Masked Trajectory Models for Prediction, Representation, and Control

Anonymous Authors'

Abstract

We introduce Masked Trajectory Models (MTM)
as a generic abstraction for sequential decision
making. MTM takes a trajectory and aims to re-
construct the trajectory conditioned on random
subsets of the same trajectory. By training with a
highly randomized masking pattern, MTM learns
versatile networks that can take on different roles
or capabilities, by simply choosing appropriate
masks at inference time. For example, the same
MTM network can be used as a forward dynam-
ics model, inverse dynamics model, or even an
offline RL agent. Through extensive experiments
in several continuous control tasks, we show that
the same MTM network —i.e. same weights — can
match or outperform specialized networks trained
for the aforementioned capabilities. Additionally,
we find that state representations learned by MTM
can significantly accelerate the learning speed of
traditional RL algorithms.
1. Introduction

We propose the use of Masked Trajectory Models (MTM)
as a generic abstraction and framework for prediction, rep-
resentation, and control. Our approach draws inspiration
from two recent trends in Artificial Intelligence. The first
is the success of masked prediction, also known as masked
autoencoding, as a simple yet effective self-supervised learn-
ing objective in NLP (Devlin et al., 2018; Liu et al., 2019;
Brown et al., 2020) and computer vision (He et al., 2021).

Masked Trajectory Modeling
Train with random autoregressive mask
Reconstructed

Trajectory
(Output)

Hag Bee :

This task of masked prediction not only forces the model to
learn good representations but also develops its conditional
generative modeling capabilities. The second trend that
inspires our work is the recent success of transformer se-
quence models, such as decision transformers, for reinforce-
ment (Chen et al., 2021; Janner et al., 2021) and imitation
learning (Reed et al., 2022). See Appendix A for additional
background and related work.

Conceptually, MTM is trained to take a trajectory se-
quence of the form: 7 := (Sg,ak, Sk+1,ak+1,-- - St,at)
and reconstruct it given a masked view of the same, i.e.
7 = hy(Masked(T)), where hy(-) is a bi-directional
transformer and Masked(7) is a masked view of 7. For
example, one masked view of the above sequence could
be: (Sg,_ ,_ ,8k41,__,...,S,__) where __ denotes a
masked element. In this case, MTM must infill intermediate
states and actions in the trajectory as well as predict the next
action in the sequence. A visual illustration of our paradigm
is shown in Figure 1.

Our Contributions Our main contribution is the pro-
posal of MTM as a versatile modeling paradigm and pre-
training method. We empirically investigate the capabilities
of MTM on several continuous control tasks including planar
locomotion (Fu et al., 2020) and dexterous hand manipu-
lation (Rajeswaran et al., 2018). We find MTM has many
unique capabilities such as the the ability for a single model
to perform many tasks, training on heteromodal data, learn-
ing good representations, and more.

Inference
Tasks & Masking Patterns

(&7

Future
Prediction

LR Imitation
©; Learning

P

[Bi-Directional Transformer]

o~ State

Masked
Trajectory
(Input)

Brp Ueg

c]

o~ Representation

&

Inverse
Dynamics

Figure 1. Masked Trajectory Modeling (MTM) Framework. (Left) Depiction of the training process where the model is learned to
reconstruct trajectory segments from a randomly masked view of the same. We use a bi-directional encoder and decoder to perform this
masked autoencoding. (Right) A trained MTM model can enable several downstream use-cases by simply changing the masking pattern at
inference time. See Section 2 for discussion on training and inference masking patterns.

Masked Trajectory Models

Raw Trajectory o000 @

mi OB G006
97 mf A¢ a° Af Are
oot AN Co | 80 | O () (o) (=9
F AaF AP aF dp H5p
Modality @ @
Embeddings

Figure 2. Tokenization of the trajectory sequence comprises
three components. A modality specific encoder lifts from the
raw modality space to a common representation space, where we
additionally add timestep embeddings and modality embeddings.
This allows the transformer model to distinguish between different
elements in the sequence.

2. Masked Trajectory Modeling

2.1. Trajectory Datasets

MTM is designed to operate on trajectory datasets that we
encounter in decision making domains. Taking the example
of robotics, a trajectory comprised proprioceptive states,
camera observations, control actions, task/goal commands,
and so on. We can denote such a trajectory comprising of
M different modalities as

T = {(xix%,...x{w), (XlT,ng,...x%/[)}, (1)
where x!" refers to the m'" modality in the t*" timestep. In
our empirical investigations, following prior work (Chen
et al., 2021; Janner et al., 2021), we use state, action, and
return-to-go (RTG) sequences as the different data modali-
ties. Note that in-principle, our mathematical formulation is
generic and can handle any modality.

2.2. Architecture and Masked Modeling

To perform masked trajectory modeling, we first “tokenize”
the different elements in the raw trajectory sequence, by lift-
ing them to a common representation space using modality-

specific encoders. Formally, we compute
z;' = By (x{") Vte[l,T], me [1, M],

where FEy" is the encoder corresponding to modality
m. We subsequently arrange the embeddings in a

1-D sequence of length N = M x T as: T =
(z%,z%,...z{w,...z;”,...qu‘fl).

The self-supervised learning task in MTM is to reconstruct
the above sequence conditioned on a masked view of the
same. We denote the latter with Masked(7), where we ran-
domly drop or “mask” a subset of elements in the sequence.
The final self-supervised objective is given by:

T M
max E, Z Z log Py (z3'| Masked(T)), (2)

t=1 m=1

where Py is the prediction of the model. We train MTM
with a random autoregressive mask, which is described in
more detail in Appendix B.

Architecture and Embeddings We adopt an encoder-
decoder architecture similar to He et al. (2021) and Liu
et al. (2022), where both the encoder and decoder are bi-
directional transformers. We use a modality-specific en-
coder to lift the raw trajectory inputs to a common represen-
tation space for tokens. Further, to allow the transformer to
disambiguate between different elements in the sequence,
a fixed sinusoidal timestep encoding and a learnable mode-
specific encoding are added, as illustrated in Figure 2. The
resulting sequence is then flattened and fed into the trans-
former encoder where only unmasked tokens are processed.
The decoder processes the full trajectory sequence, and uses
values from the encoder when available, or a mode-specific
mask token when not. The decoder is trained to predict the
original sequence, including the unmasked tokens, using an
MSE loss (He et al., 2021). Additional model hyperparame-
ters are detailed in Appendix C

2.3. MTM as a generic abstraction for RL

The primary benefit of MTM is its versatility. Once trained,
the MTM network can take on different roles, by simply
using different masking patterns at inference time. For
example, MTM can be used as a stand-alone algorithm
for offline RL, by utilizing a return-conditioned behav-
ior cloning (RCBC) mask at inference time, analogous to
DT (Chen et al., 2021). Alternatively, MTM can be used to
recover various components that routinely feature in tradi-
tional RL pipelines, such as providing a state representation
that accelerates the learning of traditional RL algorithms or
acting as a world model for model-based RL algorithms.

3. Experiments

Through detailed empirical evaluations, we aim to study the
following questions.

1. Is MTM a versatile learner? Can the same network
trained with MTM be used for different capabilities
without additional training?

2. Is MTM an effective heteromodal learner? Can it con-
sume heteromodal datasets, like state-only and state-
action trajectories, and effectively use such a dataset to
improve performance?

3. Can MTM learn good state representations that acceler-
ate downstream learning with standard RL algorithms?

To help answer the aforementioned questions, we draw upon
a variety of continuous control tasks and datasets that lever-
age the MuJoCo simulator (Todorov et al., 2012). Specif-
ically we use D4RL (Fu et al., 2020), Adroit (Rajeswaran

Masked Trajectory Models

Table 1. Evaluation of various MTM capabilities. MTM refers to the model trained with the random autoregressive mask, and evaluated
using the appropriate mask at inference time. S-MTM (“Specialized”) refers to the model that uses the appropriate mask both during
training and inference time. We also compare with a specialized MLP baseline trained separately for each capability. Note that higher is
better for BC and RCBC, while lower is better for FD and ID. We find that MTM is often comparable or better than training on specialized
masking patterns, or training specialized MLPs. We use a box outline to indicate that a single model was used for all the evaluations
within it. The right most column indicates if MTM is comparable or better than S—MTM, and we find this to be true in most cases.

Domain Dataset Task MLP S-MTM (Ours) MTM (Ours) MTM) 2 (S-MTM)?
Medium Replay BC 43.05 + 6.10 31.51 +£3.03 19.78 + 4.04 X

D4RL Medium Replay RCBC 91.57 + 3.13 90.12 + 2.61 92.32 + 4.56 v

Hopper Medium Replay ID 0.077 £0.009 0.156 = 0.025 | 0.358 £ 0.087 X
Medium Replay FD 1.018 = 0.048 4.868 = 0.119 | 0.521 4+ 0.154 v
Medium Replay BC 25.21 £6.20 24.41 +£4.01 3249 £4.75 v

Adroit Medium Replay RCBC 58.96 + 8.41 44.88 £20.11 | 60.73 £ 17.30 v

Door Medium Replay ID 9.763 £ 0.031 0.604 £ 0.026 | 0.666 £ 0.009 v
Medium Replay FD 2.199 £ 0.031 3.370 & 1.009 | 2.442 £ 0.504 v

et al., 2018), and EXORL (Yarats et al., 2022). Additional / 7 wLpBC = VM (Ours)

environment details can be found in Appendix D.

3.1. MTM Capabilities

We next study if MTM is a versatile learner by evaluating
it across four different capabilities on Adroit and D4RL
datasets. We test these capabilities for a single MTM-model
(i.e. same weights) by simply altering the masking pattern
during inference time. These capabilities are:

1. Behavior Cloning (BC): Predict next action given
state-action history.

2. Return Conditioned Behavior Cloning (RCBC) is
similar to BC, but additionally conditions on the de-
sired Return-to-Go. See Appendix F for additional
offline RL results that leverage MTM’s RCBC capabil-

1ty.
3. Inverse Dynamics (ID), where we predict the action

using the current and future desired state. This can be
viewed as a 1-step goal-reaching policy.

4. Forward Dynamics (FD), where we predict the next
state given history and current action.

We consider two variations of MTM. The first variant, S-
MTM, trains a specialized model for each capability using
the corresponding masking pattern at train time. The sec-
ond variant, denoted simply as MTM, trains a single model
using the random autoregressive mask specified in Section
2. Subsequently, the same model (i.e. same set of weights)
is evaluated for all the four capabilities. We also compare
our results with specialized MLP models for each capabil-
ity. We evaluate the best checkpoint across all models and
report mean and standard deviation across 4 seeds, taking
the average of 50 trajectory executions per seed. For all
experiments we train on 95% of the dataset and reserve
5% of the data for evaluation. For BC and RCBC results,
we report the normalized score obtained during evaluation

B mip-rcBC

- Heteromodal MTM (Ours)

Relative Performance

D4RL
Hopper

D4RL D4RL
HalfCheetah Walker2D

Environment

Adroit Adroit
Door Pen

Figure 3. MTM can effectively learn from heteromodal datasets.
Real world data may not always contain action labels. We simulate
this setting by training a MTM models on Expert datasets across
domains where only a small fraction of the data have action labels.
Our Heteromodal MTM model is able to effectively improve task
with the additional data over baseline MTM and MLP that train
on only the subset of data with actions. Y -axis normalized with
respect to performance of Heteromodal MTM.

rollouts. For ID and FD, we report normalized loss values
on the aforementioned 5% held-out data.

A snapshot of our results are presented in Table 1. Please see
Appendix for detailed results on all the environments. We
find that MTM is comparable or even better than specialized
masks, and also matches the performance of specialized
MLP models. We suspect that specialized masks may re-
quire additional tuning of parameters to prevent overfitting
or underfitting, whereas random autoregressive masking is
more robust across tasks and hyperparameters.

3.2. Heteromodal Datasets

MTM is uniquely capable of learning from heteromodal
datasets. This is enabled by the training procedure, where
any missing data can be treated as if it were masked. During

Masked Trajectory Models

Base TD3 Asymptotic TD3
MTM State (Frozen) MTM State (Finetuned) MTM State-Action (Frozen) MTM State-Action (Finetuned)
1000 1000 {
500
4 800 -
800 400 1) e A
c c c
- 600 1 -
S 6001 5 3 300
@ D @
& 4001 x 4007 o 200
200 1 1
2004 100 Vs
— — e ey 0i ; : ; ;
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Training Steps
(a) DM-Control Walker2D Stand Task.

Training Steps
(b) DM-Control Walker2D Walk Task

Training Steps

(c) DM-Control Walker2D Run Task

Figure 4. State representations from MTM enable faster learning. The plot visualizes an the walker agent’s performance as it is trained
using TD3 on different state representations across 3 tasks (stand, walk, run). The agent is trained completely offline using data from
the ExXORL dataset. The learning curves show that MTM state representations enable the agent to more quickly learn the task at hand,
reaching or exceeding the asymptotic performance of TD3 on raw states. Both frozen MTM features and fine tuned MTM features are
comparable in terms of learning speed and performance. In addition, we see that using state-action representations from MTM (as input to
the critic of TD3) can also benefit learning. We also show the asymptotic performance reached by TD3 on raw states and actions after

training for 100000 iterations and plot the average of 5 seeds.

training we apply the loss only to modes that exist in the
dataset. For these experiments we take the Expert subset
of our trajectory data and remove action labels from the
majority of the dataset. The training data consists of 1% of
the data with all modes (states, actions, return-to-go) and
95% percent of the data with no action labels. As is done in
all experiments, the remainder is reserved for testing.

From our initial experiments, we found that naively adding
in the state only data during training, and evaluating with the
RCBC mask did not always result in improved performance,
despite an improvement in forward dynamics prediction.
Based on this observation, we propose a two-stage action
inference procedure. First, we predict future states given
current state and desired returns. This can be thought of
as a forward dynamics pass where the desired returns are
used instead of actions, which are masked out. Next, we
predict actions using the current state and predicted future
state using the inverse dynamics mask. We refer to this
model trained on heteromodal data, along with the two
stage inference procedure, as Heteromodal MTM. We present
the results in Figure 3, where we find that Heteromodal
MTM consistently improves performance over the baseline
MLP and MTM that are trained only on the subset of data
with action labels. We also provide sample efficiency trends
of MTM and Heteromodal MTM in Appendix G.

3.3. State Representations of MTM

MTM can also be interpreted as an offline pre-training ex-
ercise to learn representations for downstream RL. To in-
stantiate this in practice, we consider the setting of offline
RL using TD3 on the EXORL dataset. The baseline method
is to simply run TD3 on this dataset using the raw state
as input to the TD3 algorithm. We compare this to our

proposed approach of using MTM state representations for
TD3. To do this, we pretrain an MTM model on state-action
sequences in the EXORL dataset. Subsequently, to use the
state representations, we simply use the MTM encoder to
tokenize and encode each state. This representation of the
state can be used in the place of raw states for the TD3 algo-
rithm. We compare training TD3 on raw states to training
TD3 with representation from (a) a frozen MTM model, and
(b) finetuning the MTM model with the offline RL loss (i.e.
TD3 objective). In addition, we also experiment with using
MTM state-action representations for the critic of TD3.

Figure 4 depicts the learning curves for the aforementioned
experiment. In all cases we see significant improvement in
training efficiency by using MTM state representations — both
in frozen mode and when finetuned. In the Walk task, we
note it actually improves over the asymptotic performance
of the base TD3 (Fujimoto et al., 2018a) algorithm within
10% of training budget. Additionally, we find that the state-
action representation from MTM also provides significant
benefits, with finetuned state-action representation leading
to better asymptotic performance on the Run task.

4. Summary

In this paper, we introduced MTM as a versatile and effective
approach for sequential decision making. We found that
a single pretrained model (i.e. same weights) can be used
for different downstream purposes like inverse dynamics,
forward dynamics, imitation learning, offline RL, and rep-
resentation learning. Future work includes incorporating
training in online learning algorithms for more sample effi-
cient learning, scaling MTM to longer trajectory sequences,
and more complex modalities like videos.

Masked Trajectory Models

References

Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. ArXiv, abs/2206.11795, 2022.

Bao, H., Dong, L., and Wei, F. Beit: Bert pre-training of
image transformers. ArXiv, abs/2106.08254, 2021.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J.,
Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A.,
Hsu, J., et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Carroll, M., Paradise, O., Lin, J., Georgescu, R., Sun, M.,
Bignell, D., Milani, S., Hofmann, K., Hausknecht, M. J.,
Dragan, A. D., and Devlin, S. Unimask: Unified inference
in sequential decision problems. ArXiv, abs/2211.10869,
2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. 02 2018a.

Fujimoto, S., Meger, D., and Precup, D. Off-Policy Deep
Reinforcement Learning without Exploration. CoRR,
abs/1812.02900, 2018b.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Hansen, N., Lin, Y., Su, H., Wang, X., Kumar, V., and
Rajeswaran, A. Modem: Accelerating visual model-
based reinforcement learning with demonstrations. arXiv
preprint, 2022a.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. In /ICML, 2022b.

He, K., Chen, X., Xie, S., Li, Y., Doll’ar, P., and Girshick,
R. B. Masked autoencoders are scalable vision learners.
2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 15979-15988, 2021.

Janner, M., Li, Q., and Levine, S. Reinforcement learning
as one big sequence modeling problem. arXiv preprint
arXiv:2106.02039, 2021.

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y.,
Fei-Fei, L., Anandkumar, A., Zhu, Y., and Fan, L. Vima:
General robot manipulation with multimodal prompts.
arXiv preprint arXiv:2210.03094, 2022a.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktéschel, T.,
Grefenstette, E., and Tian, Y. Efficient planning in a com-
pact latent action space. arXiv preprint arXiv:2208.10291,
2022b.

Jolliffe, I. T. and Cadima, J. Principal component analysis:
areview and recent developments. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 374, 2016.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T.
MOReL : Model-Based Offline Reinforcement Learning.
In NeurIPS, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement
learning with implicit g-learning. 2021.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative Q-Learning for Offline Reinforcement Learning.
ArXiv, abs/2006.04779, 2020.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45-73.
Springer, 2012.

Laskin, M., Yarats, D., Liu, H., Lee, K., Zhan, A., Lu,
K., Cang, C., Pinto, L., and Abbeel, P. Urlb: Unsuper-
vised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

Liu, F., Liu, H., Grover, A., and Abbeel, P. Masked autoen-
coding for scalable and generalizable decision making.
ArXiv, abs/2211.12740, 2022.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
0., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
2019.

Masked Trajectory Models

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Provably good batch off-policy reinforcement learning
without great exploration. In Neural Information Process-
ing Systems, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation. ArXiv, abs/2203.12601, 2022.

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta,
A. K. The unsurprising effectiveness of pre-trained vision
models for control. In ICML, 2022.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp- 2778-2787. PMLR, 2017.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learn-
ing and Demonstrations. In Proceedings of Robotics:
Science and Systems (RSS), 2018.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A. D., Heess, N. M. O., Chen, Y.,
Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N.
A generalist agent. ArXiv, abs/2205.06175, 2022.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards — just map them to actions, 2019.

Seo, Y., Hafner, D., Liu, H., Liu, F., James, S., Lee, K.,
and Abbeel, P. Masked world models for visual control.
ArXiv, abs/2206.14244, 2022.

Shafiullah, N. M. M., Cui, Z. J., Altanzaya, A., and Pinto, L.
Behavior transformers: Cloning k modes with one stone.
ArXiv, abs/2206.11251, 2022.

Srivastava, R. K., Shyam, P., Mutz, F., Jaskowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp- 5026-5033, 2012. doi: 10.1109/IROS.2012.6386109.

Tunyasuvunakool, S., Muldal, A., Doron, Y.,
Liu, S., Bohez, S., Merel, J., Erez, T. Lilli-
crap, T., Heess, N., and Tassa, Y. dm.ontrol

So ftwareandtasks forcontinuouscontrol, 2020.15S5N2665—

9638.URL.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Attention
is all you need. In Guyon, 1., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://
proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053clcd4a845aa-Paper.

pdf.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In International Conference on Machine
Learning, 2008.

Xiao, T., Radosavovic, 1., Darrell, T., and Malik, J.
Masked visual pre-training for motor control. ArXiv,
abs/2203.06173, 2022.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. 2021.

Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel,
P, Lazaric, A., and Pinto, L. Don’t change the algorithm,
change the data: Exploratory data for offline reinforcement
learning. arXiv preprint arXiv:2201.13425, 2022.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine,
S., and Finn, C. Combo: Conservative offline model-based
policy optimization. In NeurIPS, 2021.

Zhou, A., Kumar, V., Finn, C., and Rajeswaran, A. Policy
architectures for compositional generalization in control.
arXiv preprint arXiv:2203.05960, 2022.

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Masked Trajectory Models

A. Related Work

Autoencoders and Masked Prediction. Autoencoders have found several applications in machine learning. The classical
PCA (Jolliffe & Cadima, 2016) can be viewed as a linear autoencoder. Denoising autoencoders (Vincent et al., 2008) learn
to reconstruct inputs from noise corrupted versions of the same. Masked autoencoding has found recent success in domains
like NLP (Devlin et al., 2018; Brown et al., 2020) and computer vision (He et al., 2021; Bao et al., 2021). Our work explores
the use of masked prediction as a self-supervised learning paradigm for RL.

Offline Learning for Control Our work primarily studies the offline setting for decision making, where policies are
learned from static datasets. This broadly falls under the paradigm of offline RL (Lange et al., 2012). A large class of offline
RL algorithms modify their online counterparts by incorporating regularization to guard against distribution shift that stems
from the mismatch between offline training and online evaluation (Kumar et al., 2020; Kidambi et al., 2020; Fujimoto et al.,
2018b; Yu et al., 2021; Liu et al., 2020). In contrast, our work proposes a generic self-supervised pre-training paradigm for
decision making, where the resulting model can be directly repurposed for offline RL.

Self-Supervised Learning for Control The broad idea of self-supervision has been incorporated into RL in two ways.
The first is self-supervised data collection, such as task-agnostic and reward-free exploration (Pathak et al., 2017; Laskin
et al., 2021; Burda et al., 2018). The second is concerned with self-supervised learning for control, which is closer to our
work. Prior works typically employ self-supervised learning to obtain state representations (Parisi et al., 2022; Nair et al.,
2022; Xiao et al., 2022) or world models (Hafner et al., 2020; Hansen et al., 2022a;b; Seo et al., 2022), for subsequent use
in standard RL pipelines. In contrast, MTM uses self-supervised learning to train a single versatile model that can exhibit
multiple capabilities.

Transformers and Attention in RL. Our work is inspired by the recent advances in Al enabled by transformers (Vaswani
et al., 2017), especially in offline RL (Chen et al., 2021; Janner et al., 2021; Jiang et al., 2022b) and imitation learning (Reed
et al., 2022; Shafiullah et al., 2022; Brohan et al., 2022; Jiang et al., 2022a; Zhou et al., 2022). Of particular relevance are
works that utilize transformers in innovative ways beyond the standard RL paradigm. Decision Transformers and related
methods (Schmidhuber, 2019; Srivastava et al., 2019; Chen et al., 2021) use return-conditioned imitation learning, which we
also adopt in this work. However, in contrast to Chen et al. (2021) and Janner et al. (2021) who use next token prediction as
the self-supervised task, we use a bi-directional masked prediction objective. This masking pattern enables the learning of
versatile models that can take on different roles based on inference-time masking pattern.

Recently, Liu et al. (2022) and Carroll et al. (2022) explore the use of bi-directional transformers for RL. In contrast to Liu
et al. (2022), we show that a single MTM model is capable of diverse capabilities without any specific finetuning or custom
masking patterns. In contrast to Carroll et al. (2022), we study broader capabilities of our model on several high-dimensional
control tasks. VPT (Baker et al., 2022) also tackles sequential decision making using transformers, focusing primarily on
extracting action labels with a separate inverse dynamics model using semi-supervised learning. Furthermore, unlike prior
work, we also demonstrate that our model has unique and favorable properties like data efficiency, heteromodality, and the
capability to learn good state representations.

B. Masking Patterns

Intuitively, we can mask elements in the sequence randomly with a high enough mask ratio to make the self-supervised task
difficult. This has found success in computer vision (He et al., 2021). We propose to use a variation of this — a random
autoregressive masking pattern. This pattern requires at least one token in the input sequence to be autoregressive, meaning
it must be predicted based only on previous tokens, and all future tokens are masked. This means the last element in each
sampled trajectory segment is necessarily masked. See Figure B.1 for an illustration. We note that the autoregressive mask
in our context is not using a causal mask in attention weights, but instead corresponds to masking at the input and output
token level, similar to MAE.

In the case of computer vision and NLP, the entire image or sentence is often available at inference time. However, in the
case of RL, the sequence data is generated as the agent interacts with the environment. As a result, at inference time, the
model is forced to be causal (i.e. use only the past tokens). By using our random autoregressive masking pattern, the model
both learns the underlying temporal dependencies in the data, as well as the ability to perform inference on past events. We
find that this simple modification is helpful in most tasks we study.

Masked Trajectory Models

(Training: Random Autoregressive Mask h (RCBC Inference h

BEE BERE BERE)

(Masked Trajectory Model) (Masked Trajectory Model)
8 8~ B8 CJERGE) @
- J \ J

. N . . N .
Forward Dynamics Inference Behavior Cloning Inference Inverse Dynamics Inference

(Masked Trajectory Model) (Masked Trajectory Model) (Masked Trajectory Model)
50 86 B0 || 60 O 08 | | 06 B8 &

Figure B.1. Masking Pattern for Training and Inference. (Training: box in orange) MTM is trained to reconstruct trajectory segments
conditioned on a masked view of the same. We use a random autoregressive masking pattern, where elements in the input sequence are
randomly masked, with the added constraint that at least one masked token must have no future unmasked tokens. This means the last
element in the sequence must necessarily be masked. We note that the input sequence can start and end on arbitrary modalities. In this
illustrated example, R3 is the masked token that satisfies the autoregressive constraint. That is the prediction of R3 is conditioned on no
future tokens in the sequence. (Inference: boxes in gray) By changing the masking pattern at inference time, MTM can either be used
directly for offline RL using RCBC (Chen et al., 2021), or be used as a component in traditional RL pipelines as a state representation,
dynamics model, policy initialization, and more. These different capabilities are shown in gray. Modes not shown at the input are masked
out and modes not shown at the output are not directly relevant for the task of interest.

B Random (BERT / MAE) [RCBC (specialized)
- Random Autoregressive (Ours)
1.0 1
[
o
S 0.8 1
£
£ 0.6
&
Q
2 0.4 A
=]
©
©
© 0.2 A
0.0 -
Hopper Hopper Walker2D Walker2D
Expert Medium Replay Expert Medium Replay

Environment

Figure B.2. Impact of Masking Patterns. This plot shows MTM RCBC performance trained with three different masking patterns,
random, random autoregressive, and a specialized RCBC mask. We find that autoregressive random often outperforms random, and in
most cases is even competitive with the specialized (or oracle) RCBC mask. Y -axis normalized with using RCBC mask.

We study if the masking pattern influences the capabilities of the learned model. Figure B.2 shows that random autoregressive
masking matches or outperforms purely random masking on RCBC for a spread of environments for offline RL. We note
that pure random masking, as done in MAE and BERT, which focuses on only learning good representations, can lead to
diminished performance for downstream capabilities. Random autoregressive masking mitigates these issues by allowing
the learning of a single versatile model while still matching or even exceeding the performance of specialized masks, as seen
in Table 1.

Masked Trajectory Models

C. Model and Training Details
C.1. MLP Baseline Hyperparameters

Table C.1. MLP Hyperparameters
Hyperparameter Value

MLP

Nonlinearity
Batch Size

GELU
1024

Embedding Dim 512

of Layers

2

Adam Optimizer

Learning Rate
Weight Decay
Warmup Steps
Training Steps
Scheduler

C.2. MTM Model Hyperparameters

0.0001

0.01

40000
140000
cosine decay

Table C.2. MTM Hyperparameters

Hyperparameter Value
General

Nonlinearity GELU

Batch Size 1024

Trajectory-Segment Length 4

Scheduler cosine decay

Warmup Steps 40000

Training Steps 140000

Weight Decay 0.01
Bidirectional Transformer

of Encoder Layers 2

Decoder Layers 1

Heads 4

Embedding Dim 512
Mode Decoding Head

Number of Layers 2

Embedding Dim 512
D4RI Specific

Learning Rate 0.0001

Mask Ratios [0.7, 0.8, 0.85, 0.9, 0.95, 1.0]
Adroit Specific

Learning Rate
Mask Ratios

C.3. MTM Training Details

In this section, we specify additional details of MTM for reproduction.

0.002
[0.4,0.5,0.6,0.7,0.8,0.85, 0.9, 0.95, 1.0]

Numerical values of the hyperparamters are found in

table C.1. The architecture follows the structure of (He et al., 2021) and (Liu et al., 2022), which involves a bidirectional
transformer encoder and a bidirectional transformer decoder. For each input modality there is a learned projection into the
embedding space. In addition we add a 1D sinusoidal encoding for time step. The encoder only processes unmasked tokens.
The decoder process the full trajectory sequence, replacing the masked out tokens with mode specific mask tokens. At the

Masked Trajectory Models

output of the decoder, we use a 2 Layer MLP. For training the model we use the AdamW optimizer (Kingma & Ba, 2017;
Loshchilov & Hutter, 2019) with a warm up period and cosine learning rate decay.

As we rely on the generative capabilities of MTM which can be conditioned on a variety of different input tokens at inference
time, we train MTM with a range of mask ratios that are randomly sampled. This is specified in the "Mask Ratios” in the
hyperparameter. Our random autogressive masking scheme also requires that at least one token is predicted without future
context. This is done by randomly sampling a time step and token, and masking out future tokens.

D. Additional Environment Details

(a) D4RL: HalfCheetah Task (b) Adroit: Pen Task (c) DM-Control: Walker2D Task

Figure D.1. Continues Control evaluation settings.

Here we provide additional details on each experiment setting. In general, our empirical evaluations are based on the standard
versions of D4RL, Adroit, and ExXORL. These benchmarks and setups are widely used in the community for studying various
aspects of offline learning. The raw state space provided by these benchmarks typically comprise a mix of positions and
velocities of different joints, bodies, and objects in the environment. We preprocess each dataset by normalizing the data
before training.

Adroit (Rajeswaran et al., 2018) is a collection of dexterous manipulation tasks with a simulated five-fingered. Our
MTM experiments use the Pen, and Door tasks. To match the setup of DARL, we collect Medium—Replay and Expert
trajectories for each task. This is done by training an expert policy. The Expert dataset comprises of rollout of the
converged policy with a small amount of action noise. The Medium-Replay dataset is a collection of trajectory rollouts
from various checkpoints during training of the expert policy, before policy convergence. The original Adroit environment
provides a dense reward and a sparse measure of task completion. For MTM experiments, we use the task completion signal
as an alternative to reward, which provides a more grounded signal of task performance (a measure of how many time steps
in the episode is the task complete).

ExORL (Yarats et al., 2022) dataset consists of trajectories collected using various unsupervised exploration algorithms.
ExORL leverages dm_control developed by Tunyasuvunakool et al. (2020). We use data collected by a ProtoRL agent (Yarats
et al., 2021) in the Walker2D environment to evaluate the effectiveness of MTM representations on three different tasks:
Stand, Walk, and Run. As the pretraining dataset has not extrinsic reward, MTM is trained with only states and actions.
During downstream TD3 (Fujimoto et al., 2018a) learning, all trajectories are relabeled with the task reward.

Masked Trajectory Models

E. Additional MTM Results

Table E.1. Evaluation of MTM capabilities on D4RL.

Domain Dataset Task MLP S-MTM (Ours) MTM (Ours)
Expert BC 111.50 £0.14 111.20£0.17 | 110.63 £ 0.34
D4RL Expert RCBC 111.75+0.09 111.37+£0.19 | 111.01 £0.13
Hopper Expert 1D 0.004 +£0.001 0.008 £ 0.001 | 0.028 £ 0.006
Expert FD 0.063 £0.001 0939 £0.122 | 0.026 £ 0.005
Medium Expert BC 60.61 £ 5.67 82.09 £17.35 |53.82+1.17
D4RL Medium Expert RCBC 11191 £0.15 111.23 £0.31 110.95 £ 0.34
Hopper Medium Expert 1D 0.008 £ 0.001 0.010 £ 0.001 | 0.043 £ 0.013
Medium Expert FD 0.102 £0.005 1.094 +0.181 | 0.039 + 0.019
Medium BC 59.06 £ 0.19 58.53 £5.58 55.58 £ 2.05
D4RL Medium RCBC 67.96 +2.73 61.62 £ 1.00 64.07 £ 4.61
Hopper Medium ID 0.015 £0.003 0.018 £0.001 | 0.085 £ 0.019
Medium FD 0.158 £0.023 1.500 + 0.289 | 0.070 £ 0.024
Medium Replay BC 43.05 £6.10 31.51 £3.03 19.78 £ 4.04
D4RL Medium Replay RCBC 91.57 £ 3.13 90.12 + 2.61 92.32 + 4.56
Hopper Medium Replay ID 0.077 £ 0.009 0.156 + 0.025 | 0.358 4 0.087
Medium Replay FD 1.018 = 0.048 4.868 £0.119 | 0.521 +0.154
Expert BC 109.15£0.12 109.07 £0.29 | 108.94 £ 0.32
D4RL Expert RCBC 110.32+0.15 109.01 £0.38 | 109.07 £ 0.26
Walker2D Expert ID 0.009 £ 0.002 0.020 + 0.003 | 0.108 + 0.036
Expert FD 0.079 £0.008 1913 £0.563 | 0.066 +£ 0.030
Medium Expert BC 109.06 £0.15 108.17 £0.46 | 92.78 + 15.57
D4RL Medium Expert RCBC 110.53 £0.22 110.00 £ 0.58 | 109.53 £ 0.30
Walker2D Medium Expert ID 0.018 £0.006 0.020 +0.014 | 0.202 + 0.089
Medium Expert FD 0.108 £0.018 0.388 £0.133 | 0.144 £ 0.075
Medium BC 74.26 £ 0.58 73.17 £0.93 60.42 £ 10.64
D4RL Medium RCBC 78.00 + 1.44 75.11 £ 1.75 76.95 £ 0.51
Walker2D Medium ID 0.022 £0.005 0.029 +0.010 | 0.150 + 0.068
Medium FD 0.122 £0.014 0.390 £0.051 | 0.116 £ 0.090
Medium Replay BC 29.75 £2.83 30.80 £2.74 2333 £8.85
D4RL Medium Replay RCBC 77.08 £+ 2.10 73.34 £ 1.31 78.31 £4.08
Walker2D Medium Replay 1D 0.452 £0.100 0.630 £ 0.228 1.407 + 0.452
Medium Replay FD 1.814 £ 0.868 1.291 £ 0.407 | 0.634 £ 0.261
Expert BC 93.28 £ 0.20 92.94 £ 0.63 93.23 £0.07
D4RL Expert RCBC 91.41+0.54 93.58 £ 0.49 93.18 £ 042
HalfCheetah Expert ID 0.001 £ 0.000 0.005 £ 0.001 | 0.005 +£ 0.001
Expert FD 0.010 £0.001 0.301 £ 0.062 | 0.003 £ 0.001
Medium Expert BC 76.15 £ 1.82 71.16 + 4.00 59.81 £ 5.19
D4RL Medium Expert RCBC 79.66 £ 2.53 93.76 £ 0.24 91.57 £0.83
HalfCheetah Medium Expert ID 0.001 +£0.000 0.003 £ 0.001 | 0.014 £ 0.005
Medium Expert FD 0.018 £0.007 0.200 + 0.083 | 0.010 £ 0.004
Medium BC 42.84 £0.10 42.87 £0.08 42.06 £+ 0.34
D4RL Medium RCBC 44.39+0.14 43.63+0.25 43.34 £ 0.31
HalfCheetah Medium D 0.000 £ 0.000 0.003 £ 0.001 | 0.030 £ 0.043
Medium FD 0.020 £0.001 0.454 +0.162 | 0.011 + 0.007
Medium Replay BC 36.78 £+ 0.45 36.40 £ 1.06 31.32 £ 848
D4RL Medium Replay RCBC 40.27 £ 0.25 41.29 £0.36 42.03 £ 0.50
HalfCheetah Medium Replay 1D 0.003 £ 0.001 0.004 £0.001 | 0.039 £ 0.013
Medium Replay FD 0.099 £0.050 0.187 £ 0.037 | 0.026 =+ 0.009

Masked Trajectory Models

Table E.2. Evaluation of MTM capabilities on Adroit.

Domain Dataset Task MLP S-MTM (Ours) MTM (Ours)
Expert BC 148.20 £ 0.08 144.32 £ 2.01 144.40 + 3.51
Adroit Expert RCBC 149.19 + 0.33 147.30 £ 0.54 | 149.25 + 191
Door Expert ID 3.801 £ 0.004 0.426 + 0.020 | 0.562 4+ 0.036
Expert FD 0.072 4+ 0.001 1.227 +0.652 | 0.880 £+ 0.321
Medium Replay BC 25.21 £6.20 2441 £4.01 32.49 £ 4.75
Adroit Medium Replay RCBC 58.96 + 8.41 44.88 + 20.11 60.73 4+ 17.30
Door Medium Replay ID 9.763 £ 0.031 0.604 £+ 0.026 | 0.666 + 0.009
Medium Replay FD 2.199 4+ 0.031 3.370 + 1.009 | 2.442 + 0.504
Expert BC 60.08 £ 1.95 53.09 £2.24 47.23 +10.02
Adroit Expert RCBC 63.97 +1.84 55.62 +4.13 59.22 + 0.94
Pen Expert 1D 13.247 £ 0.026 0.503 £+ 0.182 1.172 £ 0.199
Expert FD 0.047 4+ 0.001 0.787 +0.203 | 0.436 + 0.019
Medium Replay BC 30.55 +4.86 53.55 + 6.50 43.27 +3.21
Adroit Medium Replay RCBC 38.71 + 3.36 44.41 + 3.58 53.80 + 1.20
Pen Medium Replay ID 0.966 + 0.002 0.174 £ 0.157 | 0.034 £ 0.004
Medium Replay FD 0.679 £+ 0.047 0.586 +0.059 | 0.472 £+ 0.070

Table F.1. Results in D4RL locomotion tasks. We find that MTM outperforms RvS and DT, which also use RCBC for offline RL.

Environment Dataset BC CQL IQL TT MOPO RsV DT MTM (Ours)
HalfCheetah Medium-Replay 36.6 45.5 442 419 423 38.0 36.6 42.0
Hopper Medium-Replay ~ 18.1 95.0 94.7 91.5 28.0 73.5 82.7 92.3
Walker2d Medium-Replay 260 772 739 82.6 17.8 60.6 66.6 78.3
HalfCheetah Medium 426 440 474 469 53.1 41.6 420 433
Hopper Medium 52.9 58.5 66.3 61.1 67.5 60.2 67.6 64.1
Walker2d Medium 75.3 72.5 78.3 79.0 39.0 71.7 74.0 77.0
HalfCheetah Medium-Expert 552 91.6 86.7 95.0 63.7 922 86.8 91.6
Hopper Medium-Expert ~ 52.5 1054 915 1100 23.7 101.7 107.6 110.9
Walker2d Medium-Expert 107.5 108.8 109.6 101.9 44.6 106.0 108.1 109.5
Average 51.9 776 770 789 422 71.7 74.7 78.8

F. Offline RL results

We test the capability of MTM to learn policies in the standard offline RL setting. To do so, we train MTM with the
random autoregressive masking pattern as described in Section 2. Subsequently, we use the Return Conditioned Behavior
Cloning (RCBC) mask at inference time for evaluation. This is inspired by DT (Chen et al., 2021) which uses a similar
RCBC approach, but with a GPT model.

Our empirical results are presented in Table F.1. We find that MTM outperforms the closest algorithms of DT and RvS,
suggesting that masked prediction is an effective pre-training task for offline RL when using RCBC inference mask. More
surprisingly, MTM is competitive with highly specialized and state-of-the-art offline RL algorithms like CQL (Kumar et al.,
2020) and IQL (Kostrikov et al., 2021) despite training with a purely self-supervised learning objective without any explicit
RL components.

Masked Trajectory Models

G. Data Efficiency

We find that MTM is able to achieve higher performance than baseline (specialized) MLPs in the low data regimes. To
explicitly test the data efficiency of MTM, we study the performance as a function of the training dataset size, and present
results in Figure G.1. We observe that MTM is more sample efficient and achieves higher performance for any given dataset
size. Heteromodal MTM also outperforms MTM throughout, with the performance gap being quite substantial in the low-data
regime. We hypothesize that the data efficiency of MTM is due to better usage of the data. Specifically, since the model
encounters various masks during training, it must learn general relationships between different elements. As a result,
MTM may be able to squeeze out more learning signal from any given trajectory.

100 +
g 80
€8
2T 60
&
g 40 - s MLP
S mm— MTM (Ours)
mem Heteromodal MTM (Ours)
0'|""| T L B AL T L B AL |
150 A
S
Eg 100 A
BI
g%
g 50 A
0' T T

0.5 1.0 2.0 5.0 95.0
% of Dataset

Figure G.1. Dataset efficiency. We train MTM in the D4RL Hopper and Adroit Door environments across a range of dataset sizes,
measured by the percent of the original dataset (=~ 1 million transitions). We see that MTM is able to consistently outperform specialized
MLP models in the low data regime. Furthermore, we see that Heteromodal MTM (i.e. MTM trained on heteromodal data containing both
state-only and state-action trajectories) is further able to provide performance improvement in low data regimes.

	Introduction
	Masked Trajectory Modeling
	Trajectory Datasets
	Architecture and Masked Modeling
	 MTM as a generic abstraction for RL

	Experiments
	 MTM Capabilities
	Heteromodal Datasets
	State Representations of MTM

	Summary
	Related Work
	Masking Patterns
	Model and Training Details
	MLP Baseline Hyperparameters
	 MTM Model Hyperparameters
	 MTM Training Details

	Additional Environment Details
	Additional MTM Results
	Offline RL results
	Data Efficiency

