
Towards Better Branching Policies: Leveraging the
Sequential Nature of Branch-and-Bound Tree

Anonymous Author(s)
Affiliation
Address
email

Abstract

The branch-and-bound (B&B) method is a dominant exact algorithm for solv-1

ing Mixed-Integer Linear Programming problems (MILPs). While recent deep2

learning approaches have shown promise in learning branching policies using3

instance-independent features, they often struggle to capture the sequential decision-4

making nature of B&B, particularly over long horizons with complex inter-5

step dependencies and intra-step variable interactions. To address these chal-6

lenges, we propose Mamba-Branching, a novel learning-based branching pol-7

icy that leverages the Mamba architecture for efficient long-sequence modeling,8

enabling effective capture of temporal dynamics across B&B steps. Addition-9

ally, we introduce a contrastive learning strategy to pre-train discriminative em-10

beddings for candidate branching variables, significantly enhancing Mamba’s11

performance. Experimental results demonstrate that Mamba-Branching outper-12

forms all previous neural branching policies on real-world MILP instances and13

achieves superior computational efficiency compared to the advanced open-source14

solver SCIP. The source code can be accessed via an anonymized repository at15

https://anonymous.4open.science/r/Mamba-Branching-B4B4/.16

1 Introduction17

Mixed Integer Linear Programming problems (MILPs) constitute a class of computationally challeng-18

ing NP-hard problems with widespread applications across diverse domains, including scheduling [7],19

planning [37], and transportation [3]. The branch-and-bound (B&B) method [28] represents the20

predominant solution methodology for MILPs in practice. This approach begins with the relaxation21

of the original problem and iteratively branches on variables that violate integer constraints. By22

maintaining global upper and lower bounds, the method progressively converges toward an optimal23

solution. Many high-performance MILP solvers such as SCIP [6] and Gurobi [17] employ the B&B24

framework as their core solution architecture.25

Within the B&B framework, the selection of branching variables plays a critical role in determining26

computational efficiency. To this end, learning-based branching methods have been proposed [12, 15,27

16, 40]: by constructing a bipartite graph that incorporates instance features and intra-tree dynamic28

features, and utilizing graph convolutional networks (GCNN) [12] for state encoding. Nevertheless,29

reliance on instance-specific features restricts their generalization to heterogeneous MILP instances.30

To enable cross-instance adaptability, recent approaches have focused on parameterizing the B&B31

tree to construct a shared feature space independent of specific problem data. For example, Zarpellon32

et al. [48] develop a parameterized B&B tree framework to create a shared feature space, decoupling33

branching decisions from instance-specific features. Further advancing this approach, T-BranT [31]34

evaluates the mutual connections between candidate variables by the self-attention mechanism and35

employs Graph Attention Networks to encode the empirical branching history in the search tree.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/Mamba-Branching-B4B4/

However, existing works universally overlook the sequential nature inherent in B&B tree expansion. In37

this paper, our key insight lies in that the “branching path” from the root node to the optimal solution38

node essentially constitutes a serialization process. This “branching path”, which encompasses39

the parameterized tree states and corresponding branching variables from each preceding step,40

significantly influences the current branching decision. While T-BranT incorporates historical data,41

it models the tree from an unordered graph perspective, failing to explicitly capture this essential42

sequential nature. Effectively modeling this sequential nature presents two key challenges: (1) Design43

of long sequence modeling architectures. The sequence model must simultaneously capture inter-step44

dependencies and intra-step candidate variable relationships. Given that each state comprises multiple45

candidate variables, the length of the sequence input will increase exponentially with the number of46

branching steps. Therefore, it is essential to develop specialized architectures that can accommodate47

ultra-long sequences. (2) Construction of discriminative feature embeddings. An embedding layer48

needs to be designed to map the features of candidate variables into a high-dimensional vector space49

with high discriminative power. This will enable the sequence model to effectively discern the50

dynamic evolution patterns of different variables.51

To address these challenges, we propose Mamba-Branching. Mamba [14, 8] is a novel network52

architecture characterized by its computational complexity that scales linearly with sequence length.53

This represents a significant improvement over the quadratic complexity associated with Transform-54

ers [43], making Mamba particularly well-suited for addressing challenge (1). Meanwhile, inspired55

by CLIP [38], we employ contrastive learning to train the embedding layer prior to the overall56

imitation learning process, effectively tackling challenge (2). Experimental results demonstrate that57

Mamba-Branching outperforms all neural branching baselines across all real-world instances and58

achieves superior solving efficiency over the advanced open-source solver SCIP’s default branching59

rule on challenging instances.60

2 Related Work61

Learning-based approaches for accelerating MILP solving can be mainly divided into two62

paradigms [5, 39]: replacing heuristic rules with neural networks within exact solution frame-63

works and employing neural networks as primal heuristics. Research under the first paradigm64

includes addressing branch variable selection [12, 15, 16, 40, 25, 26] and node selection [19, 27, 49]65

problems within the B&B framework, as well as tackling cut selection issues in cutting-plane al-66

gorithms [42, 22, 45]. These methods solely employ neural networks to replace heuristic rules67

within exact solution frameworks, without compromising solution exactness. The second paradigm68

aims to efficiently produce high-quality feasible solutions—rather than exact solutions—to tighten69

the primal bound early in the process. A high-quality primal bound enables the B&B to eliminate70

a significant number of non-promising nodes at an early stage through its pruning process. This71

typically involves two key aspects: solution prediction [9, 36, 24, 18, 21, 33] and neighborhood72

selection [46, 41, 20, 47]. The solution prediction approach typically employs neural networks to73

predict optimal solutions, then uses these predictions to guide the search process. Neighborhood74

selection starts from a feasible solution and fixes a subset of integer variables while optimizing the75

remainder, with neural networks selecting which variables to fix.76

Our work focuses on the generalization of neural branching variable selection policies, particularly77

their ability to handle heterogeneous MILPs different from training instances. These approaches78

can be mainly divided into two categories: parameterizing the B&B tree and diversifying training79

instances. The first category aims to learn branching policies within a shared feature space across80

different MILP instances. TreeGate [48] processes instance-independent features through a special-81

ized neural architecture designed for branching decisions. Building on this, T-BranT [31] retains82

historical data, modeling it as a graph structure processed by Graph Attention Networks for current83

decision-making. The second category focuses on generating diverse instances and incorporating84

them into the training of branching policies to enhance their generalization. AdaSolver [32] intro-85

duces adversarial instance augmentation, which generates more diverse instances in directions that86

hinder policy training. Meanwhile, MILP-Evolve [30] proposes a novel LLM-based evolutionary87

framework capable of generating a large set of diverse MILP classes with an unlimited number of88

instances. Specifically, our method falls into the first category. Using instance-independent features89

as input, we also incorporate the sequential nature of the B&B tree into the decision-making process.90

2

3 Preliminaries91

3.1 B&B Algorithm and Branching Rules92

B&B Algorithm. The standard form of MILPs is: argminx
{
c⊤x | Ax ≤ b,x ∈ Zp × Rn−p

}
,93

where the vector x represents n variables to be optimized, with p being the number of integer variables.94

A,b, c represent constraint matrix, constraint right term, and objective coefficient. For MILPs, an95

exact solution framework commonly used is B&B. This method first ignores the integer constraints96

to obtain and solve the relaxed problem at the root node. Subsequently, it iteratively searches for the97

global optimal solution through branching, bounding, and pruning. Branching involves selecting a98

variable with a fractional solution xj = bj at the current node and adding the constraints xj ≤ [bj]99

and xj ≥ [bj] + 1 to form two child nodes. During bounding, the global upper and lower bounds100

(also known as the primal and dual bounds) are determined based on all existing nodes. The pruning101

process eliminates obviously infeasible nodes according to these bounds. This procedure repeats102

until the upper and lower bounds converge, yielding the global optimal solution.103

Branching Rules. Here, the branching variable selection during B&B significantly impacts solving104

efficiency by influencing tree size. In [2], several heuristic branching rules are introduced. Among105

them, strong branching evaluates candidate variables by creating child nodes for each candidate and106

selecting the one maximizing dual bound improvement. While highly effective, this approach incurs107

significant computational overhead that counteracts its benefits for solution speed. Pscost branching108

guides current branching by leveraging historical branching records, avoiding extra computation but109

performing poorly early in the search tree due to insufficient branching records. Hybrid approaches110

combine both methods’ advantages by using strong branching initially to establish reliable branching111

patterns, then transitioning to pscost branching once sufficient historical data is accumulated. The112

state-of-the-art (SOTA) relpscost branching [1], SCIP’s default rule, implements this strategy—a113

variable’s pscost is only considered trustworthy after undergoing sufficient strong branching steps.114

3.2 Parameterized B&B Tree115

To parameterize the B&B tree and obtain instance-independent features for heterogeneous MILP116

problems, Zarpellon et al. [48] design a state representation st = (Ct, T reet). Here, Ct ∈ R|Ct|×25117

denotes candidate variable features, and Treet ∈ R61 represents tree features, where Ct denotes118

candidate variable set and |Ct| represents candidate variable number. Since all features reflect the119

dynamic process of B&B trees, all MILP instances can be processed uniformly in the same feature120

space by a neural network named TreeGate, which jointly processes candidate and tree features121

through two components: a candidate network and a tree network. The candidate network first122

embeds each variable’s 25-dimensional features into an h-dimensional space, then progressively123

reduces the dimensionality from h to d through multiple layers that halve the dimension at each step.124

Meanwhile, the tree network projects the tree features Treet into an H-dimensional space (where125

H = h + h/2 + . . . + d) using a sigmoid activation to produce a gating vector g ∈ [0, 1]H . This126

gating vector modulates the candidate network’s layer outputs through element-wise multiplication.127

The final output et ∈ R|Ct|×d undergoes average pooling across the d-dimensional features, then128

being processed by a softmax layer to generate the candidate variable selection probabilities.129

4 Methodology130

In this section, we formally introduce Mamba-Branching, a neural branching policy specifically131

designed to capture the sequential structure of B&B trees. We begin by discussing the contrastive132

learning approach utilized for the embedding layer and the detailed design of the sequence inputs,133

followed by the detailed implementation of imitation learning. The overall framework of Mamba-134

Branching is illustrated in Figure 1.135

4.1 Contrastive Learning for Embedding Layer136

The embedding layer serves as a critical interface between raw state representations and downstream137

sequence models. In natural language processing (NLP), the success of embedding techniques138

has been well-established. These methods leverage the inherent distinguishability of discrete word139

tokens, where each word’s unique identity naturally translates to separable embedding vectors through140

3

…

Sequence Model (Mamba)

Step 1. Contrastive Learning

Embedding

Layer

𝑠𝑡 = (𝐶𝑡, 𝑇𝑟𝑒𝑒𝑡)

𝑒𝑡 ∈ ℝ 𝒞𝑡 ×𝑑

𝑒𝑡
𝑚

Max Pooling

𝑎𝑡

Not SimilarSimilar

Step 2. Imitation Learning

Other

Embeddings

(𝑠0, 𝑎0, … , 𝑠𝑡 , 𝑎𝑡, … , 𝑠𝑇)

Embedding Layer

𝑒0
1, … , 𝑒0

𝒞0 , 𝑒0
𝑎0 𝑒𝑡

1, … , 𝑒𝑡
𝒞𝑡 , 𝑒𝑡

𝑎𝑡 𝑒𝑇
1 , … , 𝑒𝑇

𝒞𝑇… …

B&B Tree

Pos Ids

0,… , 0,0
Pos Ids

𝑡, … , 𝑡, 𝑡
…

Pos Ids

𝑇, … , 𝑇
…

+ + ++ +

𝑜𝑇 ∈ ℝ 𝒞𝑇 ×𝑑Avg Pooling

+ Softmaxℒ
Cross

Entropy
𝑎𝑇

… …… ……

… …… …

ℒ𝑐

Expert

Embedding

Embeddings
Data Flow

Gradient Flow

𝑒𝑡
𝑎𝑡 {𝑒𝑡

𝑖|𝑖 ≠ 𝑎𝑡, 𝑖 ∈ 𝒞𝑡}

and

Figure 1: Overall framework of Mamba-Branching. The training process involves two stages:
contrastive learning and autoregressive imitation learning. During the contrastive learning process,
the state st and expert decision at at each branching step t are used to train the embedding layer
via the designed contrastive loss function Lc. During imitation learning, the branching trajectory
(s0, a0, ..., sT) is mapped to embeddings. At step t, expanded variable embeddings (e1t , ..., e

|Ct|
t)

and expert embedding eat
t form a group with shared positional encoding. These groups create a

“branching path” input to the sequence model, where only outputs ot corresponding to the variable
embeddings are selected, with at serving as the label for imitation learning.

standard training paradigms. [4, 35] However, the branching variable selection problem in B&B141

presents a fundamentally different challenge. The state representation at each branching step t,142

denoted as st = (Ct, T reet) (see subsection 3.2), contains a set of candidate variables Ct that143

frequently exhibit remarkably similar feature characteristics. This high degree of intra-step similarity144

arises from the shared constraints and problem structure inherent in combinatorial optimization145

problems. Unlike the clear distinctions between words in NLP tasks, the subtle but decision-critical146

differences between candidate variables in B&B require a more sophisticated approach to embedding147

learning.148

To address this challenge, we develop a principled framework for learning discriminative embeddings149

in B&B decision making. The core of our approach lies in recognizing that effective branching150

decisions require the embedding space to maintain consistent separation between selected and non-151

selected variables. We formalize this requirement through Proposition 1. This condition specifies that152

the similarity between the selected variable’s embedding and a reference vector must exceed all other153

candidate similarities by a positive margin δ.154

Proposition 1. For effective branching decisions, the embedding space must satisfy:155

∀t,∃δ > 0 s.t. sim(eat , e
m
t) ≥ max

i̸=a
sim(eit, e

m
t) + δ, (1)

where sim(·) is a similarity judgment function, et denotes embeddings, emt is an anchor, a denotes156

the selected variable index.157

To this end, before joint training, we first employ contrastive learning to train the embedding layer,158

enhancing its ability to differentiate between distinct candidate variable features. The loss function of159

contrastive learning is defined as Lc, with the specific form as follows:160

Lc(γ) =
1

T

∑
t

(− emt · eat
∥emt ∥∥eat ∥

+
1

|Ct| − 1

∑
i ̸=a

emt · eit
∥emt ∥∥eit∥

), (2)

where γ denotes the parameters of TreeGate, T denotes the total number of branching steps, et =161

TreeGateγ(st), emt ∈ Rd is the result of applying max-pooling to et along the |Ct| dimension,162

eat ∈ Rd.163

The intuition behind this loss function design is to make the selected branching variable the most164

prominent and distinctive among all candidate variables. The max-pooling operation extracts a salient165

global feature as an anchor. By increasing the cosine similarity between the anchor and the selected166

4

branching variable while decreasing the cosine similarity between the anchor and other candidate167

variables, the loss amplifies their differences and drives the feature of the selected branching variable168

toward the globally most salient direction.169

4.2 Sequential Modeling Design170

In B&B tree, nodes are progressively expanded until the upper and lower bounds converge. This171

process can be viewed as navigating through a complex maze to find a “branching path” from the172

root node to the optimal solution node. Traditional neural approaches to branching decisions have173

predominantly relied on the immediate state of the tree, neglecting the historical sequence of visited174

nodes and prior branching choices. This myopic perspective is fundamentally limiting, as it fails to175

leverage the rich sequential information inherent in the branching process. Just as an effective maze-176

solving strategy requires reasoning about the entire traversed path to avoid dead ends and redundant177

exploration, optimal branching decisions demand a holistic understanding of the search trajectory.178

This underscores the imperative for a paradigm shift toward path-aware sequential modeling.179

To effectively model branching decisions, the sequence model must capture not only the sequential180

progression of states but also the intricate interrelationships among candidate variables within each181

state. Therefore, we explicitly encode the features of each candidate variable at all branching steps.182

We formally define the branching path S as a structured sequence of embeddings, where each state183

at step t is decomposed into its constituent candidate variables along with the selected branching184

decision. Specifically, S is represented as:185

S = [e10, . . . , e
|C0|
0 , ea0

0︸ ︷︷ ︸
|C0|+1

, . . . , e1t , . . . , e
|Ct|
t , eat

t︸ ︷︷ ︸
|Ct|+1

, . . . , e1T , . . . , e
|CT |
T︸ ︷︷ ︸

|CT |

], (3)

where |Ct| denotes the number of candidate variables at branching step t, at represents the index of186

the selected branching variable, et denotes the embedding feature, and T is the maximum number of187

branching steps in the branching path. This formulation ensures that both the sequential dynamics188

and the variable-level interactions are preserved, enabling the model to leverage granular features for189

improved decision-making.190

To ensure temporal coherence across branching steps, we employ positional encodings that assign191

identical positional indices to embeddings within the same step. The complete input representation S′192

is constructed by combining the branching path S with a learnable positional encoding matrix Epos:193

pos = [0, . . . , 0, 0︸ ︷︷ ︸
|C0|+1

, . . . , T, . . . , T︸ ︷︷ ︸
|CT |

],

S′ = Epos ⊕ S,

(4)

where ⊕ denotes element-wise addition, Epos ∈ R(
∑T

t=0 |Ct|+T)×d represents the learnable positional194

encoding matrix obtained by mapping pos.195

Subsequently, S′ is fed into Mamba to obtain the output Ot:196

Ot = Mamba(S′)

= [o10, . . . , o
|C0|
0 , oa0

0 , · · · , o1t , . . . , o
|Ct|
t , oat

t , · · · , o1T , . . . , o
|CT |
T],

(5)

within each group, only the outputs corresponding to |Ct| variable positions are extracted, denoted as197

ot = (o1t , . . . , o
|Ct|
t), which are then processed through average pooling and softmax to obtain the198

variable probability distribution.199

It can be observed that for the branching path S, the sequence model actually needs to process an input200

length of
∑T

t=0 |Ct|+T . When either T or |Ct| becomes large, the length of S increases substantially,201

presenting significant challenges to the sequence model’s ability to handle long sequences. Therefore,202

in addition to employing the most commonly-used Transformer Decoder as our sequence model, we203

also utilize Mamba [14] (see Appendix A for architectural details). In contrast to the Transformer’s204

quadratic complexity, Mamba achieves linear complexity relative to sequence length, making it205

unequivocally better suited for such long-sequence application scenarios. This is particularly critical206

in our application, where computational speed is paramount. If the neural branching policy’s inference207

complexity becomes excessively high and computationally prohibitive, it would fundamentally208

undermine our original objective of acceleration.209

5

4.3 Imitation Learning under Autoregressive Paradigm210

Following prior works [48, 31], we employ relpscost branching as the expert to collect demon-211

stration datasets for imitation learning. In contrast to the commonly employed strong branching212

expert [12, 15], which are rarely applied in practical scenarios, relpscost provides a more realistic213

expert representation. For dataset collection, each instance is solved using SCIP. We sequentially214

record every state in the instance’s tree along with the corresponding relpscost-selected branching de-215

cisions, resulting in a complete trajectory denoted as (s0, a0, s1, a1, . . .). In dataset D, each instance’s216

trajectory is partitioned into fixed-length sub-trajectories for storage.217

In Mamba-Branching, the branching policy is defined as πθ, which operates in an autoregressive218

paradigm. The joint loss function L(θ, γ) of embedding layer and sequence model is as follows:219

L(θ, γ) = − 1

|D|
∑
τ∈D

∑
(st,at)∈τ

log πθ(at|τ0:t), (6)

where τ denotes a trajectory in D, τ0:t = (s0, a0, . . . , at−1, st), and |D| represents the total number220

of trajectories in D. During inference, the predictions from previous branching steps serve as input221

for the current step, yielding the probability distribution πθ(·|τ̂0:t) over candidate variables, where222

τ̂0:t = (s0, â0, . . . , ât−1, st).223

5 Experiments224

5.1 Setup225

5.1.1 Benchmarks226

MILP dataset. Our method is designed to maintain generalization capability across heterogeneous227

MILPs. Therefore, the training and test instances are deliberately constructed to be distinct, with228

the strict requirement that the test set should not contain any instances present in the training set.229

Following the selection of instances from previous works [48, 31], we construct two MILP datasets230

of different scales using instances from MIPLIB [13] and CORAL [29]: a smaller-scale dataset231

(MILP-S) and a larger-scale dataset (MILP-L). The MILP-S is entirely derived from [48], comprising232

19 training instances and 8 test instances. MILP-L is constructed by expanding the dataset used233

in [31], containing 25 training instances and 73 test instances. For MILP-L’s test instances, we234

employ SCIP as the reference solver, categorizing 57 instances with solution times under 20 minutes235

as "easy" and 16 instances exceeding 20 minutes as "difficult". The details of MILP-S and MILP-L236

are provided in Appendix B.237

Branching Dataset Collection. During data collection, consistent with previous works [48, 31], we238

employ random branching for the first r steps to enhance B&B exploration. After these r random239

steps, we switch to relpscost branching and collect the corresponding data. For each training instance,240

we configure r ∈ {0, 1, 5, 10, 15} and collect training set using solver seeds {0, 1, 2, 3}, while241

reserving seed 4 exclusively for validation set.242

5.1.2 Metrics243

Nodes and Fair Nodes. The number of nodes in the B&B tree serves as a crucial metric for evaluating244

branching policies, as it directly impacts overall solving time. However, as noted in [10], this metric245

may be confounded by side effects of some sophisticated branching rules, such as strong branching.246

We therefore additionally employ the fair node number [10], which eliminates the confounding effects247

of these rules, thereby providing a more accurate reflection of the true capability of a branching248

policy. For branching policies that do not use strong branching, the number of nodes and fair nodes249

remains identical.250

Primal-Dual Integral. For some challenging instances in MILP-L, obtaining optimal solutions may251

be computationally prohibitive, so a one-hour time limit is imposed. Under this constraint, node252

number becomes an inadequate metric for evaluating the performance of branching policies. In such253

cases, the primal-dual integral (PD integral) serves as a more appropriate evaluation criterion [11].254

With a time limit Tl, the PD integral is expressed as
∫ Tl

t=0
c⊤x⋆

t − y⋆
t dt, where y⋆

t is the best dual255

bound at time t, x⋆
t is the best feasible solution at time t.256

6

5.1.3 Baselines257

We select two categories of branching policies as baselines: neural-based approaches and heuristic258

rules. The neural branching policies include: GCNN [12], TreeGate [48], T-BranT [31], and259

Transformer-Branching. GCNN is the most classical method and does not incorporate specific260

designs for heterogeneous MILPs. TreeGate and T-BranT are also based on instance-independent261

inputs, serving as the primary baselines for comparison with Mamba-Branching. Transformer-262

Branching employs Transformer as the sequence model to highlight Mamba’s advantages. The263

heuristic rules include random, pscost, and relpscost, where random and pscost represent the lower264

bounds of performance, relpscost serves as the expert and constitutes the upper bound of branching265

performance. However, neural branching policies may surpass relpscost in solving efficiency. More266

detailed reasons for the selection of baselines can be found in Appendix C.267

5.1.4 Solver and Neural Policy Settings268

Solver Settings. In our evaluation, we replace SCIP solver’s (v8.0.4) branching policy with our269

neural branching policy. To isolate the study of branching policies and eliminate interference from270

other solver components, we disable all primal heuristics and provide each test instance with a known271

optimal solution value as a cutoff. However, during branching data collection, we intentionally omit272

the cutoff to obtain longer branching sequences.273

Neural Policy Settings. During Mamba-Branching training, the maximum branching step is T = 99,274

but as shown in subsection 4.2, its corresponding actual input length is considerably long. When275

using the Transformer as the sequence model, this length causes excessive GPU memory consumption276

that exceeds hardware limitations, thus T = 9 is adopted during Transformer-Branching training.277

For evaluation consistency, we employ autoregressive generation with T = 24 across all models.278

Additional implementation details and hyperparameters can be found in Appendix D.279

Table 1: The experimental results on MILP-S. For the 8 test instances in MILP-S, each instance is
evaluated with five random seeds {0,1,2,3,4} under a 1-hour time limit, and the results are presented
as geometric means. Among them, blue background indicates the best results, bold font indicates
the best results in neural policies, and ⋆ denotes reaching the time limit.

Method Mamba
-Branching TreeGate Transformer

-Branching T-BranT GCNN random pscost relpscost

Nodes 2054.99 2171.31 3078.56 2668.62 33713.63⋆ 61828.29⋆ 4674.34 730.21
Fair Nodes 2077.55 2205.06 3120.04 2715.16 33713.63⋆ 61828.29⋆ 4674.34 1227.25

5.2 Branching Performance280

5.2.1 MILP-S281

The experimental results in MILP-S can be found in Table 1, with the fair node results of all neural282

branching policies per instance shown in Figure 2. The single-step inference time comparison283

between Transformer and Mamba is shown in Figure 3. Notably, T-BranT necessitates at least one set284

of historical data, prompting the use of relpscost at the root node. This precise branching decision at285

the root significantly influences overall performance. For the sake of consistency, Mamba-Branching,286

TreeGate, and Transformer-Branching also employ relpscost at the root node, with Mamba-Branching287

and Transformer-Branching further leveraging it to initialize their input sequences. To evaluate the288

performance of pure neural branching, we additionally test variants that do not utilize relpscost289

initialization: TreeGate-p, Mamba-Branching-p, and Transformer-Branching-p, as shown in Table 3.290

It can be observed that Mamba-Branching is the best branching policy besides relpscost. First,291

Mamba-Branching significantly outperforms the three lower-bound references: GCNN, random, and292

pscost. Compared with several neural branching policy baselines, whether initialized with relpscost293

or purely neural-based, Mamba-Branching surpasses T-BranT, TreeGate, and Transformer-Branching,294

achieving a new SOTA for neural branching policies. Additionally, in terms of single-step inference295

time, Mamba significantly outperforms Transformer, highlighting its advantage as a sequence model.296

7

seymour1

mine-166-5

map18

neos18
neos11

nu25-pr12

rail507

ns1830653g-mean

Mamba
TreeGate

T-BranT
Transformer

Figure 2: The fair node results of all neural
branching policies in MILP-S.

10 3 10 2 10 1

Inference Time (seconds, log scale)se
ym

ou
r1

mine
-16

6-5ns
18

30
65

3map
18ne

os
18ne

os
11nu

25
-p

r1
2ra

il5
07

In
st

an
ce

s

0.00078

0.00089

0.00093

0.001

0.00093

0.00092

0.00079

0.0013

0.013

0.041

0.27

0.015

0.19

0.37

0.017

0.39

Mamba Transformer

Figure 3: The inference time comparison between
Mamba and Transformer in MILP-S.

5.2.2 MILP-L297

Table 2: The experimental results on MILP-L. Con-
sistent with the experiments on MILP-S, all instances
are evaluated with 5 random seeds under a 1-hour
time limit, with results reported as geometric means.
Blue background indicates the best results and bold

font indicates the best results in neural policies.

Method Easy Difficult

Nodes Fair Nodes PD Integral

Mamba-Branching 1819.32 2053.91 12319.55
TreeGate 2218.29 2534.09 14625.68
T-BranT 2009.77 2298.76 13538.47
relpscost 667.93 1455.49 12741.36

In MILP-L, we further evaluate several298

methods that demonstrated strong perfor-299

mance in MILP-S, including TreeGate, T-300

BranT, Mamba-Branching, and relpscost.301

For the 57 easy instances, performance is302

assessed using both nodes and fair nodes.303

In contrast, for the 16 difficult instances,304

we use the PD integral with a 1-hour time305

limit as the evaluation metric. The results306

are presented in Table 2.307

The results demonstrate that for easy308

MILPs, despite the expanded test instances309

compared to MILP-S, Mamba-Branching310

remains the best neural branching policy,311

but still inferior to relpscost. For difficult instances, Mamba-Branching achieves the best PD integral312

performance among all branching policies, even surpassing relpscost. This indicates that within the313

same time limit, Mamba-Branching enables the fastest convergence of primal and dual bounds.314

5.2.3 Discussion315

Advantage of Sequential Nature. First, Mamba-Branching consistently outperforms TreeGate and316

T-BranT across all scenarios due to its consideration of the sequential nature of B&B trees. Neither317

TreeGate (which completely ignores historical data) nor T-BranT (which utilizes historical data non-318

sequentially) achieves the effectiveness of sequential historical data utilization. This aligns with our319

maze analogy in subsection 4.2: sequentially recalling paths facilitates better current decision-making.320

Limitation of Transformer. Transformer-Branching also leverages sequential nature but performs321

poorly, with Transformer-Branching-p even underperforming the lower-bound pscost. The subop-322

timal performance stems from its 10-step branching history limit during training (due to hardware323

constraint), while Mamba-Branching accommodates 100 steps. Furthermore, the inference time324

comparison in Figure 3 demonstrates that in our time-sensitive scenario aimed at reducing solving325

time, Transformer is entirely unsuitable as a branching policy. The underlying reason here is that326

Transformer’s complexity is quadratic with respect to sequence length, while Mamba’s is linear.327

Although Transformer is theoretically suitable as a sequence model, employing Mamba offers greater328

practicality and feasibility. A more detailed comparison can be found in Appendix E.329

Factors Outperforming Relpscost. As for relpscost, Mamba-Branching does not outperform in easy330

instances but surpasses it in difficult ones. The reason can be summarized as follows: (1) Relpscost331

is a hybrid method combining strong and pscost branching, incorporating a reliability criterion: a332

8

Table 3: On MILP-S, the results of pure neural branching policies TreeGate-p, Transformer-Branching-
p, and Mamba-Branching-p, as well as Mamba-Branching-p without contrastive learning (w/o cl).
The experimental setup remains consistent with the aforementioned configuration on MILP-S.
Method Mamba-Branching-p Mamba-Branching-p (w/o cl) Transformer-Branching-p TreeGate-p

Nodes 2272.43 3000.92 5138.15 3179.55
Fair Nodes 2272.43 3000.92 5138.15 3179.55

variable can only switch to pscost after being selected by strong branching a certain number of times.333

Therefore, for difficult instances with more variables, the initialization process is time-consuming,334

leading to potential inefficiency. In contrast, neural policies benefit from fast inference and exhibit335

advantages on difficult instances. (2) In relpscost, the use of pscost for leveraging historical data336

does not account for the sequential nature, whereas Mamba-Branching explicitly incorporates this337

consideration. (3) As mentioned in [48], the relpscost in SCIP has been fine-tuned for a large number338

of instances, resulting in excellent performance on easy instances. However, for more complex and339

challenging instances, such parameter tuning may not provide adequate coverage.340

5.3 Ablation Study341

200 100 0 100 200 300
300

200

100

0

100

200

300

CL candidates
CL expert
No-CL candidates
No-CL expert

Figure 4: At a random given state, the embeddings with
and without contrastive learning.

In this section, an ablation experiment is342

conducted to verify the role of contrastive343

learning. First, the most straightforward344

comparison is to evaluate the branching345

performance difference when contrastive346

learning is applied or not to the embed-347

ding layer. Under pure neural branch-348

ing, the results on MILP-S without and349

with contrastive learning are denoted as350

Mamba-Branching-p (w/o cl) and Mamba-351

Branching-p, respectively, as shown in Ta-352

ble 3. Meanwhile, to demonstrate that353

contrastive learning indeed achieves its in-354

tended effect, that is, making the feature of355

expert-selected variable more distinguish-356

able compared to other candidates, we also357

visualize the t-SNE-reduced [34] embed-358

dings, as shown in Figure 4.359

First, in terms of branching performance, Mamba-Branching-p demonstrates superior results com-360

pared to its counterpart without contrastive learning, Mamba-Branching-p (w/o cl). The visualization361

then reveals that with contrastive learning, the expert-selected variable exhibits greater outlier char-362

acteristics and enhanced discriminability relative to other candidate variables. In contrast, without363

contrastive learning, the expert-selected variable becomes less distinguishable and tends to cluster364

near candidate variables.365

6 Conclusion and Future Work366

In this paper, we propose Mamba-Branching, the first approach to consider the sequential nature in367

B&B trees. To address the challenges of long sequences and embedding distinctiveness posed by368

sequential nature, we employ Mamba as the sequence model and design a contrastive learning method369

to train the embedding layer, enabling the sequence model to distinguish between different candidate370

variables. In experiments, Mamba-Branching outperforms all neural branching policies and achieves371

superior solving efficiency compared to relpscost on challenging instances. One limitation of our372

approach is the reliance on imitation learning, which requires a time-consuming collection of expert373

demonstrations. In future work, we will focus on investigating the potential of sequential nature in374

reinforcement learning-based branching policies, thereby eliminating the dependency on expert data.375

9

References376

[1] Achterberg, T.: Scip optimization suite documentation: Reliable pseudo costs branching rule.377

SCIP Optimization Suite Documentation (2025), https://www.scipopt.org/doc/html/378

branch__relpscost_8h.php, accessed: 2025-04-27379

[2] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters380

33(1), 42–54 (2005)381

[3] Barnhart, C., Laporte, G.: Handbooks in operations research and management science: Trans-382

portation. Elsevier (2006)383

[4] Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Leen,384

T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems.385

vol. 13. MIT Press (2000), https://proceedings.neurips.cc/paper_files/paper/386

2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf387

[5] Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization:388

A methodological tour d’horizon. European Journal of Operational Research 290(2),389

405–421 (2021). https://doi.org/https://doi.org/10.1016/j.ejor.2020.07.063, https://www.390

sciencedirect.com/science/article/pii/S0377221720306895391

[6] Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Dionísio, J., Donkiewicz, T., van392

Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Halbig, K., Hedtke, I.,393

Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K., Lentz, J., Manns,394

J., Mexi, G., Mühmer, E., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Turner,395

M., Vigerske, S., Weninger, D., Xu, L.: The SCIP Optimization Suite 9.0. Technical re-396

port, Optimization Online (February 2024), https://optimization-online.org/2024/397

02/the-scip-optimization-suite-9-0/398

[7] Chen, Z.L.: Integrated production and outbound distribution scheduling: review and extensions.399

Operations research 58(1), 130–148 (2010)400

[8] Dao, T., Gu, A.: Transformers are SSMs: Generalized models and efficient algorithms through401

structured state space duality. In: International Conference on Machine Learning (ICML) (2024)402

[9] Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Acceler-403

ating primal solution findings for mixed integer programs based on solution predic-404

tion. Proceedings of the AAAI Conference on Artificial Intelligence 34(02), 1452–1459405

(Apr 2020). https://doi.org/10.1609/aaai.v34i02.5503, https://ojs.aaai.org/index.php/406

AAAI/article/view/5503407

[10] Gamrath, G., Schubert, C.: Measuring the impact of branching rules for mixed-integer program-408

ming. In: Kliewer, N., Ehmke, J.F., Borndörfer, R. (eds.) Operations Research Proceedings409

2017. pp. 165–170. Springer International Publishing, Cham (2018)410

[11] Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat, D., Chmiela, A.,411

Dumouchelle, J., Gleixner, A., Kazachkov, A.M., Khalil, E., Lichocki, P., Lodi, A., Lubin,412

M., Maddison, C.J., Christopher, M., Papageorgiou, D.J., Parjadis, A., Pokutta, S., Prouvost,413

A., Scavuzzo, L., Zarpellon, G., Yang, L., Lai, S., Wang, A., Luo, X., Zhou, X., Huang, H.,414

Shao, S., Zhu, Y., Zhang, D., Quan, T., Cao, Z., Xu, Y., Huang, Z., Zhou, S., Binbin, C.,415

Minggui, H., Hao, H., Zhiyu, Z., Zhiwu, A., Kun, M.: The machine learning for combinatorial416

optimization competition (ml4co): Results and insights. In: Kiela, D., Ciccone, M., Caputo, B.417

(eds.) Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track. Proceedings418

of Machine Learning Research, vol. 176, pp. 220–231. PMLR (06–14 Dec 2022), https:419

//proceedings.mlr.press/v176/gasse22a.html420

[12] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization421

with graph convolutional neural networks. Advances in neural information processing systems422

32 (2019)423

10

https://www.scipopt.org/doc/html/branch__relpscost_8h.php
https://www.scipopt.org/doc/html/branch__relpscost_8h.php
https://www.scipopt.org/doc/html/branch__relpscost_8h.php
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://ojs.aaai.org/index.php/AAAI/article/view/5503
https://ojs.aaai.org/index.php/AAAI/article/view/5503
https://ojs.aaai.org/index.php/AAAI/article/view/5503
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

[13] Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T.,424

Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D.,425

Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Com-426

pilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Com-427

putation (2021). https://doi.org/10.1007/s12532-020-00194-3, https://doi.org/10.1007/428

s12532-020-00194-3429

[14] Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state spaces. In:430

First Conference on Language Modeling (2024), https://openreview.net/forum?id=431

tEYskw1VY2432

[15] Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y.: Hybrid models for433

learning to branch. Advances in neural information processing systems 33, 18087–18097 (2020)434

[16] Gupta, P., Khalil, E.B., Chételat, D., Gasse, M., Lodi, A., Bengio, Y., Kumar, M.P.: Lookback for435

learning to branch. Transactions on Machine Learning Research (2022), https://openreview.436

net/forum?id=EQpGkw5rvL, expert Certification437

[17] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), https://www.438

gurobi.com439

[18] Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R., Luo, X.: A GNN-440

guided predict-and-search framework for mixed-integer linear programming. In: The Eleventh441

International Conference on Learning Representations (2023), https://openreview.net/442

forum?id=pHMpgT5xWaE443

[19] He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound al-444

gorithms. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,445

K. (eds.) Advances in Neural Information Processing Systems. vol. 27. Curran As-446

sociates, Inc. (2014), https://proceedings.neurips.cc/paper_files/paper/2014/447

file/757f843a169cc678064d9530d12a1881-Paper.pdf448

[20] Huang, T., Ferber, A., Tian, Y., Dilkina, B., Steiner, B.: Searching large neighborhoods for449

integer linear programs with contrastive learning. In: Proceedings of the 40th International450

Conference on Machine Learning. ICML’23, JMLR.org (2023)451

[21] Huang, T., Ferber, A.M., Zharmagambetov, A., Tian, Y., Dilkina, B.: Contrastive predict-and-452

search for mixed integer linear programs. In: Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,453

Oliver, N., Scarlett, J., Berkenkamp, F. (eds.) Proceedings of the 41st International Conference454

on Machine Learning. Proceedings of Machine Learning Research, vol. 235, pp. 19757–19771.455

PMLR (21–27 Jul 2024), https://proceedings.mlr.press/v235/huang24f.html456

[22] Huang, Z., Wang, K., Liu, F., Zhen, H.L., Zhang, W., Yuan, M., Hao, J., Yu, Y., Wang, J.:457

Learning to select cuts for efficient mixed-integer programming. Pattern Recognition 123,458

108353 (2022). https://doi.org/https://doi.org/10.1016/j.patcog.2021.108353, https://www.459

sciencedirect.com/science/article/pii/S0031320321005331460

[23] Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic461

Engineering 82(1), 35–45 (03 1960). https://doi.org/10.1115/1.3662552, https://doi.org/462

10.1115/1.3662552463

[24] Khalil, E.B., Morris, C., Lodi, A.: Mip-gnn: A data-driven framework for guiding combinatorial464

solvers. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 10219–465

10227 (2022)466

[25] Kuang, Y., Wang, J., Liu, H., Zhu, F., Li, X., Zeng, J., HAO, J., Li, B., Wu, F.: Rethinking467

branching on exact combinatorial optimization solver: The first deep symbolic discovery468

framework. In: The Twelfth International Conference on Learning Representations (2024),469

https://openreview.net/forum?id=jKhNBulNMh470

[26] Kuang, Y., Wang, J., Zhou, Y., Li, X., Zhu, F., HAO, J., Wu, F.: Towards general al-471

gorithm discovery for combinatorial optimization: Learning symbolic branching policy472

from bipartite graph. In: Forty-first International Conference on Machine Learning (2024),473

https://openreview.net/forum?id=ULleq1Dtaw474

11

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=EQpGkw5rvL
https://openreview.net/forum?id=EQpGkw5rvL
https://openreview.net/forum?id=EQpGkw5rvL
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=pHMpgT5xWaE
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.mlr.press/v235/huang24f.html
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://openreview.net/forum?id=jKhNBulNMh
https://openreview.net/forum?id=ULleq1Dtaw

[27] Labassi, A.G., Chételat, D., Lodi, A.: Learning to compare nodes in branch and bound with475

graph neural networks. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances476

in Neural Information Processing Systems (2022), https://openreview.net/forum?id=477

0VhrZPJXcTU478

[28] Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems.479

Springer (2010)480

[29] Lehigh University COR@L Lab: Mixed-integer programming benchmark instances (nd),481

https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/, accessed:482

2025-4-30483

[30] Li, S., Kulkarni, J., Menache, I., Wu, C., Li, B.: Towards foundation models for mixed integer484

linear programming. In: The Thirteenth International Conference on Learning Representations485

(2025), https://openreview.net/forum?id=6yENDA7J4G486

[31] Lin, J., Zhu, J., Wang, H., Zhang, T.: Learning to branch with tree-487

aware branching transformers. Knowledge-Based Systems 252, 109455 (2022).488

https://doi.org/https://doi.org/10.1016/j.knosys.2022.109455, https://www.sciencedirect.489

com/science/article/pii/S0950705122007298490

[32] Liu, H., Kuang, Y., Wang, J., Li, X., Zhang, Y., Wu, F.: Promoting generalization for ex-491

act solvers via adversarial instance augmentation (2023), https://arxiv.org/abs/2310.492

14161493

[33] Liu, H., Wang, J., Geng, Z., Li, X., Zong, Y., Zhu, F., HAO, J., Wu, F.: Apollo-MILP:494

An alternating prediction-correction neural solving framework for mixed-integer linear pro-495

gramming. In: The Thirteenth International Conference on Learning Representations (2025),496

https://openreview.net/forum?id=mFY0tPDWK8497

[34] van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Re-498

search 9(86), 2579–2605 (2008), http://jmlr.org/papers/v9/vandermaaten08a.html499

[35] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations500

of words and phrases and their compositionality. In: Burges, C., Bottou, L., Welling, M.,501

Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Sys-502

tems. vol. 26. Curran Associates, Inc. (2013), https://proceedings.neurips.cc/paper_503

files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf504

[36] Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B.,505

Sonnerat, N., Tjandraatmadja, C., Wang, P., Addanki, R., Hapuarachchi, T., Keck, T., Keeling,506

J., Kohli, P., Ktena, I., Li, Y., Vinyals, O., Zwols, Y.: Solving mixed integer programs using507

neural networks (2021), https://arxiv.org/abs/2012.13349508

[37] Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming, vol. 149. Springer509

(2006)510

[38] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,511

Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from512

natural language supervision (2021), https://arxiv.org/abs/2103.00020513

[39] Scavuzzo, L., Aardal, K., Lodi, A., Yorke-Smith, N.: Machine learning augmented branch and514

bound for mixed integer linear programming. Mathematical Programming pp. 1–44 (2024)515

[40] Scavuzzo, L., Chen, F., Chetelat, D., Gasse, M., Lodi, A., Yorke-Smith, N., Aardal, K.:516

Learning to branch with tree mdps. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,517

Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 18514–518

18526. Curran Associates, Inc. (2022), https://proceedings.neurips.cc/paper_files/519

paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf520

[41] Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., Nair, V.: Learning a large neighborhood search521

algorithm for mixed integer programs (2022), https://arxiv.org/abs/2107.10201522

12

https://openreview.net/forum?id=0VhrZPJXcTU
https://openreview.net/forum?id=0VhrZPJXcTU
https://openreview.net/forum?id=0VhrZPJXcTU
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://openreview.net/forum?id=6yENDA7J4G
https://www.sciencedirect.com/science/article/pii/S0950705122007298
https://www.sciencedirect.com/science/article/pii/S0950705122007298
https://www.sciencedirect.com/science/article/pii/S0950705122007298
https://arxiv.org/abs/2310.14161
https://arxiv.org/abs/2310.14161
https://arxiv.org/abs/2310.14161
https://openreview.net/forum?id=mFY0tPDWK8
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/2012.13349
https://arxiv.org/abs/2103.00020
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://arxiv.org/abs/2107.10201

[42] Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming: learning523

to cut. In: Proceedings of the 37th International Conference on Machine Learning. ICML’20,524

JMLR.org (2020)525

[43] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,526

Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach,527

H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Process-528

ing Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/529

paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf530

[44] Wang, X., Wang, S., Ding, Y., Li, Y., Wu, W., Rong, Y., Kong, W., Huang, J., Li, S., Yang,531

H., Wang, Z., Jiang, B., Li, C., Wang, Y., Tian, Y., Tang, J.: State space model for new-532

generation network alternative to transformers: A survey (2024), https://arxiv.org/abs/533

2404.09516534

[45] Wang, Z., Li, X., Wang, J., Kuang, Y., Yuan, M., Zeng, J., Zhang, Y., Wu, F.: Learning535

cut selection for mixed-integer linear programming via hierarchical sequence model. In: The536

Eleventh International Conference on Learning Representations (2023), https://openreview.537

net/forum?id=Zob4P9bRNcK538

[46] Wu, Y., Song, W., Cao, Z., Zhang, J.: Learning large neighborhood search policy for integer539

programming. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances540

in Neural Information Processing Systems (2021), https://openreview.net/forum?id=541

IaM7U4J-w3c542

[47] Yuan, H., Ouyang, W., Zhang, C., Sun, Y., Gong, L., Yan, J.: BTBS-LNS: Binarized-543

tightening, branch and search on learning LNS policies for MIP. In: The Thirteenth Interna-544

tional Conference on Learning Representations (2025), https://openreview.net/forum?545

id=siHHqDDzvS546

[48] Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.: Parameterizing branch-and-bound search trees to547

learn branching policies. Proceedings of the AAAI Conference on Artificial Intelligence 35(5),548

3931–3939 (May 2021). https://doi.org/10.1609/aaai.v35i5.16512, https://ojs.aaai.org/549

index.php/AAAI/article/view/16512550

[49] Zhang, S., Zeng, S., Li, S., Wu, F., Li, X.: Learning to select nodes in branch and bound551

with sufficient tree representation. In: The Thirteenth International Conference on Learning552

Representations (2025), https://openreview.net/forum?id=gyvYKLEm8t553

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2404.09516
https://arxiv.org/abs/2404.09516
https://arxiv.org/abs/2404.09516
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=IaM7U4J-w3c
https://openreview.net/forum?id=IaM7U4J-w3c
https://openreview.net/forum?id=IaM7U4J-w3c
https://openreview.net/forum?id=siHHqDDzvS
https://openreview.net/forum?id=siHHqDDzvS
https://openreview.net/forum?id=siHHqDDzvS
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://openreview.net/forum?id=gyvYKLEm8t

A Mamba Architecture554

Mamba is a novel network architecture based on State Space Model (SSM) that may potentially555

replace self-attention-based Transformer models [14, 8, 44]. SSM is a concept originating from556

control theory, with its earliest roots traceable to the classical Kalman filter [23]. The continuous-time557

formulation of SSM can be represented as follows:558

ż(t) = M(t)z(t) +N(t)u(t)

y(t) = P(t)z(t),
(7)

where z(t) ∈ Rz , y(t) ∈ Rq, u(t) ∈ Ru. After zero-order hold discretization, the discrete-time559

formulation is obtained as follows:560

zt = Mzt−1 +Nut

yt = Pzt,
(8)

where M = exp(∆M), N = (∆M)−1(exp(∆M)− I) ·∆N, ∆ denotes the step size.561

To meet the parallelization requirements of the training process, the SSM can alternatively be562

represented as follows:563

K = (PN,PMN, . . . ,PM
k
N)

y = K ∗ u.
(9)

Mamba builds upon SSM by introducing Selective SSM, which essentially treats N, P and ∆ as564

functions of the input while keeping M unchanged. From a control theory perspective, this transforms565

the system from time-invariant to time-varying. Furthermore, Mamba incorporates hardware-aware566

algorithm design that enables efficient storage of intermediate results through parallel scanning,567

kernel fusion, and recalculation.568

B Benchmark Details569

All training and test instances in MILP-S are listed in Table 6. The training instances in MILP-L570

are presented in Table 7. All easy test instances in MILP-L are shown in Table 8, while all difficult571

test instances are presented in Table 9. Here, an instance is considered easy if SCIP’s solving time572

is less than 20 minutes; otherwise, it is classified as difficult. These instances are sourced from573

MIPLIB [13] and CORAL [29], all collected from real-world application scenarios, with specific574

instance selections referenced to [48] and [31]. Serving as benchmarks, these instances effectively575

reflect the practical significance of neural branching policies in real-world applications.576

C Detailed reasons for Baseline Selection577

The neural branching policies and their selection rationale are detailed below: (1) GCNN [12]: This578

method is not designed for heterogeneous MILPs and performs poorly on unseen MILP instances579

outside the training distribution. The experimental results of GCNN highlight the advantage of580

instance-independent feature design in terms of generalization. (2) TreeGate [48]: The TreeGate581

network incorporates instance-independent inputs by design, making it suitable for heterogeneous582

MILPs. Additionally, since Mamba-Branching’s embedding layer adopts the TreeGate architecture,583

TreeGate serves as a critical control group for our method. (3) T-BranT [31]: Building upon Tree-584

Gate’s feature design, T-BranT employs attention to capture mutual connections among candidates.585

Meanwhile, T-BranT processes historical data from an unordered graph perspective. The comparison586

with T-BranT serves to evaluate whether Mamba-Branching’s sequential processing of historical587

data demonstrates superior performance over T-BranT’s unordered graph approach. (4) Transformer-588

Branching: When selecting a sequence model for our approach, the Transformer would naturally589

be the most immediate consideration. Thus, we include Transformer-Branching as a comparative590

baseline against Mamba-Branching, specifically to highlight the advantages of employing Mamba as591

the sequence model.592

The heuristic rules are selected with the following rationale: (1) Random: Serves as the performance593

lower bound, demonstrating the detrimental effects of completely omitting a deliberate branching594

14

policy. (2) Pscost: A purely historical data-driven branching method that, like Random, also595

establishes a performance lower bound. (3) Relpscost: The expert policy in the imitation learning of596

Mamba-Branching. Simultaneously, it is also the SOTA heuristic rule and the default rule in SCIP.597

Relpscost serves as the upper bound of decision accuracy for neural branching policies. However,598

benefiting from the fast inference speed of neural networks, neural branching policies may surpass599

relpscost in terms of efficiency.600

D Implementation Details601

All experiments in this paper are run on NVIDIA A100-PCIE-40GB GPU and Intel(R) Xeon(R) Gold602

5218 CPU. The hyperparameters in the training of Mamba-Branching are shown in Table 4.603

During training, sequences consisting of every 100 branching steps are fed as input to Mamba.604

Although the number of candidate variables varies across batches, several hundred candidates605

represent a typical scenario. Consequently, the actual input sequence length may extend to tens of606

thousands of tokens – a scale that would easily trigger GPU memory overflow if using Transformer607

architectures. We therefore adopt Mamba as our sequence model, whose computational complexity608

scales linearly with sequence length, to effectively circumvent these hardware limitations.609

During inference, the sequence fed into Mamba consists of: (1) states and predicted actions from the610

most recent 24 branching steps, and (2) the current state. Unlike the training phase, we deliberately611

reduce the number of branching steps to maintain sufficiently short inference latency, thereby reducing612

the total solving time. After systematic tuning, we ultimately select 25 branching steps (T_eva=24)613

to achieve an optimal balance between branching accuracy and inference speed.614

Table 4: The hyperparameters of Mamba-Branching
Name Description Value

d Output dimension of the candidate net in TreeGate,
which is equivalent to the embedding size of Mamba. 8

h Hidden state dimension of the Candidate Net in TreeGate. 64
depth Layer number of Tree Net in TreeGate. 3
batch_size Batch size of Mamba Training 32
lr_cl Learning rate of contrastive learning. 0.0001
optimizer_cl Optimizer of contrastive learning. Adam
lr Learning rate of imitation learning. 0.001
optimizer Optimizer of imitation learning. AdamW
wd Weight decay coefficient of imitation learning. 0.01
T_train Maximum branching steps considered during training. 99
T_eva Maximum branching steps considered during evaluating. 24
d_state SSM state expansion factor in Mamba 64
d_conv Local convolution width in Mamba 4
expand Block expansion factor in Mamba 2

E Computational Complexity Comparison between Transformer and Mamba615

As is well-known, Mamba exhibits linear complexity with respect to sequence length, while Trans-616

former demonstrates quadratic complexity. In this section, we present experimental results that617

provide a detailed comparison of the complexity between Mamba and Transformer when employed618

as branching policies. Our complexity analysis focuses on two key aspects: space complexity and619

time complexity. For space complexity, we compare the GPU memory consumption of Mamba and620

Transformer during both training and inference phases. Regarding time complexity, we primarily ex-621

amine the inference latency of both models when functioning as branching policies. The experimental622

results are shown in Table 5.623

As shown in the experiments, when processing 100 branching steps during training (even with a624

batch size of 1), Transformer-Branching fails to train altogether, while Mamba-Branching occupies625

minimal GPU memory. During inference, Mamba-Branching demonstrates significantly lower GPU626

15

memory consumption and inference time. In contrast, Transformer-Branching not only requires627

substantially more GPU memory but, more critically, suffers from prohibitively long inference times.628

Since the fundamental purpose of adopting a neural branching policy is to accelerate MILP solving,629

such excessive inference time directly contradicts our original objective.630

Table 5: A comparison of computational complexity between Mamba-Branching and Transformer-
Branching. During training, we uniformly set T_train=99 with a batch size of 1. For inference, we
consistently use T_eva=24. After collecting 25 Branching steps, we measure the network’s inference
time and GPU memory consumption, take the geometric mean across all test instances of MILP-S.

Method GPU memory of
Train (GB)

GPU memory of
Inference (GB) Inference Time (s)

Mamba-Branching 0.017 0.013 0.00093
Transformer-Branching out of memory 1.051 0.075

Table 6: All instances in MILP-S.
Instance Variables Constraints Set

air04 8904 823 train
air05 7195 426 train
dcmulti 548 473 train
eil33-2 4516 32 train
istanbul-no-cutoff 5282 20346 train
l152lav 1989 97 train
lseu 89 28 train
misc03 160 96 train
neos20 1165 2446 train
neos21 614 1085 train
neos-476283 11915 10015 train
neos648910 814 1491 train
pp08aCUTS 240 246 train
rmatr100-p10 7359 7260 train
rmatr100-p5 8784 8685 train
sp150x300d 600 450 train
stein27 27 118 train
swath1 6805 884 train
vpm2 378 234 train

map18 164547 328818 test
mine-166-5 830 8429 test
neos11 1220 2706 test
neos18 3312 11402 test
ns1830653 1629 2932 test
nu25-pr12 5868 2313 test
rail507 63019 509 test
seymour1 1372 4944 test

16

Table 7: Training instances in MILP-L
Instance Variables Constraints

30n20b8 18380 576
air04 8904 823
air05 7195 426
cod105 1024 1024
comp21-2idx 10863 14038
demulti 548 290
eil33–2 4516 32
istanbul-no-cutoff 5282 20346
l152lav 1989 97
lseu 89 28
misc03 160 96
neoS20 1165 2446
neoS21 614 1085
neos-476283 814 1491
neos648910 11915 10015
pp08aCUTS 240 246
rmatr100-p10 8784 8685
rmatr100-p5 7359 7260
rmatr200-p5 37816 37617
roi5alpha10n8 106150 4665
sp150 × 300d 600 450
stein27 27 118
supportcase7 138844 6532
swath1 6805 884
vpm2 378 234

17

Table 8: Easy test instances in MILP-L , SCIP’s solving time is less than 20 minutes.
Instance Variables Constraints SCIP Solving Time

aflow40b 2728 1442 375.32
app1-2 26871 53467 662.56
bc1 1751 1913 237.68
bell3a 133 123 1.54
bell5 104 91 0.63
biella1 7328 1203 271.30
binkar10_1 2298 1026 47.79
blend2 353 274 0.37
dano3_5 13873 3202 189.77
fast0507 63009 507 150.11
map10 164547 328818 515.00
map18 164547 328818 250.49
map20 164547 328818 218.78
mik-250-20-75-4 270 195 55.67
mine-166-5 830 8429 36.83
misc07 260 212 28.94
n2seq36q 22480 2565 497.79
neos11 1220 2706 171.35
neos12 3983 8317 674.23
neos-1200887 234 633 16.46
neos-1215259 1601 1236 110.12
neos13 1827 20852 96.20
neos18 3312 11402 27.63
neos-4722843-widden 77723 113555 864.13
neos-4738912-atrato 6216 1947 304.32
neos-480878 534 1321 52.92
neos-504674 844 1344 114.11
neos-504815 674 1067 34.61
neos-512201 838 1337 42.39
neos-584851 445 661 7.11
neos-603073 1696 992 269.58
neos-612125 9554 1795 43.31
neos-612162 9893 1859 40.85
neos-662469 18235 1085 566.6
neos-686190 3660 3664 61.03
neos-801834 3220 3300 51.71
neos-803219 640 901 32.99
neos-807639 1030 1541 20.52
neos-820879 9522 361 56.56
neos-829552 40971 5153 353.99
neos-839859 1975 3251 64.10
neos-892255 1800 2137 54.07
neos-950242 5760 34224 149.60
ns1208400 2883 4289 111.91
ns1830653 1629 2932 148.27
nu25-pr12 5868 2313 22.01
nw04 87482 36 42.85
p0201 201 133 0.81
pg 2700 125 45.39
pp08a 240 136 1.44
rai507 63019 509 160.55
roll3000 1166 2295 44.27
rout 556 291 39.51
satellites1-25 9013 5996 952.04
seymour1 1372 4944 61.91
sp98ir 1680 1531 92.98
unitcal_7 25755 48939 889.85

18

Table 9: Difficult test instances in MILP-L , SCIP’s solving time is more than 20 minutes.
Instance Variables Constraints SCIP Solving Time

atlanta-ip 48738 21732 3600.00
bab5 21600 4964 2665.41
harp2 2993 112 1642.38
map16715-04 164547 328818 2423.74
msc98-ip 21143 15850 3600.00
mspp16 29280 561657 2722.23
n3seq24 119856 6044 3600.00
pigeon-10 490 931 3600.01
bab2 147912 17245 3600.02
bab6 114240 29904 3600.01
neos-4338804-snowy 1344 1701 3600.08
neos-4387871-tavua 4004 4554 3600.00
neos-4647030-tutaki 12600 8382 3600.09
nursesched-medium-hint03 34248 14062 3600.00
opm2-z10-s4 6250 160633 3600.01
radiationm40-10-02 172013 173603 3600.00

19

NeurIPS Paper Checklist631

1. Claims632

Question: Do the main claims made in the abstract and introduction accurately reflect the633

paper’s contributions and scope?634

Answer: [Yes]635

Justification: The Methodology and Experiments sections align with the claims made in the636

Abstract and Introduction.637

Guidelines:638

• The answer NA means that the abstract and introduction do not include the claims639

made in the paper.640

• The abstract and/or introduction should clearly state the claims made, including the641

contributions made in the paper and important assumptions and limitations. A No or642

NA answer to this question will not be perceived well by the reviewers.643

• The claims made should match theoretical and experimental results, and reflect how644

much the results can be expected to generalize to other settings.645

• It is fine to include aspirational goals as motivation as long as it is clear that these goals646

are not attained by the paper.647

2. Limitations648

Question: Does the paper discuss the limitations of the work performed by the authors?649

Answer: [Yes]650

Justification: The limitation is discussed in the Conclusion and Future Work section.651

Guidelines:652

• The answer NA means that the paper has no limitation while the answer No means that653

the paper has limitations, but those are not discussed in the paper.654

• The authors are encouraged to create a separate "Limitations" section in their paper.655

• The paper should point out any strong assumptions and how robust the results are to656

violations of these assumptions (e.g., independence assumptions, noiseless settings,657

model well-specification, asymptotic approximations only holding locally). The authors658

should reflect on how these assumptions might be violated in practice and what the659

implications would be.660

• The authors should reflect on the scope of the claims made, e.g., if the approach was661

only tested on a few datasets or with a few runs. In general, empirical results often662

depend on implicit assumptions, which should be articulated.663

• The authors should reflect on the factors that influence the performance of the approach.664

For example, a facial recognition algorithm may perform poorly when image resolution665

is low or images are taken in low lighting. Or a speech-to-text system might not be666

used reliably to provide closed captions for online lectures because it fails to handle667

technical jargon.668

• The authors should discuss the computational efficiency of the proposed algorithms669

and how they scale with dataset size.670

• If applicable, the authors should discuss possible limitations of their approach to671

address problems of privacy and fairness.672

• While the authors might fear that complete honesty about limitations might be used by673

reviewers as grounds for rejection, a worse outcome might be that reviewers discover674

limitations that aren’t acknowledged in the paper. The authors should use their best675

judgment and recognize that individual actions in favor of transparency play an impor-676

tant role in developing norms that preserve the integrity of the community. Reviewers677

will be specifically instructed to not penalize honesty concerning limitations.678

3. Theory assumptions and proofs679

Question: For each theoretical result, does the paper provide the full set of assumptions and680

a complete (and correct) proof?681

Answer: [NA]682

20

Justification: The paper does not include theoretical results683

Guidelines:684

• The answer NA means that the paper does not include theoretical results.685

• All the theorems, formulas, and proofs in the paper should be numbered and cross-686

referenced.687

• All assumptions should be clearly stated or referenced in the statement of any theorems.688

• The proofs can either appear in the main paper or the supplemental material, but if689

they appear in the supplemental material, the authors are encouraged to provide a short690

proof sketch to provide intuition.691

• Inversely, any informal proof provided in the core of the paper should be complemented692

by formal proofs provided in appendix or supplemental material.693

• Theorems and Lemmas that the proof relies upon should be properly referenced.694

4. Experimental result reproducibility695

Question: Does the paper fully disclose all the information needed to reproduce the main ex-696

perimental results of the paper to the extent that it affects the main claims and/or conclusions697

of the paper (regardless of whether the code and data are provided or not)?698

Answer: [Yes]699

Justification: The implementation details are described in Appendix C.700

Guidelines:701

• The answer NA means that the paper does not include experiments.702

• If the paper includes experiments, a No answer to this question will not be perceived703

well by the reviewers: Making the paper reproducible is important, regardless of704

whether the code and data are provided or not.705

• If the contribution is a dataset and/or model, the authors should describe the steps taken706

to make their results reproducible or verifiable.707

• Depending on the contribution, reproducibility can be accomplished in various ways.708

For example, if the contribution is a novel architecture, describing the architecture fully709

might suffice, or if the contribution is a specific model and empirical evaluation, it may710

be necessary to either make it possible for others to replicate the model with the same711

dataset, or provide access to the model. In general. releasing code and data is often712

one good way to accomplish this, but reproducibility can also be provided via detailed713

instructions for how to replicate the results, access to a hosted model (e.g., in the case714

of a large language model), releasing of a model checkpoint, or other means that are715

appropriate to the research performed.716

• While NeurIPS does not require releasing code, the conference does require all submis-717

sions to provide some reasonable avenue for reproducibility, which may depend on the718

nature of the contribution. For example719

(a) If the contribution is primarily a new algorithm, the paper should make it clear how720

to reproduce that algorithm.721

(b) If the contribution is primarily a new model architecture, the paper should describe722

the architecture clearly and fully.723

(c) If the contribution is a new model (e.g., a large language model), then there should724

either be a way to access this model for reproducing the results or a way to reproduce725

the model (e.g., with an open-source dataset or instructions for how to construct726

the dataset).727

(d) We recognize that reproducibility may be tricky in some cases, in which case728

authors are welcome to describe the particular way they provide for reproducibility.729

In the case of closed-source models, it may be that access to the model is limited in730

some way (e.g., to registered users), but it should be possible for other researchers731

to have some path to reproducing or verifying the results.732

5. Open access to data and code733

Question: Does the paper provide open access to the data and code, with sufficient instruc-734

tions to faithfully reproduce the main experimental results, as described in supplemental735

material?736

21

Answer: [Yes]737

Justification: The anonymous link to the code can be found in Abstract, and code and data738

have also been included in the Supplementary Material.739

Guidelines:740

• The answer NA means that paper does not include experiments requiring code.741

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/742

public/guides/CodeSubmissionPolicy) for more details.743

• While we encourage the release of code and data, we understand that this might not be744

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not745

including code, unless this is central to the contribution (e.g., for a new open-source746

benchmark).747

• The instructions should contain the exact command and environment needed to run to748

reproduce the results. See the NeurIPS code and data submission guidelines (https:749

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.750

• The authors should provide instructions on data access and preparation, including how751

to access the raw data, preprocessed data, intermediate data, and generated data, etc.752

• The authors should provide scripts to reproduce all experimental results for the new753

proposed method and baselines. If only a subset of experiments are reproducible, they754

should state which ones are omitted from the script and why.755

• At submission time, to preserve anonymity, the authors should release anonymized756

versions (if applicable).757

• Providing as much information as possible in supplemental material (appended to the758

paper) is recommended, but including URLs to data and code is permitted.759

6. Experimental setting/details760

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-761

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the762

results?763

Answer: [Yes]764

Justification: All details can be found in the Experiments section, Appendix B, and Appendix765

C.766

Guidelines:767

• The answer NA means that the paper does not include experiments.768

• The experimental setting should be presented in the core of the paper to a level of detail769

that is necessary to appreciate the results and make sense of them.770

• The full details can be provided either with the code, in appendix, or as supplemental771

material.772

7. Experiment statistical significance773

Question: Does the paper report error bars suitably and correctly defined or other appropriate774

information about the statistical significance of the experiments?775

Answer: [Yes]776

Justification: Multiple sets of random seeds are considered in the Experiments section.777

Guidelines:778

• The answer NA means that the paper does not include experiments.779

• The authors should answer "Yes" if the results are accompanied by error bars, confi-780

dence intervals, or statistical significance tests, at least for the experiments that support781

the main claims of the paper.782

• The factors of variability that the error bars are capturing should be clearly stated (for783

example, train/test split, initialization, random drawing of some parameter, or overall784

run with given experimental conditions).785

• The method for calculating the error bars should be explained (closed form formula,786

call to a library function, bootstrap, etc.)787

• The assumptions made should be given (e.g., Normally distributed errors).788

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error789

of the mean.790

• It is OK to report 1-sigma error bars, but one should state it. The authors should791

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis792

of Normality of errors is not verified.793

• For asymmetric distributions, the authors should be careful not to show in tables or794

figures symmetric error bars that would yield results that are out of range (e.g. negative795

error rates).796

• If error bars are reported in tables or plots, The authors should explain in the text how797

they were calculated and reference the corresponding figures or tables in the text.798

8. Experiments compute resources799

Question: For each experiment, does the paper provide sufficient information on the com-800

puter resources (type of compute workers, memory, time of execution) needed to reproduce801

the experiments?802

Answer: [Yes] ,803

Justification: The details are provided in Appendix C.804

Guidelines:805

• The answer NA means that the paper does not include experiments.806

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,807

or cloud provider, including relevant memory and storage.808

• The paper should provide the amount of compute required for each of the individual809

experimental runs as well as estimate the total compute.810

• The paper should disclose whether the full research project required more compute811

than the experiments reported in the paper (e.g., preliminary or failed experiments that812

didn’t make it into the paper).813

9. Code of ethics814

Question: Does the research conducted in the paper conform, in every respect, with the815

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?816

Answer: [Yes]817

Justification: Our research fully complies with the NeurIPS Code of Ethics.818

Guidelines:819

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.820

• If the authors answer No, they should explain the special circumstances that require a821

deviation from the Code of Ethics.822

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-823

eration due to laws or regulations in their jurisdiction).824

10. Broader impacts825

Question: Does the paper discuss both potential positive societal impacts and negative826

societal impacts of the work performed?827

Answer: [NA]828

Justification: There is no societal impact of the work performed. Our paper focuses on829

accelerating MILP solving using neural networks, with a greater emphasis on the algorithmic830

level, and does not entail significant societal impact.831

Guidelines:832

• The answer NA means that there is no societal impact of the work performed.833

• If the authors answer NA or No, they should explain why their work has no societal834

impact or why the paper does not address societal impact.835

• Examples of negative societal impacts include potential malicious or unintended uses836

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations837

(e.g., deployment of technologies that could make decisions that unfairly impact specific838

groups), privacy considerations, and security considerations.839

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied840

to particular applications, let alone deployments. However, if there is a direct path to841

any negative applications, the authors should point it out. For example, it is legitimate842

to point out that an improvement in the quality of generative models could be used to843

generate deepfakes for disinformation. On the other hand, it is not needed to point out844

that a generic algorithm for optimizing neural networks could enable people to train845

models that generate Deepfakes faster.846

• The authors should consider possible harms that could arise when the technology is847

being used as intended and functioning correctly, harms that could arise when the848

technology is being used as intended but gives incorrect results, and harms following849

from (intentional or unintentional) misuse of the technology.850

• If there are negative societal impacts, the authors could also discuss possible mitigation851

strategies (e.g., gated release of models, providing defenses in addition to attacks,852

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from853

feedback over time, improving the efficiency and accessibility of ML).854

11. Safeguards855

Question: Does the paper describe safeguards that have been put in place for responsible856

release of data or models that have a high risk for misuse (e.g., pretrained language models,857

image generators, or scraped datasets)?858

Answer: [NA]859

Justification: The paper poses no such risks860

Guidelines:861

• The answer NA means that the paper poses no such risks.862

• Released models that have a high risk for misuse or dual-use should be released with863

necessary safeguards to allow for controlled use of the model, for example by requiring864

that users adhere to usage guidelines or restrictions to access the model or implementing865

safety filters.866

• Datasets that have been scraped from the Internet could pose safety risks. The authors867

should describe how they avoided releasing unsafe images.868

• We recognize that providing effective safeguards is challenging, and many papers do869

not require this, but we encourage authors to take this into account and make a best870

faith effort.871

12. Licenses for existing assets872

Question: Are the creators or original owners of assets (e.g., code, data, models), used in873

the paper, properly credited and are the license and terms of use explicitly mentioned and874

properly respected?875

Answer: [Yes]876

Justification: We cite the original paper that produced the code and data.877

Guidelines:878

• The answer NA means that the paper does not use existing assets.879

• The authors should cite the original paper that produced the code package or dataset.880

• The authors should state which version of the asset is used and, if possible, include a881

URL.882

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.883

• For scraped data from a particular source (e.g., website), the copyright and terms of884

service of that source should be provided.885

• If assets are released, the license, copyright information, and terms of use in the886

package should be provided. For popular datasets, paperswithcode.com/datasets887

has curated licenses for some datasets. Their licensing guide can help determine the888

license of a dataset.889

• For existing datasets that are re-packaged, both the original license and the license of890

the derived asset (if it has changed) should be provided.891

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to892

the asset’s creators.893

13. New assets894

Question: Are new assets introduced in the paper well documented and is the documentation895

provided alongside the assets?896

Answer: [No]897

Justification: Due to time constraints, the code in this paper lacks comprehensive documen-898

tation. However, our code is annotated.899

Guidelines:900

• The answer NA means that the paper does not release new assets.901

• Researchers should communicate the details of the dataset/code/model as part of their902

submissions via structured templates. This includes details about training, license,903

limitations, etc.904

• The paper should discuss whether and how consent was obtained from people whose905

asset is used.906

• At submission time, remember to anonymize your assets (if applicable). You can either907

create an anonymized URL or include an anonymized zip file.908

14. Crowdsourcing and research with human subjects909

Question: For crowdsourcing experiments and research with human subjects, does the paper910

include the full text of instructions given to participants and screenshots, if applicable, as911

well as details about compensation (if any)?912

Answer: [NA]913

Justification: The paper does not involve crowdsourcing nor research with human subjects.914

Guidelines:915

• The answer NA means that the paper does not involve crowdsourcing nor research with916

human subjects.917

• Including this information in the supplemental material is fine, but if the main contribu-918

tion of the paper involves human subjects, then as much detail as possible should be919

included in the main paper.920

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,921

or other labor should be paid at least the minimum wage in the country of the data922

collector.923

15. Institutional review board (IRB) approvals or equivalent for research with human924

subjects925

Question: Does the paper describe potential risks incurred by study participants, whether926

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)927

approvals (or an equivalent approval/review based on the requirements of your country or928

institution) were obtained?929

Answer: [NA]930

Justification: The paper does not involve crowdsourcing nor research with human subjects.931

Guidelines:932

• The answer NA means that the paper does not involve crowdsourcing nor research with933

human subjects.934

• Depending on the country in which research is conducted, IRB approval (or equivalent)935

may be required for any human subjects research. If you obtained IRB approval, you936

should clearly state this in the paper.937

• We recognize that the procedures for this may vary significantly between institutions938

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the939

guidelines for their institution.940

• For initial submissions, do not include any information that would break anonymity (if941

applicable), such as the institution conducting the review.942

25

16. Declaration of LLM usage943

Question: Does the paper describe the usage of LLMs if it is an important, original, or944

non-standard component of the core methods in this research? Note that if the LLM is used945

only for writing, editing, or formatting purposes and does not impact the core methodology,946

scientific rigorousness, or originality of the research, declaration is not required.947

Answer: [NA]948

Justification: The core method development in this research does not involve LLMs as any949

important, original, or non-standard components.950

Guidelines:951

• The answer NA means that the core method development in this research does not952

involve LLMs as any important, original, or non-standard components.953

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)954

for what should or should not be described.955

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	B&B Algorithm and Branching Rules
	Parameterized B&B Tree

	Methodology
	Contrastive Learning for Embedding Layer
	Sequential Modeling Design
	Imitation Learning under Autoregressive Paradigm

	Experiments
	Setup
	Benchmarks
	Metrics
	Baselines
	Solver and Neural Policy Settings

	Branching Performance
	MILP-S
	MILP-L
	Discussion

	Ablation Study

	Conclusion and Future Work
	Mamba Architecture
	Benchmark Details
	Detailed reasons for Baseline Selection
	Implementation Details
	Computational Complexity Comparison between Transformer and Mamba

