIPT on molecular property prediction?

5.1. Experiment Setup

Datasets. We employ eight common datasets from Molecu-
leNet (Wu et al., 2018) as our benchmark datasets: BBBP,
Tox21, ToxCast, SIDER, ClinTox, MUV, HIV and BACE.
Random splits and scaffold splits for these datasets are
adopted. More dataset and training details are available
in the Appendix C.1.

Pretraining strategies. We take into account four pre-
trained models for comparison: Deep Graph Infomax (Info-
max), Attribute Masking (AttrMasking), Context Prediction
(ContextPred), and Edge Prediction (EdgePred).

Baselines. We consider three tuning strategies for compari-
son is used to evaluate: FT(Fine-Tuning), GPF (Fang et al.,
2024), GPF-plus (Fang et al., 2024). In the case of freezing
the pre-trained model, our prompt method aims to learn the
input graph and reconstruct the downstream task to fit the
pre-training strategy.

A variety of baselines are included for an in-depth compar-
ison. Supervised GNN methods include D-MPNN (Yang
et al., 2019), MGCN (Lu et al., 2019), and Atten-
tiveFP (Xiong et al., 2019). Meanwhile, pretraining
approaches consist of N-gram (Liu et al., 2019), Pre-
trainGNN (Hu et al., 2019), GROVER (Rong et al., 2020),
3D-Infomax (Stärk et al., 2022), GraphMVP (Liu et al.,
2021), MolCLR (Wang et al., 2022), Uni-Mol (Zhou et al.,
2023), and InstructMol (Wu et al.).

Metric. ROC-AUC scores are evaluated on the test set. We
report the mean and standard deviation of the results from
three random seeds.

5.2. Overall Performance (RQ1)

We evaluated the performance of downstream tasks across
various pre-training and tuning strategies, with results sum-
marized in Table 1. Our method consistently outperforms
all baselines, demonstrating its effectiveness and robustness.
It achieves significant improvements over fine-tuning strate-
gies across all datasets. While universal learnable prompts
in baseline approaches yield limited gains and lack con-
sistency, our method achieves the highest ROC-AUC (%)
scores on most datasets, as highlighted in bold.

For example, on the BBBP dataset, our method achieves
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Table 1. Graph classification (ROC-AUC scores %, higher is better ↑) results across 8 datasets. The best results are highlighted in boldface,
while the second-best results are marked with underline.

Pretrained
strategy

Datasets BBBP↑ Tox21↑ ToxCast↑ SIDER↑ ClinTox↑ MUV↑ HIV↑ BACE↑
# Molecules 2039 7831 8576 1427 1477 41127 93087 1513

# Tasks 1 12 617 27 2 1 17 1

Infomax

+ FT 67.55(2.06) 78.57(0.51) 65.16(0.53) 63.34(0.45) 70.06(1.45) 81.42(2.65) 77.71(0.45) 81.32(1.25)
+ GPF 66.83 (0.86) 79.09 (0.25) 66.10 (0.53) 66.17 (0.81) 73.56 (3.94) 80.43 (0.53) 76.49 (0.18) 83.60 (1.00)

+ GPF-plus 67.17 (0.36) 79.13(0.70) 66.35(0.37) 65.62 (0.74) 75.12(2.45) 81.33 (1.52) 77.73(1.14) 83.67(1.08)
+ Ours 69.24(0.84) 80.18(0.25) 67.10 (0.38) 66.40(0.36) 80.02 (1.3) 82.84(0.58) 78.77(0.60) 83.88(0.45)

AttrMasking

+FT 66.33 (0.55) 78.28 (0.05) 65.34 (0.42) 66.77 (1.02) 74.46 (2.82) 81.78 (1.95) 77.90 (0.18) 80.94 (1.17)
+GPF 68.09 (0.38) 79.04 (0.90) 66.32 (0.42) 69.13 (1.16) 75.06 (1.02) 82.17 (0.65) 78.86 (1.42) 84.33 (0.54)

+GPF-plus 67.71 (0.64) 78.87 (0.31) 66.58 (0.13) 68.65 (0.72) 76.17 (2.98) 81.12 (1.32) 78.13 (1.12) 85.76 (0.36)
+ Ours 69.56 (0.82) 80.77 (0.43) 67.91 (0.38) 69.15(0.40) 85.18 (0.12) 85.01(0.61) 79.48(0.64) 83.92 (1.46)

ContextPred

+FT 69.65 (0.87) 78.29 (0.44) 66.39 (0.57) 64.45 (0.60) 73.71 (1.57) 82.36 (1.22) 79.20 (0.51) 84.66 (0.84)
+GPF 68.48 (0.88) 79.99 (0.24) 67.92 (0.35) 66.18 (0.53) 74.51 (2.72) 84.34 (0.25) 78.62 (1.46) 85.32 (0.41)

+GPF-plus 69.15 (0.82) 80.05 (0.46) 67.58 (0.54) 66.94 (0.95) 75.25 (1.88) 84.48 (0.78) 78.40 (0.16) 85.81 (0.43)
+ Ours 73.62 (0.11) 80.60 (0.27) 68.81 (0.6) 68.52 (0.3) 81.21 (0.86) 84.96 (1.2) 81.76 (0.10) 86.57 (0.49)

EdgePred

+FT 66.56 (3.56) 78.67 (0.35) 66.29 (0.45) 64.35 (0.78) 69.07 (4.61) 79.67 (1.70) 77.44 (0.58) 80.90 (0.92)
GPF 69.57 (0.21) 79.74 (0.03) 65.65 (0.30) 67.20 (0.99) 69.49(5.17) 82.86 (0.23) 77.00 (1.08) 81.57 (1.08)

+GPF-plus 69.06(0.68) 80.04 (0.06) 65.94 (0.31) 67.51(0.59) 68.80 (2.58) 83.13(0.42) 77.00 (0.82) 81.75(2.09)
+ Ours 72.11(0.50) 81.26(0.80) 67.05(0.60) 67.25(0.30) 77.68(1.10) 86.30(1.20) 79.38(0.01) 81.79(0.11)

an ROC-AUC of 73.62 under the ContextPred pretraining
strategy, reflecting an 8.98% improvement over FineTune.
Similarly, on ClinTox, it attains 85.18 under AttrMasking,
surpassing GPF-plus by 11.83%. On MUV, despite FT’s
strong baseline performance, our method reaches 86.30,
yielding a 6.00% improvement. These results highlight its
superior performance and generalizability, consistently sur-
passing alternative approaches across diverse datasets and
pre-training strategies. Its strong performance on complex
or low-quality datasets further underscores its robustness
and adaptability in graph-related tasks.

We also compared our model with other SOTA models for
molecular property prediction. As shown in Table 2, our
method outperforms SOTA models in 5 out of 8 tasks while
using fewer parameters, demonstrating its efficiency and
effectiveness.

Further analysis reveals that our approach offers distinct ad-
vantages over prompt-tuning models in molecular property
prediction. Specifically, the MIPT framework effectively
captures multi-level structural features in molecular data. Its
novel prompt-learning paradigm facilitates knowledge trans-
fer from pre-training to downstream tasks, mitigating distri-
butional and semantic discrepancies between pre-training
and target scenarios.

5.3. Additional Experiments

Transfer Performance Analysis (RQ2). We analyzed the
training process of the molecular dataset and the GNN
model using different tuning methods. Figure 2 (a) shows
the testing curves during the tuning phase. From the curve,
it is evident that our method exhibits greater fluctuations on

the test dataset compared to other models. This suggests
that the model is more sensitive to the data during training,
allowing it to flexibly adjust and capture complex patterns
in the dataset. The increased fluctuations indicate a more
exploratory optimization process, which facilitates finding
a better global solution. Additionally, this behavior demon-
strates strong adaptability and robustness to complex data
distributions and noise. More training curves are provided
in Appendix D.

Ablation Study (RQ3). To assess the effect of each compo-
nent in our method, we conduct an ablation study evaluating
LoRA, MGIP, and the loss functions (LNPP and Lcont). The
results in Table 3 highlight the significance of MGIP over
LoRA when used independently, achieving an average im-
provement of 6.9% on SIDER and 1.6% on BACE , demon-
strating its superior ability to capture task-specific features.
Integrating Lcont with LoRA further enhances performance,
yielding a 6.5% gain on SIDER, indicating that contrastive
learning effectively aligns global and local representations.
Similarly, incorporating LNPP into MGIP boosts ClinTox
performance by 1.2%, underscoring the importance of node-
to-graph alignment in refining global representations.

When combining all components, the complete model
achieves the best results across all datasets, with improve-
ments of 2.9% on SIDER, 1.3% on ClinTox, and 0.9%
on BACE compared to the best individual configurations.
These results confirm the complementary nature of the com-
ponents and the effectiveness of the proposed approach in
addressing multi-scale representation challenges in graph
learning. Additional ablation results on various datasets are
presented in Appendix D Table 6.
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Table 2. Performance comparison with the SOTA models on molecular property prediction datasets(ROC-AUC %, higher is better ↑)
.

Pretraining Datasets↑ BBBP↑ BACE↑ ClinTox↑ Tox21↑ ToxCast↑ SIDER↑ MUV↑ HIV↑
# Molecules 2039 1513 1477 7831 8576 1427 93087 41127

# Tasks 1 1 2 12 617 27 17 1

✗
D-MPNN 71.0 (0.3) 80.9 (0.6) 90.6 (0.6) 75.9 (0.7) 65.5 (0.3) 57.0 (0.7) 77.1 (0.5) 78.6 (1.4)

Attentive FP 64.3 (1.8) 78.4 (0.02) 84.7 (0.3) 76.1 (0.5) 63.7 (0.2) 60.6 (3.2) 75.7 (1.4) 76.6 (1.5)
MGCN 65.0 (0.5) 73.4 (0.8) 90.5 (0.4) 74.1 (0.6) - 58.7 (1.9) - -

✓

N-GramRF 69.7 (0.6) 77.9 (1.5) 77.5 (4.0) 74.3 (0.4) - 66.8 (0.7) 77.2(0.1) 76.9(0.7)
N-GramXGB 69.1 (0.8) 79.1 (1.3) 87.5 (2.7) 75.8 (0.9) - 65.5 (0.7) 78.7(0.4) 74.8(0.2)
PretrainGNN 68.7 (1.3) 84.5 (0.7) 72.6 (1.5) 78.1 (0.6) 65.7 (0.6) 62.7 (0.8) 79.9(0.7) 81.3(2.1)
GROVERbase 70.0 (0.1) 82.6 (0.7) 81.2 (3.0) 74.3 (0.1) 65.4 (0.4) 64.8 (0.6) 62.5(0.9) 67.3(1.8)
GROVERlarge 69.5 (0.1) 81.0 (1.4) 76.2 (3.7) 73.5 (0.1) 65.3 (0.5) 65.4 (0.1) 68.2(1.1) 67.3(1.8)

3D-Infomax 69.1 (1.1) 79.4 (1.9) 59.4 (3.2) 74.5 (0.7) 64.4 (1.0) 53.3 (3.4)
GraphMVP 72.4 (1.6) 81.2 (0.9) 79.1 (2.8) 75.9 (0.5) 63.1 (0.4) 63.9 (1.2) 77.0(1.2) 77.7(0.6)

MolCLR 72.2 (2.1) 82.4 (0.9) 91.2 (3.5) 75.0 (0.2) - 58.9 (1.4) 78.1(0.5) 79.6(1.9)
Uni-Mol 72.9 (0.6) 85.7 (0.2) 91.9 (1.8) 79.6 (0.5) 69.6 (0.1) 65.9 (1.3) 80.8(0.3) 82.1(1.3)

GEM 72.4 (0.4) 85.6 (1.1) 90.1 (1.3) 78.1 (0.1) 69.2 (0.4) 67.2 (0.4) 80.6(0.9) 81.7(0.5)
InstructMol 73.3(0.8) 85.9(1.3) 92.5(2.1) 79.9(0.6) 70.8(0.4) 67.4(0.9) - -

Ours 73.6(0.1) 86.6(0.5) 85.2(0.1) 80.6 (0.3) 68.8(0.6) 68.5 (0.3) 85.0 (1.2) 81.8 (0.1)
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Figure 2. (a) Test curves for various tuning methods. (b) Impact of different hyperparameters, where the y-axis denotes the ROC-AUC
score (%) and the x-axis represents the LoRA rank of node encoder hyperparameters. (c) Comparison of ROC-AUC (%) and trainable
parameter count between MIPT with varying rank values and full fine-tuning on the Tox21 dataset.

Table 3. Ablation analysis of different configurations on BBBP,
ClinTox, BACE, and SIDER datasets.

Module Loss Datasets

LoRA MGIP LNPP Lcont bbbp ClinTox BACE Sider

✓ – – ✓ 68.72 67.76 86.41 60.75
– ✓ – ✓ 72.45 80.19 85.22 67.17
✓ ✓ – ✓ 72.88 81.18 86.42 67.76
✓ – ✓ ✓ 69.43 70.99 85.51 61.26
– ✓ ✓ ✓ 72.69 80.27 85.46 67.23
✓ ✓ ✓ – 73.18 80.70 85.51 66.17
✓ ✓ ✓ ✓ 73.62 81.21 86.52 68.52

Hyperparameter Analysis (RQ4). The test curves in Fig-
ure 2 (a) show that our method achieves higher ROC-AUC
scores and remains stable across training epochs, outper-
forming FT, GPF, and GPF-plus, demonstrating the effec-
tiveness of low-rank adaptation for generalization and ef-
ficiency. Figure 2 (b) compares the performance of four
pre-trained models on the Tox21 dataset under different

LoRA ranks (8, 16, 32, 64), showing that lower ranks main-
tain high performance while reducing parameter overhead,
highlighting the efficiency of low-rank adaptation. Figure
2 (c) illustrates the trade-off between trainable parameters
and performance, confirming that our approach significantly
reduces computational costs without sacrificing accuracy
compared to full fine-tuning. These results demonstrate that
low-rank prompts provide a scalable and efficient alterna-
tive to traditional fine-tuning. Additionally, analysis of label
distributions across datasets (Appendix C.1) underscores
our method’s robustness to noisy data and adaptability to
real-world scenarios.

6. Conclusion
In this work, we propose Multilevel Informed Prompt Tun-
ing (MIPT), a novel framework for enhancing pre-trained
molecular encoders in molecular property prediction tasks.
MIPT employs a lightweight, multi-level prompt learning
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network and a noise penalty mechanism to bridge the gap
between pre-training and downstream tasks, while mitigat-
ing noise at both node and graph levels. Experiments on
public and real-world datasets demonstrate MIPT’s supe-
rior performance, highlighting its potential to advance drug
discovery and materials science.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Günnemann, S., and Liò, P. 3d infomax improves gnns
for molecular property prediction. In International Con-
ference on Machine Learning, pp. 20479–20502. PMLR,
2022.

9

http://tripod.nih.gov/tox21/challenge/
http://tripod.nih.gov/tox21/challenge/


MIPT: Multilevel Informed Prompt Tuning for Robust Molecular Property Prediction

Subramanian, G., Ramsundar, B., Pande, V., and Denny,
R. A. Computational modeling of β-secretase 1 (bace-
1) inhibitors using ligand based approaches. Journal of
chemical information and modeling, 56(10):1936–1949,
2016.

Sun, M., Zhou, K., He, X., Wang, Y., and Wang, X.
Gppt: Graph pre-training and prompt tuning to gener-
alize graph neural networks. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1717–1727, 2022a.

Sun, R., Dai, H., and Yu, A. W. Does gnn pretraining help
molecular representation? Advances in Neural Informa-
tion Processing Systems, 35:12096–12109, 2022b.

Sun, X., Zhang, J., Wu, X., Cheng, H., Xiong, Y., and Li,
J. Graph prompt learning: A comprehensive survey and
beyond. arxiv 2023. arXiv preprint arXiv:2311.16534.

Sun, X., Cheng, H., Li, J., Liu, B., and Guan, J. All in
one: Multi-task prompting for graph neural networks. In
Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2120–2131,
2023a.

Sun, X., Zhang, J., Wu, X., Cheng, H., Xiong, Y., and Li,
J. Graph prompt learning: A comprehensive survey and
beyond. arXiv preprint arXiv:2311.16534, 2023b.

Taskinen, J. and Yliruusi, J. Prediction of physicochemical
properties based on neural network modelling. Advanced
drug delivery reviews, 55(9):1163–1183, 2003.
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A. Proof: Effectiveness of LoRA Updates in GNNs
Consider a GNN layer, the feature update at layer k + 1 for node v is expressed as:

h(k+1)
v = σ

(
W · h(k)

v +AGG
({

h(k)
u : u ∈ N (v)

}))
, (22)

where h(k) ∈ Rn×d represents the node embeddings at layer k, and W ∈ Rd×d is a trainable weight matrix. The function
σ(·) denotes a non-linearity such as ReLU.

Let M ∈ Rn×d stack all aggregated messages, and let δ ∈ Rn×d be the gradient of the loss wṙ.t. outputs. Then:

g = ∇WL = δ⊤M (23)

Since M results from summing over neighbors in sparse graphs, it is typically low-rank or approximately so. Thus, g is
approximately low-rank. From the Eckart-Young-Mirsky theorem, the best rank-r approximation of g under Frobenius
norm is:

∆W ∗ =

r∑
i=1

σiuiv
⊤
i , (24)

where g = UσV ⊤ is the SVD of gradient, and σi are the top r singular values. This can be written as ∆W = AB with:

A = Urσ
1/2
r ∈ Rd×r, B = σ1/2

r V ⊤
r ∈ Rr×d, (25)

which is precisely the LoRA parameterization. Following PAC-Bayes or norm-based generalization analysis:

ED[Ltest] ≤ ED[Ltrain] +O

(
∥∆W∥2F

n

)
, (26)

where n is the number of training samples and ∥ · ∥F denotes the Frobenius norm. Since ∥∆W∥2F = ∥AB∥2F ≪ ∥G∥2F , the
low-rank constraint imposed by LoRA acts as an implicit regularizer, effectively reducing model complexity and improving
generalization performance.

Then, the updated node feature equation becomes:

h(k+1)
v = σ

(
(W0 +AB) · h(k)

v +AGG
({

h(k)
u : u ∈ N (v)

}))
. (27)

The key point is that the neighborhood N (v) is solely determined by the static graph G = (V,E), which can be described
via the adjacency matrix Aadj:

Aadj(u, v) =

{
1, if u ∈ N (v)

0, otherwise
(28)

and does not depend on the model parameters. LoRA modifies only the linear transformation term and does not alter the
adjacency matrix or neighborhood relations. Therefore, N (v) are unaffected by the addition of AB.

B. Proof: Robustness of NPP
B.1. Derivation of Posterior Probability p(t | Li

cls)

Let Lcls = {L1
cls,L2

cls, . . . ,LN
cls} represent the observed classification loss values, and assume that each sample Li

cls follows
a Gaussian Mixture Model (GMM) distribution. For a GMM with T components, the parameters include:

• πt: The mixture coefficient for the t-th component.

• µt: The mean of the t-th Gaussian component.

• σ2
t : The variance of the t-th Gaussian component.
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The posterior probability p(t | Li
cls) can be computed using Bayes’ rule:

p(t | Li
cls) =

p(Li
cls | t) · πt∑T

j=1 p(L
j
cls | j) · πj

. (29)

For the k-th Gaussian component, the likelihood term is given by:

p(Li
cls | t) =

1√
2πσ2

t

exp

(
− (Li

cls − µt)
2

2σ2
t

)
. (30)

Combining the likelihood and the prior, the posterior probability becomes:

p(t | Li
cls) =

πt · 1√
2πσ2

t

exp
(
− (Li

cls−µt)
2

2σ2
t

)
∑T

j=1 πj · 1√
2πσ2

j

exp
(
− (Li

cls−µj)2

2σ2
j

) . (31)

B.2. EM Updates

E-STEP: COMPUTE POSTERIOR PROBABILITIES

It aims to estimate the posterior distributions of the loss, i.e. P (Li
cls | µ, σ) , by using the current estimated parameters

θold : {µ(old), σ
2}. Hence, we compute the posterior probabilities p(t | Li

cls) using the current estimates of π(n)
t , µ(n)

t , and
σ
(n)
t :

p(n)(t | Li
cls) =

π
(n)
t · p(Li

cls | µ
(n)
t , σ

(n)
t )∑T

j=1 π
(n)
j · p(Li

cls | µ
(n)
j , σ

(n)
j )

. (32)

M-STEP: PARAMETER UPDATES

Using the posterior probabilities p(n)(t | Li
cls), we update the parameters as follows:

• Mixture Coefficient:

π
(n+1)
t =

∑N
i=1 p

(n)(t | Li
cls)

N
. (33)

• Mean:

µ
(n+1)
t =

∑N
i=1 p

(n)(t | Li
cls) · Li

cls∑N
i=1 p

(n)(t | Li
cls)

. (34)

• Variance:

σ
2(n+1)
t =

∑N
i=1 p

(n)(t | Li
cls) · (Li

cls − µ
(n+1)
t )2∑N

i=1 p
(n)(t | Li

cls)
. (35)

B.3. Proof of NPP Robustness

The Noise Prompt Penalty (NPP) framework leverages the posterior probability p(t | Li
cls) to compute the weight wi for

each sample:
wi = p(t | Li

cls). (36)

By thresholding the weights wi based on the mean value, we define:

ŵi =

{
1, if wi > mean(wi),

0, otherwise.
(37)

This filtering ensures that low-confidence (likely noisy) samples are excluded from the loss computation. The final NPP loss
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Algorithm 1 Noise Penalty Sample Training Procedure
Input: Downstream task model gθ, labeled data D, classification loss Lcls, noise prompts penalty loss LNPP , learning
rate η, noise weight λ, prompt-related parameters pg , LoRA parameters δ. Initialize model parameters θ, GMM parameters
πt, µt, σt.
Output: Optimized model parameters θ

1: for t = 1, 2
2: for epoch=1:max epoch do
3: for each sample (Gi, yi) ∈ D do
4: Compute prediction: ŷi ← gθ(Gi)
5: Compute classification loss using Eq. 14;
6: end for
7: GMM Modeling: wi ← GMM(Li

cls)
8: while not converged or max iterations reached do
9: Update wi using EM algorithm

10: end while
11: Update confidence ŵi using Eq. 17
12: Compute noise penalty loss using Eq. 13;
13: for iteration from 1 to T do
14: Ltotal = Lcont + LNpp;

optimize the model parameters θ by Ltotal

15: end for
16: end for
17: Return θ, pg, δ

is computed as:

LNPP = − 1

N

N∑
i=1

ŵi logP
(
yi | g(hG,i)

)
. (38)

This framework achieves robustness by:

• Utilizing the EM algorithm to iteratively refine the estimation of GMM parameters (πt, µt, σ
2
t ), leading to improved

separation of noise and trustworthy samples.

• Filtering out low-confidence samples (ŵi = 0), ensuring that only high-confidence samples contribute to the model
optimization.

The robustness of NPP is thus guaranteed by the iterative EM updates and selective loss computation, effectively mitigating
the impact of noisy samples. Pseudocode is presented in Algorithm 1.

C. More Experiment Settings.
C.1. Details of Datasets.

Pre-training datasets. The dataset includes 2 million unlabeled molecules drawn from the ZINC15 database, used for
node-level self-supervised pre-training. For graph-level multi-task supervised pre-training, the preprocessed ChEMBL
dataset is utilized, consisting of 456K molecules spanning 1310 distinct biochemical assays.

Downstream Task. To evaluate model performance, we utilized eight binary graph classification datasets from Molecu-
leNet (Wu et al., 2018), described as follows:

• BBBP (Martins et al., 2012): Evaluates blood-brain barrier penetration based on membrane permeability.

• Tox21 (tox): Provides toxicity data for 12 biological targets, including nuclear receptors and stress response pathways.

13
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• ToxCast (Richard et al., 2016): Contains toxicological measurements derived from over 600 in vitro high-throughput
screening assays.

• SIDER: A comprehensive database of marketed drugs and their associated adverse drug reactions (ADR), categorized
into 27 system organ classes.

• ClinTox: Includes qualitative data distinguishing FDA-approved drugs from those that failed clinical trials due to
toxicity.

• MUV: A subset of PubChem BioAssay data, specifically curated using a refined nearest-neighbor analysis for validating
virtual screening techniques.

• HIV: Contains experimental data assessing the inhibitory efficacy of compounds against HIV replication.

• BACE (Subramanian et al., 2016): Provides qualitative binding data for inhibitors targeting human β-secretase 1.

Table 4. Dataset statistics.
Dataset BBBP Tox21 ToxCast SIDER Clintox MUV HIV BACE

# Molecule 2039 7831 8575 1427 1478 93127 41127 1513
# Property 1 12 617 27 2 17 1 1
% Positive Label 76.44 6.24 12.60 56.76 50.61 0.31 96.49 45.67
% Negative Label 23.56 76.71 72.43 43.24 49.39 15.76 1.18 54.33
% Unknown Label 0 17.05 14.97 0 0 84.21 2.33 0

C.2. Details of pre-training strategies.

We utilize five widely recognized strategies for pre-training GNN models, detailed as follows:

• Deep Graph Infomax: Initially proposed by Velickovic et al. (Veličković et al., 2018), this method acquires expressive
representations for graphs or nodes by maximizing mutual information between graph-level and substructure-level
representations across various granularities.

• Edge Prediction: A common graph reconstruction task employed by many models, such as GAE (Kipf & Welling,
2016), where the goal is to predict the existence of edges between pairs of nodes.

• Attribute Masking: Introduced by Hu et al. (Hu et al., 2019), this technique involves masking node/edge attributes
and then using GNNs to predict these attributes based on the neighboring structure.

• Context Prediction: Also proposed by Hu et al. (Hu et al., 2019), this approach uses subgraphs to forecast their
surrounding graph structures, aiming to map nodes in similar structural contexts to nearby embeddings.

In our model pre-training phase, we adhere to the methodologies described by Hu et al. (2019) for the tasks of Infomax,
EdgePred, AttrMasking, and ContextPred. Subsequently, we engage in supervised graph-level property prediction to further
boost the efficacy of our pre-trained models.

Training Details. We perform five rounds of experiments with different random seeds for each experimental setting and
report the average results. The projection head θ is selected from a range of [1, 2, 3]-layer MLPs with equal widths. The
hyper-parameter k of GPF-plus is chosen from the range [5,10,20]. Further details on the hyper-parameter settings can be
found in the appendix.

Implementation Details. All experiments were conducted on a high-performance computing server equipped with an
NVIDIA 3090 GPU (24 GB memory). The implementation was based on Python 3.9, PyTorch 1.12, and the torc geometric
library. For the GNN architecture, we utilized Graph Isomorphism Network (GIN), configured with a hidden dimension of
300, 3 graph convolutional layers, ReLU activation, and batch normalization. The optimizer was Adam with a learning
rate of 0.001, dropout rate is 0.5, the mask probability is 0.2. Pretraining tasks included node-level attribute prediction and
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Figure 3. Test ROC-AUC of molecule property prediction using different tuning strategies with different pre-training strategies. Each
point represents a particular individual downstream task from (Fang et al., 2024) (left) and our method (right).

graph-wise classification, with data augmentation strategies such as node masking, edge sampling, and feature perturbation
applied during training. The experiments were conducted on MoleculeNet datasets, running for 100 epochs with a batch size
of 32. Performance was evaluated using ROC-AUC, and each experiment was repeated five times to ensure reproducibility,
with the mean and standard deviation reported.

D. Additional Experiments
D.1. More comparison experiments

Figure 3 compares the test ROC-AUC performance of molecular property prediction across different tuning strategies
with various pre-training approaches. Each point represents the performance of an individual downstream task, with GPF
shown on the left and our method on the right. The red diagonal line indicates parity, where points above the line represent
improved performance compared to fine-tuning.

The left plot reveals that the method from GPF exhibits negative transfer in several tasks, as some points fall below
the diagonal, indicating a degradation in performance due to ineffective knowledge transfer. In contrast, the right plot
demonstrates that our proposed Instruct Prompt effectively mitigates negative transfer, resulting in a more consistent
improvement across tasks. This highlights the robustness of our approach in enhancing molecular representation learning
and improving generalization across diverse downstream tasks.

D.2. More training cases.

We provide more training curves in Figure 4 as a supplement to Section 5.3. Our method achieves a considerable performance
improvement over other approaches during training. We note that on some smaller datasets, such as Clintox and BBBP, the
training curves exhibit greater fluctuations. This behavior is hypothesized to stem from the increased number of parameters
in our model coupled with the constrained data availability. Crucially, despite these fluctuations, overfitting is not observed,
suggesting that the model remains robust. In stark contrast, training on larger datasets yields much smoother performance
curves, with fluctuations being significantly less prominent.

Table 5. The number of tunable parameters for different tuning strategies. * is the frozen parameters.

FT GPF GPF-plus Ours
Size of GNN(Encoder) 1.86M 1.86M* 1.86M* 1.86M*
Size of Prompt 0 0.3K 3-12K 0.115M
Size of Graph Linear Layer 0.6K-0.18M 0.6K-0.18M 0.6K-0.18M 0.6K-0.18M
Size of Total Tunable Part 1.92M-2.14M 0.9K-0.21M 3.6K-0.192M 0.175M-0.295M
# Params(%) 100 0.046-0.98 0.187-8.97 9.1-13.78
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Figure 4. Test curves of different tuning strategies on pretrained GINs. Solid and dashed lines indicate training and validation curves,
respectively.

Table 6. Ablation analysis of different configurations on Tox21, Toxcast, HIV, MUV, BBBP, Clintox, BACE and SIDER datasets.

MODULE LOSS DATASETS

LORA MGIP LNPP LCONT TOX21 TOXCAST HIV MUV BBBP CLINTOX BACE SIDER

✓ – – ✓ 75.31 64.34 75.95 82.44 68.72 67.76 86.41 60.75
– ✓ – ✓ 80.57 68.78 79.97 84.47 72.45 80.19 85.22 67.17
✓ ✓ – ✓ 80.19 67.70 78.50 83.07 72.88 81.18 86.42 67.76
✓ – ✓ ✓ 76.40 68.55 75.03 79.48 69.43 70.99 85.51 61.26
– ✓ ✓ ✓ 80.29 68.27 80.42 84.71 72.69 80.27 85.46 67.23
✓ ✓ ✓ – 80.45 68.52 79.84 82.45 73.18 80.70 85.51 66.17
✓ ✓ ✓ ✓ 80.60 68.81 81.76 84.96 73.62 81.21 86.52 68.52

D.3. More ablation study

Here, Table 6 shows the comprehensive ablation results on eight datasets. A comparison of the parameters of the different
high-efficiency fine-tuning methods is shown in Table 5. From the experimental results, we can conclude that our method
can achieve the optimal performance with fewer parameters, showing superiority.

E. Limitations and Future Work
As discussed in Section 5, while our method significantly outperforms state-of-the-art baselines, it has certain limitations in
few-shot learning. This is primarily due to the constraints of GMM modeling, which requires at least two samples per class
for effective learning, limiting its applicability in few-shot scenarios. Additionally, GMM introduces some computational
overhead, though its resource consumption remains modest. Furthermore, our method exhibits higher standard deviations
across multiple runs with different ranks, likely due to model uncertainty in handling diverse graph structures. Addressing
the integration of node-level and graph-level features remains an open challenge for future research.
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