
Evaluating the Robustness of Causal Discovery Algorithms
with Observations and Interventions in VNF Deployments

Tianzhu Zhang1 Davide Rinaldi1 Fabio Pianese1 Armen Aghasaryan1

1AI Research Lab, ML & Systems Department, Nokia Bell Labs, Paris-Saclay, France

Abstract

Causal discovery (CD) incorporates a large collec-
tion of interdisciplinary research endeavors from
statistics, computer science, and philosophy to un-
cover the true causal relationship from data and
move beyond mere correlations to expose the un-
derlying data generation mechanism. Despite the
rich set of causal discovery algorithms, they also
bear some common limitations, including demand-
ing assumptions and lack of validation using real-
world data, making their applicability in real sys-
tems questionable. This paper explores the practi-
cal challenges of performing causal discovery in
real systems. We construct a controllable Network
Function Virtualization (NFV) system that allows
the deployment and perturbation of interconnected
topologies of high-performance Virtual Network
Functions (VNFs). Our contribution is a compari-
son of the ability of state-of-the-art CD algorithms
to reconstruct the correct causal configuration from
data in observational and interventional settings.

1 INTRODUCTION

In recent years, network softwarization techniques, espe-
cially NFV [Martins et al., 2014], are increasingly applied
to deploy and provision high-speed, near real-time ser-
vices, such as O-RAN [2018]. However, despite the advan-
tages, such as enhanced service agility and reduced cost-of-
ownership, NFV-powered network systems also bear some
intrinsic drawbacks. In particular, the shared soft data planes
are more susceptible to intermittent resource and operation
contentions, making it challenging to pinpoint performance
bottlenecks, especially in large-scale networks. Although
machine learning models can make accurate predictions by
characterizing correlations, they are quite limited in inter-
preting the underlying causal mechanisms and answering

Figure 1: Testbed configuration

counterfactual queries, which are essential for managing
production network systems. Causal discovery (CD) pro-
vides a promising alternative for network service and in-
frastructure providers to identify performance bottlenecks
and fulfill Service-Level Agreements (SLAs). Compared to
earlier attempts to apply CD for IT monitoring [Aït-Bachir
et al., 2023], the VNF use case streamlines the collection of
data about network events: instead of having to deal with
possibly out-of-sync time series of heterogeneous indicators
such as CPU load, RAM utilization, numbers of users, disk
activity, etc., the reliance on individual throughput figures
of simple network functions provides a more uniform and
reliable gauge of system performance.

2 METHODOLOGY

We developed a testbed environment (Figure 1) to produce
measurement data from high-speed network services with
different topologies of VNF that are instrumented with a set
of controllable sources of interference. The testbed allows
for generating datasets with variable noise levels, suited
for purely observational and intervention-based CD. The
testbed and datasets are described in the supplementary
material.

Our CD investigation relies on two key assumptions: we
do not consider the time dependency between samples, and
causal sufficiency, i.e., the measured variables include all
common confounders. The latter hypothesis is reasonable
for our testbed as spurious correlations among the CPU

mailto:<tianzhu.zhang@nokia.com>?Subject=Your UAI 2024 short paper


Table 1: Causal Discovery Algorithms Covered in Our Study
Data Class Algorithm Hyperparameters Best SHD Reference

Linear DAG-1 DAG-2
Observational Constraint-based PC CI test, significance α 0 3 4 [Spirtes et al., 2000]

Constrained FCM ICA-LiNGAM - 14 14 16 [Shimizu et al., 2006]
DirectLiNGAM independence measure 13 12 13 [Shimizu et al., 2011]

Score based GES max parents, score, reg 0 0 0 [Chickering, 2002]
NOTEARS loss, lr, reg 5 7 8 [Zheng et al., 2018]

GOLEM loss, lr, reg 2 6 6 [Ng et al., 2020]
Permutation based GRaSP max parents, score 1 1 3 [Lam et al., 2022]

Interventional Baseline TCI KL-div. threshold 1 1 2 Current paper
Score based GIES score, reg 0 4 4 [Hauser and Bühlmann, 2012]

DCDI lr, reg, mlp 0 4 4 [Brouillard et al., 2020]
Abbreviations: lr = learning rate; reg = regularization parameter(s);

70%60%50%40%30%20%10% 5% 1%
0

5

10

15

SH
D

PC
GES
NOTEARS
GOLEM

GRaSP
GIES
TCI
DCDI

(a) Linear Topology
70%60%50%40%30%20%10% 5% 1%

0

5

10

15

SH
D

PC
GES
NOTEARS
GOLEM

GRaSP
GIES
TCI
DCDI

(b) DAG-1 Topology
70%60%50%40%30%20%10% 5% 1%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

SH
D

PC
GES
NOTEARS
GOLEM

GRaSP
GIES
TCI
DCDI

(c) DAG-2 Topology

Figure 2: SHD of the studied CD algorithms under different noise levels (on the abscissa)

cores are minimized by design. Moreover, data are aggre-
gated on a 10s timescale: the time constants of the system
being in the order of tens of ms, we deal with a steady-state
system. Guided by these assumptions, we tested a selection
of CD algorithms, reported in Table 1. The algorithm choice
covers the main approaches: constraint-based, score-based,
based on constrained functional causal models (FCM), and
permutation-based. For purely observational CD algorithms
implementation, we mostly relied on the causal-learn python
library [Zheng et al., 2023]. We employed gCastle [Zhang
et al., 2021] for the gradient-based approaches. For CD from
interventional data, we considered the prototypical imple-
mentations by Brouillard et al. [2020]. We introduce here
the Transitive Closure Induction (TCI) algorithm, which rep-
resents our baseline algorithm for intervention-based causal
discovery. Further details, including our hyperparameter
tuning procedures, can be found in the additional material.

3 RESULTS AND CONCLUSIONS

We conducted tests on three service topologies (see supple-
mentary material). The linear topology was used for hyper-
parameter optimization, while the results were evaluated on
DAG-1 and DAG-2. Such an evaluation strategy is plausible
in a situation where a cloud provider conducts black-box

testing on a live NFV system, where the network topology
is typically unknown and only limited outside interference
is allowed for experimentation. We assessed the accuracy
of causal discovery using the Structural Hamming Distance
(SHD) in Figure 2 and reported the best SHDs in Table 1.
We also investigated the impact of controlled noise on causal
assumptions. As the noise in the data generation process in-
creased, the algorithms better captured dependencies among
variables. This resulted in improved performance across
all observational CD algorithms. Intervention-based algo-
rithms remained unaffected by the noise level in our tests.
Among purely observational algorithms, GES achieved the
best results by accurately retrieving the ground-truth graph
in both scenarios. On the other hand, for intervention-based
CD algorithms, TCI demonstrated superior performance. It
is worth noting that methods relying on more parameters,
such as DCDI, exhibited sensitivity to the initial parameter
choice and overfitted the linear topology. Since the system
does not satisfy all the FCM assumptions required by the
algorithm, LiNGAM failed to orient edges correctly.

Overall, our testbed investigation shows promising initial
results. Classic algorithms, e.g., GES and PC, retrieve most
edges correctly and generalize well across network topolo-
gies. However, further work is needed to extend this CD
methodology to more complex network configurations.



References

Ali Aït-Bachir, Charles K. Assaad, Christophe de Bigni-
court, Emilie Devijver, Simon Ferreira, Éric Gaussier,
Hosein Mohanna, and Lei Zan. Case studies of causal
discovery from it monitoring time series. Proceed-
ings of UAI 2023 Workshop on The History and De-
velopment of Search Methods for Causal Structure,
abs/2307.15678, 2023. URL https://arxiv.org/
abs/2307.15678.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

Philippe Brouillard, Sébastien Lachapelle, Alexandre La-
coste, Simon Lacoste-Julien, and Alexandre Drouin. Dif-
ferentiable causal discovery from interventional data. Ad-
vances in Neural Information Processing Systems, 33:
21865–21877, 2020.

David Maxwell Chickering. Optimal structure identification
with greedy search. Journal of machine learning research,
3(Nov):507–554, 2002.

Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. MoonGen: A Script-
able High-Speed Packet Generator. In Internet Measure-
ment Conference 2015 (IMC’15), Tokyo, Japan, October
2015.

Alain Hauser and Peter Bühlmann. Characterization and
greedy learning of interventional markov equivalence
classes of directed acyclic graphs. The Journal of Ma-
chine Learning Research, 13(1):2409–2464, 2012.

Wai-Yin Lam, Bryan Andrews, and Joseph Ramsey. Greedy
relaxations of the sparsest permutation algorithm. In Pro-
ceedings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence, volume 180 of Proceedings of
Machine Learning Research, pages 1052–1062, 2022.

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir
Olteanu, Michio Honda, Roberto Bifulco, and Felipe
Huici. {ClickOS} and the art of network function vir-
tualization. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages
459–473, 2014.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey
Tumanov, Richard Liaw, Eric Liang, Melih Elibol,
Zongheng Yang, William Paul, Michael I Jordan, et al.
Ray: A distributed framework for emerging {AI} applica-
tions. In 13th USENIX symposium on operating systems
design and implementation (OSDI 18), pages 561–577,
2018.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On
the role of sparsity and dag constraints for learning lin-
ear dags. Advances in Neural Information Processing
Systems, 33:17943–17954, 2020.

O-RAN. "Open RAN Alliance", 2018. URL https://
www.o-ran.org/.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti
Kerminen, and Michael Jordan. A linear non-gaussian
acyclic model for causal discovery. Journal of Machine
Learning Research, 7(10), 2006.

Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo
Hyvarinen, Yoshinobu Kawahara, Takashi Washio, Pa-
trik O Hoyer, Kenneth Bollen, and Patrik Hoyer. Di-
rectLiNGAM: A direct method for learning a linear non-
gaussian structural equation model. Journal of Machine
Learning Research-JMLR, 12(Apr):1225–1248, 2011.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Cau-
sation, prediction, and search. MIT press, 2000.

Keli Zhang, Shengyu Zhu, Marcus Kalander, Ignavier Ng,
Junjian Ye, Zhitang Chen, and Lujia Pan. gcastle: A
python toolbox for causal discovery. arXiv preprint
arXiv:2111.15155, 2021.

Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip
Lopreiato, Gregoire Todeschi, KK Ramakrishnan, and
Timothy Wood. OpenNetVM: A platform for high per-
formance network service chains. In Proceedings of the
2016 workshop on Hot topics in Middleboxes and Net-
work Function Virtualization, pages 26–31, 2016.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and
Eric P Xing. Dags with no tears: Continuous optimization
for structure learning. Advances in neural information
processing systems, 31, 2018.

Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey,
Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter
Spirtes, and Kun Zhang. Causal-learn: Causal discov-
ery in python. arXiv preprint arXiv:2307.16405, 2023.

https://arxiv.org/abs/2307.15678
https://arxiv.org/abs/2307.15678
https://www.o-ran.org/
https://www.o-ran.org/


Evaluating the Robustness of Causal Discovery Algorithms
with Observations and Interventions in VNF Deployments

(Supplementary Material)

Tianzhu Zhang1 Davide Rinaldi1 Fabio Pianese1 Armen Aghasaryan1

1AI Research Lab, ML & Systems Department, Nokia Bell Labs, Paris-Saclay, France

A TESTBED, TOPOLOGIES, AND TRACE COLLECTION

Our testbed is deployed on a commodity server (Figure 1) with two discrete processors belonging to different Non-Uniform
Memory Access (NUMA) 1 nodes. On one processor, we run MoonGen as the high-speed network traffic generator /
monitor [Emmerich et al., 2015], whereas the network service topology under test is deployed on the other processor. We
employ OpenNetVM [Zhang et al., 2016], a high-performance Network Function Virtualization platform that enables
flexible and rapid deployment of common VNFs, such as firewalls and routers. Communication between the two NUMA
nodes is realized via a pair of direct fiber-optic cables connecting the network interfaces. The testbed allows us to run
experiments at the line rate of 10 Gbps, which is consistent with data center workloads.

For this paper, we work with three sample service topologies drawn from realistic use cases, depicted in Fig. 3. The leftmost
“linear" topology implements a firewall and deep packet inspection (DPI) before routing the packet and scanning its payload
on the way out to the bridge. The second “directed acyclic graph" (DAG-1) topology branches out after the firewall and
splits the traffic between a DPI branch and a payload scan branch, both feeding into the bridge. The third topology (DAG-2)
features a 3-way branch. Each virtual network function is executed on a different CPU core, ensuring mutual isolation of the
computing resources. The functions communicate via shared memory, passing pointers to the packets stored in RAM as
the processing follows the topology graph. At every network function, we introduce a controlled noise source as a parasite
process that can consume a configurable share of the CPU core cycles. This device allows generating datasets with variable
noise levels to emulate distribution shift and (soft) interventions. We utilize the observational algorithms implemented by
two open-source libraries, namely Causal-learn [Zheng et al., 2023] and gCastle [Zhang et al., 2021].

Our testbed allows generating datasets with variable noise levels to emulate distribution shift and soft interventions, suited
both for purely observational and intervention-based CD. We gather an observational dataset comprising 2000 measures of
VNF variables for each topology configuration. Controlled noise is added to the input variable by changing its throughput
according to a uniform distribution at regular 10-second intervals. Furthermore, we add a parasite process to each CPU
core at the same intervals, based on an independent Bernoulli draw with a probability of 0.5. We compile different datasets
corresponding to varying CPU shares (nine levels from 1% to 70%). This allows us to analyze the impact of noise on
CD accuracy. Additionally, we compile a family of interventional datasets for each topology, obtained by intervening
systematically on one variable at a time. We collect 200 samples for each intervened variable. Depending on the variable,
interventions consist of limiting the available CPU share or the throughput. Also, in this scenario, we collect different
datasets for each level of CPU noise, which are used for our main results.

B HYPERPARAMETERS AND TUNING

The performance of most CD algorithms depends heavily on the hyperparameter’s tuning, which can be a delicate process
due to the unsupervised nature of CD. In this study, we opted to tune the parameters for the linear topology and conducted a
comparative evaluation of the remaining two topologies. We employed the library Optuna by Akiba et al. [2019], an automatic

1Each discrete processor has an independent memory subsystem connected via the PCIe bus.

mailto:<tianzhu.zhang@nokia.com>?Subject=Your UAI 2024 short paper


Table 2: Optimized Set of Hyperparameters

Algorithm Hyperparameters
PC α : 0.01, independence_test: fisherz, stable: True,

(uc_rule: 0, uc_priority: 2, mvpc: False)
DirectLiNGAM measure: pwling

GES maxP:#variables
2 , score_func: local_score_BIC

NOTEARS λ1 : 0.433, loss_type: l2, h_tol: 0.0099348,
rho_max: 5.27026, max_iter: 1000, w_threshold: 0.038

GOLEM λ1 : 0.0977705, λ2 : 0.14846, equal_variances: False,
non_equal_variances: False, lr: 0.008, graph_thres: 0.95

GRaSP maxP: #variables
2 , score_func: local_score_BIC

GIES lambda-gies: 5
TCI threshold: 1

DCDI model: DCDI-G, num-layers: 2, hid-dim: 16, intervention: True
optimizer: rmsprop, lr: 1e-3, reg-coeff: 0.8, h-threshold: 1e-8

hyperparameter optimization framework designed to find optimal hyperparameters efficiently. We used Ray [Moritz et al.,
2018], a distributed computing framework that can scale ML workloads to accelerate tuning. We further adopted the
Asynchronous Successive Halving Algorithm (ASHA), which features early stopping in large hyperparameter search spaces.
We evaluate the causal discovery accuracy using the Structural Hamming Distance (SHD), a classic metric to quantify the
difference between two causal DAGs. Similar to the Hamming distance measuring the different bits of two equal-length
strings in information theory, SHD accounts for the total missing, extra, and incorrect edges. Table 1 lists the hyperparameters
tuned for each algorithm.

C TRANSITIVE CLOSURE INDUCTION

We introduce the Transitive Closure Induction (TCI) technique as a straightforward baseline benchmark for topology
discovery. It aims to identify subsets of variables that exhibit variation together for each intervention. This variation is
measured using a threshold on Kullback-Leibler divergence, assuming the Gaussian distribution of variables. The subsets are
organized in a lattice structure, partially ordered by set inclusion. The output graph is obtained by computing the transitive
reduction of this lattice. While the justification of TCI within the causal framework may not be fully established, it remains
a valuable tool for retrieving the network VNF topology whenever it is transitively reduced. This hypothesis is met in our
sample networks, and TCI demonstrated superior performance compared to many state-of-the-art algorithms.

ndpi_stat_cycles

Firewall_cycles
Input_rate

Firewall

ndpi_stat
Router

Payload_scan

Bridge

Router_cycles

Payload_scan_cycles

Bridge_cycles

Output_rate

(a) Linear

Bridge_cycles

ndpi_stat_cycles

Input_rate

Firewall

ndpi_stat

Router

Payload_scan

Bridge

Firewall_cycles

Router_cycles

Payload_scan_cycles

Output_rate

(b) DAG-1

Bridge_cycles

ndpi_stat_cycles

Input_rate

ndpi_stat

Router

Payload_scan

Bridge

Router_cycles

Payload_scan_cycles

Output_rate

Flow_tracker

Flow_tracker_cycles

(c) DAG-2

Figure 3: The three VNF topologies used in our experiments


	Introduction
	Methodology
	Results and Conclusions
	Testbed, topologies, and trace collection
	Hyperparameters and tuning
	Transitive Closure Induction

