
Towards Better Branching Policies: Leveraging the Sequential Nature of Branch-and-Bound Tree

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 The branch-and-bound (B&B) method is a dominant exact algorithm for solving
2 Mixed-Integer Linear Programming problems (MILPs). While recent deep
3 learning approaches have shown promise in learning branching policies using
4 instance-independent features, they often struggle to capture the sequential decision-
5 making nature of B&B, particularly over long horizons with complex inter-
6 step dependencies and intra-step variable interactions. To address these chal-
7 lenges, we propose Mamba-Branching, a novel learning-based branching pol-
8 icy that leverages the Mamba architecture for efficient long-sequence modeling,
9 enabling effective capture of temporal dynamics across B&B steps. Addi-
10 tionally, we introduce a contrastive learning strategy to pre-train discriminative em-
11 beddings for candidate branching variables, significantly enhancing Mamba’s
12 performance. Experimental results demonstrate that Mamba-Branching outper-
13 forms all previous neural branching policies on real-world MILP instances and
14 achieves superior computational efficiency compared to the advanced open-source
15 solver SCIP. The source code can be accessed via an anonymized repository at
16 <https://anonymous.4open.science/r/Mamba-Branching-B4B4/>.

17

1 Introduction

18 Mixed Integer Linear Programming problems (MILPs) constitute a class of computationally challeng-
19 ing NP-hard problems with widespread applications across diverse domains, including scheduling [7],
20 planning [37], and transportation [3]. The branch-and-bound (B&B) method [28] represents the
21 predominant solution methodology for MILPs in practice. This approach begins with the relaxation
22 of the original problem and iteratively branches on variables that violate integer constraints. By
23 maintaining global upper and lower bounds, the method progressively converges toward an optimal
24 solution. Many high-performance MILP solvers such as SCIP [6] and Gurobi [17] employ the B&B
25 framework as their core solution architecture.

26 Within the B&B framework, the selection of branching variables plays a critical role in determining
27 computational efficiency. To this end, learning-based branching methods have been proposed [12, 15,
28 16, 40]: by constructing a bipartite graph that incorporates instance features and intra-tree dynamic
29 features, and utilizing graph convolutional networks (GCNN) [12] for state encoding. Nevertheless,
30 reliance on instance-specific features restricts their generalization to heterogeneous MILP instances.
31 To enable cross-instance adaptability, recent approaches have focused on parameterizing the B&B
32 tree to construct a shared feature space independent of specific problem data. For example, Zarpellon
33 et al. [48] develop a parameterized B&B tree framework to create a shared feature space, decoupling
34 branching decisions from instance-specific features. Further advancing this approach, T-BranT [31]
35 evaluates the mutual connections between candidate variables by the self-attention mechanism and
36 employs Graph Attention Networks to encode the empirical branching history in the search tree.

37 However, existing works universally overlook the sequential nature inherent in B&B tree expansion. In
38 this paper, our key insight lies in that the “branching path” from the root node to the optimal solution
39 node essentially constitutes a serialization process. This “branching path”, which encompasses
40 the parameterized tree states and corresponding branching variables from each preceding step,
41 significantly influences the current branching decision. While T-BranT incorporates historical data,
42 it models the tree from an unordered graph perspective, failing to explicitly capture this essential
43 sequential nature. Effectively modeling this sequential nature presents two key challenges: (1) Design
44 of long sequence modeling architectures. The sequence model must simultaneously capture inter-step
45 dependencies and intra-step candidate variable relationships. Given that each state comprises multiple
46 candidate variables, the length of the sequence input will increase exponentially with the number of
47 branching steps. Therefore, it is essential to develop specialized architectures that can accommodate
48 ultra-long sequences. (2) Construction of discriminative feature embeddings. An embedding layer
49 needs to be designed to map the features of candidate variables into a high-dimensional vector space
50 with high discriminative power. This will enable the sequence model to effectively discern the
51 dynamic evolution patterns of different variables.

52 To address these challenges, we propose Mamba-Branching. Mamba [14, 8] is a novel network
53 architecture characterized by its computational complexity that scales linearly with sequence length.
54 This represents a significant improvement over the quadratic complexity associated with Transformers
55 [43], making Mamba particularly well-suited for addressing challenge (1). Meanwhile, inspired
56 by CLIP [38], we employ contrastive learning to train the embedding layer prior to the overall
57 imitation learning process, effectively tackling challenge (2). Experimental results demonstrate that
58 Mamba-Branching outperforms all neural branching baselines across all real-world instances and
59 achieves superior solving efficiency over the advanced open-source solver SCIP’s default branching
60 rule on challenging instances.

61 2 Related Work

62 Learning-based approaches for accelerating MILP solving can be mainly divided into two
63 paradigms [5, 39]: replacing heuristic rules with neural networks within exact solution frame-
64 works and employing neural networks as primal heuristics. Research under the first paradigm
65 includes addressing branch variable selection [12, 15, 16, 40, 25, 26] and node selection [19, 27, 49]
66 problems within the B&B framework, as well as tackling cut selection issues in cutting-plane al-
67 gorithms [42, 22, 45]. These methods solely employ neural networks to replace heuristic rules
68 within exact solution frameworks, without compromising solution exactness. The second paradigm
69 aims to efficiently produce high-quality feasible solutions—rather than exact solutions—to tighten
70 the primal bound early in the process. A high-quality primal bound enables the B&B to eliminate
71 a significant number of non-promising nodes at an early stage through its pruning process. This
72 typically involves two key aspects: solution prediction [9, 36, 24, 18, 21, 33] and neighborhood
73 selection [46, 41, 20, 47]. The solution prediction approach typically employs neural networks to
74 predict optimal solutions, then uses these predictions to guide the search process. Neighborhood
75 selection starts from a feasible solution and fixes a subset of integer variables while optimizing the
76 remainder, with neural networks selecting which variables to fix.

77 Our work focuses on the generalization of neural branching variable selection policies, particularly
78 their ability to handle heterogeneous MILPs different from training instances. These approaches
79 can be mainly divided into two categories: parameterizing the B&B tree and diversifying training
80 instances. The first category aims to learn branching policies within a shared feature space across
81 different MILP instances. TreeGate [48] processes instance-independent features through a special-
82 ized neural architecture designed for branching decisions. Building on this, T-BranT [31] retains
83 historical data, modeling it as a graph structure processed by Graph Attention Networks for current
84 decision-making. The second category focuses on generating diverse instances and incorporating
85 them into the training of branching policies to enhance their generalization. AdaSolver [32] intro-
86 duces adversarial instance augmentation, which generates more diverse instances in directions that
87 hinder policy training. Meanwhile, MILP-Evolve [30] proposes a novel LLM-based evolutionary
88 framework capable of generating a large set of diverse MILP classes with an unlimited number of
89 instances. Specifically, our method falls into the first category. Using instance-independent features
90 as input, we also incorporate the sequential nature of the B&B tree into the decision-making process.

91 **3 Preliminaries**

92 **3.1 B&B Algorithm and Branching Rules**

93 **B&B Algorithm.** The standard form of MILPs is: $\arg \min_{\mathbf{x}} \{ \mathbf{c}^\top \mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \}$,
94 where the vector \mathbf{x} represents n variables to be optimized, with p being the number of integer variables.
95 $\mathbf{A}, \mathbf{b}, \mathbf{c}$ represent constraint matrix, constraint right term, and objective coefficient. For MILPs, an
96 exact solution framework commonly used is B&B. This method first ignores the integer constraints
97 to obtain and solve the relaxed problem at the root node. Subsequently, it iteratively searches for the
98 global optimal solution through branching, bounding, and pruning. Branching involves selecting a
99 variable with a fractional solution $x_j = b_j$ at the current node and adding the constraints $x_j \leq [b_j]$
100 and $x_j \geq [b_j] + 1$ to form two child nodes. During bounding, the global upper and lower bounds
101 (also known as the primal and dual bounds) are determined based on all existing nodes. The pruning
102 process eliminates obviously infeasible nodes according to these bounds. This procedure repeats
103 until the upper and lower bounds converge, yielding the global optimal solution.

104 **Branching Rules.** Here, the branching variable selection during B&B significantly impacts solving
105 efficiency by influencing tree size. In [2], several heuristic branching rules are introduced. Among
106 them, strong branching evaluates candidate variables by creating child nodes for each candidate and
107 selecting the one maximizing dual bound improvement. While highly effective, this approach incurs
108 significant computational overhead that counteracts its benefits for solution speed. Pscost branching
109 guides current branching by leveraging historical branching records, avoiding extra computation but
110 performing poorly early in the search tree due to insufficient branching records. Hybrid approaches
111 combine both methods' advantages by using strong branching initially to establish reliable branching
112 patterns, then transitioning to pscost branching once sufficient historical data is accumulated. The
113 state-of-the-art (SOTA) relpscost branching [1], SCIP's default rule, implements this strategy—a
114 variable's pscost is only considered trustworthy after undergoing sufficient strong branching steps.

115 **3.2 Parameterized B&B Tree**

116 To parameterize the B&B tree and obtain instance-independent features for heterogeneous MILP
117 problems, Zarpellon et al. [48] design a state representation $s_t = (C_t, Tree_t)$. Here, $C_t \in \mathbb{R}^{|\mathcal{C}_t| \times 25}$
118 denotes candidate variable features, and $Tree_t \in \mathbb{R}^{61}$ represents tree features, where \mathcal{C}_t denotes
119 candidate variable set and $|\mathcal{C}_t|$ represents candidate variable number. Since all features reflect the
120 dynamic process of B&B trees, all MILP instances can be processed uniformly in the same feature
121 space by a neural network named TreeGate, which jointly processes candidate and tree features
122 through two components: a candidate network and a tree network. The candidate network first
123 embeds each variable's 25-dimensional features into an h -dimensional space, then progressively
124 reduces the dimensionality from h to d through multiple layers that halve the dimension at each step.
125 Meanwhile, the tree network projects the tree features $Tree_t$ into an H -dimensional space (where
126 $H = h + h/2 + \dots + d$) using a sigmoid activation to produce a gating vector $g \in [0, 1]^H$. This
127 gating vector modulates the candidate network's layer outputs through element-wise multiplication.
128 The final output $e_t \in \mathbb{R}^{|\mathcal{C}_t| \times d}$ undergoes average pooling across the d -dimensional features, then
129 being processed by a softmax layer to generate the candidate variable selection probabilities.

130 **4 Methodology**

131 In this section, we formally introduce Mamba-Branching, a neural branching policy specifically
132 designed to capture the sequential structure of B&B trees. We begin by discussing the contrastive
133 learning approach utilized for the embedding layer and the detailed design of the sequence inputs,
134 followed by the detailed implementation of imitation learning. The overall framework of Mamba-
135 Branching is illustrated in Figure 1.

136 **4.1 Contrastive Learning for Embedding Layer**

137 The embedding layer serves as a critical interface between raw state representations and downstream
138 sequence models. In natural language processing (NLP), the success of embedding techniques
139 has been well-established. These methods leverage the inherent distinguishability of discrete word
140 tokens, where each word's unique identity naturally translates to separable embedding vectors through

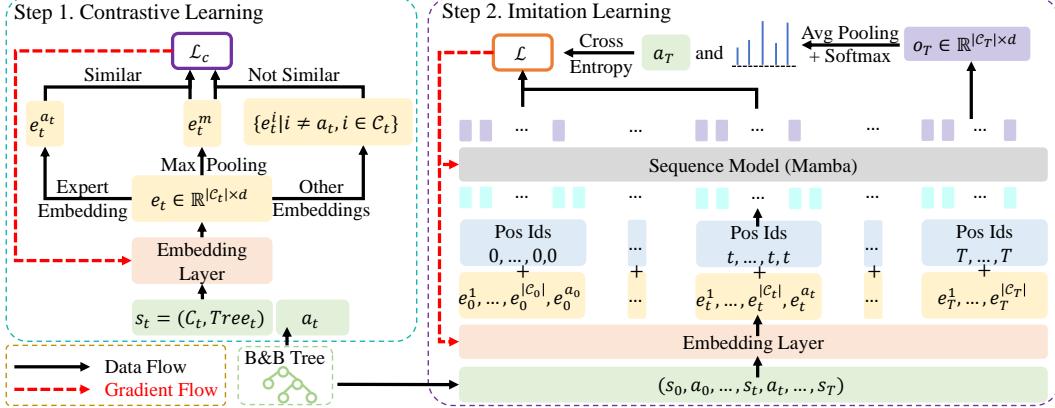


Figure 1: Overall framework of Mamba-Branching. The training process involves two stages: contrastive learning and autoregressive imitation learning. During the contrastive learning process, the state s_t and expert decision a_t at each branching step t are used to train the embedding layer via the designed contrastive loss function \mathcal{L}_c . During imitation learning, the branching trajectory (s_0, a_0, \dots, s_T) is mapped to embeddings. At step t , expanded variable embeddings $(e_t^1, \dots, e_t^{|C_t|})$ and expert embedding $e_t^{a_t}$ form a group with shared positional encoding. These groups create a ‘branching path’ input to the sequence model, where only outputs o_t corresponding to the variable embeddings are selected, with a_t serving as the label for imitation learning.

141 standard training paradigms. [4, 35] However, the branching variable selection problem in B&B
 142 presents a fundamentally different challenge. The state representation at each branching step t ,
 143 denoted as $s_t = (C_t, Tree_t)$ (see subsection 3.2), contains a set of candidate variables C_t that
 144 frequently exhibit remarkably similar feature characteristics. This high degree of intra-step similarity
 145 arises from the shared constraints and problem structure inherent in combinatorial optimization
 146 problems. Unlike the clear distinctions between words in NLP tasks, the subtle but decision-critical
 147 differences between candidate variables in B&B require a more sophisticated approach to embedding
 148 learning.

149 To address this challenge, we develop a principled framework for learning discriminative embeddings
 150 in B&B decision making. The core of our approach lies in recognizing that effective branching
 151 decisions require the embedding space to maintain consistent separation between selected and non-
 152 selected variables. We formalize this requirement through Proposition 1. This condition specifies that
 153 the similarity between the selected variable’s embedding and a reference vector must exceed all other
 154 candidate similarities by a positive margin δ .

155 **Proposition 1.** *For effective branching decisions, the embedding space must satisfy:*

$$\forall t, \exists \delta > 0 \text{ s.t. } \text{sim}(e_t^a, e_t^m) \geq \max_{i \neq a} \text{sim}(e_t^i, e_t^m) + \delta, \quad (1)$$

156 where $\text{sim}(\cdot)$ is a similarity judgment function, e_t denotes embeddings, e_t^m is an anchor, a denotes
 157 the selected variable index.

158 To this end, before joint training, we first employ contrastive learning to train the embedding layer,
 159 enhancing its ability to differentiate between distinct candidate variable features. The loss function of
 160 contrastive learning is defined as \mathcal{L}_c , with the specific form as follows:

$$\mathcal{L}_c(\gamma) = \frac{1}{T} \sum_t \left(-\frac{e_t^m \cdot e_t^a}{\|e_t^m\| \|e_t^a\|} + \frac{1}{|C_t| - 1} \sum_{i \neq a} \frac{e_t^m \cdot e_t^i}{\|e_t^m\| \|e_t^i\|} \right), \quad (2)$$

161 where γ denotes the parameters of TreeGate, T denotes the total number of branching steps, $e_t =$
 162 $\text{TreeGate}_\gamma(s_t)$, $e_t^m \in \mathbb{R}^d$ is the result of applying max-pooling to e_t along the $|C_t|$ dimension,
 163 $e_t^a \in \mathbb{R}^d$.

164 The intuition behind this loss function design is to make the selected branching variable the most
 165 prominent and distinctive among all candidate variables. The max-pooling operation extracts a salient
 166 global feature as an anchor. By increasing the cosine similarity between the anchor and the selected

167 branching variable while decreasing the cosine similarity between the anchor and other candidate
 168 variables, the loss amplifies their differences and drives the feature of the selected branching variable
 169 toward the globally most salient direction.

170 **4.2 Sequential Modeling Design**

171 In B&B tree, nodes are progressively expanded until the upper and lower bounds converge. This
 172 process can be viewed as navigating through a complex maze to find a “branching path” from the
 173 root node to the optimal solution node. Traditional neural approaches to branching decisions have
 174 predominantly relied on the immediate state of the tree, neglecting the historical sequence of visited
 175 nodes and prior branching choices. This myopic perspective is fundamentally limiting, as it fails to
 176 leverage the rich sequential information inherent in the branching process. Just as an effective maze-
 177 solving strategy requires reasoning about the entire traversed path to avoid dead ends and redundant
 178 exploration, optimal branching decisions demand a holistic understanding of the search trajectory.
 179 This underscores the imperative for a paradigm shift toward path-aware sequential modeling.

180 To effectively model branching decisions, the sequence model must capture not only the sequential
 181 progression of states but also the intricate interrelationships among candidate variables within each
 182 state. Therefore, we explicitly encode the features of each candidate variable at all branching steps.
 183 We formally define the branching path \mathbf{S} as a structured sequence of embeddings, where each state
 184 at step t is decomposed into its constituent candidate variables along with the selected branching
 185 decision. Specifically, \mathbf{S} is represented as:

$$\mathbf{S} = [\underbrace{e_0^1, \dots, e_0^{|C_0|}}_{|C_0|+1}, \underbrace{e_0^{a_0}, \dots, e_t^1, \dots, e_t^{|C_t|}}_{|C_t|+1}, \underbrace{e_t^{a_t}, \dots, e_T^1, \dots, e_T^{|C_T|}}_{|C_T|}], \quad (3)$$

186 where $|C_t|$ denotes the number of candidate variables at branching step t , a_t represents the index of
 187 the selected branching variable, e_t denotes the embedding feature, and T is the maximum number of
 188 branching steps in the branching path. This formulation ensures that both the sequential dynamics
 189 and the variable-level interactions are preserved, enabling the model to leverage granular features for
 190 improved decision-making.

191 To ensure temporal coherence across branching steps, we employ positional encodings that assign
 192 identical positional indices to embeddings within the same step. The complete input representation \mathbf{S}'
 193 is constructed by combining the branching path \mathbf{S} with a learnable positional encoding matrix \mathbf{E}_{pos} :

$$\begin{aligned} pos &= [\underbrace{0, \dots, 0, 0}_{|C_0|+1}, \dots, \underbrace{T, \dots, T}_{|C_T|}], \\ \mathbf{S}' &= \mathbf{E}_{pos} \oplus \mathbf{S}, \end{aligned} \quad (4)$$

194 where \oplus denotes element-wise addition, $\mathbf{E}_{pos} \in \mathbb{R}^{(\sum_{t=0}^T |C_t| + T) \times d}$ represents the learnable positional
 195 encoding matrix obtained by mapping pos .

196 Subsequently, \mathbf{S}' is fed into Mamba to obtain the output \mathbf{O}_t :

$$\begin{aligned} \mathbf{O}_t &= \text{Mamba}(\mathbf{S}') \\ &= [o_0^1, \dots, o_0^{|C_0|}, o_0^{a_0}, \dots, o_t^1, \dots, o_t^{|C_t|}, o_t^{a_t}, \dots, o_T^1, \dots, o_T^{|C_T|}], \end{aligned} \quad (5)$$

197 within each group, only the outputs corresponding to $|C_t|$ variable positions are extracted, denoted as
 198 $o_t = (o_t^1, \dots, o_t^{|C_t|})$, which are then processed through average pooling and softmax to obtain the
 199 variable probability distribution.

200 It can be observed that for the branching path \mathbf{S} , the sequence model actually needs to process an input
 201 length of $\sum_{t=0}^T |C_t| + T$. When either T or $|C_t|$ becomes large, the length of \mathbf{S} increases substantially,
 202 presenting significant challenges to the sequence model’s ability to handle long sequences. Therefore,
 203 in addition to employing the most commonly-used Transformer Decoder as our sequence model, we
 204 also utilize Mamba [14] (see Appendix A for architectural details). In contrast to the Transformer’s
 205 quadratic complexity, Mamba achieves linear complexity relative to sequence length, making it
 206 unequivocally better suited for such long-sequence application scenarios. This is particularly critical
 207 in our application, where computational speed is paramount. If the neural branching policy’s inference
 208 complexity becomes excessively high and computationally prohibitive, it would fundamentally
 209 undermine our original objective of acceleration.

210 **4.3 Imitation Learning under Autoregressive Paradigm**

211 Following prior works [48, 31], we employ relpscost branching as the expert to collect demon-
 212 stration datasets for imitation learning. In contrast to the commonly employed strong branching
 213 expert [12, 15], which are rarely applied in practical scenarios, relpscost provides a more realistic
 214 expert representation. For dataset collection, each instance is solved using SCIP. We sequentially
 215 record every state in the instance’s tree along with the corresponding relpscost-selected branching de-
 216 cisions, resulting in a complete trajectory denoted as $(s_0, a_0, s_1, a_1, \dots)$. In dataset \mathcal{D} , each instance’s
 217 trajectory is partitioned into fixed-length sub-trajectories for storage.

218 In Mamba-Branching, the branching policy is defined as π_θ , which operates in an autoregressive
 219 paradigm. The joint loss function $\mathcal{L}(\theta, \gamma)$ of embedding layer and sequence model is as follows:

$$\mathcal{L}(\theta, \gamma) = -\frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{(s_t, a_t) \in \tau} \log \pi_\theta(a_t | \tau_{0:t}), \quad (6)$$

220 where τ denotes a trajectory in \mathcal{D} , $\tau_{0:t} = (s_0, a_0, \dots, a_{t-1}, s_t)$, and $|\mathcal{D}|$ represents the total number
 221 of trajectories in \mathcal{D} . During inference, the predictions from previous branching steps serve as input
 222 for the current step, yielding the probability distribution $\pi_\theta(\cdot | \hat{\tau}_{0:t})$ over candidate variables, where
 223 $\hat{\tau}_{0:t} = (s_0, \hat{a}_0, \dots, \hat{a}_{t-1}, s_t)$.

224 **5 Experiments**

225 **5.1 Setup**

226 **5.1.1 Benchmarks**

227 **MILP dataset.** Our method is designed to maintain generalization capability across heterogeneous
 228 MILPs. Therefore, the training and test instances are deliberately constructed to be distinct, with
 229 the strict requirement that the test set should not contain any instances present in the training set.
 230 Following the selection of instances from previous works [48, 31], we construct two MILP datasets
 231 of different scales using instances from MIPLIB [13] and CORAL [29]: a smaller-scale dataset
 232 (MILP-S) and a larger-scale dataset (MILP-L). The MILP-S is entirely derived from [48], comprising
 233 19 training instances and 8 test instances. MILP-L is constructed by expanding the dataset used
 234 in [31], containing 25 training instances and 73 test instances. For MILP-L’s test instances, we
 235 employ SCIP as the reference solver, categorizing 57 instances with solution times under 20 minutes
 236 as "easy" and 16 instances exceeding 20 minutes as "difficult". The details of MILP-S and MILP-L
 237 are provided in Appendix B.

238 **Branching Dataset Collection.** During data collection, consistent with previous works [48, 31], we
 239 employ random branching for the first r steps to enhance B&B exploration. After these r random
 240 steps, we switch to relpscost branching and collect the corresponding data. For each training instance,
 241 we configure $r \in \{0, 1, 5, 10, 15\}$ and collect training set using solver seeds $\{0, 1, 2, 3\}$, while
 242 reserving seed 4 exclusively for validation set.

243 **5.1.2 Metrics**

244 **Nodes and Fair Nodes.** The number of nodes in the B&B tree serves as a crucial metric for evaluating
 245 branching policies, as it directly impacts overall solving time. However, as noted in [10], this metric
 246 may be confounded by side effects of some sophisticated branching rules, such as strong branching.
 247 We therefore additionally employ the fair node number [10], which eliminates the confounding effects
 248 of these rules, thereby providing a more accurate reflection of the true capability of a branching
 249 policy. For branching policies that do not use strong branching, the number of nodes and fair nodes
 250 remains identical.

251 **Primal-Dual Integral.** For some challenging instances in MILP-L, obtaining optimal solutions may
 252 be computationally prohibitive, so a one-hour time limit is imposed. Under this constraint, node
 253 number becomes an inadequate metric for evaluating the performance of branching policies. In such
 254 cases, the primal-dual integral (PD integral) serves as a more appropriate evaluation criterion [11].
 255 With a time limit T_l , the PD integral is expressed as $\int_{t=0}^{T_l} \mathbf{c}^\top \mathbf{x}_t^* - \mathbf{y}_t^* dt$, where \mathbf{y}_t^* is the best dual
 256 bound at time t , \mathbf{x}_t^* is the best feasible solution at time t .

257 **5.1.3 Baselines**

258 We select two categories of branching policies as baselines: neural-based approaches and heuristic
259 rules. The neural branching policies include: GCNN [12], TreeGate [48], T-BranT [31], and
260 Transformer-Branching. GCNN is the most classical method and does not incorporate specific
261 designs for heterogeneous MILPs. TreeGate and T-BranT are also based on instance-independent
262 inputs, serving as the primary baselines for comparison with Mamba-Branching. Transformer-
263 Branching employs Transformer as the sequence model to highlight Mamba’s advantages. The
264 heuristic rules include random, pscost, and relpcost, where random and pscost represent the lower
265 bounds of performance, relpcost serves as the expert and constitutes the upper bound of branching
266 performance. However, neural branching policies may surpass relpcost in solving efficiency. More
267 detailed reasons for the selection of baselines can be found in Appendix C.

268 **5.1.4 Solver and Neural Policy Settings**

269 **Solver Settings.** In our evaluation, we replace SCIP solver’s (v8.0.4) branching policy with our
270 neural branching policy. To isolate the study of branching policies and eliminate interference from
271 other solver components, we disable all primal heuristics and provide each test instance with a known
272 optimal solution value as a cutoff. However, during branching data collection, we intentionally omit
273 the cutoff to obtain longer branching sequences.

274 **Neural Policy Settings.** During Mamba-Branching training, the maximum branching step is $T = 99$,
275 but as shown in subsection 4.2, its corresponding actual input length is considerably long. When
276 using the Transformer as the sequence model, this length causes excessive GPU memory consumption
277 that exceeds hardware limitations, thus $T = 9$ is adopted during Transformer-Branching training.
278 For evaluation consistency, we employ autoregressive generation with $T = 24$ across all models.
279 Additional implementation details and hyperparameters can be found in Appendix D.

Table 1: The experimental results on MILP-S. For the 8 test instances in MILP-S, each instance is evaluated with five random seeds $\{0,1,2,3,4\}$ under a 1-hour time limit, and the results are presented as geometric means. Among them, blue background indicates the best results, **bold** font indicates the best results in neural policies, and \star denotes reaching the time limit.

Method	Mamba-Branching	TreeGate	Transformer-Branching	T-BranT	GCNN	random	pscost	relpcost
Nodes	2054.99	2171.31	3078.56	2668.62	33713.63 \star	61828.29 \star	4674.34	730.21
Fair Nodes	2077.55	2205.06	3120.04	2715.16	33713.63 \star	61828.29 \star	4674.34	1227.25

280 **5.2 Branching Performance**

281 **5.2.1 MILP-S**

282 The experimental results in MILP-S can be found in Table 1, with the fair node results of all neural
283 branching policies per instance shown in Figure 2. The single-step inference time comparison
284 between Transformer and Mamba is shown in Figure 3. Notably, T-BranT necessitates at least one set
285 of historical data, prompting the use of relpcost at the root node. This precise branching decision at
286 the root significantly influences overall performance. For the sake of consistency, Mamba-Branching,
287 TreeGate, and Transformer-Branching also employ relpcost at the root node, with Mamba-Branching
288 and Transformer-Branching further leveraging it to initialize their input sequences. To evaluate the
289 performance of pure neural branching, we additionally test variants that do not utilize relpcost
290 initialization: TreeGate-p, Mamba-Branching-p, and Transformer-Branching-p, as shown in Table 3.

291 It can be observed that Mamba-Branching is the best branching policy besides relpcost. First,
292 Mamba-Branching significantly outperforms the three lower-bound references: GCNN, random, and
293 pscost. Compared with several neural branching policy baselines, whether initialized with relpcost
294 or purely neural-based, Mamba-Branching surpasses T-BranT, TreeGate, and Transformer-Branching,
295 achieving a new SOTA for neural branching policies. Additionally, in terms of single-step inference
296 time, Mamba significantly outperforms Transformer, highlighting its advantage as a sequence model.

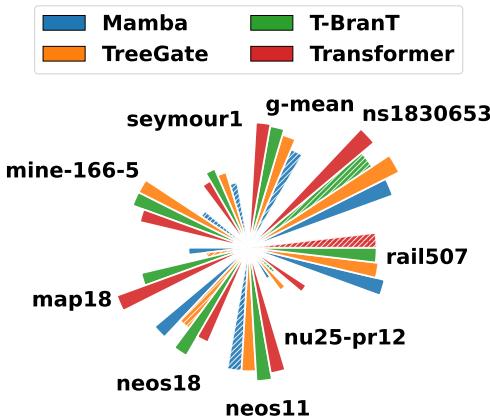


Figure 2: The fair node results of all neural branching policies in MILP-S.

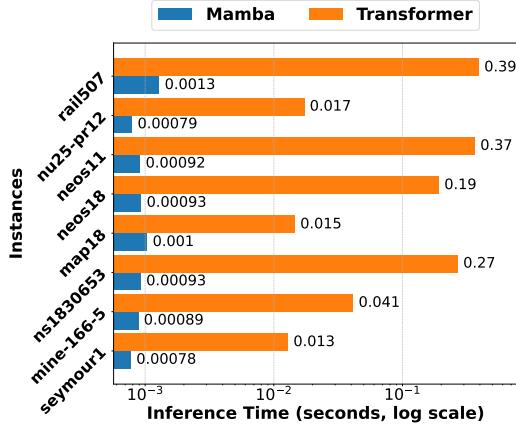


Figure 3: The inference time comparison between Mamba and Transformer in MILP-S.

297 5.2.2 MILP-L

298 In MILP-L, we further evaluate several
 299 methods that demonstrated strong perfor-
 300 mance in MILP-S, including TreeGate, T-
 301 BranT, Mamba-Branching, and relpscst.
 302 For the 57 easy instances, performance is
 303 assessed using both nodes and fair nodes.
 304 In contrast, for the 16 difficult instances,
 305 we use the PD integral with a 1-hour time
 306 limit as the evaluation metric. The results
 307 are presented in Table 2.

308 The results demonstrate that for easy
 309 MILPs, despite the expanded test instances
 310 compared to MILP-S, Mamba-Branching
 311 remains the best neural branching policy,
 312 but still inferior to relpscst. For difficult instances, Mamba-Branching achieves the best PD integral
 313 performance among all branching policies, even surpassing relpscst. This indicates that within the
 314 same time limit, Mamba-Branching enables the fastest convergence of primal and dual bounds.

315 5.2.3 Discussion

316 **Advantage of Sequential Nature.** First, Mamba-Branching consistently outperforms TreeGate and
 317 T-BranT across all scenarios due to its consideration of the sequential nature of B&B trees. Neither
 318 TreeGate (which completely ignores historical data) nor T-BranT (which utilizes historical data non-
 319 sequentially) achieves the effectiveness of sequential historical data utilization. This aligns with our
 320 maze analogy in subsection 4.2: sequentially recalling paths facilitates better current decision-making.

321 **Limitation of Transformer.** Transformer-Branching also leverages sequential nature but performs
 322 poorly, with Transformer-Branching-p even underperforming the lower-bound pscost. The subop-
 323 timal performance stems from its 10-step branching history limit during training (due to hardware
 324 constraint), while Mamba-Branching accommodates 100 steps. Furthermore, the inference time
 325 comparison in Figure 3 demonstrates that in our time-sensitive scenario aimed at reducing solving
 326 time, Transformer is entirely unsuitable as a branching policy. The underlying reason here is that
 327 Transformer’s complexity is quadratic with respect to sequence length, while Mamba’s is linear.
 328 Although Transformer is theoretically suitable as a sequence model, employing Mamba offers greater
 329 practicality and feasibility. A more detailed comparison can be found in Appendix E.

330 **Factors Outperforming Relpscst.** As for relpscst, Mamba-Branching does not outperform in easy
 331 instances but surpasses it in difficult ones. The reason can be summarized as follows: (1) Relpscst
 332 is a hybrid method combining strong and pscost branching, incorporating a reliability criterion: a

Table 2: The experimental results on MILP-L. Consistent with the experiments on MILP-S, all instances are evaluated with 5 random seeds under a 1-hour time limit, with results reported as geometric means. Blue background indicates the best results and **bold** font indicates the best results in neural policies.

Method	Easy		Difficult
	Nodes	Fair Nodes	PD Integral
Mamba-Branching	1819.32	2053.91	12319.55
TreeGate	2218.29	2534.09	14625.68
T-BranT	2009.77	2298.76	13538.47
relpscst	667.93	1455.49	12741.36

Table 3: On MILP-S, the results of pure neural branching policies TreeGate-p, Transformer-Branching-p, and Mamba-Branching-p, as well as Mamba-Branching-p without contrastive learning (w/o cl). The experimental setup remains consistent with the aforementioned configuration on MILP-S.

Method	Mamba-Branching-p	Mamba-Branching-p (w/o cl)	Transformer-Branching-p	TreeGate-p
Nodes	2272.43	3000.92	5138.15	3179.55
Fair Nodes	2272.43	3000.92	5138.15	3179.55

333 variable can only switch to pscost after being selected by strong branching a certain number of times.
 334 Therefore, for difficult instances with more variables, the initialization process is time-consuming,
 335 leading to potential inefficiency. In contrast, neural policies benefit from fast inference and exhibit
 336 advantages on difficult instances. (2) In relpscost, the use of pscost for leveraging historical data
 337 does not account for the sequential nature, whereas Mamba-Branching explicitly incorporates this
 338 consideration. (3) As mentioned in [48], the relpscost in SCIP has been fine-tuned for a large number
 339 of instances, resulting in excellent performance on easy instances. However, for more complex and
 340 challenging instances, such parameter tuning may not provide adequate coverage.

341 5.3 Ablation Study

342 In this section, an ablation experiment is
 343 conducted to verify the role of contrastive
 344 learning. First, the most straightforward
 345 comparison is to evaluate the branching
 346 performance difference when contrastive
 347 learning is applied or not to the embed-
 348 ding layer. Under pure neural branch-
 349 ing, the results on MILP-S without and
 350 with contrastive learning are denoted as
 351 Mamba-Branching-p (w/o cl) and Mamba-
 352 Branching-p, respectively, as shown in Ta-
 353 ble 3. Meanwhile, to demonstrate that
 354 contrastive learning indeed achieves its in-
 355 tended effect, that is, making the feature of
 356 expert-selected variable more distin-
 357 guishable compared to other candidates, we also
 358 visualize the t-SNE-reduced [34] embed-
 359 dings, as shown in Figure 4.

360 First, in terms of branching performance, Mamba-Branching-p demonstrates superior results com-
 361 pared to its counterpart without contrastive learning, Mamba-Branching-p (w/o cl). The visualiza-
 362 tion then reveals that with contrastive learning, the expert-selected variable exhibits greater outlier char-
 363 acteristics and enhanced discriminability relative to other candidate variables. In contrast, without
 364 contrastive learning, the expert-selected variable becomes less distinguishable and tends to cluster
 365 near candidate variables.

366 6 Conclusion and Future Work

367 In this paper, we propose Mamba-Branching, the first approach to consider the sequential nature in
 368 B&B trees. To address the challenges of long sequences and embedding distinctiveness posed by
 369 sequential nature, we employ Mamba as the sequence model and design a contrastive learning method
 370 to train the embedding layer, enabling the sequence model to distinguish between different candidate
 371 variables. In experiments, Mamba-Branching outperforms all neural branching policies and achieves
 372 superior solving efficiency compared to relpscost on challenging instances. One limitation of our
 373 approach is the reliance on imitation learning, which requires a time-consuming collection of expert
 374 demonstrations. In future work, we will focus on investigating the potential of sequential nature in
 375 reinforcement learning-based branching policies, thereby eliminating the dependency on expert data.

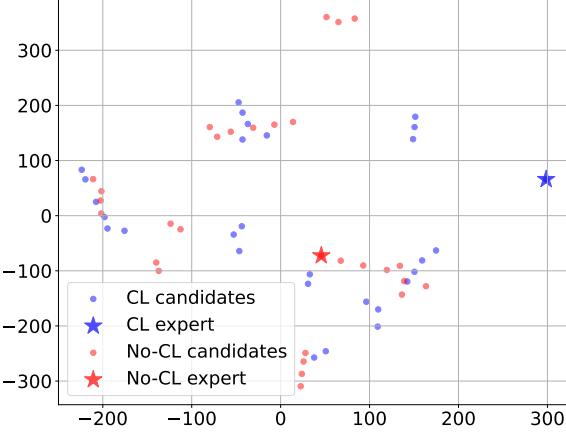


Figure 4: At a random given state, the embeddings with and without contrastive learning.

376 **References**

- 377 [1] Achterberg, T.: Scip optimization suite documentation: Reliable pseudo costs branching rule.
378 SCIP Optimization Suite Documentation (2025), <https://www.scipopt.org/doc/html/>
379 branch__relabelscost_8h.php, accessed: 2025-04-27
- 380 [2] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. *Operations Research Letters*
381 **33**(1), 42–54 (2005)
- 382 [3] Barnhart, C., Laporte, G.: *Handbooks in operations research and management science: Transportation*. Elsevier (2006)
- 384 [4] Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Leen, T., Dietterich, T., Tresp, V. (eds.) *Advances in Neural Information Processing Systems*. vol. 13. MIT Press (2000), https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
- 388 [5] Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: A methodological tour d'horizon. *European Journal of Operational Research* **290**(2), 405–421 (2021). <https://doi.org/https://doi.org/10.1016/j.ejor.2020.07.063>, <https://www.sciencedirect.com/science/article/pii/S0377221720306895>
- 392 [6] Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Dionísio, J., Donkiewicz, T., van
393 Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Halbig, K., Hettke, I.,
394 Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K., Lentz, J., Manns,
395 J., Mexi, G., Mühmer, E., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Turner,
396 M., Vigerske, S., Weninger, D., Xu, L.: The SCIP Optimization Suite 9.0. Technical re-
397 port, Optimization Online (February 2024), <https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/>
- 399 [7] Chen, Z.L.: Integrated production and outbound distribution scheduling: review and extensions.
400 *Operations research* **58**(1), 130–148 (2010)
- 401 [8] Dao, T., Gu, A.: Transformers are SSMs: Generalized models and efficient algorithms through
402 structured state space duality. In: *International Conference on Machine Learning (ICML)* (2024)
- 403 [9] Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Acceler-
404 ating primal solution findings for mixed integer programs based on solution predic-
405 tion. *Proceedings of the AAAI Conference on Artificial Intelligence* **34**(02), 1452–1459
406 (Apr 2020). <https://doi.org/10.1609/aaai.v34i02.5503>, <https://ojs.aaai.org/index.php/AAAI/article/view/5503>
- 408 [10] Gamrath, G., Schubert, C.: Measuring the impact of branching rules for mixed-integer program-
409 ming. In: Kliewer, N., Ehmke, J.F., Borndörfer, R. (eds.) *Operations Research Proceedings*
410 2017. pp. 165–170. Springer International Publishing, Cham (2018)
- 411 [11] Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat, D., Chmiela, A.,
412 Dumouchelle, J., Gleixner, A., Kazachkov, A.M., Khalil, E., Lichocki, P., Lodi, A., Lubin,
413 M., Maddison, C.J., Christopher, M., Papageorgiou, D.J., Parjadis, A., Pokutta, S., Prouvost,
414 A., Scavuzzo, L., Zarpellon, G., Yang, L., Lai, S., Wang, A., Luo, X., Zhou, X., Huang, H.,
415 Shao, S., Zhu, Y., Zhang, D., Quan, T., Cao, Z., Xu, Y., Huang, Z., Zhou, S., Binbin, C.,
416 Minggui, H., Hao, H., Zhiyu, Z., Zhiwu, A., Kun, M.: The machine learning for combinatorial
417 optimization competition (ml4co): Results and insights. In: Kiela, D., Ciccone, M., Caputo, B.
418 (eds.) *Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track. Proceedings*
419 of *Machine Learning Research*, vol. 176, pp. 220–231. PMLR (06–14 Dec 2022), <https://proceedings.mlr.press/v176/gasse22a.html>
- 421 [12] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization
422 with graph convolutional neural networks. *Advances in neural information processing systems*
423 **32** (2019)

- 424 [13] Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T.,
 425 Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübecke, M., Mittelmann, H.D.,
 426 Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Com-
 427 pilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Com-
 428 putation (2021). <https://doi.org/10.1007/s12532-020-00194-3>
 429
- 430 [14] Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state spaces. In:
 431 First Conference on Language Modeling (2024), <https://openreview.net/forum?id=tEYskw1VY2>
 432
- 433 [15] Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y.: Hybrid models for
 434 learning to branch. Advances in neural information processing systems **33**, 18087–18097 (2020)
- 435 [16] Gupta, P., Khalil, E.B., Chételat, D., Gasse, M., Lodi, A., Bengio, Y., Kumar, M.P.: Lookback for
 436 learning to branch. Transactions on Machine Learning Research (2022), <https://openreview.net/forum?id=EQpGkw5rvL>, expert Certification
 437
- 438 [17] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), <https://www.gurobi.com>
 439
- 440 [18] Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R., Luo, X.: A GNN-
 441 guided predict-and-search framework for mixed-integer linear programming. In: The Eleventh
 442 International Conference on Learning Representations (2023), <https://openreview.net/forum?id=pHMpgT5xWaE>
 443
- 444 [19] He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound al-
 445 gorithms. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
 446 K. (eds.) Advances in Neural Information Processing Systems. vol. 27. Curran As-
 447 sociates, Inc. (2014), https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
 448
- 449 [20] Huang, T., Ferber, A., Tian, Y., Dilkina, B., Steiner, B.: Searching large neighborhoods for
 450 integer linear programs with contrastive learning. In: Proceedings of the 40th International
 451 Conference on Machine Learning. ICML’23, JMLR.org (2023)
- 452 [21] Huang, T., Ferber, A.M., Zharmagambetov, A., Tian, Y., Dilkina, B.: Contrastive predict-and-
 453 search for mixed integer linear programs. In: Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
 454 Oliver, N., Scarlett, J., Berkenkamp, F. (eds.) Proceedings of the 41st International Conference
 455 on Machine Learning. Proceedings of Machine Learning Research, vol. 235, pp. 19757–19771.
 456 PMLR (21–27 Jul 2024), <https://proceedings.mlr.press/v235/huang24f.html>
- 457 [22] Huang, Z., Wang, K., Liu, F., Zhen, H.L., Zhang, W., Yuan, M., Hao, J., Yu, Y., Wang, J.:
 458 Learning to select cuts for efficient mixed-integer programming. Pattern Recognition **123**,
 459 108353 (2022). <https://doi.org/https://doi.org/10.1016/j.patcog.2021.108353>, <https://www.sciencedirect.com/science/article/pii/S0031320321005331>
 460
- 461 [23] Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic
 462 Engineering **82**(1), 35–45 (03 1960). <https://doi.org/10.1115/1.3662552>, <https://doi.org/10.1115/1.3662552>
 463
- 464 [24] Khalil, E.B., Morris, C., Lodi, A.: Mip-gnn: A data-driven framework for guiding combinatorial
 465 solvers. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 10219–
 466 10227 (2022)
- 467 [25] Kuang, Y., Wang, J., Liu, H., Zhu, F., Li, X., Zeng, J., HAO, J., Li, B., Wu, F.: Rethinking
 468 branching on exact combinatorial optimization solver: The first deep symbolic discovery
 469 framework. In: The Twelfth International Conference on Learning Representations (2024),
 470 <https://openreview.net/forum?id=jKhNBu1NMh>
- 471 [26] Kuang, Y., Wang, J., Zhou, Y., Li, X., Zhu, F., HAO, J., Wu, F.: Towards general al-
 472 gorithm discovery for combinatorial optimization: Learning symbolic branching policy
 473 from bipartite graph. In: Forty-first International Conference on Machine Learning (2024),
 474 <https://openreview.net/forum?id=UL1eq1Dtaw>

- 475 [27] Labassi, A.G., Chételat, D., Lodi, A.: Learning to compare nodes in branch and bound with
 476 graph neural networks. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances
 477 in Neural Information Processing Systems (2022), <https://openreview.net/forum?id=0VhrZPJXcTU>
- 479 [28] Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems.
 480 Springer (2010)
- 481 [29] Lehigh University COR@L Lab: Mixed-integer programming benchmark instances (nd),
 482 <https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/>, accessed:
 483 2025-4-30
- 484 [30] Li, S., Kulkarni, J., Menache, I., Wu, C., Li, B.: Towards foundation models for mixed integer
 485 linear programming. In: The Thirteenth International Conference on Learning Representations
 486 (2025), <https://openreview.net/forum?id=6yENDA7J4G>
- 487 [31] Lin, J., Zhu, J., Wang, H., Zhang, T.: Learning to branch with tree-aware
 488 branching transformers. Knowledge-Based Systems **252**, 109455 (2022).
 489 <https://doi.org/https://doi.org/10.1016/j.knosys.2022.109455>, <https://www.sciencedirect.com/science/article/pii/S0950705122007298>
- 491 [32] Liu, H., Kuang, Y., Wang, J., Li, X., Zhang, Y., Wu, F.: Promoting generalization for ex-
 492 act solvers via adversarial instance augmentation (2023), <https://arxiv.org/abs/2310.14161>
- 494 [33] Liu, H., Wang, J., Geng, Z., Li, X., Zong, Y., Zhu, F., HAO, J., Wu, F.: Apollo-MILP:
 495 An alternating prediction-correction neural solving framework for mixed-integer linear pro-
 496 gramming. In: The Thirteenth International Conference on Learning Representations (2025),
 497 <https://openreview.net/forum?id=mFY0tPDWK8>
- 498 [34] van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Re-
 499 search **9**(86), 2579–2605 (2008), <http://jmlr.org/papers/v9/vandermaaten08a.html>
- 500 [35] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
 501 of words and phrases and their compositionality. In: Burges, C., Bottou, L., Welling, M.,
 502 Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Sys-
 503 tems. vol. 26. Curran Associates, Inc. (2013), https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
- 505 [36] Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B.,
 506 Sonnerat, N., Tjandraatmadja, C., Wang, P., Addanki, R., Hapuarachchi, T., Keck, T., Keeling,
 507 J., Kohli, P., Ktena, I., Li, Y., Vinyals, O., Zwols, Y.: Solving mixed integer programs using
 508 neural networks (2021), <https://arxiv.org/abs/2012.13349>
- 509 [37] Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming, vol. 149. Springer
 510 (2006)
- 511 [38] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
 512 Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from
 513 natural language supervision (2021), <https://arxiv.org/abs/2103.00020>
- 514 [39] Scavuzzo, L., Aardal, K., Lodi, A., Yorke-Smith, N.: Machine learning augmented branch and
 515 bound for mixed integer linear programming. Mathematical Programming pp. 1–44 (2024)
- 516 [40] Scavuzzo, L., Chen, F., Chetelat, D., Gasse, M., Lodi, A., Yorke-Smith, N., Aardal, K.:
 517 Learning to branch with tree mdps. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
 518 Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 18514–
 519 18526. Curran Associates, Inc. (2022), https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
- 521 [41] Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., Nair, V.: Learning a large neighborhood search
 522 algorithm for mixed integer programs (2022), <https://arxiv.org/abs/2107.10201>

- 523 [42] Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming: learning
 524 to cut. In: Proceedings of the 37th International Conference on Machine Learning. ICML'20,
 525 JMLR.org (2020)
- 526 [43] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
 527 Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach,
 528 H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing
 529 Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- 531 [44] Wang, X., Wang, S., Ding, Y., Li, Y., Wu, W., Rong, Y., Kong, W., Huang, J., Li, S., Yang,
 532 H., Wang, Z., Jiang, B., Li, C., Wang, Y., Tian, Y., Tang, J.: State space model for new-
 533 generation network alternative to transformers: A survey (2024), <https://arxiv.org/abs/2404.09516>
- 535 [45] Wang, Z., Li, X., Wang, J., Kuang, Y., Yuan, M., Zeng, J., Zhang, Y., Wu, F.: Learning
 536 cut selection for mixed-integer linear programming via hierarchical sequence model. In: The
 537 Eleventh International Conference on Learning Representations (2023), <https://openreview.net/forum?id=Zob4P9bRNcK>
- 539 [46] Wu, Y., Song, W., Cao, Z., Zhang, J.: Learning large neighborhood search policy for integer
 540 programming. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances
 541 in Neural Information Processing Systems (2021), <https://openreview.net/forum?id=IaM7U4J-w3c>
- 543 [47] Yuan, H., Ouyang, W., Zhang, C., Sun, Y., Gong, L., Yan, J.: BTBS-LNS: Binarized-
 544 tightening, branch and search on learning LNS policies for MIP. In: The Thirteenth Interna-
 545 tional Conference on Learning Representations (2025), <https://openreview.net/forum?id=siHHqDDzvS>
- 547 [48] Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.: Parameterizing branch-and-bound search trees to
 548 learn branching policies. Proceedings of the AAAI Conference on Artificial Intelligence **35**(5),
 549 3931–3939 (May 2021). <https://doi.org/10.1609/aaai.v35i5.16512>, <https://ojs.aaai.org/index.php/AAAI/article/view/16512>
- 551 [49] Zhang, S., Zeng, S., Li, S., Wu, F., Li, X.: Learning to select nodes in branch and bound
 552 with sufficient tree representation. In: The Thirteenth International Conference on Learning
 553 Representations (2025), <https://openreview.net/forum?id=gyvYKLEM8t>

554 **A Mamba Architecture**

555 Mamba is a novel network architecture based on State Space Model (SSM) that may potentially
 556 replace self-attention-based Transformer models [14, 8, 44]. SSM is a concept originating from
 557 control theory, with its earliest roots traceable to the classical Kalman filter [23]. The continuous-time
 558 formulation of SSM can be represented as follows:

$$\begin{aligned}\dot{\mathbf{z}}(t) &= \mathbf{M}(t)\mathbf{z}(t) + \mathbf{N}(t)\mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{P}(t)\mathbf{z}(t),\end{aligned}\tag{7}$$

559 where $\mathbf{z}(t) \in \mathbb{R}^z$, $\mathbf{y}(t) \in \mathbb{R}^q$, $\mathbf{u}(t) \in \mathbb{R}^u$. After zero-order hold discretization, the discrete-time
 560 formulation is obtained as follows:

$$\begin{aligned}\mathbf{z}_t &= \bar{\mathbf{M}}\mathbf{z}_{t-1} + \bar{\mathbf{N}}\mathbf{u}_t \\ \mathbf{y}_t &= \mathbf{P}\mathbf{z}_t,\end{aligned}\tag{8}$$

561 where $\bar{\mathbf{M}} = \exp(\Delta\mathbf{M})$, $\bar{\mathbf{N}} = (\Delta\mathbf{M})^{-1}(\exp(\Delta\mathbf{M}) - \mathbf{I}) \cdot \Delta\mathbf{N}$, Δ denotes the step size.

562 To meet the parallelization requirements of the training process, the SSM can alternatively be
 563 represented as follows:

$$\begin{aligned}\bar{\mathbf{K}} &= (\mathbf{P}\bar{\mathbf{N}}, \mathbf{P}\bar{\mathbf{M}}\bar{\mathbf{N}}, \dots, \mathbf{P}\bar{\mathbf{M}}^k\bar{\mathbf{N}}) \\ \mathbf{y} &= \bar{\mathbf{K}} * \mathbf{u}.\end{aligned}\tag{9}$$

564 Mamba builds upon SSM by introducing Selective SSM, which essentially treats \mathbf{N} , \mathbf{P} and Δ as
 565 functions of the input while keeping \mathbf{M} unchanged. From a control theory perspective, this transforms
 566 the system from time-invariant to time-varying. Furthermore, Mamba incorporates hardware-aware
 567 algorithm design that enables efficient storage of intermediate results through parallel scanning,
 568 kernel fusion, and recalculation.

569 **B Benchmark Details**

570 All training and test instances in MILP-S are listed in Table 6. The training instances in MILP-L
 571 are presented in Table 7. All easy test instances in MILP-L are shown in Table 8, while all difficult
 572 test instances are presented in Table 9. Here, an instance is considered easy if SCIP’s solving time
 573 is less than 20 minutes; otherwise, it is classified as difficult. These instances are sourced from
 574 MIPLIB [13] and CORAL [29], all collected from real-world application scenarios, with specific
 575 instance selections referenced to [48] and [31]. Serving as benchmarks, these instances effectively
 576 reflect the practical significance of neural branching policies in real-world applications.

577 **C Detailed reasons for Baseline Selection**

578 The neural branching policies and their selection rationale are detailed below: (1) GCNN [12]: This
 579 method is not designed for heterogeneous MILPs and performs poorly on unseen MILP instances
 580 outside the training distribution. The experimental results of GCNN highlight the advantage of
 581 instance-independent feature design in terms of generalization. (2) TreeGate [48]: The TreeGate
 582 network incorporates instance-independent inputs by design, making it suitable for heterogeneous
 583 MILPs. Additionally, since Mamba-Branching’s embedding layer adopts the TreeGate architecture,
 584 TreeGate serves as a critical control group for our method. (3) T-BranT [31]: Building upon Tree-
 585 Gate’s feature design, T-BranT employs attention to capture mutual connections among candidates.
 586 Meanwhile, T-BranT processes historical data from an unordered graph perspective. The comparison
 587 with T-BranT serves to evaluate whether Mamba-Branching’s sequential processing of historical
 588 data demonstrates superior performance over T-BranT’s unordered graph approach. (4) Transformer-
 589 Branching: When selecting a sequence model for our approach, the Transformer would naturally
 590 be the most immediate consideration. Thus, we include Transformer-Branching as a comparative
 591 baseline against Mamba-Branching, specifically to highlight the advantages of employing Mamba as
 592 the sequence model.

593 The heuristic rules are selected with the following rationale: (1) Random: Serves as the performance
 594 lower bound, demonstrating the detrimental effects of completely omitting a deliberate branching

595 policy. (2) Pscost: A purely historical data-driven branching method that, like Random, also
 596 establishes a performance lower bound. (3) Relpscost: The expert policy in the imitation learning of
 597 Mamba-Branching. Simultaneously, it is also the SOTA heuristic rule and the default rule in SCIP.
 598 Relpscost serves as the upper bound of decision accuracy for neural branching policies. However,
 599 benefiting from the fast inference speed of neural networks, neural branching policies may surpass
 600 relpscost in terms of efficiency.

601 **D Implementation Details**

602 All experiments in this paper are run on NVIDIA A100-PCIE-40GB GPU and Intel(R) Xeon(R) Gold
 603 5218 CPU. The hyperparameters in the training of Mamba-Branching are shown in Table 4.

604 During training, sequences consisting of every 100 branching steps are fed as input to Mamba.
 605 Although the number of candidate variables varies across batches, several hundred candidates
 606 represent a typical scenario. Consequently, the actual input sequence length may extend to tens of
 607 thousands of tokens – a scale that would easily trigger GPU memory overflow if using Transformer
 608 architectures. We therefore adopt Mamba as our sequence model, whose computational complexity
 609 scales linearly with sequence length, to effectively circumvent these hardware limitations.

610 During inference, the sequence fed into Mamba consists of: (1) states and predicted actions from the
 611 most recent 24 branching steps, and (2) the current state. Unlike the training phase, we deliberately
 612 reduce the number of branching steps to maintain sufficiently short inference latency, thereby reducing
 613 the total solving time. After systematic tuning, we ultimately select 25 branching steps ($T_{eva}=24$)
 614 to achieve an optimal balance between branching accuracy and inference speed.

Table 4: The hyperparameters of Mamba-Branching

Name	Description	Value
d	Output dimension of the candidate net in TreeGate, which is equivalent to the embedding size of Mamba.	8
h	Hidden state dimension of the Candidate Net in TreeGate.	64
depth	Layer number of Tree Net in TreeGate.	3
batch_size	Batch size of Mamba Training	32
lr_cl	Learning rate of contrastive learning.	0.0001
optimizer_cl	Optimizer of contrastive learning.	Adam
lr	Learning rate of imitation learning.	0.001
optimizer	Optimizer of imitation learning.	AdamW
wd	Weight decay coefficient of imitation learning.	0.01
T_train	Maximum branching steps considered during training.	99
T_eva	Maximum branching steps considered during evaluating.	24
d_state	SSM state expansion factor in Mamba	64
d_conv	Local convolution width in Mamba	4
expand	Block expansion factor in Mamba	2

615 **E Computational Complexity Comparison between Transformer and Mamba**

616 As is well-known, Mamba exhibits linear complexity with respect to sequence length, while Trans-
 617 former demonstrates quadratic complexity. In this section, we present experimental results that
 618 provide a detailed comparison of the complexity between Mamba and Transformer when employed
 619 as branching policies. Our complexity analysis focuses on two key aspects: space complexity and
 620 time complexity. For space complexity, we compare the GPU memory consumption of Mamba and
 621 Transformer during both training and inference phases. Regarding time complexity, we primarily ex-
 622 amine the inference latency of both models when functioning as branching policies. The experimental
 623 results are shown in Table 5.

624 As shown in the experiments, when processing 100 branching steps during training (even with a
 625 batch size of 1), Transformer-Branching fails to train altogether, while Mamba-Branching occupies
 626 minimal GPU memory. During inference, Mamba-Branching demonstrates significantly lower GPU

627 memory consumption and inference time. In contrast, Transformer-Branching not only requires
 628 substantially more GPU memory but, more critically, suffers from prohibitively long inference times.
 629 Since the fundamental purpose of adopting a neural branching policy is to accelerate MILP solving,
 630 such excessive inference time directly contradicts our original objective.

Table 5: A comparison of computational complexity between Mamba-Branching and Transformer-Branching. During training, we uniformly set $T_{\text{train}}=99$ with a batch size of 1. For inference, we consistently use $T_{\text{eva}}=24$. After collecting 25 Branching steps, we measure the network's inference time and GPU memory consumption, take the geometric mean across all test instances of MILP-S.

Method	GPU memory of Train (GB)	GPU memory of Inference (GB)	Inference Time (s)
Mamba-Branching	0.017	0.013	0.00093
Transformer-Branching	out of memory	1.051	0.075

Table 6: All instances in MILP-S.

Instance	Variables	Constraints	Set
air04	8904	823	train
air05	7195	426	train
dcmulti	548	473	train
eil33-2	4516	32	train
istanbul-no-cutoff	5282	20346	train
1152lav	1989	97	train
lseu	89	28	train
misc03	160	96	train
neos20	1165	2446	train
neos21	614	1085	train
neos-476283	11915	10015	train
neos648910	814	1491	train
pp08aCUTS	240	246	train
rmatr100-p10	7359	7260	train
rmatr100-p5	8784	8685	train
sp150x300d	600	450	train
stein27	27	118	train
swath1	6805	884	train
vpm2	378	234	train
map18	164547	328818	test
mine-166-5	830	8429	test
neos11	1220	2706	test
neos18	3312	11402	test
ns1830653	1629	2932	test
nu25-pr12	5868	2313	test
rail507	63019	509	test
seymour1	1372	4944	test

Table 7: Training instances in MILP-L

Instance	Variables	Constraints
30n20b8	18380	576
air04	8904	823
air05	7195	426
cod105	1024	1024
comp21-2idx	10863	14038
demulti	548	290
eil33-2	4516	32
istanbul-no-cutoff	5282	20346
l152lav	1989	97
lseu	89	28
misc03	160	96
neoS20	1165	2446
neoS21	614	1085
neos-476283	814	1491
neos648910	11915	10015
pp08aCUTS	240	246
rmatr100-p10	8784	8685
rmatr100-p5	7359	7260
rmatr200-p5	37816	37617
roi5alpha10n8	106150	4665
sp150 × 300d	600	450
stein27	27	118
supportcase7	138844	6532
swath1	6805	884
vpm2	378	234

Table 8: Easy test instances in MILP-L, SCIP's solving time is less than 20 minutes.

Instance	Variables	Constraints	SCIP Solving Time
aflow40b	2728	1442	375.32
app1-2	26871	53467	662.56
bc1	1751	1913	237.68
bell3a	133	123	1.54
bell5	104	91	0.63
biella1	7328	1203	271.30
binkar10_1	2298	1026	47.79
blend2	353	274	0.37
dano3_5	13873	3202	189.77
fast0507	63009	507	150.11
map10	164547	328818	515.00
map18	164547	328818	250.49
map20	164547	328818	218.78
mik-250-20-75-4	270	195	55.67
mine-166-5	830	8429	36.83
misc07	260	212	28.94
n2seq36q	22480	2565	497.79
neos11	1220	2706	171.35
neos12	3983	8317	674.23
neos-1200887	234	633	16.46
neos-1215259	1601	1236	110.12
neos13	1827	20852	96.20
neos18	3312	11402	27.63
neos-4722843-widden	77723	113555	864.13
neos-4738912-atrato	6216	1947	304.32
neos-480878	534	1321	52.92
neos-504674	844	1344	114.11
neos-504815	674	1067	34.61
neos-512201	838	1337	42.39
neos-584851	445	661	7.11
neos-603073	1696	992	269.58
neos-612125	9554	1795	43.31
neos-612162	9893	1859	40.85
neos-662469	18235	1085	566.6
neos-686190	3660	3664	61.03
neos-801834	3220	3300	51.71
neos-803219	640	901	32.99
neos-807639	1030	1541	20.52
neos-820879	9522	361	56.56
neos-829552	40971	5153	353.99
neos-839859	1975	3251	64.10
neos-892255	1800	2137	54.07
neos-950242	5760	34224	149.60
ns1208400	2883	4289	111.91
ns1830653	1629	2932	148.27
nu25-pr12	5868	2313	22.01
nw04	87482	36	42.85
p0201	201	133	0.81
pg	2700	125	45.39
pp08a	240	136	1.44
rai507	63019	509	160.55
roll3000	1166	2295	44.27
rout	556	291	39.51
satellites1-25	9013	5996	952.04
seymour1	1372	4944	61.91
sp98ir	1680	1531	92.98
unitcal_7	25755	48939	889.85

Table 9: Difficult test instances in MILP-L , SCIP's solving time is more than 20 minutes.

Instance	Variables	Constraints	SCIP Solving Time
atlanta-ip	48738	21732	3600.00
bab5	21600	4964	2665.41
harp2	2993	112	1642.38
map16715-04	164547	328818	2423.74
msc98-ip	21143	15850	3600.00
mspp16	29280	561657	2722.23
n3seq24	119856	6044	3600.00
pigeon-10	490	931	3600.01
bab2	147912	17245	3600.02
bab6	114240	29904	3600.01
neos-4338804-snowy	1344	1701	3600.08
neos-4387871-tavua	4004	4554	3600.00
neos-4647030-tutaki	12600	8382	3600.09
nursesched-medium-hint03	34248	14062	3600.00
opm2-z10-s4	6250	160633	3600.01
radiationm40-10-02	172013	173603	3600.00

631 **NeurIPS Paper Checklist**

632 **1. Claims**

633 Question: Do the main claims made in the abstract and introduction accurately reflect the
634 paper's contributions and scope?

635 Answer: **[Yes]**

636 Justification: The Methodology and Experiments sections align with the claims made in the
637 Abstract and Introduction.

638 Guidelines:

- 639 • The answer NA means that the abstract and introduction do not include the claims
640 made in the paper.
- 641 • The abstract and/or introduction should clearly state the claims made, including the
642 contributions made in the paper and important assumptions and limitations. A No or
643 NA answer to this question will not be perceived well by the reviewers.
- 644 • The claims made should match theoretical and experimental results, and reflect how
645 much the results can be expected to generalize to other settings.
- 646 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
647 are not attained by the paper.

648 **2. Limitations**

649 Question: Does the paper discuss the limitations of the work performed by the authors?

650 Answer: **[Yes]**

651 Justification: The limitation is discussed in the Conclusion and Future Work section.

652 Guidelines:

- 653 • The answer NA means that the paper has no limitation while the answer No means that
654 the paper has limitations, but those are not discussed in the paper.
- 655 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 656 • The paper should point out any strong assumptions and how robust the results are to
657 violations of these assumptions (e.g., independence assumptions, noiseless settings,
658 model well-specification, asymptotic approximations only holding locally). The authors
659 should reflect on how these assumptions might be violated in practice and what the
660 implications would be.
- 661 • The authors should reflect on the scope of the claims made, e.g., if the approach was
662 only tested on a few datasets or with a few runs. In general, empirical results often
663 depend on implicit assumptions, which should be articulated.
- 664 • The authors should reflect on the factors that influence the performance of the approach.
665 For example, a facial recognition algorithm may perform poorly when image resolution
666 is low or images are taken in low lighting. Or a speech-to-text system might not be
667 used reliably to provide closed captions for online lectures because it fails to handle
668 technical jargon.
- 669 • The authors should discuss the computational efficiency of the proposed algorithms
670 and how they scale with dataset size.
- 671 • If applicable, the authors should discuss possible limitations of their approach to
672 address problems of privacy and fairness.
- 673 • While the authors might fear that complete honesty about limitations might be used by
674 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
675 limitations that aren't acknowledged in the paper. The authors should use their best
676 judgment and recognize that individual actions in favor of transparency play an impor-
677 tant role in developing norms that preserve the integrity of the community. Reviewers
678 will be specifically instructed to not penalize honesty concerning limitations.

679 **3. Theory assumptions and proofs**

680 Question: For each theoretical result, does the paper provide the full set of assumptions and
681 a complete (and correct) proof?

682 Answer: **[NA]**

683 Justification: The paper does not include theoretical results

684 Guidelines:

- 685 • The answer NA means that the paper does not include theoretical results.
- 686 • All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- 688 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 689 • The proofs can either appear in the main paper or the supplemental material, but if 690 they appear in the supplemental material, the authors are encouraged to provide a short 691 proof sketch to provide intuition.
- 692 • Inversely, any informal proof provided in the core of the paper should be complemented 693 by formal proofs provided in appendix or supplemental material.
- 694 • Theorems and Lemmas that the proof relies upon should be properly referenced.

695 4. Experimental result reproducibility

696 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
697 perimental results of the paper to the extent that it affects the main claims and/or conclusions
698 of the paper (regardless of whether the code and data are provided or not)?

699 Answer: [Yes]

700 Justification: The implementation details are described in Appendix C.

701 Guidelines:

- 702 • The answer NA means that the paper does not include experiments.
- 703 • If the paper includes experiments, a No answer to this question will not be perceived 704 well by the reviewers: Making the paper reproducible is important, regardless of 705 whether the code and data are provided or not.
- 706 • If the contribution is a dataset and/or model, the authors should describe the steps taken 707 to make their results reproducible or verifiable.
- 708 • Depending on the contribution, reproducibility can be accomplished in various ways. 709 For example, if the contribution is a novel architecture, describing the architecture fully 710 might suffice, or if the contribution is a specific model and empirical evaluation, it may 711 be necessary to either make it possible for others to replicate the model with the same 712 dataset, or provide access to the model. In general, releasing code and data is often 713 one good way to accomplish this, but reproducibility can also be provided via detailed 714 instructions for how to replicate the results, access to a hosted model (e.g., in the case 715 of a large language model), releasing of a model checkpoint, or other means that are 716 appropriate to the research performed.
- 717 • While NeurIPS does not require releasing code, the conference does require all submis- 718 sions to provide some reasonable avenue for reproducibility, which may depend on the 719 nature of the contribution. For example
 - 720 (a) If the contribution is primarily a new algorithm, the paper should make it clear how 721 to reproduce that algorithm.
 - 722 (b) If the contribution is primarily a new model architecture, the paper should describe 723 the architecture clearly and fully.
 - 724 (c) If the contribution is a new model (e.g., a large language model), then there should 725 either be a way to access this model for reproducing the results or a way to reproduce 726 the model (e.g., with an open-source dataset or instructions for how to construct 727 the dataset).
 - 728 (d) We recognize that reproducibility may be tricky in some cases, in which case 729 authors are welcome to describe the particular way they provide for reproducibility. 730 In the case of closed-source models, it may be that access to the model is limited in 731 some way (e.g., to registered users), but it should be possible for other researchers 732 to have some path to reproducing or verifying the results.

733 5. Open access to data and code

734 Question: Does the paper provide open access to the data and code, with sufficient instruc-
735 tions to faithfully reproduce the main experimental results, as described in supplemental
736 material?

737 Answer: [Yes]

738 Justification: The anonymous link to the code can be found in Abstract, and code and data
739 have also been included in the Supplementary Material.

740 Guidelines:

- 741 • The answer NA means that paper does not include experiments requiring code.
- 742 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 743 • While we encourage the release of code and data, we understand that this might not be
744 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
745 including code, unless this is central to the contribution (e.g., for a new open-source
746 benchmark).
- 747 • The instructions should contain the exact command and environment needed to run to
748 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 749 • The authors should provide instructions on data access and preparation, including how
750 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 751 • The authors should provide scripts to reproduce all experimental results for the new
752 proposed method and baselines. If only a subset of experiments are reproducible, they
753 should state which ones are omitted from the script and why.
- 754 • At submission time, to preserve anonymity, the authors should release anonymized
755 versions (if applicable).
- 756 • Providing as much information as possible in supplemental material (appended to the
757 paper) is recommended, but including URLs to data and code is permitted.

760 6. **Experimental setting/details**

761 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
762 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
763 results?

764 Answer: [Yes]

765 Justification: All details can be found in the Experiments section, Appendix B, and Appendix
766 C.

767 Guidelines:

- 768 • The answer NA means that the paper does not include experiments.
- 769 • The experimental setting should be presented in the core of the paper to a level of detail
770 that is necessary to appreciate the results and make sense of them.
- 771 • The full details can be provided either with the code, in appendix, or as supplemental
772 material.

773 7. **Experiment statistical significance**

774 Question: Does the paper report error bars suitably and correctly defined or other appropriate
775 information about the statistical significance of the experiments?

776 Answer: [Yes]

777 Justification: Multiple sets of random seeds are considered in the Experiments section.

778 Guidelines:

- 779 • The answer NA means that the paper does not include experiments.
- 780 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
781 dence intervals, or statistical significance tests, at least for the experiments that support
782 the main claims of the paper.
- 783 • The factors of variability that the error bars are capturing should be clearly stated (for
784 example, train/test split, initialization, random drawing of some parameter, or overall
785 run with given experimental conditions).
- 786 • The method for calculating the error bars should be explained (closed form formula,
787 call to a library function, bootstrap, etc.)
- 788 • The assumptions made should be given (e.g., Normally distributed errors).

- 789 • It should be clear whether the error bar is the standard deviation or the standard error
 790 of the mean.
 791 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 792 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 793 of Normality of errors is not verified.
 794 • For asymmetric distributions, the authors should be careful not to show in tables or
 795 figures symmetric error bars that would yield results that are out of range (e.g. negative
 796 error rates).
 797 • If error bars are reported in tables or plots, The authors should explain in the text how
 798 they were calculated and reference the corresponding figures or tables in the text.

799 **8. Experiments compute resources**

800 Question: For each experiment, does the paper provide sufficient information on the com-
 801 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 802 the experiments?

803 Answer: [\[Yes\]](#) ,

804 Justification: The details are provided in Appendix C.

805 Guidelines:

- 806 • The answer NA means that the paper does not include experiments.
 807 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 808 or cloud provider, including relevant memory and storage.
 809 • The paper should provide the amount of compute required for each of the individual
 810 experimental runs as well as estimate the total compute.
 811 • The paper should disclose whether the full research project required more compute
 812 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 813 didn't make it into the paper).

814 **9. Code of ethics**

815 Question: Does the research conducted in the paper conform, in every respect, with the
 816 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

817 Answer: [\[Yes\]](#)

818 Justification: Our research fully complies with the NeurIPS Code of Ethics.

819 Guidelines:

- 820 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 821 • If the authors answer No, they should explain the special circumstances that require a
 822 deviation from the Code of Ethics.
 823 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 824 eration due to laws or regulations in their jurisdiction).

825 **10. Broader impacts**

826 Question: Does the paper discuss both potential positive societal impacts and negative
 827 societal impacts of the work performed?

828 Answer: [\[NA\]](#)

829 Justification: There is no societal impact of the work performed. Our paper focuses on
 830 accelerating MILP solving using neural networks, with a greater emphasis on the algorithmic
 831 level, and does not entail significant societal impact.

832 Guidelines:

- 833 • The answer NA means that there is no societal impact of the work performed.
 834 • If the authors answer NA or No, they should explain why their work has no societal
 835 impact or why the paper does not address societal impact.
 836 • Examples of negative societal impacts include potential malicious or unintended uses
 837 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
 838 (e.g., deployment of technologies that could make decisions that unfairly impact specific
 839 groups), privacy considerations, and security considerations.

- 840 • The conference expects that many papers will be foundational research and not tied
841 to particular applications, let alone deployments. However, if there is a direct path to
842 any negative applications, the authors should point it out. For example, it is legitimate
843 to point out that an improvement in the quality of generative models could be used to
844 generate deepfakes for disinformation. On the other hand, it is not needed to point out
845 that a generic algorithm for optimizing neural networks could enable people to train
846 models that generate Deepfakes faster.
- 847 • The authors should consider possible harms that could arise when the technology is
848 being used as intended and functioning correctly, harms that could arise when the
849 technology is being used as intended but gives incorrect results, and harms following
850 from (intentional or unintentional) misuse of the technology.
- 851 • If there are negative societal impacts, the authors could also discuss possible mitigation
852 strategies (e.g., gated release of models, providing defenses in addition to attacks,
853 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
854 feedback over time, improving the efficiency and accessibility of ML).

855 11. Safeguards

856 Question: Does the paper describe safeguards that have been put in place for responsible
857 release of data or models that have a high risk for misuse (e.g., pretrained language models,
858 image generators, or scraped datasets)?

859 Answer: [NA]

860 Justification: The paper poses no such risks

861 Guidelines:

- 862 • The answer NA means that the paper poses no such risks.
- 863 • Released models that have a high risk for misuse or dual-use should be released with
864 necessary safeguards to allow for controlled use of the model, for example by requiring
865 that users adhere to usage guidelines or restrictions to access the model or implementing
866 safety filters.
- 867 • Datasets that have been scraped from the Internet could pose safety risks. The authors
868 should describe how they avoided releasing unsafe images.
- 869 • We recognize that providing effective safeguards is challenging, and many papers do
870 not require this, but we encourage authors to take this into account and make a best
871 faith effort.

872 12. Licenses for existing assets

873 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
874 the paper, properly credited and are the license and terms of use explicitly mentioned and
875 properly respected?

876 Answer: [Yes]

877 Justification: We cite the original paper that produced the code and data.

878 Guidelines:

- 879 • The answer NA means that the paper does not use existing assets.
- 880 • The authors should cite the original paper that produced the code package or dataset.
- 881 • The authors should state which version of the asset is used and, if possible, include a
882 URL.
- 883 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 884 • For scraped data from a particular source (e.g., website), the copyright and terms of
885 service of that source should be provided.
- 886 • If assets are released, the license, copyright information, and terms of use in the
887 package should be provided. For popular datasets, paperswithcode.com/datasets
888 has curated licenses for some datasets. Their licensing guide can help determine the
889 license of a dataset.
- 890 • For existing datasets that are re-packaged, both the original license and the license of
891 the derived asset (if it has changed) should be provided.

- 892 • If this information is not available online, the authors are encouraged to reach out to
893 the asset's creators.

894 **13. New assets**

895 Question: Are new assets introduced in the paper well documented and is the documentation
896 provided alongside the assets?

897 Answer: **[No]**

898 Justification: Due to time constraints, the code in this paper lacks comprehensive documentation.
899 However, our code is annotated.

900 Guidelines:

- 901 • The answer NA means that the paper does not release new assets.
902 • Researchers should communicate the details of the dataset/code/model as part of their
903 submissions via structured templates. This includes details about training, license,
904 limitations, etc.
905 • The paper should discuss whether and how consent was obtained from people whose
906 asset is used.
907 • At submission time, remember to anonymize your assets (if applicable). You can either
908 create an anonymized URL or include an anonymized zip file.

909 **14. Crowdsourcing and research with human subjects**

910 Question: For crowdsourcing experiments and research with human subjects, does the paper
911 include the full text of instructions given to participants and screenshots, if applicable, as
912 well as details about compensation (if any)?

913 Answer: **[NA]**

914 Justification: The paper does not involve crowdsourcing nor research with human subjects.

915 Guidelines:

- 916 • The answer NA means that the paper does not involve crowdsourcing nor research with
917 human subjects.
918 • Including this information in the supplemental material is fine, but if the main contribu-
919 tion of the paper involves human subjects, then as much detail as possible should be
920 included in the main paper.
921 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
922 or other labor should be paid at least the minimum wage in the country of the data
923 collector.

924 **15. Institutional review board (IRB) approvals or equivalent for research with human
925 subjects**

926 Question: Does the paper describe potential risks incurred by study participants, whether
927 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
928 approvals (or an equivalent approval/review based on the requirements of your country or
929 institution) were obtained?

930 Answer: **[NA]**

931 Justification: The paper does not involve crowdsourcing nor research with human subjects.

932 Guidelines:

- 933 • The answer NA means that the paper does not involve crowdsourcing nor research with
934 human subjects.
935 • Depending on the country in which research is conducted, IRB approval (or equivalent)
936 may be required for any human subjects research. If you obtained IRB approval, you
937 should clearly state this in the paper.
938 • We recognize that the procedures for this may vary significantly between institutions
939 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
940 guidelines for their institution.
941 • For initial submissions, do not include any information that would break anonymity (if
942 applicable), such as the institution conducting the review.

943 **16. Declaration of LLM usage**

944 Question: Does the paper describe the usage of LLMs if it is an important, original, or
945 non-standard component of the core methods in this research? Note that if the LLM is used
946 only for writing, editing, or formatting purposes and does not impact the core methodology,
947 scientific rigorousness, or originality of the research, declaration is not required.

948 Answer: [NA]

949 Justification: The core method development in this research does not involve LLMs as any
950 important, original, or non-standard components.

951 Guidelines:

- 952 • The answer NA means that the core method development in this research does not
953 involve LLMs as any important, original, or non-standard components.
- 954 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
955 for what should or should not be described.