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ABSTRACT

In autonomous driving, multi-agent collaborative perception enhances sensing
capabilities by enabling agents to share perceptual data. A key challenge lies
in handling heterogeneous features from agents equipped with different sensing
modalities or model architectures, which complicates data fusion. Existing ap-
proaches often require retraining encoders or designing interpreter modules for
pairwise feature alignment, but these solutions are not scalable in practice. To
address this, we propose GT-Space, a flexible and scalable collaborative perception
framework for heterogeneous agents. GT-Space constructs a common feature space
from ground-truth labels, providing a unified reference for feature alignment. With
this shared space, agents only need a single adapter module to project their features,
eliminating the need for pairwise interactions with other agents. Furthermore, we
design a fusion network trained with contrastive losses across diverse modality
combinations. Extensive experiments on simulation datasets (OPV2V and V2XSet)
and a real-world dataset (RCooper) demonstrate that GT-Space consistently outper-
forms baselines in detection accuracy while delivering robust performance. Our
code will be released at https://github.com/KingScar/GT-Space.

1 INTRODUCTION

Collaborative perception can enhance the sensing capabilities of interconnected vehicles through data
sharing (Xu et al., 2022b; Wang et al., 2024c; Xu et al., 2022a; Wang et al., 2024b; Hao et al., 2024).
The sharing is typically conducted at the feature level, where agents exchange compressed feature
data rather than raw sensor data to ensure communication efficiency. The collaboration is called
homogeneous when the shared feature data are aligned in both semantics and granularity (Yang et al.,
2023a; Cui et al., 2022; Lei et al., 2022), for example through the same encoder model; otherwise,
it is considered heterogeneous. The latter case is common in practice, as the perception units, or
agents, often differ in sensor modality or model architecture. If not properly handled, such an issue
can significantly degrade the collaboration performance of the agents.

Current solutions (Xu et al., 2022a; Xiang et al., 2023) to fuse heterogeneous feature data typically
involve a feature adaptation step before performing fusion. Two main adaptation strategies are
commonly used: (1) Encoder retraining (Lu et al., 2024), illustrated in Fig. 1(a). Here, the ego
agent runs both a perception model and a fusion network. To align with the ego in feature space,
a collaborating agent needs to retrain its encoder. In open environments, this means maintaining
multiple encoders, which is highly expensive and inefficient; (2) Feature interpreter (Luo et al.,
2024), shown in Fig. 1(b). In this case, the ego must be equipped with a distinct interpreter for
each heterogeneous agent, which poses a scalability issue similar to the first strategy. In both
cases, collaboration performance is constrained by the ego agent’s model capacity. If the ego model
underperforms, the features from its collaborators may yield only limited benefits.

To address these issues, we propose GT-Space, a flexible and efficient framework for collaborative
perception. Unlike prior methods that require pairwise feature adaptation between heterogeneous
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Figure 1: Comparison of heterogeneous collaborative strategies. (a) Retraining of the encoders: the fusion
network is frozen while the local encoder (denoted as E) is retrained to adapt to data integration; (b) Interpreter-
based alignment: local encoder and detection head (denoted as D) are frozen, the interpreter can project the
received features into the ego’s feature space; (c) Our method does not require any re-training of encoders or
heads, and utilizes a modality-agnostic fusion module to integrate heterogeneous modalities using a ground-truth
derived common feature space for alignment.

agents – forcing each agent to maintain many specialized encoders or adapters – our method needs
only a single adapter model per agent. Fig. 1(c) depicts the principle of GT-Space, in which the
features from individual agents are projected into a common feature space, and then fused for
downstream object detections.

The common feature space is constructed explicitly from ground-truth object information. For each
scene, the object locations, sizes, and other properties are encoded into bird’s-eye view (BEV) features,
which collectively form the common space. By using precise spatial and semantic information of the
objects, this space provides a shared, accurate reference for aligning heterogeneous features. When a
new agent joins the system, it only needs to deploy a lightweight adapter to transform its features.
This design enables scalable collaboration in open environments with minimal deployment cost.

The fusion network is responsible for aggregating the adapted features from multiple agents. The
ground-truth features provide strong intermediate supervision signals, guiding the fusion process
more effectively than supervision from final object detection outputs. As a result, the collaboration
performance is no longer limited by the weaker local model; instead, the system achieves overall
improvement by exploiting complementary strengths across agents.

To ensure modality generalizability, we train the fusion network with a combinatorial loss across
all modality pairs. For instance, given three models – LiDAR-based PointPillar (Lang et al., 2019),
SECOND(Yan et al., 2018), and camera-based EfficientNet(Tan & Le, 2019) – the loss is computed
over all three possible pairs. This strategy enables the model to fuse any combination of input
modalities at inference time.

The main contributions of this paper are as follows:

• We present GT-Space, a flexible and efficient collaborative perception framework. The main
novelty is a ground-truth derived common feature space for heterogeneous agents to align
with. This approach greatly simplifies collaboration among agents, especially in an open
environment.

• We propose to train the fusion network using combinatorial contrastive losses, so that the
fusion network can take as input arbitrary combinations of modalities.

• Comprehensive experiments conducted on the simulation and real-world datasets demon-
strate GT-Space’s state-of-the-art performance in terms of generalization, plug-and-play
functionality and robustness to under-performing agents.

2 RELATED WORK

Collaborative Perception. Collaborative perception studies how to efficiently utilize shared per-
ceptual data to improve perception performance (Xu et al., 2022a; Huang et al., 2024; Yu et al.,
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2022; Shi et al., 2022). The fusion of shared data can generally be performed in three ways: early,
intermediate and late fusion (?Li et al., 2024; Shi et al., 2022). Intermediate fusion (Xu et al., 2022b;
Fan et al., 2023) involves transmitting encoded feature data instead of the bulky raw data, and thus
strikes a balance between accuracy and transmission cost. As such, it has been adopted as a major
solution in existing works. V2VNet (Wang et al., 2020) uses multi-round message passing via graph
neural networks to achieve better perception performance. To address communication overhead, Hu
et al. (Hu et al., 2022) propose Where2comm, which enhances communication efficiency by reducing
redundancy. Coopernaut (Cui et al., 2022) uses V2V sharing information to generate control policies
for end-to-end autonomous driving. DiscoNet (Li et al., 2021) leverages knowledge distillation
to enhance training by constraining the corresponding features to the ones from the network for
early fusion. Some methods (Yu et al., 2024; Wei et al., 2024; Lei et al., 2022) consider employing
multi-frame features to address data transmission interruption or latency.

Heterogeneous Collaboration. Heterogeneous collaboration has been a significant topic in real multi-
vehicle systems. V2X-ViT (Xu et al., 2022a) utilizes a vision transformer to aggregate point cloud
features from different agents, including vehicles and infrastructures. HM-ViT (Xiang et al., 2023)
proposes a hetero-modal vision transformer to implement the feature alignment for heterogeneous
sensor modalities including point clouds and RGB images. These end-to-end methods require training
the entire model to fit particular combinations of modalities, which makes them inflexible when new
modalities are introduced. HEAL (Lu et al., 2024) introduces a backward alignment training strategy,
creating heterogeneous models by fixing a base pyramid fusion module and training only the encoders.
However, retraining the encoders for the purpose of collaboration can potentially compromise the
performance compared with the original encoders. PnPDA (Luo et al., 2024) proposes a plug-and-
play domain adapter for aligning heterogeneous features without re-training encoders. However, the
proposed adapter can only handle point cloud features and overlook sensor heterogeneity.

Multi-modality. Learning from multiple modalities has been an integral part of machine learning
research (Lei et al., 2021; Xia et al., 2024; Yun et al., 2024; Arandjelovic & Zisserman, 2017). In
the domain of intelligent vehicles, a typical combination of multi-modalities has been cameras and
LiDARs (Zheng et al., 2024). BEVfusion (Liang et al., 2022), BEVGuide (Man et al., 2023) and
RobBEV (Wang et al., 2024a) utilize Lidar-camera fusion to improve BEV perception in autonomous
driving. (Li et al., 2021) proposes a method to project features of available modalities into a common
space for fusion. (Zhang et al., 2023) proposes a unified learning encoder to simultaneously extract
representations from multiple modalities with the same set of parameters. In this paper, we aim to
develop a modality-agnostic collaborative perception method that can be easily deployed on any
agent to enhance perception capabilities.

3 METHODOLOGY

3.1 BASIC PIPELINE

In the multi-agent system, each agent is equipped with its own sensors and perception models. The
processing pipeline of each agent generally involves feature encoding, compression, transmission,
decompression, fusion and decoding. Specifically, upon obtaining input raw sensor data Oi, each
agent i encodes the data into a BEV feature vector Fi. To reduce transmission time, a compressor is
used to compress Fi to F̂i before transmitting them to the collaborative agents. As a receiver, the
agent i receives compressed BEV features F̂j from another agent and decompresses them to Fj . Then
the fusion network collects and aggregates all received BEV features to generate a consolidated BEV
features Hi. Finally, the decoder processes Hi to output the detections Bi.

3.2 COLLABORATION FRAMEWORK

Fig. 2 shows the pipeline of the GT-Space. For the training process, we first train the perception
network of a single agent, where raw sensor inputs are encoded into BEV feature maps and processed
by a detection head to produce detection results, yielding a set of trained encoders. Next, the ground
truth encoder is trained to map object labels into BEV representations, which a decoder reconstructs
as bounding boxes, defining the ground feature space. Finally, during the training of the fusion
network, the encoder weights are kept frozen, heterogeneous features are projected into a shared
space via modality-specific projectors, and the network is trained using combinations of a few agents.
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Figure 2: The framework of GT-Space. Heterogeneous features undergo domain conversion before being
input into the fusion network. The ground truth object bounding box labels are leveraged to generate a common
feature space. Heterogeneous features from different agents are projected into the common feature space for
alignment and fusion.

During inference, each heterogeneous agent aligns its features to the ground feature space through
its own projector, which are then passed through the fusion network and subsequently through the
collaborative detection head to generate the final results.

When a previously unseen agent joins the collaboration, we freeze all parameters and only train the
projector assigned to this agent, enabling it to adapt to the pre-trained fusion network and participate
in collaborative perception.

3.3 COMMON FEATURE SPACE

Previous methods typically align heterogeneous features by projecting them into a fully learned
latent space. The representations are learned under the supervision signals from the object detection
output. In contrast, our proposed common feature space is able to introduce additional feature level
supervision derived from ground truth labels. The can help with bridging domain gaps between
heterogeneous agents.

As shown in Fig. 3 (a), given the ground truth bounding box annotations of the objects in the scene,
we use such label information to generate BEV features. Each 3D bounding box can be formulated
as a vector:

Bi = (x, y, z, l, w, h, r, c), (1)
where (x, y, z) is the center point, (l, w, h) the length, width, and height of the 3D bounding box,
respectively; r the yaw angle with respect to a predefined axis, and c the category of the object. Given
bounding box Bi, we utilize two fully-connected (FC) layers with layer normalization (LN) to encode
the object-relevant information,

βi = LayerNorm(FC(Bi)), (2)

where βi denotes the encoded representation.

Then we map the representations of objects onto the BEV plane to construct BEV features. A BEV
feature frame is a grid map, where each grid cell of the map represents a region in the scene (Li et al.,
2022; Yang et al., 2023b). A grid cell c is a square area and is assigned a pair of integer coordinates
(xc, yc). Let Uc be the feature of the c-th cell, defined as:

Uc = MLP(βi,PE(xc, yc)), (3)

where PE(·) denotes the Sinusoidal position embedding (Vaswani et al., 2017).

An object can cover multiple grid cells, thus the object Bi comprises a set of features SBi
=

{U i
1, ..., U

i
n} where n is the number of cells in Bi. If multiple objects cover the same grid cell c,

we sum up c’s features from all the covering objects, and assign the aggregated feature to c. This
preserves information of overlapping objects. In this way, we can obtain a BEV map FGT comprising
all the cells’ features.
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Figure 3: Feature alignment in GT-Space. (a) Ground truth features generation: The object bounding box
labels are encoded and mapped onto the BEV map; (b) Multi-modal transformer: Each modality is mapped into
a common feature space by a specific projector; (c) Combinatorial contrastive learning: M1, M2, and M3 denote
three different modalities, and computing contrastive loss over all pairs of these modalities enhances the model’s
general feature extraction ability; (d) Object-level alignment: Contrastive learning pulls features of the same
object closer and pushes those of different objects apart.

To ensure the effectiveness of the generated BEV feature map, following BEVFormer (Li et al., 2022),
we feed the features encoded by Eq. 2 and Eq. 3 into the detection head to output detection results,
and supervise the training process with the Intersection over Union (IoU) loss LGT :

LGT =
1

K

K∑
k=1

(
1− IoUk

)
, IoUk = |Pk ∩Gk|/|Pk ∪Gk|, (4)

where Gk denotes the ground truth bounding box, and Pk represents the output of the detection head
for the k-th object, and K the total number of objects. This ensures that the encoded object-level
BEV features can be decoded into bounding box outputs, thereby obtaining the ground truth BEV
feature map FGT .

3.4 HETEROGENEOUS FEATURE ALIGNMENT

Heterogeneity Alignment. For heterogeneous features, even feature elements with the same seman-
tics may differ in dimension and parameter scales because of the domain gaps. As shown in Fig. 3
(b), we adopt a specific projector Φa that can project the local BEV feature into the common space as
follows:

Φa = argmin
η

Lη(FGT , Fa), (5)

Lη = ||FGT − η(Fa)||2, (6)

where FGT , Fa denotes the common feature map and local feature map generated by the a-th agent,
respectively. η denotes the feature transformation and Lη denotes the feature similarity loss function
(Wang et al., 2025).

Relevant Feature Enhancement. To ensure the model effectively captures critical information for
detection, we expect the fusion network to concentrate on object-relevant features. We introduce a
transformer model to handle arbitrary heterogeneous features. As shown in Fig. 3 (b), each block
consists of a multi-head self-attention and an FC layer with two LN transforms. It should be noted
that the feature enhancement is achieved through the training strategy.

We leverage contrastive learning to supervise the fusion network learning. Specifically, the goal is to
align the fused features with the ground-truth features. First, we assume that modalities m and m′ are
fused, resulting in the fused feature Fm,m′ . To compute the contrastive loss, the pooling operation is
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used for each object to obtain the mean features to enable representation consistency. For the grid cell
c covered by the object bounding box B, we calculate the temperature-controlled cosine similarity
between the local BEV feature and the ground truth feature.

sB,c,P =
(FB,c

m,m′)⊤ŪP

τ
, (7)

where FB,c
m,m′ denotes the feature of grid cell c in fused BEV map Fm,m′ and ŪP is the averaged

ground feature for the object bounding box P , and τ is the temperature parameter. As shown in Fig. 3
(d), the cross-entropy loss is used to maximize the similarity between the fused features and ground
truth features for the same object, while minimizing the similarity for different objects:

Lm,m′ = −
∑

B∈B
∑

c∈cells(B) log
( exp(sB,c,B)∑

l∈B exp(sB,c,l)

)
. (8)

where B denotes the set of objects. Then we adopt a combinatorial contrastive to enhance the model’s
ability to handle different modalities. As illustrated in Fig. 3 (c), all possible modality pairs are
considered as the inputs, which can be defined as:

LE =
∑
m,m′

Lm,m′ , (9)

where Lm,m′ denotes the contrastive loss between the fused feature of modality pair m and m′ and
the ground truth feature as in Eq. 8. This combinatorial joint optimization helps the model effectively
capture the object-relevant information, which is the core of heterogeneous perception features.

3.5 TRAINING

During the training of our framework, the models of individual agents, including local encoders and
detection heads are pre-trained and frozen during the training, thus enabling a plug-and-play function-
ality for easy deployment. Since our fusion objective is to achieve alignment across heterogeneous
features, in order to avoid the noise caused by spatial misalignment, we train the model using the
observation data from a single agent, which is spatially aligned.

We use a series of pretrained encoders to obtain heterogeneous BEV feature maps of the same
scene, and use a trained ground-truth feature encoder to obtain the ground-truth BEV features for
constructing the common feature space. For agent a, each BEV feature is fed into its corresponding
projector Φa and transformed into the common feature space, then passed through the fusion network
to produce fused features, which are finally fed into the detection head to generate detection results.
Three losses are considered in the process of training: (1) feature alignment loss LΦa

(Eq. 6); (2)
heterogeneous fusion loss LE to enhance the object-specific features (Eq. 9); (3) base BEV detection
loss LB . The overall training objective is therefore:

L =
∑
a

LΦa
+ LE + LB . (10)

The ground truth BEV features are applied exclusively during the training process via LΦ and LE

without adding additional network architectures and parameters. Thus, we can obtain a general
fusion model using a few agents that can handle arbitrary modality inputs and effectively capture
object-relevant features. This endows the model with scalability: when a new agent with unseen
modalities joins, it only requires training its projector to adapt to the trained fusion model and enable
collaboration.

4 EXPERIMENTS

4.1 DATASETS

OPV2V (Xu et al., 2022b). OPV2V provides LiDAR point cloud and RGB data containing multiple
autonomous vehicles. Using the OpenCDA (Xu et al., 2021), a cooperative driving framework and
the CARLA (Dosovitskiy et al., 2017) simulator, the dataset contains a total of 10,915 frames, which
are split into train/validation/test sets with quantities of 6,765/1,980/2,170, respectively.
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V2XSet (Xu et al., 2022a). V2XSet builds upon OPV2V by adding roadside infrastructures, thereby
introducing heterogeneous V2I collaboration.

RCooper (Hao et al., 2024). RCooper is a large-scale roadside cooperative perception dataset with
LiDAR and camera data, 3D bounding boxes, and diverse traffic scenarios, supporting multi-modal
3D detection and tracking. The results are shown in Appendix. D.

4.2 EXPERIMENTAL SETTINGS

Evaluation Metrics. We adopt 3D detection accuracy as the metric to evaluate the performance
of the model, which is measured by average precision (AP) at IoU thresholds of 0.5 and 0.7. The
perception area of the agents are set to x ∈ [−140.8m, 140.8m], y ∈ [−40m, 40m].

Implementation details. As shown in Table. 1, we assume four types of agents, including two
LiDAR models and two camera models. Agent 2 acts as a vehicle when using the OPV2V dataset,
whereas in V2XSet, it is set as an infrastructure unit. We build our model using the OpenCOOD
framework (Xu et al., 2022b) and train it on all datasets using an NVIDIA A100 GPU. For the local
encoders and detection heads, we follow the same hyperparameters as prior works (Luo et al., 2024;
Shao et al., 2024). Local models and ground truth encoder are trained for 30 epochs using the Adam
optimizer (Kingma & Ba, 2014).During the training of the fusion model, the original encoders and
detection heads of all the agents are frozen, ensuring our fusion model does not affect the original
perception capability of individual agents when collaborative perception is not in use.

Compared Methods. We compare our method with existing methods on 3D object detection. Non-
collaboration is considered as our baseline method, which only use the ego’s perception data. We also
evaluate the Late Fusion, in which an agent transmits its detection results and the ego leverages Non-
maximum suppression to generate the final predictions. For the intermediate collaborative methods,
we benchmark the following approaches: End-to-end training (Xiang et al., 2023), PnPDA (Luo et al.,
2024), HEAL (Lu et al., 2024), Hetercooper (Shao et al., 2024) and STAMP (Gao et al., 2025).

Table 1: Settings of heterogeneous agents in the experiments.
Agent Agent 1 Agent 2 Agent 3 Agent 4

Carrier Vehicle Infrastructure / Vehicle Vehicle Vehicle

Sensor LiDAR LiDAR Camera Camera

Model SECOND (Yan et al., 2018) PointPillar (Lang et al., 2019) EfficientNet (Tan & Le, 2019) ResNet50 (He et al., 2016)

4.3 QUANTITATIVE RESULTS

Performance of Different Modality Pairs. We compare the detection performance of GT-Space
against other collaborative methods under heterogeneous perception settings, as shown in Tab. 2.
Agent 1 is fixed as the ego agent, while agents A2, A3, and A4 serve as collaborators. Across all cases,
GT-Space consistently outperforms competing methods, due to the shared common feature space,
which provides explicit object-level supervision for feature alignment and leads to more effective
feature fusion.

As expected, LiDAR-based perception achieves higher detection accuracy than RGB-based methods,
owing to the richer spatial information inherent in point clouds. Notably, our approach yields
larger gains for agent pairs with higher modality heterogeneity, highlighting its ability to bridge
representation gaps across different domains. Specifically, the use of contrastive learning in GT-Space
enhances object-relevant features in a way that end-to-end training or feature interpreter methods
cannot achieve.

Heterogeneous Collaboration. We further evaluate the perception performance of four heteroge-
neous agents, A1-A4, as listed in Tab. 3. The results on OPV2V and V2XSet are in shown in Tab. 3,
The interpreter-based PnPDA and STAMP, provide substantial improvements for LiDAR agents;
however, their ability to enhance camera agents remains limited. This is because spatial information
in point clouds can be lost during the interpretation process and is difficult to recover with a frozen
camera detection head. In contrast, GT-Space leverages the common feature space as a reliable
reference for heterogeneous feature fusion, thereby achieving the best performance across all agents.
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Table 2: Comparison of fusion performance for different heterogeneous modality pairs using AP@50 and
AP@70 metrics. A1, A2, A3 and A4 refer to agent 1, agent 2, agent 3 and agent 4, respectively.

Dataset Method AP@50 ↑ AP@70 ↑

Ego A1, collaborates with A2 A3 A4 A2 A3 A4

OPV2V

Non-collaboration 0.738 0.738 0.738 0.614 0.614 0.614
Late fusion 0.821 0.772 0.766 0.680 0.615 0.613

HM-ViT (Xiang et al., 2023) 0.857 0.814 0.807 0.731 0.646 0.652
PnPDA (Luo et al., 2024) 0.878 0.809 0.802 0.792 0.651 0.653

HEAL (Lu et al., 2024) 0.887 0.827 0.823 0.801 0.724 0.728
Hetecooper (Shao et al., 2024) 0.881 0.812 0.807 0.804 0.703 0.684

STAMP (Gao et al., 2025) 0.876 0.833 0.827 0.806 0.734 0.738
GT-Space (ours) 0.891 0.848 0.844 0.810 0.766 0.762

V2XSet

Non-collaboration 0.671 0.671 0.671 0.537 0.537 0.537
Late fusion 0.719 0.674 0.667 0.629 0.541 0.548

HM-ViT (Xiang et al., 2023) 0.803 0.741 0.736 0.710 0.625 0.631
PnPDA (Luo et al., 2024) 0.835 0.749 0.743 0.763 0.623 0.634

HEAL (Lu et al., 2024) 0.854 0.785 0.791 0.778 0.693 0.688
Hetecooper (Shao et al., 2024) 0.860 0.759 0.747 0.782 0.684 0.680

STAMP (Gao et al., 2025) 0.858 0.801 0.796 0.774 0.703 0.692
GT-Space (ours) 0.874 0.826 0.830 0.802 0.741 0.738

Note that the improvements are more pronounced for camera agents, reflecting the strength of our
approach in compensating for weaker agents.

Robustness to Under-Performing Agents. Agents with weaker capabilities may contribute low-
quality features, which may bring down the collaboration performance. We further investigate the
robustness of the system with respect to under-performing agents, as shown in Fig. 4. The weaker
agents are obtained by modifying the training setups of their perception models. It can be seen that
our method outperforms the baselines in collaboration, because the common feature space offers a
strong reference for the agents to align with, and the centralized fusion network is sufficiently trained
with full cross-modality losses. Since LiDAR agents provide more precise perception information
in the collaborative system, the performance gains in heterogeneous scenarios primarily depend on
LiDAR. Consequently, compared to camera agents, variations in LiDAR agents’ performance lead to
larger fluctuations in the overall collaborative performance.

Table 3: Perception performance of different agents in multi-agent scenarios.

Dataset Method AP@50 ↑ AP@70 ↑

A1 A2 A3 A4 A1 A2 A3 A4

OPV2V

Non-collaboration 0.738 0.744 0.402 0.396 0.614 0.620 0.354 0.337
Late fusion 0.818 0.818 0.818 0.818 0.690 0.690 0.690 0.690

HM-ViT (Xiang et al., 2023) 0.852 0.853 0.835 0.837 0.756 0.752 0.722 0.725
PnPDA (Luo et al., 2024) 0.861 0.864 0.828 0.833 0.798 0.794 0.719 0.716

HEAL (Lu et al., 2024) 0.894 0.889 0.842 0.843 0.806 0.801 0.726 0.733
Hetecooper (Shao et al., 2024) 0.876 0.881 0.836 0.838 0.802 0.798 0.731 0.739

STAMP (Gao et al., 2025) 0.883 0.886 0.840 0.831 0.815 0.801 0.718 0.716
GT-Space (ours) 0.892 0.894 0.867 0.859 0.814 0.803 0.758 0.750

V2XSet

Non-collaboration 0.671 0.665 0.389 0.384 0.537 0.542 0.323 0.330
Late fusion 0.798 0.798 0.798 0.798 0.628 0.628 0.628 0.628

HM-ViT (Xiang et al., 2023) 0.824 0.818 0.809 0.811 0.715 0.713 0.698 0.692
PnPDA (Luo et al., 2024) 0.831 0.822 0.812 0.806 0.764 0.752 0.694 0.697

HEAL (Lu et al., 2024) 0.859 0.860 0.823 0.826 0.786 0.781 0.698 0.701
Hetecooper (Shao et al., 2024) 0.852 0.849 0.818 0.816 0.780 0.781 0.726 0.724

STAMP (Gao et al., 2025) 0.854 0.848 0.817 0.815 0.801 0.794 0.709 0.717
GT-Space (ours) 0.873 0.866 0.845 0.848 0.806 0.804 0.742 0.733

Robustness to Imperfect Localization. Existing experiments typically assume that each agent
has access to an accurate pose. However, in real-world scenarios, localization noise is inevitable,
leading to imperfect spatial alignment across agents. To evaluate robustness under such conditions,
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Figure 4: Performance of under-performing agents on OPV2V. The left column represents Agent 1, and the
right column Agent 3. The horizontal axis represents performance without collaboration, while the vertical axis
represents collaboration.

Figure 5: Robust Experiment to pose error and communication latency.

we introduce a pose-error experiment by adding Gaussian noise into the ground-truth poses, where
the pose noise is set to N(0, σ2

p) on x,y location and N(0, σ2
r) on yaw angle (Lu et al., 2023). A1 is

set as the ego agent and the performance is shown in Fig. 5. The results demonstrate that our method
consistently maintains state-of-the-art performance across a wide range of pose error conditions.

Robustness to Communication Latency. In real-world scenarios, communication latency is in-
evitable. We further evaluate the robustness of our method under different latency conditions. Since
the sensor data in the OPV2V dataset is recorded at 10 Hz, we simulate a communication latency
of k × 100 ms by replacing the first k transmitted feature frames with the current frame for each
collaborative sample, thereby emulating the latency effect. Following (Yu et al., 2024), we set the
range of communication latency to 100–500 milliseconds. Results in Fig. 5 demonstrate that even
with a 500 ms latency, our method still outperforms the baseline methods.

4.4 ABLATION STUDIES

To investigate the effectiveness of each component in our system, we introduce four
variants of our GT-Space: (1) w/o-GT features, which replaces the ground-truth feature
space with a unified feature space generated by PointPillar; (2) w/o-projector, which ex-
cludes the feature projector, i.e., feed the heterogeneous features directly into the trans-
former for fusion; (3) w/o-combinatorial contrastive loss, which trains the fusion network
solely with the basic detection loss, without the proposed combinatorial contrastive losses.

Table 4: Effect of each design component in the model.

Configurations OPV2V V2XSet
mAP@50 mAP@70 mAP@50 mAP@70

w/o-GT feature 0.868 0.795 0.830 0.782
w/o-projector 0.791 0.683 0.716 0.604

w/o-contrastive loss 0.845 0.721 0.823 0.709
Full version 0.892 0.814 0.873 0.806

Tab. 4 reports the performance of Agent
1 under these design variants. The results
show that removing the feature projec-
tor causes the largest performance degra-
dation. This is because heterogeneous
features have distinct semantic represen-
tations, making it difficult for the fusion
network to effectively distinguish and ag-
gregate them without proper alignment. For Agent 1, a LiDAR agent, replacing the GT feature
space with the point cloud feature space still yields reasonably good performance, as the point
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(a) Feature map before fusion (b) Feature map after fusion

Figure 6: Visualization of BEV features before and after fusion. (a) Features before fusion of A2
(PointPillar); (b) Enhanced features after fusion.

Figure 7: Visualization of (a) Ground truth feature, (b) projected camera feature Φcam(Fcam) and
(c) projected LiDAR feature Φlidar(Flidar).

cloud representation inherently preserves rich geometric cues. Finally, removing the combinatorial
contrastive loss results in a noticeable decline in detection accuracy, since the contrastive objective
not only enforces cross-modality alignment but also strengthens feature representations.

5 VISUALIZATION

Fig. 6 presents the intermediate feature maps of A2 before and after data fusion. A clear contrast
can be observed: prior to fusion, the object-relevant features exhibit weak activations and are heavily
contaminated by noise. After fusion, however, the feature map highlights significantly more object
information, confirming the effectiveness of collaborative perception, while the noise is notably
suppressed, reflecting the role of ground-truth features as strong supervision signals.

We further present the visualization of ground truth feature, projected camera feature ΦCam(FCam)
and projected LiDAR feature ΦLiDAR(FLiDAR). As shown in Fig. 7, we can observe that the ground
truth feature map contains only object-related features. Since point cloud features include richer
spatial information, the mapped FLiDAR still retains some road information. As for the camera features
FCam, note that the projector does not have the ability to enhance features; therefore, the object-related
features in the feature map are not as abundant as in FLiDAR.

6 CONCLUSION

In this paper, we have presented GT-Space, a scalable and high-accuracy collaborative perception
method aimed at fusing shared data among agents that are heterogeneous in sensor modality or
data encoders. Ground truth object labels are used to construct a common feature space for feature
alignment and fusion. To enable the fusion network to handle arbitrary input modalities and enhance
relevant features, we employ a combinatorial contrastive loss for training. Experiments on the
OPV2V, V2XSet and RCooper datasets validate the effectiveness of GT-Space. GT-Space depends
on ground-truth annotations and ideal communication/pose conditions. Future work will focus on
weakly-supervised learning to enhance its real-world applicability.
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A COLLABORATIVE PERCEPTION

A collaborative perception system consists of multiple agents, each equipped with its own sensors
and perception models. The collaboration model is generally composed of an encoder, a compressor,
a decompressor, a feature fusion module and a decoder, where i denotes the agent.

The process of the i-th agent can be formally represented as follows:

Feature Encoding: Fi = Ei(Oi), (1a)

Compression: F̂i = ϕi(Fi), (1b)

Transmission: F̂j→i = ιj→i(F̂j), j ∈ S, (1c)

Decompression: Fj = ϕ−1
i ({F̂j→i}j∈S), (1d)

Fusion: Hi = ψi({Fj}j∈S), (1e)
Decoding: Bi = Di(Hi), (1f)

where Ei is the encoder, ϕi is compressor, ι is the communication operator, ψ is the fusion module,
and Hi is the aggreagated feature and Bi is the final output obtained by the detection decoder Di.

B SUMMARY OF SYMBOLS

We summarize all the relevant symbols in Tab. 5.

Table 5: Summary of Symbols.
Symbol Meaning

Fa Feature map from a-th agent.
FGT Ground truth feature map.
Bi i-th bounding box in a frame.
βi Encoded representation of Bi

Uc The feature of the c-th cell
U i
n The feature of the n-th cell of box Bi

SBi
The set of features of box Bi

LGT Intersection over Union (IoU) loss
Lη Feature similarity loss function.
Φa Feature projector for the a-th agent.

Fm,m′ The fused feature of modality m and m′.
FB,c
m,m′ The feature of grid cell c in fused BEV map Fm,m′ .
τ Temperature parameter.
ŪP The averaged ground feature for the object bounding box P .

C IMPLEMENTATION DETAILS

Compared Methods. GT-Space is compared with seven baselines:

• Non-collaboration Method;
• Late fusion which transmits detected results;
• HM-ViT (Xiang et al., 2023) based on different encoders using end-to-end training;
• PnPDA (Luo et al., 2024). PnPDA adopts modality interpreter to transform heterogeneous

features to a semantic space for fusion.
• HEAL (Lu et al., 2024). HEAL firstly trains a base collaboration fusion network with frozen

parameters and re-trains the encoder for generalized fusion.
• Hetecooper (Shao et al., 2024). Hetecooper constructs a graph transformer to achieve

heterogeneous collaboration.

14



Published as a conference paper at ICLR 2026

Output

(a) End-to-end Training (b) Late fusion

Fused Outputs

Output 1 Output 2

Detection 
Head 1

Detection 
Head 2

Encoder 1 Encoder 2Encoder 1

Fusion Model

Detection
Head

Encoder 2

...

scores

idx.

...

scores

idx.

(c) Encoder re-training

Output

Encoder 1

Fusion Model

Detection
Head

Encoder 2

...

scores

idx.

...

scores

idx.

(f) Ours

Fused output

Shared
Fusion Model

Detection
Head

Common feature
space

Output 1 Output 2

Detection 
Head 1

Detection 
Head 2

Projector 1 Projector 2

Encoder 1 Encoder 2

...

scores

idx.

...

scores

idx.

...

scores

idx.

...

scores

idx.

...

scores

idx.

(e) Adapter-Reverter fusion 

Common feature
space

Fused output 1 Fused output 2

Detection 
Head 1

Detection 
Head 2

Adapter 1 Adapter 2

Reverter 1 Reverter 2

Encoder 1 Encoder 2

Fusion Model 1 Fusion Model 2

...

scores

idx.

...

scores

idx.

...

scores

idx.

(d) Interpreter-based fusion 

Single output 1 
or Fused output 

Single output 2Detection 
Head 1

Detection 
Head 2

Interpreter 2

Encoder 1 Encoder 2

Fusion Model 1

...

scores

idx.

...

scores

idx.

Figure 8: (a) End-to-end training; (b) Late fusion; (c) Encoder re-training; (d) Interpreter-based
method; (e)Adapter-Reverter method; (f) GT-Space(Ours). Blue indicates frozen modules, while red
represents modules that are updated during training.

• STAMP (Gao et al., 2025). STAMP configures an adapter and a reverter for each modality,
enabling flexible transformation from local modality features to protocol features.

Architectures of Different Methods. Fig. 8 shows various heterogeneous collaborative frameworks.
Late fusion simply transmits and combines agent detected results after local processing. HM-
ViT (Xiang et al., 2023) adopts end-to-end training, which is effective but interferes with individual
perception. HEAL (Lu et al., 2024) employs the fixed detection decoder and fusion model and re-
trains only the local encoders, but still faces the issue of the coexistence of individual perception and
collaborative perception. Interpreter-based methods adopt modality-specific interpreters to transform
heterogeneous features into a common semantic feature space for alignment. The Adapter-Reverter
method is a variant of interpreter-based approaches. It first uses an adapter to project local features
into a common feature space, and then employs a reverter to map the common feature space back to
the local features.

Projector Architecture. We use the same architectures that is an MLP for projectors across all
heterogeneous agents. The dimension of the broadcasting feature is set as (128, 128, 64). The input
dimension of projectors varies according to the feature dimension of different local models. We
utilize a NVIDIA A100 GPU for training. All local models are trained on the OPV2V and V2XSet
for 30 epochs, with a learning rate of 0.001 and weight decay of 0.01.
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D ADDITIONAL RESULTS

System Delays. To demonstrate the deployability of our proposed collaborative system, we test the
system delays of different components of the model.

Tab. 6 presents the latency breakdown of different components in the system, revealing that the
majority of the computational cost is attributed to the encoding of raw perception data. In contrast,
both the fusion network and the detection head consume relatively little computational resources. It
is also worth noting that our method achieves better performance without significantly increasing the
computational cost. This improvement stems from our enhanced training strategy, rather than the use
of more complex model architectures, which would have resulted in increased parameters.

Table 6: System delays
Method Encoding (ms) Fusion (ms) Detection (ms)

HM-ViT (Xiang et al., 2023) 7.08 1.38 0.95
PnPDA (Luo et al., 2024) 7.08 1.41 0.98

Hetecooper (Shao et al., 2024) 7.08 1.47 0.97
HEAL (Lu et al., 2024) 7.08 1.54 0.95

STAMP (Gao et al., 2025) 7.08 1.52 0.94
GT-Space 7.08 1.48 0.97

Experiments on Real-world Dataset. To further evaluate the performance of our proposed GT-
Space, we conduct experiments on RCooper (Hao et al., 2024), a real-world dataset. Tab. 7 presents
the performance of our approach on RCooper (AP@50), where the baselines are the same as those in
Tab. 1. The scenario is an intersection and all 4 agents are roadside infrastructures. It can be seen that
on the real-world dataset, our method still achieves the state-of-art performance, especially showing
better results for camera agents with weaker perception capabilities.

Table 7: Performance on RCooper
Method A1 A2 A3 A4

No fusion 0.441 0.438 0.231 0.228
HM-ViT (Xiang et al., 2023) 0.458 0.467 0.294 0.287

PnPDA (Luo et al., 2024) 0.463 0.468 0.321 0.330
Hetecooper (Shao et al., 2024) 0.471 0.465 0.319 0.324

HEAL (Lu et al., 2024) 0.478 0.473 0.343 0.346
STAMP (Gao et al., 2025) 0.473 0.469 0.338 0.342

GT-Space 0.477 0.475 0.349 0.351

Experiments on Tracking Task. We further evaluat the performance of our framework on the
tracking task. Specifically, we conduct experiments on the RCooper (Hao et al., 2024) dataset, which
adopts AB3Dmot tracker (Weng et al., 2020b) to perform object tracking based on the detection
results. We adopt two evaluation metrics in (Weng et al., 2020a), 1) average multi-object tracking
accuracy (AMOTA) and 2) average multi-object tracking precision (AMOTP). As shown in Tab. 8, we
can see that our method outperforms all baseline models, which is consistent with the 3D detection
results.

Newly Added Agent. Our proposed framework can adapt to newly added, previously unseen agents,
but this requires a specific training strategy. Specifically, we still adopt the pipeline shown in Fig. 2.
For the fusion network and the collaborative detection head, we freeze their parameters. At the same
time, we also keep the encoder parameters of the newly added agent frozen, and train only its specific
projector. The loss function can be expressed as:

L = LΦi + LB ,

where Φi is the projector for the newly agent i, which is used to project its local feature to the
common feature space and LΦi

is the same as Eqa.6. LB is the base detection loss. Tab. 9 shows the
performance of A1 when the collaborative system adds new agents A3 and A4.
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Table 8: Performance of tracking task on RCooper
Method AMOTA AMOTP

No fusion 0.083 0.227
HM-ViT (Xiang et al., 2023) 0.224 0.354

PnPDA (Luo et al., 2024) 0.228 0.357
Hetecooper (Shao et al., 2024) 0.227 0.361

HEAL (Lu et al., 2024) 0.232 0.364
STAMP (Gao et al., 2025) 0.231 0.359

GT-Space 0.236 0.367

We can see that retraining-based HEAL clearly outperforms interpreter-based PnPDA and Adapter-
Reverter-based STAMP, but at the cost of impairing the newly added agent’s local perception.
Although the projector we use also serves a modality conversion function, it does not convert inputs
between agent pairs. Instead, it maps them into the shared common space. Meanwhile, the fusion
network effectively enhances object-relevant representations, thereby preventing the loss of critical
information.

Table 9: Newly adding agents.
Method (Based on A1, A2, Add) Base + A3 + A4

PnPDA (Luo et al., 2024) 0.878 0.857 0.864
HEAL (Lu et al., 2024) 0.887 0.891 0.895

STAMP (Gao et al., 2025) 0.876 0.863 0.862
GT-Space 0.891 0.892 0.897

Efficiency Comparison. To evaluate the training efficiency for the newly added agents, we addition-
ally include four agents: A5, A6, A7, and A8. Tab. 10 reports the sensors, encoders, and encoder
parameters for agents A1–A8. PointPillar (large) and SECOND (large) are obtained by increasing
the number of hidden-layer parameters of the original models.

We then conduct an efficiency comparison between our method and baselines. Fig. 9 shows the number
of training parameters and estimated training GPU hours. It can be seen that the retraining-based
HEAL incurs high training costs. The interpreter-based PnPDA and the Adapter–Reverter–based
STAMP significantly reduce the cost, though with some performance degradation. Together with
Tab. 9, retraining-based HEAL achieve good performance but at high cost, while the interpreter-based
method have lower cost but yield weaker results. In contrast, our proposed framework achieves strong
performance with low cost.

Table 10: Settings of heterogeneous agents in the experiments.
Agent Agent 1 Agent 2 Agent 3 Agent 4

Carrier Vehicle Infrastructure / Vehicle Vehicle Vehicle

Sensor LiDAR LiDAR Camera Camera

Model SECOND (Yan et al., 2018) PointPillar (Lang et al., 2019) EfficientNet (Tan & Le, 2019) ResNet50 (He et al., 2016)

Encoder Param. (M) 3.79 0.87 56.85 6.88

Agent Agent 5 Agent 6 Agent 7 Agent 8

Carrier Vehicle Vehicle Vehicle Vehicle

Sensor LiDAR LiDAR LiDAR Camera

Model VoxelNet (Zhou & Tuzel, 2018) PointPillar (Large) (Lang et al., 2019) SECOND (large) (Yan et al., 2018) ResNet34 (He et al., 2016)

Encoder Param. (M) 2.13 1.91 4.82 6.51

Robustness to Data Distribution Shifts. To validate the robustness to data distribution shifts, we
further evaluated the fusion model trained using OPV2V on the V2X-Set dataset. As shown in
Tab. 11, our method consistently outperforms the baseline models even under distribution shifts,
demonstrating the robustness of the ground-truth features.
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Figure 9: Training efficiency comparison for the different number of newly adding agents.

Table 11: Performance (AP50) of agent A1-A4 in V2XSet using the fusion model trained on OPV2V.

Dataset Method A1 A2 A3 A4

V2XSet

Late fusion 0.798 0.798 0.798 0.798
HM-ViT (Xiang et al., 2023) 0.809 0.793 0.792 0.788

PnPDA (Luo et al., 2024) 0.819 0.804 0.801 0.790
HEAL (Lu et al., 2024) 0.844 0.842 0.818 0.822

Hetecooper (Shao et al., 2024) 0.835 0.821 0.810 0.803
STAMP (Gao et al., 2025) 0.842 0.829 0.801 0.803

GT-Space (ours) 0.858 0.846 0.828 0.833

Table 12: Performance (AP50) of models trained with different temperature parameters

Dataset Temperature A1 A2 A3 A4

OPV2V
0.05 0.845 0.835 0.830 0.826
0.07 0.850 0.842 0.824 0.830
0.1 0.858 0.846 0.828 0.833

Sensitivity Analysis for Temperature Parameter. In contrastive learning, the temperature is used
to adjust the “sharpness” of the similarity distribution, thereby controlling how strongly the model
distinguishes between positive and negative samples. We evaluate the model’s performance under
different temperature settings. Based on empirical practice in multimodal tasks, the temperature
parameter is typically set within the range of 0.05–0.1 (Shvetsova et al., 2022). Therefore, we evaluate
three settings: 0.05, 0.07, and 0.1. The results in Tab. 12 show that a temperature of 0.1 yields the
best performance. This is because smaller temperatures make the distribution sharper and strengthen
the separation between positive and negative samples, but lead to training instability. Hence, 0.1
serves as a more optimal choice.

Scale Balancing for obejcts. Considering that large objects occupy greater weight in the loss
function, we perform scale balancing accordingly. Specifically, we take the average based on the
number of objects, and then multiply it by a weighting factor, which is set to the average number of
objects per frame across all training frames. The modified formula of Eq. 8 is as follows:

Lm,m′ = − µ

|B|
∑

B∈B
∑

c∈cells(B) log
( exp(sB,c,B)∑

l∈B exp(sB,c,l)

)
. (12)

where |B| denotes the number of objects in a feature frame and µ is the average number of objects
per frame across all training frames. We conduct experiments on the RCooper dataset, and the results
are shown in the Tab. 13. It can be seen that the performance improves.

18



Published as a conference paper at ICLR 2026

Table 13: Results of scale balancing
Method A1 A2 A3 A4
GT-Space 0.477 0.475 0.349 0.351
GT-Space (average) 0.481 0.482 0.350 0.354

Figure 10: Visualization of collaborative perception results. We color the predicted and GT boxes.

Additional Visualization. Fig. 10 shows the visualization of collaborative perception results on
OPV2V.
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