
Predicting High-precision Depth on Low-Precision Devices
Using 2D Hilbert Curves

Mykhailo Uss 1 2 Ruslan Yermolenko 1 3 Oleksii Shashko 1 4 Olena Kolodiazhna 5 Ivan Safonov 1

Volodymyr Savin 1 5 Yoonjae Yeo 6 Seowon Ji 7 Jaeyun Jeong 6

Abstract

Dense depth prediction deep neural networks
(DNN) have achieved impressive results for both
monocular and binocular data, but still they are
limited by high computational complexity, re-
stricting their use on low-end devices. For bet-
ter on-device efficiency and hardware utilization,
weights and activations of the DNN should be
converted to low-bit precision. However, this pre-
cision is not sufficient to represent high dynamic
range depth. In this paper, we aim to overcome
this limitation and restore high-precision depth
from low-bit precision predictions. To achieve
this, we propose to represent high dynamic range
depth as two low dynamic range components of a
Hilbert curve, and to train the full-precision DNN
to directly predict the latter. For on-device deploy-
ment, we use standard quantization methods and
add a post-processing step that reconstructs depth
from the Hilbert curve components predicted in
low-bit precision. Extensive experiments demon-
strate that our method increases the bit precision
of predicted depth by up to three bits with little
computational overhead. We also observed a pos-
itive side effect of quantization error reduction by
up to 4.6 times. Our method enables effective and
accurate depth prediction with DNN weights and
activations quantized to eight-bit precision.
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Figure 1. Illustration of DispNet (Mayer et al., 2016) quantization
to INT8 precision (W8A8). Running inference of the quantized
model on Qualcomm Hexagon DSP results in depth precision loss
and quantization artifacts (c). Our method increases depth bit-
width and reduces quantization error (d).

1. Introduction
Dense depth prediction has received considerable attention
in recent years due to its wide-ranging applicability in such
areas as scene understanding (Dai et al., 2017; Yeshwanth
et al., 2023), autonomous driving (Wang et al., 2019b; You
et al., 2020), robotics (Wofk et al., 2019), augmented re-
ality / virtual reality (Rasla & Beyeler, 2022), Internet of
Things (Ignatov et al., 2022), drones (Kolbeinsson & Miko-
lajczyk, 2024; Zhang et al., 2023). Usually, applications in
these areas have strong limitations on hardware capabilities
and energy consumption. Accurate depth estimation plays a
vital role in enabling robust perception and decision-making
processes in these contexts. A majority of recent develop-
ments in monocular (Ranftl et al., 2021; Bao et al., 2022;
Oquab et al., 2024; Ke et al., 2023; Yang et al., 2024a;b;
Shao et al., 2024) and binocular (Lipson et al., 2021; Xianqi
et al., 2024) depth estimation employ large-scale frame-
works leveraging complex convolutional neural networks

1



Predicting High-precision Depth on Low-Precision Devices Using 2D Hilbert Curves

(including Convolutional Gated Recurrent Units) (Nicolas
et al., 2015; Lipson et al., 2021; Xianqi et al., 2024), trans-
former (Ranftl et al., 2021; Bao et al., 2022; Oquab et al.,
2024) and diffusion (Ke et al., 2023; Yang et al., 2024a;b;
Shao et al., 2024) architectures. Furthermore, this trend
stems from attempts to develop foundational models to
solve the task. However, the impressive progress made
so far provokes a significant increase in the complexity of
the proposed solutions to achieve better accuracy, which
typically demands considerable computational and memory
resources. Hardware limitations cause additional difficulties
with on-device deployment of these complex models.

The efficiency of DNN inference on low-end devices can be
achieved by applying several strategies. One is to optimize
a model architecture to reduce number of parameters or
latency, avoid using computationally intensive layers, use
network pruning (Wofk et al., 2019; Oh et al., 2020; Liu
& Zhou, 2023; Song et al., 2023). Another strategy con-
sists in usage of low-precision computations (Li et al., 2021;
Jacob et al., 2018). Low-bit fixed-point representation of
DNN weights and activations, such as INT8, increases the
number of operations run in parallel, reduces the amount
of data transferred to and from memory, and decreases the
energy consumption of Multiply-Accumulate (MAC) op-
eration (Nagel et al., 2021). When moving to lower bit-
width precision, the memory amount reduces linearly, and
the computational cost of matrix multiplications reduces
quadratically (Nagel et al., 2021). Full-precision models
are usually trained in FP32 precision and quantized to low-
bit precision for on-device deployment. Quantization-aware
training (QAT) emulates the quantization process during
full-precision model training (Yang et al., 2019; Sakr et al.,
2022; Bhalgat et al., 2020; Li et al., 2022); post-training
quantization (PTQ) works on trained models and seeks to
convert weights into integer values with minimum quality
degradation (Fang et al., 2020; Yuan et al., 2022).

Running inference of quantized models comes at the cost
of additional low-precision computation errors and data pre-
cision loss (Nagel et al., 2021). Considerable research has
been devoted towards reducing quantization error by DNN’s
architecture modification (Sheng et al., 2018; Wang et al.,
2020), quantization techniques improvement (Sakr et al.,
2022; Bhalgat et al., 2020; Li et al., 2022; Nagel et al., 2021;
Fang et al., 2020; Yuan et al., 2022), adaptation to specific
hardware (Shlezinger et al., 2019; Kiyama et al., 2019;
Wang et al., 2019a). The problem of data precision loss is
largely unexplored, presumably because it does not pose
a problem for models predicting RGB images, which are
naturally presented as three eight-bit channels. Nevertheless,
precision loss becomes an issue for High Dynamic Range
images. This prevents the use of efficient homogeneous
eight-bit quantization and forces to resort to less efficient
mixed quantization schemes (Borrego-Carazo et al., 2021).

Depth maps require a high bit-width for accurate repre-
sentation. For example, representing depth in the range
0 . . . 10 m with 1 cm accuracy requires ten bits. Depth rep-
resented in eight bits suffers from the false edges on planar
surfaces (Fig. 1c), loss of spatial details and distortion of
objects with low depth contrast. Consequently, low-end
devices with low-precision computations necessarily lead to
on-device depth quality loss. To address this issue, in (Jiang
et al., 2022) authors suggested keeping the final layer of
the depth completion model at full floating-point precision
while quantizing the weights and activations of other layers
to either four-bit or eight-bit precision. This solution is not
efficient because the last layer works in the highest spatial
resolution and is computationally intensive. Low-end de-
vices not always support mixed-precision quantization or
different bit-width for different model layers. For example,
SNPE library (Qualcomm Technologies, Inc., 2025) for con-
verting DNNs for inference on Qualcomm Hexagon Digital
Signal Processor (DSP) supports the same bit-width for all
layers (can be different for weights and for activations). The
Coral Edge Tensor Processing Unit (TPU) supports only
INT8 or UINT8 data. All operations with float-precision
data are executed on CPU (Google, 2020). It means that
the depth prediction model on devices with low-precision
arithmetic will suffer from depth precision loss indepen-
dently of the quantization quality. This problem relates to
the hardware limitations and cannot be solved by improving
the quality of DNN quantization with PTQ/QAT.

In this work, we propose to overcome this limitation by
using depth representation as points on a 2D Hilbert curve.
This transform codes high dynamic range depth as two
Hilbert curve components that can be represented in low-bit
precision with minimum quality loss (Fig. 1). Our method
adds an on-device post-processing step that converts low-bit
precision Hilbert components to higher precision depth. The
post-processing does not involve addition or multiplication
operations and can be implemented as a simple lookup ta-
ble (LUT). The main difference of our method is that for
improving quality of DNN inference on device we consider
not only DNN architecture modification, training process
(like QAT), efficient weights and activations quantization
(like PTQ) but also structure of the signal predicted by the
DNN. Our method does not modify quantization process by
itself and is built on top of existing quantization methods
(either PTQ or QAT); progress of these methods in specific
domains or for specific architectures will bring improvement
in the performance of our method as well.

Our main contributions can be summarized as follows:

(a) We propose a novel method for high-quality depth predic-
tion on devices with low-precision arithmetic. The method
consists of representing depth as 2D Hilbert curve compo-
nents, training a full-precision model to predict 2D Hilbert
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curve components, and reconstructing high-precision depth
from low-precision Hilbert curve components.

(b) We evaluate the proposed method and demonstrate
that the modified model quantized to W8A8 format (8-bit
weights and activations) can predict depth with similar or
better quality than the original model in W8A16 format
(8-bit weights and 16-bit activations). At the same time,
the inference time and power consumption of the modified
W8A8 model with post-processing are 1.5 times less than
that of the original W8A16 model.

(c) We observe that the application of the proposed method
has additional positive side effect on the quantization quality,
specifically quantization error reduction by up to 4.6 times.

2. Method
In this section, we introduce our method that allows high-
precision depth prediction on devices with low-precision
computations. The methods rests on depth representation
as two components of a 2D Hilbert curve. On-device, these
components are predicted in low-bit precision on TPU or
NPU and then converted to high-bit precision depth us-
ing a simple post-processing algorithm run on CPU. In the
following subsections, we describe the method in general
(Sec. 2.1), discuss properties of the Hilbert curve and its
utility for depth coding (Sec. 2.2), explain implementation
details (Sec. 2.3), discuss expected change of quantization
error (Sec. 2.4). Lastly, we present the loss function for
training the modified model (Sec. 2.5).

2.1. High-precision depth on a low-precision device

Let us consider a DNN that predicts some quantity q
bounded in the range [0, 1]. A quantized model runs on
a low-end device that has an efficient DNN inferencing
module (in our case, it is DSP) with b-bit output data rep-
resentation and a general-purpose CPU with full-precision
arithmetic. The DSP outputs value qquant.b in b-bit precision
(e.g. INT8). The error between q and qquant.b is called the
quantization error. We denote the standard deviation (SD)
of this error as σquant.

We seek to increase the bit-width of the predicted value of
q with minimum computational overhead. For the depth
prediction case, q corresponds to normalized depth or nor-
malized disparity, depending on the DNN design.

Due to DSP limitations, the bit-width of the model output
cannot be increased, so we can operate only with the number
and structure of the output channels. These channels should
be transferred from DSP to CPU and used to reconstruct q
in higher bit precision. To make this scheme effective, the
following key problems need to be solved: (1) minimize the
amount of data transferred from DSP to CPU, (2) minimize
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Figure 2. Idea illustration. 1D range is quantized to N = 8 values
q0 = 0 . . . qN−1 = 1 marked by white circles. The 1D range is
mapped to a 2D curve shown in red color. Both x and y axes are
also quantized into N = 8 values yielding 64 2D points. Among
them, 36 points lie on the curve (shown in blue color). Mapping the
2D curve back to the 1D range results in 36 different quantization
values. Quantization error has effectively been reduced by the
factor equal to the curve length L = 35/7 = 5.

the complexity of post-processing run on CPU. In the solu-
tion proposed in (Jiang et al., 2022), the last layer of the
depth completion model is in float precision. This version
is ineffective because it requires passing to the CPU a large
amount of data from the penultimate layer and processing
the high-resolution data associated with the last layer.

Our idea is to represent q as a point on a 2D parametric curve
(x(q), y(q)) with length L > 1, where both x(q) and y(q)
are bounded in the [0, 1] range. The full-precision DNN
is trained to directly predict x(q) and y(q). When running
inference on DSP, the value of q is calculated from x and
y values predicted in b-bit precision. The parametric curve
of length L will pass through approximately L · 2b discreet
points (x(q), y(q)) effectively increasing precision of recon-
structed value of q by log2 L bits from b to b+log2 L (Fig. 2).
In this implementation, the amount of data to transfer from
DSP to CPU increases only twofold, post-processing on
CPU is simple and implemented using LUT. We will later
refer to unmodified DNN as original model and to model
predicting Hilbert components (and post-processing step
when it is clear from the context) as modified model.

On-device deployment of a depth prediction DNN consists
of the following steps (Fig. 3): (a) training the full-precision
model to directly predict the Hilbert curve components of
depth representation, (b) applying standard quantization
methods (either PTQ or QAT), (c) running inference of the
modified quantized model on-device and obtaining Hilbert
curve components in low-bit precision, (d) applying post-
processing to Hilbert curve components and reconstruct
depth in higher-bit precision.

Selection of function (x(q), y(q)) is crucial for successful
implementation of the proposed idea.
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Figure 3. Scheme of the proposed method’s inference pipeline on
device.

2.2. Selecting a suitable parametric curve

Let us consider the simplest function: x(q) = ⌊q ∗
255⌋/255, y(q) = q − x(q), where ⌊·⌋ denotes the floor
function. In this case, x(q) is a coarse representation of
q and y(q) adds fine details (see example in Fig. 4e and
4f). The length of this curve is 256, and it allows recon-
structing q in INT16 precision from x(q) and y(q) in INT8
precision. However, structure of y(q) is unfriendly for the
full-precision model training: it has multiple sharp transi-
tions from zero to one and from one to zero. During our
experiments we found that this curve degrades full-precision
model training and is very susceptible to quantization errors.

Let us discuss the desired properties of the curve
(x(q), y(q)):

1. Continuity: small changes in q should result in small
changes in both x(q) and y(q). For depth coding, this
property ensures that x(q) and y(q) preserve spatial
smoothness and do not introduce new depth disconti-
nuities.

2. Non-self-intersection: the curve should preserve one-
to-one correspondence between q and (x(q), y(q)).

3. Boundedness and self-avoidance: the curve should
cover the unit square uniformly and avoid close points
(x(q1), y(q1)) and (x(q2), y(q2)) for distant q1 and q2.

Curves with the desired properties are known as space-filling
curves or Peano curves (Sagan, 2012). For the goals of this
work, we found one particular curve, namely the Hilbert
curve (Sagan, 2012; Bader, 2012), to be the simplest and
the most flexible option. We describe this choice in more
detail in Appendix A.

The Hilbert curve is a continuous fractal space-filling
curve that is constructed as a limit of piece-wise linear
curves (Bader, 2012). The Hilbert curve starts from a sin-
gle point in the middle of the unit square. Each subse-
quent curve order is produced by replicating and linking

points of the curve of the previous order. We will later re-
fer to the curve order as p. The approximating polygons
for curves with orders 1 − 4 are shown in Fig. 5. In or-
der to avoid boundary effects, we scale each curve so that
it fits into the square {(x, y) | b ≤ x, y ≤ 1 − b}, where
b = 0.1. In this case, the length of the p-th order curve is
Lp = (2p +1)(1− 2b). The length of an edge of p-th order
approximation polygon equals hp = (1 − 2b)/(2p − 1).
This value also defines the minimum distance between
points of different parallel edges of the Hilbert curve ap-
proximation polygon (Fig. 5).

2.3. Forward and backward transformations

For a full-precision and quantized models, predicted values
(x, y) will not have an exact match with any (x(q), y(q)).
To convert arbitrary point (x, y) back to 1D value, we link
(x, y) to the closest point on the Hilbert curve:

qxy = argmin
q∈[0,1]

∥(x− x(q), y − y(q)∥. (1)

Building forward (1D → 2D) and backward (2D → 1D)
mappings for Hilbert curves of arbitrary order is based on
iterative algorithms (Bader, 2012). Because we work with
one specific curve order, a faster transformation can be
implemented with LUTs. We build two LUTs for corre-
sponding mappings. The first LUT is built using bilinear
interpolation of the nodes of the low-order Hilbert curve.
This LUT allows us to get (x(q), y(q)) for the given q. An
example of this transformation applied to the ground truth
(GT) disparity map is shown in Fig. 4a-4b. To map 2D
values (x, y) (Fig. 4c-4d) back to the 1D representation, we
use a second LUT that is built based on Eq. (1). In our
experiments, this LUT has a size of 256 by 256 elements.

2.4. Quantization error transformation

For the original model, the quantization error is measured
at the model output level. For our method, this error is
measured after post-processing of Hilbert components and
accounts for Hilbert components quantization error and its
transformation during post-processing. We denote SD of
this error as σ̄quant and SD of Hilbert components quantiza-
tion error as σxy.quant.

Locally, Eq. (1) reduces to the projection of (x, y) to the
closest Hilbert curve edge, discarding x or y component
(depending on the edge orientation), compressing the re-
maining component L times. We discussed above that this
transform adds log2 L bit to q precision. In addition, Hilbert
components quantization error is compressed L times yield-
ing σ̄quant = σxy.quant/L.

Quantization error compression takes place if (a) Hilbert
components quantization error is independent between chan-
nels and identically distributed, and (b) if σxy.quant is small
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(a) (b) (c) (d) (e) (f)

Figure 4. Illustration of disparity transforms: (a) disparity map; (b) mapping to 2D with second order Hilbert curve; (c, d) x and y
components of the Hilbert curve; (e, f) coarse and fine details of disparity map. Fine details in (f) are the least significant byte of disparity
(a) represented in 16-bit format. High-frequency oscillations make it appear different from the original disparity and difficult to predict by
a DNN model.

} }

}
h1

h2

h3

Figure 5. Hilbert curves for orders p = 1, 2, 3, 4 (from left to
right). Every order is formed by the replacement of every node by
an elementary 3-segment sequence.

enough for Hilbert components quantization error to be
smaller than hp. Both original and modified models have
similar architecture, solve the same task, are trained on
the same data, quantized by the same procedure. We can
additionally assume (c) that σquant = σxy.quant. If this addi-
tional condition is valid then our method will reduce quan-
tization error by L times compared to the original model:
σ̄quant = σquant/L.

We satisfy condition (b) by proper selection of the Hilbert
curve order. For the stereo matching, we experimentally
found that p = 2, 3 are suitable choices, providing curve
length 4–7.2 and bit-width increase by 2–2.85. Assumptions
(a) and (c) can only be verified experimentally for a specific
DNN architecture. We discuss their validity in detail in Sec-
tion 3.5. Notice, that bit-width increase will take place even
if conditions (a) and (c) are not fulfilled. These additional
conditions are only needed for potential quantization error
reduction.

2.5. Model and Loss Function Modification

To implement the proposed approach, a DNN with one
head predicting quantity q should be modified to have two
heads predicting Hilbert curve components x and y. This
modification for the DispNet model (Mayer et al., 2016) is
illustrated in Fig. 6.

The loss function for the proposed method is composed
of two terms: depth loss Λ(qGT, qxy) (Hu et al., 2019) and
additional term ΛH(xGT, yGT, x, y) that assures model con-

Figure 6. DispNet (Mayer et al., 2016) model modification re-
quired by the proposed approach. The input RGB stereo pair
is processed by the encoder-decoder network from the original
model. Features from the encoder-decoder are fed to the optional
Gaussian noise layer, followed by two identical heads for Hilbert
curve components. At the post-processing stage, Hilbert compo-
nents are converted to the final disparity map.

vergence to the Hilbert curve-based representation:

Λfull = Λ(qGT, qxy) + α · ΛH(xGT, yGT, x, y), (2)

where xGT and yGT are GT values for Hilbert curve compo-
nents calculated from GT value qGT, and α is hyperparameter.
The additional component ΛH is calculated as follows:

ΛH(xGT, yGT, x, y) = (xGT −x)2+(yGT −y)2+β ·r2xy, (3)

where rxy = ∥(x− x(qxy), y− y(qxy)∥ and β is additional
hyperparameter. The Hilbert curve loss component serves
two goals: it penalizes the distance between GT and pre-
dicted points in the 2D representation; it penalizes deviation
across the Hilbert curve and forces the model to predict only
points that belong to the curve. We set α = 1 and β = 25
in our experiments.

3. Experiments
Two models are selected for the stereo matching experiment:
DispNet with the original architecture proposed in (Mayer
et al., 2016) and Dense Prediction Transformer (DPT) (Ran-
ftl et al., 2021) with MobileViTv3-S (Wadekar & Chaurasia,
2022) as an encoder. In all experiments, the models’ input
size is 384 × 512 pixels and the output size is 192 × 256
pixels. All modifications of the DPT model are described
in detail in Appendix B. The head predicting Hilbert curve
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components for the DPT model is the same as for the Disp-
Net but includes an additional convolutional and up-sample
layer in each branch to adapt to feature shapes of the DPT
decoder. We found that injecting small amount of Gaus-
sian noise at the beginning of the Hilbert components head
improves quantization of modified models with the SNPE
library and has no effect on unmodified models. Experi-
mental results for modified models are presented with a
Gaussian noise layer with SD equals 0.02.

3.1. Implementation Details

For stereo matching models training we adapted Scan-
Net v2 (Dai et al., 2017) dataset in the following way. Train-
ing, validation, and test data are rendered from meshes pro-
vided for each ScanNet v2 scene using PyRender v.0.1.45
library. The camera poses for the left camera are fixed
to the same values as specified in ScanNet v2. The right
camera is shifted by 60 mm along the axis x to form the
horizontal baseline. Intrinsic parameters for the left and
right cameras correspond to ScanNet data: pinhole camera
with fx = fy = 577.87, cx = 320, cy = 240. The split of
the dataset into training and test parts corresponds to the
official ScanNet v2 split.

All models were quantized using SNPE SDK v.2.24 and
tested on Samsung S24+ device with Qualcomm Snap-
dragon 8 Gen 3 processor and Hexagon DSP. We com-
pare models in FP16, W8A16 and W8A8 formats running
on Hexagon DSP. Power consumption is measured with
Monsoon Solutions FTA22D Power Monitor in power save
mode.

3.2. Evaluation Metrics

We characterize the quality of predicted depth using stan-
dard metrics (Eigen et al., 2014; Geiger et al., 2012): mean
absolute relative error (Abs Rel), root mean square error
(RMSE), end-point-error (EPE), and D1.

Pixel-level errors themselves are not sufficient to character-
ize quantization artifacts in the predicted depth maps. For
example, INT8 depth representation has minimal impact
on the Abs Rel metric. To address this issue, we experi-
mented with the SSIM metric (Wang et al., 2005; Rouse &
Hemami, 2008). However, we found it barely affected by
quantization artifacts. Therefore, we propose using cosine
similarity (Lahitani et al., 2016) between discrete cosine
transform (DCT) (Ahmed et al., 1974) coefficients of GT
and predicted depth maps. For this, n× n DCT is applied
in a scanning window manner to both GT and predicted
depth maps. The DCT coefficients are flattened to vector
representations and zero coefficients are discarded. Cosine
similarity between flattened vectors is calculated at each

scanning window position and then averaged:

SC =
1

N

N∑
i=1

M∑
j=1

cij · ĉij
∥cij∥ · ∥ĉij∥

, (4)

where N is the number of frames, M is the number of scan-
ning windows, cij and ĉij are vectors of DCT coefficients
of GT and predicted depth maps for frame i and window j.
Experiments show that SC calculated in 4×4 window is sen-
sitive to depth blurring and INT8 quantization artifacts. The
value of SC close to unity (the maximum possible value)
indicates high-quality depth maps with sharp edges and
absence of artifacts in homogeneous areas.

To characterize quantization error, we use SD σ̂ between
raw outputs of full-precision and quantized models mea-
sured in a robust way as Scaled Median Absolute Devia-
tion (Rousseeuw & Croux, 1993).

3.3. Analysis of W8A8 Models

We trained DispNet and DPT models using p = 1, 2, 3, 4.
These models will be later referred to as hpDispNet and
hpDPT, respectively. We observed that float-precision mod-
els hpDispNet and hpDPT learn to predict points close to
the Hilbert curve. Depth prediction accuracy of modified
models is similar to the original models w.r.t. all metrics.

Next, we compare the original and modified models in
W8A8 format running on CPU and DSP. The difference
is that W8A8 model runs on CPU in dequantization mode
using full precision arithmetic, while on DSP inference is
done in lower-precision arithmetic. Quantitative results are
presented in Table 1. For the original DispNet model, quan-
tization leads to noticeable quality degradation on both CPU
and DSP. On CPU degradation is seen for Sc metric that
drops from 0.86 to 0.68 reflecting loss of spatial details.

Modified models for all p perform better than the original
ones; the best result achieved for p = 3. As shown in
Fig. 7, the quantized h3DispNet model retains the ability to
predict points on the Hilbert curve for both CPU and DSP
inference. The h3DispNet model on CPU shows almost
the same quality as the FP32 model and outperforms the
original DispNet w.r.t. all metrics. On DSP, the quality
drop of the original DispNet is more significant: Abs Rel
increases from 1.01 to 2.03, and Sc decreases from 0.86 to
0.58. The h3DispNet model compensates this drop almost
completely reaching Abs Rel 0.93 and Sc 0.81.

For the DPT model, the situation is similar, but the quality
drop for the quantized model is more significant on both
CPU and DSP. On CPU, the h3DPT model performs better
than the original FP32 DPT model. On DSP the best result
shows h2DPT model with Abs Rel improving from 4.18%
to 1.12% and Sc increasing from 0.52 to 0.62 as compared
to the original model. The curve of the third order provides
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Model
Abs Rel, % ↓ RMSE, px↓ SC ↑ EPE, px ↓ D1, % ↓

FP32 W8A8 W8A8 FP32 W8A8 W8A8 FP32 W8A8 W8A8 FP32 W8A8 W8A8 FP32 W8A8 W8A8
CPU DSP CPU CPU DSP CPU CPU DSP CPU CPU DSP CPU CPU DSP CPU

DispNet 1.01 2.03 1.15 1.12 2.24 1.10 0.86 0.58 0.68 0.29 0.69 0.31 1.81 5.35 1.73
h1DispNet 1.06 1.50 1.12 0.97 1.09 0.97 0.86 0.67 0.79 0.27 0.35 0.29 1.27 2.25 1.27
h2DispNet 0.85 0.98 0.88 0.90 0.94 0.91 0.87 0.75 0.83 0.22 0.25 0.23 1.01 1.26 1.02
h3DispNet 0.88 0.93 0.87 1.00 1.03 1.00 0.87 0.81 0.86 0.24 0.24 0.24 1.25 1.26 1.25
h4DispNet 0.90 0.94 0.92 1.02 1.02 1.02 0.85 0.83 0.85 0.24 0.25 0.24 1.24 1.25 1.24

DPT 0.75 4.18 1.48 0.87 2.09 1.03 0.89 0.52 0.87 0.21 1.03 0.39 0.95 5.78 1.39
h1DPT 0.70 1.48 0.78 0.88 1.41 0.89 0.88 0.54 0.88 0.20 0.41 0.22 1.01 2.77 1.03
h2DPT 0.71 1.12 0.72 0.91 1.02 0.91 0.88 0.62 0.88 0.20 0.29 0.20 1.07 1.27 1.08
h3DPT 0.55 1.35 0.63 0.80 1.33 0.80 0.90 0.70 0.90 0.15 0.32 0.17 0.78 1.28 0.78
h4DPT 0.74 1.27 0.76 0.94 1.38 0.94 0.87 0.73 0.86 0.21 0.32 0.21 1.14 1.62 1.14

Table 1. Metrics of DispNet, hpDispNet, DPT and hpDPT models. All metrics are presented for FP32 model (CPU inference), W8A8
model running on DSP and W8A8 model running on CPU (dequantization mode). The best results on DSP are in bold font. Results for
the original DispNet and DPT models are marked in grey color.

(a) W8A8 model on CPU delegate

(b) W8A8 model on DSP delegate

Figure 7. 2D histogram of h3DispNet W8A8 model output for
CPU and DSP delegates.

the best compromise between Abs Rel and Sc improvement
for both DispNet and DPT models. This conclusion holds
when RMSE, EPE or D1 are taken into account.

Qualitative results for the h3DPT model are illustrated in
Fig. 8. Reduction of quantization error between the original
model (Fig. 8b) and the modified model (Fig. 8c) is very
significant as can be seen on error maps in Fig. 8e and
Fig. 8f. We also observe from Fig. 8c and Fig. 8b that
h3DPT demonstrates better spatial details than the original
model. This effect is caused by increase of effective number
of bits for depth map coding by log2 L bits (approximately
by 2.85 bits for h3DPT resulting in INT10-INT11 precision).
Indirectly, this effect is characterized by increase of Sc value
with p (see Table 1). Visually, bit-precision increase is well

(a) GT depth (b) DPT depth (c) h3DPT depth

(d) Image (e) |GT - DPT| (f) |GT - h3DPT|

Figure 8. Quantization errors of DPT and h3DPT, W8A8, DSP.

(a) DispNet (b) h2DispNet

Figure 9. Effect of increased bit-width on the quality of depth
prediction for homogeneous areas on DSP.

seen for homogeneous planar areas as illustrated in Fig. 9.

As one can see from these results, the proposed method not
only solves the main problem of bit-width increase but also
significantly reduces the level of quantization error of depth
prediction. The latter is a positive side effect and we will
study it more in detail in Section 3.5. Effect of the improved
quality of depth prediction on scene mesh fusion is discussed
in Appendix D and additional examples of predicted depth
maps are given in Appendix E. Additional experiment on
KITTI 2012 dataset is described in Appendix C.
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Precision Abs Rel, % EPE, px D1, % SC T, ms P, mW·s/infr.

DispNet

FP32 1.01 0.29 1.81 0.858 - -
FP16 1.50 0.37 1.80 0.855 19.54 19.52

W8A16 1.78 0.63 5.22 0.798 18.7 12.3
W8A8 2.02 0.69 5.34 0.585 10.5 7.1

Ours, W8A8 0.93 0.24 1.26 0.807 12.0 8.7

DPT

FP32 0.75 0.21 0.95 0.889 - -
FP16 1.14 0.27 0.97 0.884 54.1 110.5

W8A16 4.03 0.97 5.58 0.825 46.2 64.5
W8A8 4.16 1.03 5.76 0.520 26.7 28.3

Ours, W8A8 1.35 0.32 1.28 0.697 30.4 29.7

Table 2. On-device performance of the original and modified mod-
els including runtime (T) and power consumption (P). Measure-
ments for our method include data transfer from DSP to CPU and
Hilbert components post-processing on CPU. The overhead of our
method is in runtime and power consumption increase between
modified and original W8A8 models (compare lines marked by
orange and green colors). Models in FP32 format are run on CPU;
models in FP16, W8A16, W8A8 formats are run on DSP.

3.4. Comparison of FP16, W8A16 and W8A8 Models

Compared to the original model, the overhead of our method
consists of three parts: (1) increased model complexity,
(2) additional data transfer from DSP to CPU, (3) post-
processing of Hilbert components. We found that this over-
head (≈ 14%) is significantly smaller than the performance
gain from using W8A8 models instead of W8A16 or FP16
models. Detailed profiling results are presented in Table 2
for models with the curve order 3.

The modified DispNet model in W8A8 format shows better
quality than the original model in W8A16 format while
simultaneously reducing energy consumption by 35% and
latency by 30%. Compared to the original model in W8A16
format, the modified DPT model in W8A8 format shows
significantly better Abs Rel metric and only slightly worse
Sc. It also lowers energy demands by 34% and processing
time by 54%.

3.5. Analysis of Quantization Errors Reduction

For the detailed analysis of quantization error reduction, we
selected the h3DispNet model. To exclude precision loss in-
fluence, we perform analysis for W8A8 model run on CPU.
The difference between the original and modified model
lies in the number of channels utilized: the relationship
between the quantization errors among two Hilbert compo-
nents requires further examination. Our initial analysis in
Section 2.4 was made under the assumption of independent
quantization errors for the Hilbert components. However,
assessment using real data demonstrated that this hypothesis
does not hold universally, as correlation has been discov-
ered along the Hilbert curve. Quantitatively, the distribution

(a) Distributions of errors
across and along the Hilbert
curve.

(b) Disparity errors distribu-
tion for h3DispNet and Disp-
Net models.

Figure 10. Quantization errors distributions for the h3DispNet
model. Disparities d are calculated from Hilbert components x
and y and normalized to [0, 1] range.

of quantization errors along-the-curve is wider than that
across-the-curve (Fig. 10a).

Across-the-curve errors are mainly nullified in the post-
processing, along-the-curve errors are compressed L times
and define the level of errors of the target quantity, that is
disparity. To compare errors in the same scale, we added
in Fig. 10a disparity error of the original model multiplied
by the curve length L. Quantization error in Hilbert curve-
based output representation is significantly smaller than
expected if the original model errors are scaled L times.
As a result, in disparity space, the quantization error of
the modified model is significantly smaller than that of the
original one (see Fig. 10b): σ̂ is 5.65·10−4 and 17.66·10−4,
respectively. Thus, we obtained quantization error reduction
by ≈3.1 times on CPU. On DSP this gain is ≈4.6 times.
Similar effect is observed for the DPT.

In order to bring further understanding, we applied Hilbert
curve-based output representation to the Human Pose Es-
timation (HPE) task (see Appendix F). For the ResNet-
RS (Bello et al., 2021) encoder and keypoints representation
as heatmaps, the effect is similar to stereo matching but
with a stronger along-the-curve correlation. Quantization
error reduction on DSP is 2.69 times for p = 3 curve. For
direct keypoints regression along-the-curve correlation is so
strong that quantization error reduction is not observed. For
both stereo matching and HPE, we found that the magnitude
of the across-the-curve quantization error is similar to the
quantization error of the original model.

4. Discussion and Limitations
The proposed method is designed with the main goal of
increasing the bit-precision of the predicted depth on de-
vices with low-bit precision output. Apart from this, we
observed a positive side effect consisting of a significant
reduction of the quantization error. The effect reveals itself
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in different degrees for the depth prediction and human pose
estimation with heatmaps; it is not observed for the human
pose estimation with direct keypoints regression.

Our experiments show that the quantization error of Hilbert
components can be correlated and have a large SD along
the Hilbert curve. This effect manifests itself strongly for
the human pose estimation with direct regression and only
slightly for the stereo matching models. Such a correla-
tion indicates that instead of learning independent paths for
predicting Hilbert curve components, the modified model
learns an internal representation of the target quantity (for
example, disparity, depth or keypoints) and converts it into
Hilbert components at the final model layers. In this case,
the modified model predicts the target quantity with the
same quantization error as the original model, this error un-
dergoes forward transform to Hilbert representation (inside
the model) and backward transform to the target quantity
(at the post-processing step). As a result, the quantization
error level remains the same, and the effect of our method
application is only in bit-width precision increase. This is
the case for the HPE with direct regression.

If both x and y are predicted by independent paths inside
the model, the quantization errors of the Hilbert compo-
nents are not correlated and have similar level as for the
original model. This error is compressed L times at the
Hilbert components post-processing stage. As a result, our
method allows both reducing quantization error and increas-
ing bit-width precision as has been manifested by our stereo
matching experiment. If the source of correlation in the
along-the-curve direction can be found and eliminated, the
proposed method could be used to reduce quantization error
in cases when bit-precision is not an issue.

While our method improves the quality of predicted depth,
it requires retraining of the full-precision model. In addi-
tion, our method requires that errors of the quantized depth
prediction model are bounded, since large values of the
quantization error violate one-to-one correspondence be-
tween the depth values and the points on the Hilbert curve.
The next step involves joint usage of QAT and our method
and moving to higher dimensions where a multidimensional
Hilbert curve of the same length fills the space less densely.

We present results for stereo-matching models that predict
disparity in one step. The recent models showing the best
quality for stereo matching (Xu et al., 2023; Xianqi et al.,
2024) and monocular depth prediction (Shao et al., 2023)
incorporate iterative disparity refinement using GRU or sim-
ilar recurrent units. In these architectures, the predicted dis-
parity is refined over multiple iterations by adding a small
correction signal to the initially predicted disparity map. In-
tegration of the proposed idea of disparity representation as
two Hilbert curve components into iterative models differs
significantly from one-stage models like DispNet and DPT.

While we experimented with modification of the output
disparity representation, modification of iterative models
requires integration of Hilbert components inside the model
at multiple places. We leave this interesting problem for
future work.

5. Conclusions
In this paper, we proposed a novel method for high dy-
namic range depth prediction on devices with low-precision
arithmetic that exploits depth representation as points on
a 2D Hilbert curve. This representation essentially codes
the high dynamic range depth as two low dynamic range
Hilbert curve components. The depth prediction model is
trained to directly predict two Hilbert curve components that
are calculated on-device in low-bit precision and used to
reconstruct depth in high-bit precision. Apart from increas-
ing bit-precision, our method reduces quantization error
by a factor of up to 4.6. Experiments demonstrate that for
the stereo matching task our method reconstructs depth in
INT10-INT11 bits for a model quantized in W8A8 format
and with quality similar to or even better than the original
model quantized in W8A16 format. In this manner, depth
can be predicted on-device 1.4-2 times faster and with 65%
of power consumption without sacrificing its quality. The
proposed approach is beneficial for on-device application of
different dense depth prediction methods including monoc-
ular and stereo depth prediction, Multi-View-Stereo, depth
completion, depth quality enhancement, and depth inpaint-
ing. Future efforts need to be made to understand and fully
explore the effect of quantization error reduction.

Impact Statement
This paper proposed an innovative approach for increasing
bit-precision of quantized depth prediction models on de-
vices with low-precision arithmetic. This paper contributes
to the advancement of quantization techniques for dense
prediction tasks for devices with limited resources. While
there are possible social implications that arise from our
work, none of them are particularly relevant in this context.
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A. Parametric curve selection

(a)

(b)

(c)

Figure 11. Space-filling curves filling unit square. The
first (left column) and the second (right column) order
p curves for: (a) Hilbert curve, (b) Peano curve, and
(c) Quadratic Gosper curve.

The Hilbert curve is one representative of the wide class of space-
filling curves (Ventrella, 2012). Let us provide additional arguments
in favor of Hilbert curve selection for high-precision depth prediction.
In our analysis, we follow the terminology of (Ventrella, 2012) that
classifies curves on square and triangular grids, and divides them into
families

√
N . In family

√
N , the distance between starting and ending

points of the curve generator equals to
√
N .

In order to fully utilize depth representation as two components, it is
desirable that a space-filling curve uniformly covers the unit square.
This requirement eliminates all curves on triangular grids.

Curves with non-orthogonal generators have the drawback of filling
square not uniformly as for example Z-order curves. Among curves
with orthogonal generation curves defined on square grid our choice
is limited to the Hilbert curve (

√
4 family) (Fig. 11a), the Peano

curve (
√
9 family)(Fig. 11b) and the Quadratic Gosper curve (

√
25

family)(Fig. 11c). For Hilbert and Peano curves different generators
are possible (e.g., the Moore curve is a variant of the Hilbert curve)
but they are different only in the order the space is filled.

The value of N defines how fast the curve length Lp increases and
curve edge size hp decreases with the curve order. Our experiments
show that it is desirable to have the ability of fine-tuning the curve
length depending on the DNN quantization error magnitude. From
this point of view, the Hilbert curve is the most flexible as it has the
lowest N value. For the Hilbert curve, the number of nodes grows as
1, 4, 16, 64, 256 with the order p. For Peano curve, the number of
nodes grows as 1, 9, 81, 729, 6561, and for Quadratic Gosper curve
as 1, 25, 625, 15625, 390625. If we limit the number of nodes to a
reasonable value of 256, the Hilbert curve provides 4 usable low-order
curves (that we experiment with in the paper), Peano – 2, Quadratic
Gosper Curve – 1.

The Hilbert curve is the simplest and the most flexible curve that
satisfies all requirements essential for coding depth values. To construct even more flexible list of curves, it is possible to
use Hilbert, Peano and Quadratic Gosper curve of different orders to create a sequence of curves with the number of nodes 4,
9, 16, 25, 64, 81, 256.

Provided the main requirements for the parametric curve (self-avoidance, uniform filling of unit square, continuity) are
satisfied, the detailed structure of the curve is not important. For example, we can use arbitrary non-self-similar curves that
fill unit square with a given number of nodes, curves with smoothed corners, curves that stretch different parts of 1D value
in a different degree (to emphasize the most probable range of target quantity variation).

B. DPT model modification
As it mentioned in the paper, one of the models chosen for the experiments is Dense Prediction Transformer (DPT) (Ranftl
et al., 2021). All modifications of the model architecture are illustrated in Fig. 12. An additional 1 × 1 2D convolution
layer was used for proper integration of the input RGB stereo pair into the MobileViTv3-S (Wadekar & Chaurasia, 2022)
backbone.

Also, MobileNet blocks in the encoder are modified for better quantization as described by Sheng et al. (Sheng et al., 2018).
For disparity prediction, the original DPT head was used. The Hilbert curve head architecture for this model includes an
additional up-sample layer after the first 3× 3 2D convolution layer.

The DPT model includes a MobileViTv3-S encoder with skip connections before each MobileViT block. Each skip
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Figure 12. The hpDPT model architecture. The input RGB stereo pair is processed by an encoder which is MobileViTv3-S backbone and
the decoder proposed for depth prediction in DPT. Features from the decoder are fed to an optional Gaussian noise layer and 3× 3 2D
convolution layer followed by two heads for Hilbert curve components. They consist of one 3× 3 and one 1× 1 2D convolution layers
with a decreasing number of filters: 32 and 1 respectively. At the post-processing stage, Hilbert components are converted to the final
disparity map.

connection integrates into the decoder part using a reassemble block proposed by Ranftl et al. (Ranftl et al., 2021).

During analysis of the network architecture, we found that layers in MobileNet blocks have large kurtosis values of their
weights’ distributions. It is suggested in (Shkolnik et al., 2020) that large kurtosis values might lead to the model quantization
quality degradation because of outliers clipping. We added kurtosis regularization proposed in (Shkolnik et al., 2020) to all
1× 1 convolutions in MobileNet blocks in MobileViTv3-S to reduce quantization error in both experiments with depth and
Hilbert components output.

C. Experiment on KITTI 2012 dataset

Precision Abs Rel, % ↓ EPE, px ↓ D1, % ↓

FP32 3.88 1.38 9.13
W8A8 5.01 1.63 9.95

Ours, FP32 3.24 1.07 5.22
Ours, W8A8 3.30 1.09 5.36

Table 3. Results on KITTI 2012 for the DispNet and
h2DispNet models. Models in FP32 format are run on
CPU; models in W8A8 formats are run on DSP. Best
metrics for W8A8 models are shown in bold.

We evaluate our approach on KITTI 2012 (Geiger et al., 2012) dataset.
KITTI 2012 is a real-world dataset for autonomous driving domain
with sparse ground-truth disparities collected with a LiDAR sys-
tem. Our evaluation is based on 194 images in the training part
of KITTI 2012. Training dataset is composed of ScanNet and Virtual
KITTY 2 (Cabon et al., 2020) datasets with 25/75% balancing. The
DispNet and h2DispNet models were trained in 256 by 1152 px input
resolution and 128 by 576 px output disparity resolution. Training
settings are the same as for the ScanNet experiment.

As shown in Table 3, for the original DispNet model we reached EPE
1.38 px and D1 9.13%. Interestingly, h2DispNet shows better results
with EPE 1.07 px and D1 5.22%. We exclude Sc from the analysis, because it is not applicable to sparse ground-truth
disparities of KITTI 2012 dataset. The DispNet model quantized to W8A8 format and run on DSP shows degradation of
both EPE (to 1.63 px) and D1 (to 9.95%). At the same time the h2DispNet in W8A8 format on DSP shows very minor
quality degradation. Measured as EPE between disparity predicted by FP32 and W8A8 models, quantization error is 1.01 px
for the DispNet and 0.38 px for the h2DispNet. It corresponds to gain in disparity prediction quality on device of 2.6 times.
Overall, on DSP the h2DispNet improves D1 by approximately 4.6% and EPE by about 33% compared to the original
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(a) Image (b) GT disparity

(c) DispNet disparity, FP32 (d) h2DispNet disparity, FP32

(e) DispNet disparity, W8A8 (f) h2DispNet disparity, W8A8

(g) |FP32 - W8A8|, DispNet (h) |FP32 - W8A8|, h2DispNet

(i) |GT - W8A8|, DispNet (j) |GT - W8A8|, h2DispNet

Figure 13. Comparison of DispNet and h2DispNet on KITTI 2012 dataset. Differences between disparity maps predicted by FP32 (CPU)
(c, d) and W8A8 (DSP) (e, f) models are shown in (g) and (h); absolute disparity prediction errors for W8A8 (DSP) models are shown in
(i) and (j). All values are presented in pixels.

DispNet model. Examples of predicted disparity are given in Fig. 13. This experiment demonstrates that the proposed
approach can be successfully applied to real datasets.

D. Quantization quality influence on mesh fusion
We provide additional experiment to understand how quantization artifacts in depth maps affect a scene mesh reconstruction.
For a mesh fusion we utilize truncated signed distance function (TSDF) (Curless & Levoy, 1996) approach as implemented
in Python library Open3D (Zhou et al., 2018). We used scalable TSDF volume with parameters voxel length = 0.01m,
sdf trunc = 0.15. For experiments we chose ScanNet scene scene0050 02 comprising 4379 frames. Each 40th frame was
used to reconstruct mesh. Quality of the mesh fused from GT depth maps is illustrated in Fig. 14.

In Fig. 15 (Fig. 16), we show qualitative results of h2DispNet (h2DPT) model compared to the corresponding baseline
variant. 3D meshes fused from depth maps predicted by FP32 h2DispNet (Fig. 15b) and FP32 h2DPT (Fig. 16b) models
have very similar structure and depth smoothness compared to the FP32 DispNet (Fig. 15a) and FP32 DPT (Fig. 16a). Both
baseline and modified FP32 models’ variants produce quality of reconstructed 3D mesh comparable to GT (Fig. 14) but with
slightly smoother structure.

We observe two types of quantization artifacts present in fused meshes for models run on CPU delegate. The first is the
noise on flat surfaces for original DispNet in W8A8 format (Fig. 15e); the second is presence of visible edges of different
frames’ depth maps (step-like structures) in the mesh for original DPT in W8A8 format (Fig. 16e). We attribute the second
type of artifacts to the systematic errors in depth prediction leading to errors in depth scale. Models modified according to
the proposed method lead to mesh reconstruction with much reduced noise level (Figs. 15f and 16f).
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(a) GT mesh with texture (b) GT mesh without texture

Figure 14. A view of 3D mesh fused with GT depth maps for ScanNet scene scene0050 02.

For the baseline models run on DSP delegate, we observe the same artifacts but more pronounced (Figs. 15c–16c). The
h2DispNet model in W8A8 format almost eliminates quantization artifacts (Fig. 15d) and restores mesh spatial details. The
h2DPT in W8A8 format model removes step-like artifacts and reduces noise for flat surfaces.

E. Additional details of depth maps quality
In Figs. 17–21 we show additional examples of depth maps predicted by original and modified DispNet and DPT models.
These examples represent both simpler (Figs. 17–20) and more complex scenes (Fig. 21). In all examples, modified models
have significantly smaller quantization error; remaining errors are concentrated on depth discontinuities. Errors in the
vicinity of depth discontinuities are also present for FP32 models and not linked to the proposed approach.

F. Human pose estimation experiment
Two approaches were realized for the Human pose estimation (HPE) experiment: direct keypoints regression (Toshev &
Szegedy, 2014) and via representing keypoints as heatmaps (Xiao et al., 2018). For training, the MS COCO (Lin et al.,
2014) dataset with human pose keypoints labeling was used. Both models have ResNet-RS (Bello et al., 2021) as an encoder
with alpha equals 0.5. The head for direct regression is composed of fully-connected layers as it was introduced by Toshev
et al. The model for heatmaps prediction includes DispNet decoder and convolutional head proposed by Xiao et al.

For HPE experiment we trained two lightweight models: direct keypoints prediction with AP50 = 43, and heatmaps
prediction with AP50 = 83. We found that the most stable way to train the modified HPE model is training the original
model first, using it as a teacher model, and calculating GT Hilbert curve components xGT and yGT from the teacher model
predictions in the loss term (3). In this manner, the modified model can be trained even when GT data for calculation of xGT

and yGT are not available, for example in case of heatmaps learning.

For model with direct keypoints prediction, along-the-curve quantization error for model with Hilbert curve-based represen-
tation for p = 1, 2 increases approximately L times as compared to the keypoints quantization error of the original model
(see Fig. 22a for p = 1 case); across-the-curve error is an order of magnitude smaller and is similar to the quantization error
of the original model. As a result, quantization error of the modified model in keypoints space remains almost unchanged.
This result suggests that for the direct regression task quantization error is strongly signal-dependent. The only effect from
the proposed modification is in increase of output bit-precision.

The situation is different for the heatmaps prediction model. In this case, quantization error along the Hilbert curve of the
second order increases less significantly as compared to the original model. From Fig. 22b it is seen that the along-the-curve
error distribution is narrower than the original heatmaps quantization error multiplied by the curve length. As a result,
quantization error of the modified model in heatmaps space is 2.69 times smaller than for the original model. In addition,
the spatial structure of predicted heatmaps is improved as shown in Figs. 22c and 22d. The latter effect is caused by increase
of the output bit-precision.
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(a) DispNet, FP32 (b) h2DispNet, FP32

(c) DispNet, W8A8(DSP) (d) h2DispNet, W8A8(DSP)

(e) DispNe, W8A8(CPU) (f) h2DispNet, W8A8(CPU)

Figure 15. A view of 3D mesh fused with predicted depth maps by DispNet and h2DispNet for ScanNet scene scene0050 02. Some
reconstruction errors are highlighted by red and improved structures are marked by green.
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(a) DPT, FP32 (b) h2DPT, FP32

(c) DPT, W8A8(DSP) (d) h2DPT, W8A8(DSP)

(e) DPT, W8A8(CPU) (f) h2DPT, W8A8(CPU)

Figure 16. A view of 3D mesh fused with predicted depth maps by DPT and h2DPT for ScanNet scene scene0050 02. Some reconstruction
errors are highlighted by red and improved structures are marked by green.
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(a) GT depth (b) DPT depth (c) h3DPT depth

(d) Image (e) |GT - DPT| (f) |GT - h3DPT|

Figure 17. Depth errors of DPT and h3DPT models on DSP. ScanNet scene scene0030 02. All values are presented in meters.

(a) GT depth (b) DPT depth (c) h3DPT depth

(d) Image (e) |GT - DPT| (f) |GT - h3DPT|

Figure 18. Depth errors of DPT and h3DPT models on DSP. ScanNet scene scene0629 00. All values are presented in meters.
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(a) GT depth (b) DispNet depth (c) h3DispNet depth

(d) Image (e) |GT - DispNet| (f) |GT - h3DispNet|

Figure 19. Depth errors of DispNet and h3DispNet models on DSP. ScanNet scene scene0030 02. All values are presented in meters.

(a) GT depth (b) DispNet depth (c) h3DispNet depth

(d) Image (e) |GT - DispNet| (f) |GT - h3DispNet|

Figure 20. Depth errors of DispNet and h3DispNet models on DSP. ScanNet scene scene0629 00. All values are presented in meters.
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(a) GT depth (b) DPT depth (c) h3DPT depth

(d) Image (e) |GT - DPT| (f) |GT - h3DPT|

Figure 21. Depth errors of DPT and h3DPT models on DSP. ScanNet scene scene0804 00. All values are presented in meters.
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(a) Keypoints error (b) Heatmaps error

(c) Heatmap by the original HPE model (d) Heatmap by the modified HPE model

Figure 22. Quantization error for HPE using direct keypoints regression (a) and heatmaps (b). Comparison of heatmaps prediction on
DSP using W8A8 models (c, d).
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