© © N O O A~ W N =

Towards Better Branching Policies: Leveraging the
Sequential Nature of Branch-and-Bound Tree

Anonymous Author(s)
Affiliation
Address

email

Abstract

The branch-and-bound (B&B) method is a dominant exact algorithm for solv-
ing Mixed-Integer Linear Programming problems (MILPs). While recent deep
learning approaches have shown promise in learning branching policies using
instance-independent features, they often struggle to capture the sequential decision-
making nature of B&B, particularly over long horizons with complex inter-
step dependencies and intra-step variable interactions. To address these chal-
lenges, we propose Mamba-Branching, a novel learning-based branching pol-
icy that leverages the Mamba architecture for efficient long-sequence modeling,
enabling effective capture of temporal dynamics across B&B steps. Addition-
ally, we introduce a contrastive learning strategy to pre-train discriminative em-
beddings for candidate branching variables, significantly enhancing Mamba’s
performance. Experimental results demonstrate that Mamba-Branching outper-
forms all previous neural branching policies on real-world MILP instances and
achieves superior computational efficiency compared to the advanced open-source
solver SCIP. The source code can be accessed via an anonymized repository at
https://anonymous.4open.science/r/Mamba-Branching-B4B4/.

1 Introduction

Mixed Integer Linear Programming problems (MILPs) constitute a class of computationally challeng-
ing NP-hard problems with widespread applications across diverse domains, including scheduling [7],
planning [37]], and transportation [3]]. The branch-and-bound (B&B) method [28]] represents the
predominant solution methodology for MILPs in practice. This approach begins with the relaxation
of the original problem and iteratively branches on variables that violate integer constraints. By
maintaining global upper and lower bounds, the method progressively converges toward an optimal
solution. Many high-performance MILP solvers such as SCIP [6]] and Gurobi [17] employ the B&B
framework as their core solution architecture.

Within the B&B framework, the selection of branching variables plays a critical role in determining
computational efficiency. To this end, learning-based branching methods have been proposed [[12} |15}
16}, 40]: by constructing a bipartite graph that incorporates instance features and intra-tree dynamic
features, and utilizing graph convolutional networks (GCNN) [12] for state encoding. Nevertheless,
reliance on instance-specific features restricts their generalization to heterogeneous MILP instances.
To enable cross-instance adaptability, recent approaches have focused on parameterizing the B&B
tree to construct a shared feature space independent of specific problem data. For example, Zarpellon
et al. [48] develop a parameterized B&B tree framework to create a shared feature space, decoupling
branching decisions from instance-specific features. Further advancing this approach, T-BranT [31]
evaluates the mutual connections between candidate variables by the self-attention mechanism and
employs Graph Attention Networks to encode the empirical branching history in the search tree.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/Mamba-Branching-B4B4/

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90

However, existing works universally overlook the sequential nature inherent in B&B tree expansion. In
this paper, our key insight lies in that the “branching path” from the root node to the optimal solution
node essentially constitutes a serialization process. This “branching path”, which encompasses
the parameterized tree states and corresponding branching variables from each preceding step,
significantly influences the current branching decision. While T-BranT incorporates historical data,
it models the tree from an unordered graph perspective, failing to explicitly capture this essential
sequential nature. Effectively modeling this sequential nature presents two key challenges: (1) Design
of long sequence modeling architectures. The sequence model must simultaneously capture inter-step
dependencies and intra-step candidate variable relationships. Given that each state comprises multiple
candidate variables, the length of the sequence input will increase exponentially with the number of
branching steps. Therefore, it is essential to develop specialized architectures that can accommodate
ultra-long sequences. (2) Construction of discriminative feature embeddings. An embedding layer
needs to be designed to map the features of candidate variables into a high-dimensional vector space
with high discriminative power. This will enable the sequence model to effectively discern the
dynamic evolution patterns of different variables.

To address these challenges, we propose Mamba-Branching. Mamba [14, 8] is a novel network
architecture characterized by its computational complexity that scales linearly with sequence length.
This represents a significant improvement over the quadratic complexity associated with Transform-
ers [43], making Mamba particularly well-suited for addressing challenge (1). Meanwhile, inspired
by CLIP [38]], we employ contrastive learning to train the embedding layer prior to the overall
imitation learning process, effectively tackling challenge (2). Experimental results demonstrate that
Mamba-Branching outperforms all neural branching baselines across all real-world instances and
achieves superior solving efficiency over the advanced open-source solver SCIP’s default branching
rule on challenging instances.

2 Related Work

Learning-based approaches for accelerating MILP solving can be mainly divided into two
paradigms [J5, [39]]: replacing heuristic rules with neural networks within exact solution frame-
works and employing neural networks as primal heuristics. Research under the first paradigm
includes addressing branch variable selection [[12} 1516} 40l 25| 26] and node selection [[19} 27, 49]
problems within the B&B framework, as well as tackling cut selection issues in cutting-plane al-
gorithms [42) 22| 45]]. These methods solely employ neural networks to replace heuristic rules
within exact solution frameworks, without compromising solution exactness. The second paradigm
aims to efficiently produce high-quality feasible solutions—rather than exact solutions—to tighten
the primal bound early in the process. A high-quality primal bound enables the B&B to eliminate
a significant number of non-promising nodes at an early stage through its pruning process. This
typically involves two key aspects: solution prediction [9, 36} 24, (18], 21}, 133] and neighborhood
selection [46) 41| 20, 47]. The solution prediction approach typically employs neural networks to
predict optimal solutions, then uses these predictions to guide the search process. Neighborhood
selection starts from a feasible solution and fixes a subset of integer variables while optimizing the
remainder, with neural networks selecting which variables to fix.

Our work focuses on the generalization of neural branching variable selection policies, particularly
their ability to handle heterogeneous MILPs different from training instances. These approaches
can be mainly divided into two categories: parameterizing the B&B tree and diversifying training
instances. The first category aims to learn branching policies within a shared feature space across
different MILP instances. TreeGate [48] processes instance-independent features through a special-
ized neural architecture designed for branching decisions. Building on this, T-BranT [31]] retains
historical data, modeling it as a graph structure processed by Graph Attention Networks for current
decision-making. The second category focuses on generating diverse instances and incorporating
them into the training of branching policies to enhance their generalization. AdaSolver [32] intro-
duces adversarial instance augmentation, which generates more diverse instances in directions that
hinder policy training. Meanwhile, MILP-Evolve [30] proposes a novel LLM-based evolutionary
framework capable of generating a large set of diverse MILP classes with an unlimited number of
instances. Specifically, our method falls into the first category. Using instance-independent features
as input, we also incorporate the sequential nature of the B&B tree into the decision-making process.

92

93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

131
132
133
134
135

137
138
139
140

3 Preliminaries

3.1 B&B Algorithm and Branching Rules

B&B Algorithm. The standard form of MILPs is: arg miny {ch | Ax < b,x € ZP X]R”*p} ,
where the vector x represents n variables to be optimized, with p being the number of integer variables.
A b, c represent constraint matrix, constraint right term, and objective coefficient. For MILPs, an
exact solution framework commonly used is B&B. This method first ignores the integer constraints
to obtain and solve the relaxed problem at the root node. Subsequently, it iteratively searches for the
global optimal solution through branching, bounding, and pruning. Branching involves selecting a
variable with a fractional solution ; = b; at the current node and adding the constraints z; < [b;]
and x; > [b;] + 1 to form two child nodes. During bounding, the global upper and lower bounds
(also known as the primal and dual bounds) are determined based on all existing nodes. The pruning
process eliminates obviously infeasible nodes according to these bounds. This procedure repeats
until the upper and lower bounds converge, yielding the global optimal solution.

Branching Rules. Here, the branching variable selection during B&B significantly impacts solving
efficiency by influencing tree size. In [2], several heuristic branching rules are introduced. Among
them, strong branching evaluates candidate variables by creating child nodes for each candidate and
selecting the one maximizing dual bound improvement. While highly effective, this approach incurs
significant computational overhead that counteracts its benefits for solution speed. Pscost branching
guides current branching by leveraging historical branching records, avoiding extra computation but
performing poorly early in the search tree due to insufficient branching records. Hybrid approaches
combine both methods’ advantages by using strong branching initially to establish reliable branching
patterns, then transitioning to pscost branching once sufficient historical data is accumulated. The
state-of-the-art (SOTA) relpscost branching [1]], SCIP’s default rule, implements this strategy—a
variable’s pscost is only considered trustworthy after undergoing sufficient strong branching steps.

3.2 Parameterized B&B Tree

To parameterize the B&B tree and obtain instance-independent features for heterogeneous MILP
problems, Zarpellon et al. [48] design a state representation s; = (C;, Tree). Here, Cy € RIC:1%25
denotes candidate variable features, and Tree; € R°! represents tree features, where C, denotes
candidate variable set and |C;| represents candidate variable number. Since all features reflect the
dynamic process of B&B trees, all MILP instances can be processed uniformly in the same feature
space by a neural network named TreeGate, which jointly processes candidate and tree features
through two components: a candidate network and a tree network. The candidate network first
embeds each variable’s 25-dimensional features into an h-dimensional space, then progressively
reduces the dimensionality from A to d through multiple layers that halve the dimension at each step.
Meanwhile, the tree network projects the tree features T'ree; into an H-dimensional space (where
H = h+ h/2+ ...+ d) using a sigmoid activation to produce a gating vector g € [0, 1]*. This
gating vector modulates the candidate network’s layer outputs through element-wise multiplication.
The final output e; € RIC:/*< undergoes average pooling across the d-dimensional features, then
being processed by a softmax layer to generate the candidate variable selection probabilities.

4 Methodology

In this section, we formally introduce Mamba-Branching, a neural branching policy specifically
designed to capture the sequential structure of B&B trees. We begin by discussing the contrastive
learning approach utilized for the embedding layer and the detailed design of the sequence inputs,
followed by the detailed implementation of imitation learning. The overall framework of Mamba-

Branching is illustrated in

4.1 Contrastive Learning for Embedding Layer

The embedding layer serves as a critical interface between raw state representations and downstream
sequence models. In natural language processing (NLP), the success of embedding techniques
has been well-established. These methods leverage the inherent distinguishability of discrete word
tokens, where each word’s unique identity naturally translates to separable embedding vectors through

141
142
143
144
145
146
147
148

149
150
151
152
153
154

155

156
157

158
159
160

161
162
163

164
165
166

“Step 2. Imitation Learning B

1 \Y V 1
1 o Avg Pooling o IR
[pmmmm L == £ <—EC“’SS ar and |||||m op eRICrxe |
' Similar % &__Not Similar M 'y ntropy ;
| 1T 1 tal I] :
i i ag m i i1 !
e e {efli#ayi€C) |1} :
i i :
K | . MaxfPooling oth | e Sequence Model (Mamba) ;
i xpert ther i i
| [CeIxd i :
i Embedding Sl Embeddings D H 4 1
¥ 4 b Pos Ids Pos Ids Poslds !
[» Embedding il 0,..,00 t ot t T,.,T |
1 Layer i + + T + ¥ ;
i t L oed, ---,el,c"',e{,*" et, ... elct‘ et ex, ...,e;.ch i
' s¢ = (Cy, Treey) 0 ! 1 :
,, £ TTTTIORRR Pe> Embedding Layer

—» Data Flow i B&B Tree | :
| m——— » Gradient Flow | _— (S0, @0y +++» St Aty +ve, ST) /

Figure 1: Overall framework of Mamba-Branching. The training process involves two stages:
contrastive learning and autoregressive imitation learning. During the contrastive learning process,
the state s; and expert decision a; at each branching step ¢ are used to train the embedding layer
via the designed contrastive loss function £.. During imitation learning, the branching trajectory

(80, ao, --., s7) is mapped to embeddings. At step ¢, expanded variable embeddings (e}, ... eLct‘)

and expert embedding ef* form a group with shared positional encoding. These groups create a
“branching path” input to the sequence model, where only outputs o; corresponding to the variable
embeddings are selected, with a; serving as the label for imitation learning.

standard training paradigms. [4} 35] However, the branching variable selection problem in B&B
presents a fundamentally different challenge. The state representation at each branching step ¢,
denoted as s; = (Cy,Tree;) (see , contains a set of candidate variables C; that
frequently exhibit remarkably similar feature characteristics. This high degree of intra-step similarity
arises from the shared constraints and problem structure inherent in combinatorial optimization
problems. Unlike the clear distinctions between words in NLP tasks, the subtle but decision-critical
differences between candidate variables in B&B require a more sophisticated approach to embedding
learning.

To address this challenge, we develop a principled framework for learning discriminative embeddings
in B&B decision making. The core of our approach lies in recognizing that effective branching
decisions require the embedding space to maintain consistent separation between selected and non-
selected variables. We formalize this requirement through Proposition[I} This condition specifies that
the similarity between the selected variable’s embedding and a reference vector must exceed all other
candidate similarities by a positive margin 4.

Proposition 1. For effective branching decisions, the embedding space must satisfy:

Vt, 30 > 0 s.t. sim(ef,ef”) > mjxum(et,et)+, ()

where sim(-) is a similarity judgment function, e; denotes embeddings, e}* is an anchor, a denotes
the selected variable index.

To this end, before joint training, we first employ contrastive learning to train the embedding layer,
enhancing its ability to differentiate between distinct candidate variable features. The loss function of
contrastive learning is defined as L., with the specific form as follows:

1

1 .
7 2 e Tes |ct|—1Z

L(v) =
t 2 e

(@)

where 7y denotes the parameters of TreeGate, 7" denotes the total number of branching steps, e; =
TreeGate., (s;), ef* € R is the result of applying max-pooling to e, along the |C;| dimension,
e € R%.

The intuition behind this loss function design is to make the selected branching variable the most
prominent and distinctive among all candidate variables. The max-pooling operation extracts a salient
global feature as an anchor. By increasing the cosine similarity between the anchor and the selected

167
168
169

170

171
172
173
174
175
176
177
178
179

180
181
182
183
184
185

186
187
188

190

191
192
193

194
195

196

197

198
199

200

201
202
203
204
205
206
207
208
209

branching variable while decreasing the cosine similarity between the anchor and other candidate
variables, the loss amplifies their differences and drives the feature of the selected branching variable
toward the globally most salient direction.

4.2 Sequential Modeling Design

In B&B tree, nodes are progressively expanded until the upper and lower bounds converge. This
process can be viewed as navigating through a complex maze to find a “branching path” from the
root node to the optimal solution node. Traditional neural approaches to branching decisions have
predominantly relied on the immediate state of the tree, neglecting the historical sequence of visited
nodes and prior branching choices. This myopic perspective is fundamentally limiting, as it fails to
leverage the rich sequential information inherent in the branching process. Just as an effective maze-
solving strategy requires reasoning about the entire traversed path to avoid dead ends and redundant
exploration, optimal branching decisions demand a holistic understanding of the search trajectory.
This underscores the imperative for a paradigm shift toward path-aware sequential modeling.

To effectively model branching decisions, the sequence model must capture not only the sequential
progression of states but also the intricate interrelationships among candidate variables within each
state. Therefore, we explicitly encode the features of each candidate variable at all branching steps.
We formally define the branching path S as a structured sequence of embeddings, where each state
at step ¢ is decomposed into its constituent candidate variables along with the selected branching
decision. Specifically, S is represented as:

_ 1,1 [Col _ao 1 Ct] a 1 |Cr|
S=1eg,-- 1€y 1 €0° sy € e, e 3)

[Col+1 [Ce|+1 [Cr|

where |C;| denotes the number of candidate variables at branching step ¢, a; represents the index of
the selected branching variable, e; denotes the embedding feature, and 7" is the maximum number of
branching steps in the branching path. This formulation ensures that both the sequential dynamics
and the variable-level interactions are preserved, enabling the model to leverage granular features for
improved decision-making.

To ensure temporal coherence across branching steps, we employ positional encodings that assign
identical positional indices to embeddings within the same step. The complete input representation S’
is constructed by combining the branching path S with a learnable positional encoding matrix E,:

pos =1[0,...,0,0,...,T,....T],
——— ——
ICol +1 izl 4
S/ = Epos EBS,

where @ denotes element-wise addition, E,,s € ROZ{0 1€ +T)xd represents the learnable positional
encoding matrix obtained by mapping pos.

Subsequently, S’ is fed into Mamba to obtain the output O;:
O; = Mamba(S’)

5)
1 c 1 Ct 1 c (
= [00,...,0(|)°|,08°,~- ,ot,...,olt ",O?‘,~~ ,oT,..‘,o‘TT‘],

within each group, only the outputs corresponding to |C;| variable positions are extracted, denoted as
o = (0p,..., olfctl), which are then processed through average pooling and softmax to obtain the

variable probability distribution.

It can be observed that for the branching path S, the sequence model actually needs to process an input

length of Z;T:O |C:| +T'. When either T or |C;| becomes large, the length of S increases substantially,
presenting significant challenges to the sequence model’s ability to handle long sequences. Therefore,
in addition to employing the most commonly-used Transformer Decoder as our sequence model, we
also utilize Mamba [[14]] (see [Appendix Alfor architectural details). In contrast to the Transformer’s
quadratic complexity, Mamba achieves linear complexity relative to sequence length, making it
unequivocally better suited for such long-sequence application scenarios. This is particularly critical
in our application, where computational speed is paramount. If the neural branching policy’s inference
complexity becomes excessively high and computationally prohibitive, it would fundamentally
undermine our original objective of acceleration.

210

211
212
213
214
215
216
217

218
219

220
221
222
223

224

225

226

227
228
229

231
232
233
234
235

237

238

240
241
242

243

244
245
246
247
248
249
250

251
252
253
254

255
256

4.3 Imitation Learning under Autoregressive Paradigm

Following prior works [48l 31]], we employ relpscost branching as the expert to collect demon-
stration datasets for imitation learning. In contrast to the commonly employed strong branching
expert [[12,[15]], which are rarely applied in practical scenarios, relpscost provides a more realistic
expert representation. For dataset collection, each instance is solved using SCIP. We sequentially
record every state in the instance’s tree along with the corresponding relpscost-selected branching de-
cisions, resulting in a complete trajectory denoted as (sg, ao, S1, a1, - . .). In dataset D, each instance’s
trajectory is partitioned into fixed-length sub-trajectories for storage.

In Mamba-Branching, the branching policy is defined as 7y, which operates in an autoregressive
paradigm. The joint loss function £(6,~) of embedding layer and sequence model is as follows:

1
L(0,7) = —ﬁ Z Z log g (at|T0:t), (6)

TED (s¢,at)ET

where 7 denotes a trajectory in D, 7o.; = (S0, ag, - - -, at—1, St), and |D| represents the total number
of trajectories in D. During inference, the predictions from previous branching steps serve as input
for the current step, yielding the probability distribution 7y (+|7o.;) over candidate variables, where
To:t = (80, G0, -+ -, At —1, 5¢)-

S Experiments

5.1 Setup
5.1.1 Benchmarks

MILP dataset. Our method is designed to maintain generalization capability across heterogeneous
MILPs. Therefore, the training and test instances are deliberately constructed to be distinct, with
the strict requirement that the test set should not contain any instances present in the training set.
Following the selection of instances from previous works [48}31]], we construct two MILP datasets
of different scales using instances from MIPLIB [[13] and CORAL [29]: a smaller-scale dataset
(MILP-S) and a larger-scale dataset (MILP-L). The MILP-S is entirely derived from [48]], comprising
19 training instances and 8 test instances. MILP-L is constructed by expanding the dataset used
in [31], containing 25 training instances and 73 test instances. For MILP-L’s test instances, we
employ SCIP as the reference solver, categorizing 57 instances with solution times under 20 minutes
as "easy" and 16 instances exceeding 20 minutes as "difficult". The details of MILP-S and MILP-L

are provided in

Branching Dataset Collection. During data collection, consistent with previous works [48.31]], we
employ random branching for the first r steps to enhance B&B exploration. After these » random
steps, we switch to relpscost branching and collect the corresponding data. For each training instance,
we configure » € {0,1,5,10,15} and collect training set using solver seeds {0, 1,2, 3}, while
reserving seed 4 exclusively for validation set.

5.1.2 Maetrics

Nodes and Fair Nodes. The number of nodes in the B&B tree serves as a crucial metric for evaluating
branching policies, as it directly impacts overall solving time. However, as noted in [10]], this metric
may be confounded by side effects of some sophisticated branching rules, such as strong branching.
We therefore additionally employ the fair node number [10], which eliminates the confounding effects
of these rules, thereby providing a more accurate reflection of the true capability of a branching
policy. For branching policies that do not use strong branching, the number of nodes and fair nodes
remains identical.

Primal-Dual Integral. For some challenging instances in MILP-L, obtaining optimal solutions may
be computationally prohibitive, so a one-hour time limit is imposed. Under this constraint, node
number becomes an inadequate metric for evaluating the performance of branching policies. In such
cases, the primal-dual integral (PD integral) serves as a more appropriate evaluation criterion [[11]].

With a time limit 77, the PD integral is expressed as ft:lo c'xy — y7 dt, where y; is the best dual
bound at time ¢, x; is the best feasible solution at time ¢.

269
270
271
272
273

274
275
276
277
278
279

280

281

282
283
284

286
287
288
289
290

291
292
293
294
295
296

5.1.3 Baselines

We select two categories of branching policies as baselines: neural-based approaches and heuristic
rules. The neural branching policies include: GCNN [12], TreeGate [48]], T-BranT [31], and
Transformer-Branching. GCNN is the most classical method and does not incorporate specific
designs for heterogeneous MILPs. TreeGate and T-BranT are also based on instance-independent
inputs, serving as the primary baselines for comparison with Mamba-Branching. Transformer-
Branching employs Transformer as the sequence model to highlight Mamba’s advantages. The
heuristic rules include random, pscost, and relpscost, where random and pscost represent the lower
bounds of performance, relpscost serves as the expert and constitutes the upper bound of branching
performance. However, neural branching policies may surpass relpscost in solving efficiency. More
detailed reasons for the selection of baselines can be found in[Appendix C|

5.1.4 Solver and Neural Policy Settings

Solver Settings. In our evaluation, we replace SCIP solver’s (v8.0.4) branching policy with our
neural branching policy. To isolate the study of branching policies and eliminate interference from
other solver components, we disable all primal heuristics and provide each test instance with a known
optimal solution value as a cutoff. However, during branching data collection, we intentionally omit
the cutoff to obtain longer branching sequences.

Neural Policy Settings. During Mamba-Branching training, the maximum branching step is T = 99,
but as shown in its corresponding actual input length is considerably long. When
using the Transformer as the sequence model, this length causes excessive GPU memory consumption
that exceeds hardware limitations, thus 7' = 9 is adopted during Transformer-Branching training.
For evaluation consistency, we employ autoregressive generation with 7' = 24 across all models.
Additional implementation details and hyperparameters can be found in[Appendix D}

Table 1: The experimental results on MILP-S. For the 8 test instances in MILP-S, each instance is
evaluated with five random seeds {0,1,2,3,4} under a 1-hour time limit, and the results are presented

as geometric means. Among them, blue background indicates the best results, bold font indicates
the best results in neural policies, and * denotes reaching the time limit.

Method Mamb‘a TreeGate Transformer T-BranT GCNN random pscost relpscost
-Branching -Branching
Nodes 205499 2171.31 3078.56 2668.62 33713.63* 61828.29* 4674.34 730.21

Fair Nodes ~ 2077.55 2205.06 3120.04 2715.16 33713.63* 61828.29* 4674.34 1227.25

5.2 Branching Performance
5.2.1 MILP-S

The experimental results in MILP-S can be found in[Table 1] with the fair node results of all neural
branching policies per instance shown in [Figure 2| The single-step inference time comparison
between Transformer and Mamba is shown in|Figure 3| Notably, T-BranT necessitates at least one set
of historical data, prompting the use of relpscost at the root node. This precise branching decision at
the root significantly influences overall performance. For the sake of consistency, Mamba-Branching,
TreeGate, and Transformer-Branching also employ relpscost at the root node, with Mamba-Branching
and Transformer-Branching further leveraging it to initialize their input sequences. To evaluate the
performance of pure neural branching, we additionally test variants that do not utilize relpscost
initialization: TreeGate-p, Mamba-Branching-p, and Transformer-Branching-p, as shown in

It can be observed that Mamba-Branching is the best branching policy besides relpscost. First,
Mamba-Branching significantly outperforms the three lower-bound references: GCNN, random, and
pscost. Compared with several neural branching policy baselines, whether initialized with relpscost
or purely neural-based, Mamba-Branching surpasses T-BranT, TreeGate, and Transformer-Branching,
achieving a new SOTA for neural branching policies. Additionally, in terms of single-step inference
time, Mamba significantly outperforms Transformer, highlighting its advantage as a sequence model.

297

298
299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314

315

316
317

319
320

321
322
323
324
325
326
327
328
329

330
331
332

s Mamba Transformer
I Mamba I T-BranT
@@ TreeGate I Transformer A 0.39
I 0.0013
g-mean 6‘\" 0.017
seymourl ns1830653 < o M 0.00079
R 0.37
. ‘;lf’ ~> [l 0.00092
mine-166-5 o & & 019
v Fo
\\, g & 0.00093
AV 0.015
R\~ = & ®
\~ = it 1507 2 & 0.001 .
— S—— Bt .
=/ \\\ &e"o’ 0.00093
mapl8 / o 0.041
J o & [l 0.00089
7'M\ nu25-pr12 & N0 0.013
Z & & Wo.00078
) & o
neos18 P T 102 0T
9

neosll

Figure 2: The fair node results of all neural

branching policies in MILP-S.

5.2.2 MILP-L

In MILP-L, we further evaluate several
methods that demonstrated strong perfor-
mance in MILP-S, including TreeGate, T-
BranT, Mamba-Branching, and relpscost.
For the 57 easy instances, performance is
assessed using both nodes and fair nodes.

Inference Time (seconds, log scale)

Figure 3: The inference time comparison between
Mamba and Transformer in MILP-S.

Table 2: The experimental results on MILP-L. Con-
sistent with the experiments on MILP-S, all instances
are evaluated with 5 random seeds under a 1-hour
time limit, with results reported as geometric means.
Blue background indicates the best results and bold

font indicates the best results in neural policies.

In contrast, for the 16 difficult instances,
we use the PD integral with a 1-hour time

.. - . Eas Difficult
limit as the evaluation metric. The results ~Method y-
are presented in Nodes Fair Nodes PD Integral
The results demonstrate that for easy Mamba-Branching 1819.32 2053.91 12319.55
. . TreeGate 2218.29 2534.09 14625.68
MILPs, despite the expanded test instances
d to MILP-S. Mamba-B hi T-BranT 2009.77 2298.76 13538.47
compared to -, V1amba-Branching — o;,qcqqt 667.93 145549 12741.36

remains the best neural branching policy,
but still inferior to relpscost. For difficult instances, Mamba-Branching achieves the best PD integral
performance among all branching policies, even surpassing relpscost. This indicates that within the
same time limit, Mamba-Branching enables the fastest convergence of primal and dual bounds.

5.2.3 Discussion

Advantage of Sequential Nature. First, Mamba-Branching consistently outperforms TreeGate and
T-BranT across all scenarios due to its consideration of the sequential nature of B&B trees. Neither
TreeGate (which completely ignores historical data) nor T-BranT (which utilizes historical data non-
sequentially) achieves the effectiveness of sequential historical data utilization. This aligns with our
maze analogy in[subsection 4.2} sequentially recalling paths facilitates better current decision-making.

Limitation of Transformer. Transformer-Branching also leverages sequential nature but performs
poorly, with Transformer-Branching-p even underperforming the lower-bound pscost. The subop-
timal performance stems from its 10-step branching history limit during training (due to hardware
constraint), while Mamba-Branching accommodates 100 steps. Furthermore, the inference time
comparison in demonstrates that in our time-sensitive scenario aimed at reducing solving
time, Transformer is entirely unsuitable as a branching policy. The underlying reason here is that
Transformer’s complexity is quadratic with respect to sequence length, while Mamba’s is linear.
Although Transformer is theoretically suitable as a sequence model, employing Mamba offers greater
practicality and feasibility. A more detailed comparison can be found in

Factors Outperforming Relpscost. As for relpscost, Mamba-Branching does not outperform in easy
instances but surpasses it in difficult ones. The reason can be summarized as follows: (1) Relpscost
is a hybrid method combining strong and pscost branching, incorporating a reliability criterion: a

333
334
335
336
337
338
339
340

341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

360
361
362
363
364
365

366

367
368
369
370
371
372
373
374
375

Table 3: On MILP-S, the results of pure neural branching policies TreeGate-p, Transformer-Branching-
p, and Mamba-Branching-p, as well as Mamba-Branching-p without contrastive learning (w/o cl).
The experimental setup remains consistent with the aforementioned configuration on MILP-S.

Method

Nodes
Fair Nodes

Mamba-Branching-p Mamba-Branching-p (w/o cl) Transformer-Branching-p TreeGate-p

227243 3000.92 5138.15 3179.55
2272.43 3000.92 5138.15 3179.55

variable can only switch to pscost after being selected by strong branching a certain number of times.
Therefore, for difficult instances with more variables, the initialization process is time-consuming,
leading to potential inefficiency. In contrast, neural policies benefit from fast inference and exhibit
advantages on difficult instances. (2) In relpscost, the use of pscost for leveraging historical data
does not account for the sequential nature, whereas Mamba-Branching explicitly incorporates this
consideration. (3) As mentioned in [48], the relpscost in SCIP has been fine-tuned for a large number
of instances, resulting in excellent performance on easy instances. However, for more complex and
challenging instances, such parameter tuning may not provide adequate coverage.

5.3 Ablation Study

In this section, an ablation experiment is :
conducted to verify the role of contrastive
X . . 300
learning. First, the most straightforward
comparison is to evaluate the branching 200 .
performance difference when contrastive SRS S
learning is applied or not to the embed- 4, : ’
ding layer. Under pure neural branch- ., *
ing, the results on MILP-S without and ol %
with contrastive learning are denoted as " * < .
Mamba-Branching-p (w/o cl) and Mamba- -100 : c* Seee
Branching-p, respectively, as shown in[Ta] o CL candidates ’ ., °
Meanwhile, to demonstrate that —2007 % CLexpert .
contrastive learning indeed achieves its in- > No-CL candidates ¢,
tended effect, that is, making the feature of ~—300{ * No-CL expert .
expert-selected variable more distinguish- 200 -100 0 100 200 300

able compared to other candidates, we also
visualize the t-SNE-reduced [34] embed-
dings, as shown in

First, in terms of branching performance, Mamba-Branching-p demonstrates superior results com-
pared to its counterpart without contrastive learning, Mamba-Branching-p (w/o cl). The visualization
then reveals that with contrastive learning, the expert-selected variable exhibits greater outlier char-
acteristics and enhanced discriminability relative to other candidate variables. In contrast, without
contrastive learning, the expert-selected variable becomes less distinguishable and tends to cluster
near candidate variables.

Figure 4: At a random given state, the embeddings with
and without contrastive learning.

6 Conclusion and Future Work

In this paper, we propose Mamba-Branching, the first approach to consider the sequential nature in
B&B trees. To address the challenges of long sequences and embedding distinctiveness posed by
sequential nature, we employ Mamba as the sequence model and design a contrastive learning method
to train the embedding layer, enabling the sequence model to distinguish between different candidate
variables. In experiments, Mamba-Branching outperforms all neural branching policies and achieves
superior solving efficiency compared to relpscost on challenging instances. One limitation of our
approach is the reliance on imitation learning, which requires a time-consuming collection of expert
demonstrations. In future work, we will focus on investigating the potential of sequential nature in
reinforcement learning-based branching policies, thereby eliminating the dependency on expert data.

376

377

379

380
381

382
383

384
385
386

388
389
390
391

392
393
394
395
396
397
398

399
400

401
402

403
404

406
407

408
409
410

411
412
413
414
415
416
417
418
419
420

421
422
423

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Achterberg, T.: Scip optimization suite documentation: Reliable pseudo costs branching rule.
SCIP Optimization Suite Documentation (2025), https://www.scipopt.org/doc/html/
branch__relpscost_8h.php, accessed: 2025-04-27

Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters
33(1), 42-54 (2005)

Barnhart, C., Laporte, G.: Handbooks in operations research and management science: Trans-
portation. Elsevier (2006)

Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Leen,
T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems.
vol. 13. MIT Press (2000), https://proceedings.neurips.cc/paper_files/paper/
2000/file/728£206c2a01bf572b5940d7d9a8fadc-Paper . pdf

Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research 290(2),
405-421 (2021). https://doi.org/https://doi.org/10.1016/j.ejor.2020.07.063, https://wuw,
sciencedirect.com/science/article/pii/S0377221720306895

Bolusani, S., Besancon, M., Bestuzheva, K., Chmiela, A., Dionisio, J., Donkiewicz, T., van
Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Halbig, K., Hedtke, 1.,
Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K., Lentz, J., Manns,
J., Mexi, G., Miithmer, E., Pfetsch, M.E., Schlosser, F., Serrano, F., Shinano, Y., Turner,
M., Vigerske, S., Weninger, D., Xu, L.: The SCIP Optimization Suite 9.0. Technical re-
port, Optimization Online (February 2024), https://optimization-online.org/2024/
02/the-scip-optimization-suite-9-0/

Chen, Z.L.: Integrated production and outbound distribution scheduling: review and extensions.
Operations research 58(1), 130-148 (2010)

Dao, T., Gu, A.: Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In: International Conference on Machine Learning ICML) (2024)

Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Acceler-
ating primal solution findings for mixed integer programs based on solution predic-
tion. Proceedings of the AAAI Conference on Artificial Intelligence 34(02), 1452-1459
(Apr 2020). https://doi.org/10.1609/aaai.v34i02.5503, https://ojs.aaai.org/index.php/
AAAT/article/view/5503

Gamrath, G., Schubert, C.: Measuring the impact of branching rules for mixed-integer program-
ming. In: Kliewer, N., Ehmke, J.F., Borndorfer, R. (eds.) Operations Research Proceedings
2017. pp. 165-170. Springer International Publishing, Cham (2018)

Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat, D., Chmiela, A.,
Dumouchelle, J., Gleixner, A., Kazachkov, A.M., Khalil, E., Lichocki, P., Lodi, A., Lubin,
M., Maddison, C.J., Christopher, M., Papageorgiou, D.J., Parjadis, A., Pokutta, S., Prouvost,
A., Scavuzzo, L., Zarpellon, G., Yang, L., Lai, S., Wang, A., Luo, X., Zhou, X., Huang, H.,
Shao, S., Zhu, Y., Zhang, D., Quan, T., Cao, Z., Xu, Y., Huang, Z., Zhou, S., Binbin, C.,
Minggui, H., Hao, H., Zhiyu, Z., Zhiwu, A., Kun, M.: The machine learning for combinatorial
optimization competition (ml4co): Results and insights. In: Kiela, D., Ciccone, M., Caputo, B.
(eds.) Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track. Proceedings
of Machine Learning Research, vol. 176, pp. 220-231. PMLR (06—14 Dec 2022), https:
//proceedings.mlr.press/v176/gasse22a.html

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization

with graph convolutional neural networks. Advances in neural information processing systems
32 (2019)

10

https://www.scipopt.org/doc/html/branch__relpscost_8h.php
https://www.scipopt.org/doc/html/branch__relpscost_8h.php
https://www.scipopt.org/doc/html/branch__relpscost_8h.php
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://ojs.aaai.org/index.php/AAAI/article/view/5503
https://ojs.aaai.org/index.php/AAAI/article/view/5503
https://ojs.aaai.org/index.php/AAAI/article/view/5503
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

424
425
426
427
428
429

431
432

433
434

435
436
437

438

440
441
442
443

444
445
446
447
448

449
450
451

452
453
454

456

457
458
459
460

461
462

464
465
466

467
468
469
470

471
472
473
474

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T,
Christophel, PM., Jarck, K., Koch, T., Linderoth, J., Liibbecke, M., Mittelmann, H.D.,
Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Com-
pilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Com-
putation (2021). https://doi.org/10.1007/s12532-020-00194-3, https://doi.org/10.1007/
s12532-020-00194-3

Gu, A., Dao, T.:. Mamba: Linear-time sequence modeling with selective state spaces. In:
First Conference on Language Modeling (2024), https://openreview.net/forum?id=
tEYskwlVY2

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y.: Hybrid models for
learning to branch. Advances in neural information processing systems 33, 18087-18097 (2020)

Gupta, P, Khalil, E.B., Chételat, D., Gasse, M., Lodi, A., Bengio, Y., Kumar, M.P.: Lookback for
learning to branch. Transactions on Machine Learning Research (2022), https://openreview,
net/forum?id=EQpGkwbrvL, expert Certification

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), https://wuw!
gurobi.com

Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R., Luo, X.: A GNN-
guided predict-and-search framework for mixed-integer linear programming. In: The Eleventh
International Conference on Learning Representations (2023), https://openreview.net/
forum?id=pHMpgToxWak

He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound al-
gorithms. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems. vol. 27. Curran As-
sociates, Inc. (2014), https://proceedings.neurips.cc/paper_files/paper/2014/
file/757£843a169cc678064d9530d12a1881-Paper . pdf

Huang, T., Ferber, A., Tian, Y., Dilkina, B., Steiner, B.: Searching large neighborhoods for
integer linear programs with contrastive learning. In: Proceedings of the 40th International
Conference on Machine Learning. ICML’23, JMLR.org (2023)

Huang, T., Ferber, A.M., Zharmagambetov, A., Tian, Y., Dilkina, B.: Contrastive predict-and-
search for mixed integer linear programs. In: Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., Berkenkamp, F. (eds.) Proceedings of the 41st International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 235, pp. 19757-19771.
PMLR (21-27 Jul 2024), https://proceedings.mlr.press/v235/huang24f .html

Huang, Z., Wang, K., Liu, F., Zhen, H.L., Zhang, W., Yuan, M., Hao, J., Yu, Y., Wang, J.:
Learning to select cuts for efficient mixed-integer programming. Pattern Recognition 123,
108353 (2022). https://doi.org/https://doi.org/10.1016/j.patcog.2021.108353, https://www,
sciencedirect.com/science/article/pii/S0031320321005331

Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic
Engineering 82(1), 35—45 (03 1960). https://doi.org/10.1115/1.3662552, https://doi.org/
10.1115/1.3662552

Khalil, E.B., Morris, C., Lodi, A.: Mip-gnn: A data-driven framework for guiding combinatorial
solvers. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 10219—
10227 (2022)

Kuang, Y., Wang, J., Liu, H., Zhu, E,, Li, X., Zeng, J., HAO, J., Li, B., Wu, F.: Rethinking
branching on exact combinatorial optimization solver: The first deep symbolic discovery
framework. In: The Twelfth International Conference on Learning Representations (2024),
https://openreview.net/forum?id=jKhNBulNMh

Kuang, Y., Wang, J., Zhou, Y., Li, X., Zhu, F, HAO, J., Wu, F.: Towards general al-
gorithm discovery for combinatorial optimization: Learning symbolic branching policy
from bipartite graph. In: Forty-first International Conference on Machine Learning (2024),
https://openreview.net/forum?id=ULleqlDtaw

11

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=EQpGkw5rvL
https://openreview.net/forum?id=EQpGkw5rvL
https://openreview.net/forum?id=EQpGkw5rvL
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=pHMpgT5xWaE
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.mlr.press/v235/huang24f.html
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://openreview.net/forum?id=jKhNBulNMh
https://openreview.net/forum?id=ULleq1Dtaw

475
476
477
478

494

500
501
502
503

505
506
507
508

509
510

511
512
513

514
515

517
518
519
520

521
522

[27] Labassi, A.G., Chételat, D., Lodi, A.: Learning to compare nodes in branch and bound with
graph neural networks. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances
in Neural Information Processing Systems (2022), https://openreview.net/forum?id=
OVhrZPJXcTU

[28] Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems.
Springer (2010)

[29] Lehigh University COR@L Lab: Mixed-integer programming benchmark instances (nd),
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/, accessed:
2025-4-30

[30] Li, S., Kulkarni, J., Menache, I., Wu, C., Li, B.: Towards foundation models for mixed integer
linear programming. In: The Thirteenth International Conference on Learning Representations
(2025), https://openreview.net/forum?id=6yENDA7 J4G

[31] Lin, J., Zhu, J., Wang, H., Zhang, T.: Learning to branch with tree-
aware branching transformers. Knowledge-Based Systems 252, 109455 (2022).
https://doi.org/https://doi.org/10.1016/j.knosys.2022.109455, https://www.sciencedirect,
com/science/article/pii/S0950705122007298

[32] Liu, H., Kuang, Y., Wang, J., Li, X., Zhang, Y., Wu, F.: Promoting generalization for ex-
act solvers via adversarial instance augmentation (2023), https://arxiv.org/abs/2310!
14161

[33] Liu, H., Wang, J., Geng, Z., Li, X., Zong, Y., Zhu, F., HAO, J., Wu, F.: Apollo-MILP:
An alternating prediction-correction neural solving framework for mixed-integer linear pro-
gramming. In: The Thirteenth International Conference on Learning Representations (2025),
https://openreview.net/forum?id=mFYOtPDWK8

[34] van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Re-
search 9(86), 2579-2605 (2008), http://jmlr.org/papers/v9/vandermaaten08a.html

[35] Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: Burges, C., Bottou, L., Welling, M.,
Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Sys-
tems. vol. 26. Curran Associates, Inc. (2013), https://proceedings.neurips.cc/paper_
files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper . pdf

[36] Nair, V., Bartunov, S., Gimeno, F., von Glehn, 1., Lichocki, P., Lobov, 1., O’Donoghue, B.,
Sonnerat, N., Tjandraatmadja, C., Wang, P., Addanki, R., Hapuarachchi, T., Keck, T., Keeling,
J., Kohli, P, Ktena, I., Li, Y., Vinyals, O., Zwols, Y.: Solving mixed integer programs using
neural networks (2021), https://arxiv.org/abs/2012.13349

[37] Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming, vol. 149. Springer
(2006)

[38] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from
natural language supervision (2021), https://arxiv.org/abs/2103.00020

[39] Scavuzzo, L., Aardal, K., Lodi, A., Yorke-Smith, N.: Machine learning augmented branch and
bound for mixed integer linear programming. Mathematical Programming pp. 1-44 (2024)

[40] Scavuzzo, L., Chen, F., Chetelat, D., Gasse, M., Lodi, A., Yorke-Smith, N., Aardal, K.:
Learning to branch with tree mdps. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 18514—
18526. Curran Associates, Inc. (2022), https://proceedings.neurips.cc/paper_files/
paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference. pdf

[41] Sonnerat, N., Wang, P., Ktena, 1., Bartunov, S., Nair, V.: Learning a large neighborhood search
algorithm for mixed integer programs (2022), https://arxiv.org/abs/2107.10201

12

https://openreview.net/forum?id=0VhrZPJXcTU
https://openreview.net/forum?id=0VhrZPJXcTU
https://openreview.net/forum?id=0VhrZPJXcTU
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://openreview.net/forum?id=6yENDA7J4G
https://www.sciencedirect.com/science/article/pii/S0950705122007298
https://www.sciencedirect.com/science/article/pii/S0950705122007298
https://www.sciencedirect.com/science/article/pii/S0950705122007298
https://arxiv.org/abs/2310.14161
https://arxiv.org/abs/2310.14161
https://arxiv.org/abs/2310.14161
https://openreview.net/forum?id=mFY0tPDWK8
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/2012.13349
https://arxiv.org/abs/2103.00020
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://arxiv.org/abs/2107.10201

523
524
525

526
527

529
530

531
532
533

535
536
537
538

539

541
542

543
544
545

547
548
549
550

551

553

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming: learning
to cut. In: Proceedings of the 37th International Conference on Machine Learning. ICML’20,
JMLR.org (2020)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I.: Attention is all you need. In: Guyon, 1., Luxburg, U.V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/
paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper. pdf

Wang, X., Wang, S., Ding, Y., Li, Y., Wu, W,, Rong, Y., Kong, W., Huang, J., Li, S., Yang,
H., Wang, Z., Jiang, B., Li, C., Wang, Y., Tian, Y., Tang, J.: State space model for new-
generation network alternative to transformers: A survey (2024), https://arxiv.org/abs/
2404.09516

Wang, Z., Li, X., Wang, J., Kuang, Y., Yuan, M., Zeng, J., Zhang, Y., Wu, F.: Learning
cut selection for mixed-integer linear programming via hierarchical sequence model. In: The
Eleventh International Conference on Learning Representations (2023), https://openreview,
net/forum?id=Zob4P9bRNcK

Wu, Y., Song, W., Cao, Z., Zhang, J.: Learning large neighborhood search policy for integer
programming. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems (2021), https://openreview.net/forum?id=
IaM7U4J-w3c

Yuan, H., Ouyang, W., Zhang, C., Sun, Y., Gong, L., Yan, J.: BTBS-LNS: Binarized-
tightening, branch and search on learning LNS policies for MIP. In: The Thirteenth Interna-
tional Conference on Learning Representations (2025), https://openreview.net/forum?
id=siHHqDDzvS

Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.: Parameterizing branch-and-bound search trees to
learn branching policies. Proceedings of the AAAI Conference on Artificial Intelligence 35(5),
3931-3939 (May 2021). https://doi.org/10.1609/aaai.v35i5.16512, https://ojs.aaai.org/
index.php/AAAT/article/view/16512

Zhang, S., Zeng, S., Li, S., Wu, F, Li, X.: Learning to select nodes in branch and bound
with sufficient tree representation. In: The Thirteenth International Conference on Learning
Representations (2025), https://openreview.net/forum?id=gyvYKLEm8t

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2404.09516
https://arxiv.org/abs/2404.09516
https://arxiv.org/abs/2404.09516
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=IaM7U4J-w3c
https://openreview.net/forum?id=IaM7U4J-w3c
https://openreview.net/forum?id=IaM7U4J-w3c
https://openreview.net/forum?id=siHHqDDzvS
https://openreview.net/forum?id=siHHqDDzvS
https://openreview.net/forum?id=siHHqDDzvS
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://openreview.net/forum?id=gyvYKLEm8t

554

555
556
557
558

559
560

562
563

564
565
566
567
568

569

570
571
572
573
574
575
576

577

578
579
580
581
582
583
584
585
586
587
588

590
591
592

593
594

A Mamba Architecture

Mamba is a novel network architecture based on State Space Model (SSM) that may potentially
replace self-attention-based Transformer models [14}, |8, 144]. SSM is a concept originating from
control theory, with its earliest roots traceable to the classical Kalman filter [23]]. The continuous-time
formulation of SSM can be represented as follows:

a(t) = M(t)z(t) + N(t)u(t)
y(t) = P(t)z(t),

where z(t) € R*, y(t) € R? u(t) € R%. After zero-order hold discretization, the discrete-time
formulation is obtained as follows:

(N

Zy = Mzt_l +Nut (8)
Yyt = Pzt7

where M = exp(AM), N = (AM) ! (exp(AM) —I) - AN, A denotes the step size.

To meet the parallelization requirements of the training process, the SSM can alternatively be
represented as follows:

K = (PN,PMN,...,PM'N)

_ ©))
y=Ksxu.

Mamba builds upon SSM by introducing Selective SSM, which essentially treats N, P and A as

functions of the input while keeping M unchanged. From a control theory perspective, this transforms

the system from time-invariant to time-varying. Furthermore, Mamba incorporates hardware-aware

algorithm design that enables efficient storage of intermediate results through parallel scanning,

kernel fusion, and recalculation.

B Benchmark Details

All training and test instances in MILP-S are listed in The training instances in MILP-L
are presented in All easy test instances in MILP-L are shown in while all difficult
test instances are presented in[Table 9] Here, an instance is considered easy if SCIP’s solving time
is less than 20 minutes; otherwise, it is classified as difficult. These instances are sourced from
MIPLIB [[13] and CORAL [29], all collected from real-world application scenarios, with specific
instance selections referenced to [48]] and [31]. Serving as benchmarks, these instances effectively
reflect the practical significance of neural branching policies in real-world applications.

C Detailed reasons for Baseline Selection

The neural branching policies and their selection rationale are detailed below: (1) GCNN [12]: This
method is not designed for heterogeneous MILPs and performs poorly on unseen MILP instances
outside the training distribution. The experimental results of GCNN highlight the advantage of
instance-independent feature design in terms of generalization. (2) TreeGate [48]]: The TreeGate
network incorporates instance-independent inputs by design, making it suitable for heterogeneous
MILPs. Additionally, since Mamba-Branching’s embedding layer adopts the TreeGate architecture,
TreeGate serves as a critical control group for our method. (3) T-BranT [31]]: Building upon Tree-
Gate’s feature design, T-BranT employs attention to capture mutual connections among candidates.
Meanwhile, T-BranT processes historical data from an unordered graph perspective. The comparison
with T-BranT serves to evaluate whether Mamba-Branching’s sequential processing of historical
data demonstrates superior performance over T-BranT’s unordered graph approach. (4) Transformer-
Branching: When selecting a sequence model for our approach, the Transformer would naturally
be the most immediate consideration. Thus, we include Transformer-Branching as a comparative
baseline against Mamba-Branching, specifically to highlight the advantages of employing Mamba as
the sequence model.

The heuristic rules are selected with the following rationale: (1) Random: Serves as the performance
lower bound, demonstrating the detrimental effects of completely omitting a deliberate branching

14

595
596
597
598
599
600

601

602
603

604
605
606
607
608
609

610
611
612
613
614

6

5

616
617
618
619
620
621
622
623

624
625
626

policy. (2) Pscost: A purely historical data-driven branching method that, like Random, also
establishes a performance lower bound. (3) Relpscost: The expert policy in the imitation learning of
Mamba-Branching. Simultaneously, it is also the SOTA heuristic rule and the default rule in SCIP.
Relpscost serves as the upper bound of decision accuracy for neural branching policies. However,
benefiting from the fast inference speed of neural networks, neural branching policies may surpass
relpscost in terms of efficiency.

D Implementation Details

All experiments in this paper are run on NVIDIA A100-PCIE-40GB GPU and Intel(R) Xeon(R) Gold
5218 CPU. The hyperparameters in the training of Mamba-Branching are shown in

During training, sequences consisting of every 100 branching steps are fed as input to Mamba.
Although the number of candidate variables varies across batches, several hundred candidates
represent a typical scenario. Consequently, the actual input sequence length may extend to tens of
thousands of tokens — a scale that would easily trigger GPU memory overflow if using Transformer
architectures. We therefore adopt Mamba as our sequence model, whose computational complexity
scales linearly with sequence length, to effectively circumvent these hardware limitations.

During inference, the sequence fed into Mamba consists of: (1) states and predicted actions from the
most recent 24 branching steps, and (2) the current state. Unlike the training phase, we deliberately
reduce the number of branching steps to maintain sufficiently short inference latency, thereby reducing
the total solving time. After systematic tuning, we ultimately select 25 branching steps (T_eva=24)
to achieve an optimal balance between branching accuracy and inference speed.

Table 4: The hyperparameters of Mamba-Branching

Name Description Value

Output dimension of the candidate net in TreeGate,

d which is equivalent to the embedding size of Mamba. 8

h Hidden state dimension of the Candidate Net in TreeGate. 64
depth Layer number of Tree Net in TreeGate. 3
batch_size Batch size of Mamba Training 32
Ir_cl Learning rate of contrastive learning. 0.0001
optimizer_cl Optimizer of contrastive learning. Adam
Ir Learning rate of imitation learning. 0.001
optimizer Optimizer of imitation learning. AdamW
wd Weight decay coefficient of imitation learning. 0.01
T_train Maximum branching steps considered during training. 99
T _eva Maximum branching steps considered during evaluating. 24
d_state SSM state expansion factor in Mamba 64
d_conv Local convolution width in Mamba 4
expand Block expansion factor in Mamba 2

E Computational Complexity Comparison between Transformer and Mamba

As is well-known, Mamba exhibits linear complexity with respect to sequence length, while Trans-
former demonstrates quadratic complexity. In this section, we present experimental results that
provide a detailed comparison of the complexity between Mamba and Transformer when employed
as branching policies. Our complexity analysis focuses on two key aspects: space complexity and
time complexity. For space complexity, we compare the GPU memory consumption of Mamba and
Transformer during both training and inference phases. Regarding time complexity, we primarily ex-
amine the inference latency of both models when functioning as branching policies. The experimental
results are shown in

As shown in the experiments, when processing 100 branching steps during training (even with a
batch size of 1), Transformer-Branching fails to train altogether, while Mamba-Branching occupies
minimal GPU memory. During inference, Mamba-Branching demonstrates significantly lower GPU

15

memory consumption and inference time. In contrast, Transformer-Branching not only requires
substantially more GPU memory but, more critically, suffers from prohibitively long inference times.
Since the fundamental purpose of adopting a neural branching policy is to accelerate MILP solving,
such excessive inference time directly contradicts our original objective.

Table 5: A comparison of computational complexity between Mamba-Branching and Transformer-
Branching. During training, we uniformly set T_train=99 with a batch size of 1. For inference, we
consistently use T_eva=24. After collecting 25 Branching steps, we measure the network’s inference
time and GPU memory consumption, take the geometric mean across all test instances of MILP-S.

GPU memory of GPU memory of

Method Train (GB) Inference (GB) Inference Time (s)

Mamba-Branching 0.017 0.013 0.00093

Transformer-Branching out of memory 1.051 0.075

Table 6: All instances in MILP-S.

Instance Variables Constraints Set
air04 8904 823 train
air05 7195 426 train
demulti 548 473 train
eil33-2 4516 32 train
istanbul-no-cutoff 5282 20346 train
1152lav 1989 97 train
Iseu 89 28 train
misc03 160 96 train
neos20 1165 2446 train
neos21 614 1085 train
neos-476283 11915 10015 train
neos648910 814 1491 train
pp08aCUTS 240 246 train
rmatr100-p10 7359 7260 train
rmatr100-p5 8784 8685 train
sp150x300d 600 450 train
stein27 27 118 train
swath1 6805 884 train
vpm?2 378 234 train
mapl18 164547 328818 test
mine-166-5 830 8429 test
neosll1 1220 2706 test
neos18 3312 11402 test
ns1830653 1629 2932 test
nu25-prl2 5868 2313 test
rail507 63019 509 test
seymourl 1372 4944 test

16

Table 7: Training instances in MILP-L

Instance Variables Constraints
30n20b8 18380 576
air04 8904 823
air05 7195 426
cod105 1024 1024
comp?21-2idx 10863 14038
demulti 548 290
eil33-2 4516 32
istanbul-no-cutoff 5282 20346
1152lav 1989 97
Iseu 89 28
misc03 160 96
neoS20 1165 2446
neoS21 614 1085
neos-476283 814 1491
neos648910 11915 10015
pp08aCUTS 240 246
rmatr100-p10 8784 8685
rmatr100-p5 7359 7260
rmatr200-p5 37816 37617
roiSalphalOn8 106150 4665
sp150 x 300d 600 450
stein27 27 118
supportcase? 138844 6532
swath1 6805 884
vpm2 378 234

17

Table 8: Easy test instances in MILP-L , SCIP’s solving time is less than 20 minutes.

Instance Variables Constraints SCIP Solving Time
aflow40b 2728 1442 375.32
appl-2 26871 53467 662.56
bcl 1751 1913 237.68
bell3a 133 123 1.54
bell5 104 91 0.63
biellal 7328 1203 271.30
binkar10_1 2298 1026 47.79
blend2 353 274 0.37
dano3_5 13873 3202 189.77
fast0507 63009 507 150.11
mapl0 164547 328818 515.00
mapl18 164547 328818 250.49
map20 164547 328818 218.78
mik-250-20-75-4 270 195 55.67
mine-166-5 830 8429 36.83
misc07 260 212 28.94
n2seq36q 22480 2565 497.79
neosl1 1220 2706 171.35
neos12 3983 8317 674.23
neos-1200887 234 633 16.46
neos-1215259 1601 1236 110.12
neos13 1827 20852 96.20
neos18 3312 11402 27.63
neos-4722843-widden 77723 113555 864.13
neos-4738912-atrato 6216 1947 304.32
neos-480878 534 1321 52.92
neos-504674 844 1344 114.11
neos-504815 674 1067 34.61
neos-512201 838 1337 42.39
neos-584851 445 661 7.11
neos-603073 1696 992 269.58
neos-612125 9554 1795 43.31
neos-612162 9893 1859 40.85
neos-662469 18235 1085 566.6
neos-686190 3660 3664 61.03
neos-801834 3220 3300 51.71
neos-803219 640 901 32.99
neos-807639 1030 1541 20.52
neos-820879 9522 361 56.56
neos-829552 40971 5153 353.99
neos-839859 1975 3251 64.10
neos-892255 1800 2137 54.07
neos-950242 5760 34224 149.60
ns1208400 2883 4289 111.91
ns1830653 1629 2932 148.27
nu25-prl2 5868 2313 22.01
nw04 87482 36 42.85
p0201 201 133 0.81
pg 2700 125 45.39
ppO8a 240 136 1.44
rai5S07 63019 509 160.55
roll13000 1166 2295 44.27
rout 556 291 39.51
satellites1-25 9013 5996 952.04
seymourl 1372 4944 61.91
sp98ir 1680 1531 92.98
unitcal_7 25755 48939 889.85

18

Table 9: Difficult test instances in MILP-L , SCIP’s solving time is more than 20 minutes.

Instance Variables Constraints SCIP Solving Time
atlanta-ip 48738 21732 3600.00
bab5 21600 4964 2665.41
harp2 2993 112 1642.38
mapl16715-04 164547 328818 2423.74
msc98-ip 21143 15850 3600.00
msppl6 29280 561657 2722.23
n3seq24 119856 6044 3600.00
pigeon-10 490 931 3600.01
bab2 147912 17245 3600.02
bab6 114240 29904 3600.01
neos-4338804-snowy 1344 1701 3600.08
neos-4387871-tavua 4004 4554 3600.00
neos-4647030-tutaki 12600 8382 3600.09
nursesched-medium-hint03 34248 14062 3600.00
opm?2-z10-s4 6250 160633 3600.01
radiationm40-10-02 172013 173603 3600.00

19

631

632

633
634

635

636
637

638

639
640

641
642
643

644
645

646
647

648

649

650

651

652

654

664

674

679

680
681

682

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Methodology and Experiments sections align with the claims made in the
Abstract and Introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation is discussed in the Conclusion and Future Work section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

683

684

685

686
687
688
689
690
691
692
693

694

695

696
697
698

699

700

701

702
703
704
705
706
707
708
709
710
71
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

733

734
735
736

Justification: The paper does not include theoretical results
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The implementation details are described in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

737

738
739

740

741

742
743

744
745
746
747

748
749
750

751
752

753
754
755

756
757

758
759
760

761
762
763

764

765
766

767

768

769
770

771
772
773

774
775

776

777

778

779
780
781
782
783
784
785
786
787

788

Answer: [Yes]

Justification: The anonymous link to the code can be found in Abstract, and code and data
have also been included in the Supplementary Material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details can be found in the Experiments section, Appendix B, and Appendix
C.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Multiple sets of random seeds are considered in the Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

789
790

791
792
793

794
795
796

797
798
799

800
801
802

803

804

805

806

807
808

809
810

811
812
813

814

815
816

817

818

820

821
822

823
824
825

826
827

828

830
831

833

834
835

836

838
839

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes],
Justification: The details are provided in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. Our paper focuses on
accelerating MILP solving using neural networks, with a greater emphasis on the algorithmic
level, and does not entail significant societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

840
841
842
843
844
845
846
847
848
849
850

851
852
853
854

855

856
857
858

860

861

862

863
864
865
866

867
868

869
870
871

872

873
874
875

876

877

878

879
880
881

883

884
885

886
887
888
889

890
891

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code and data.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

892
893

894

895
896

897

898
899

900

901

902
903

905
906
907
908

909

910
911
912

913

914

915

916

917

918
919
920
921
922
923

924
925

926
927
928
929

930

931

932

933

934

935
936
937
938
939
940
941
942

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: Due to time constraints, the code in this paper lacks comprehensive documen-
tation. However, our code is annotated.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

943 16. Declaration of LLLM usage

944 Question: Does the paper describe the usage of LLMs if it is an important, original, or
945 non-standard component of the core methods in this research? Note that if the LLM is used
946 only for writing, editing, or formatting purposes and does not impact the core methodology,
947 scientific rigorousness, or originality of the research, declaration is not required.

948 Answer: [NA]

949 Justification: The core method development in this research does not involve LLMs as any
950 important, original, or non-standard components.

951 Guidelines:

952 * The answer NA means that the core method development in this research does not
953 involve LLMs as any important, original, or non-standard components.

954 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
955 for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	B&B Algorithm and Branching Rules
	Parameterized B&B Tree

	Methodology
	Contrastive Learning for Embedding Layer
	Sequential Modeling Design
	Imitation Learning under Autoregressive Paradigm

	Experiments
	Setup
	Benchmarks
	Metrics
	Baselines
	Solver and Neural Policy Settings

	Branching Performance
	MILP-S
	MILP-L
	Discussion

	Ablation Study

	Conclusion and Future Work
	Mamba Architecture
	Benchmark Details
	Detailed reasons for Baseline Selection
	Implementation Details
	Computational Complexity Comparison between Transformer and Mamba

