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Abstract
Generating molecular dynamics (MD) trajecto-
ries using deep generative models has attracted
increasing attention, yet remains inherently
challenging due to the limited availability of MD
data and the complexities involved in modeling
high-dimensional MD distributions. To overcome
these challenges, we propose a novel framework
that leverages structure pretraining for MD
trajectory generation. Specifically, we first train
a diffusion-based structure generation model on
a large-scale conformer dataset, on top of which
we introduce an interpolator module trained
on MD trajectory data, designed to enforce
temporal consistency among generated structures.
Our approach effectively harnesses abundant
conformer data to mitigate the scarcity of MD
trajectory data and effectively decomposes the
intricate MD modeling task into two manageable
subproblems: structural generation and temporal
alignment. We comprehensively evaluate our
method on QM9 and DRUGS datasets across
various tasks, including unconditional generation,
forward simulation, and interpolation. Experi-
mental results confirm that our approach excels in
generating chemically realistic MD trajectories,
as evidenced by remarkable improvements of
accuracy in measurements such as bond length,
bond angle, and torsion angle distributions.

1. Introduction
Molecular Dynamics (MD) is a computational simulation
method used to model the physical movements of atoms
and molecules over time (Alder & Wainwright, 1959; Verlet,
1967). By numerically integrating Newton’s equations of
motion, MD simulates the temporal evolution of molecular
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systems at atomic resolution. It has become a vital and
widely adopted tool for addressing complex problems in bi-
ology (McCammon et al., 1977), chemistry (Rahman, 1964),
and materials science (Antalı́k et al., 2024). Despite its util-
ity, MD is computationally intensive, often requiring long
simulation times and a large number of small integration
steps to ensure numerical precision. This high cost has mo-
tivated significant efforts to accelerate MD and improve its
sampling efficiency (Shaw et al., 2009; Darden et al., 1993;
Laio & Parrinello, 2002). In this context, recent growing
interest has been towards deep generative models, especially
diffusion models (Noé et al., 2019; Jing et al., 2024a; Klein
et al., 2023), as efficient surrogates for capturing the com-
plex and diverse distributions observed in MD simulations.

Despite their promise, we identify a significant factor that
poses remarkable limitations on their utility. The MD
generative models are typically optimized on a single or
a group of limited number of molecular systems (Noé
et al., 2019; Han et al., 2024; Jing et al., 2024c), making
it a fundamental challenge for them to generalize across
different molecules. This is primarily due to two reasons.
Data scarcity: Curating large-scale MD dataset over diverse
molecular systems is extremely prohibitive due to the
remarkably high computation demand for performing MD
simulation at scale, leading to insufficiency in the amount
of data for the models to well capture the underlying
MD distribution. Modeling complexity: MD data is of
high-dimensionality by extending the molecular structure
space with an additional axis, the temporal dimension,
which further contributes to modeling difficulty.

In this work, we propose a novel approach named EGINTER-
POLATOR that addresses the challenges through structure
pretraining. Specifically, we decompose the MD model-
ing problem into two sequential subtasks. First, we train
a conformer diffusion model to generate conformers—i.e.,
the static molecular structures corresponding to individ-
ual frames along an MD trajectory—using large-scale con-
former datasets. Building on this pretrained structure model,
we then initialize additional temporal layers and integrate
structural and temporal information through a novel module
called the equivariant temporal interpolator. We theoreti-
cally show that the temporal interpolator implicitly mod-
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Figure 1. The overall framework of EGINTERPOLATOR.

els a transition from a temporally independent structural
distribution to the fully correlated MD distribution. This
formulation not only alleviates the optimization difficulty
during training by decoupling spatial and temporal learning,
but also provides greater flexibility during inference.

Our approach effectively addresses the two problems. First,
we address the MD data scarcity issue by leveraging existing
large-scale conformer datasets with diverse types of molecu-
lar systems, to complement the small scale MD dataset and
provide generalization capabilities to the resulting MD diffu-
sion model towards unseen molecular systems. Second, the
two-stage pipeline conceptually decomposes the complex-
ity of modeling the high-dimensional MD distribution into
two tasks by first modeling the distribution of independent
frames and then learning the temporal dependency.

Main contributions. 1. We systematically investigate the
challenges that hinder the generalization of MD diffusion
models towards new molecular systems and propose to
leverage structure pretraining as a solution. 2. We propose
a principled approach for training an MD diffusion model
based on structure pretraining, demonstrating on small
molecular systems. 3. We introduce a novel module, the
equivariant temporal interpolator, as a vital building block
that learns the temporal dependency of the structures at
individual frames. 4. We comprehensively evaluate our
approach on a wide suite of tasks including unconditional
generation, forward simulation, and interpolation. Exten-
sive experiment results verify the efficacy of the proposed
approach towards accurately capturing the complex MD
distributions, while also being able to preserve superior
conformer generation capability.

2. Related Work
Geometric diffusion models. Generative models for geo-
metric data have garnered increasing attention across multi-
ple domains. In molecular generation, GeoDiff (Xu et al.,
2022) pioneered for conformer generation while EDM
(Hoogeboom et al., 2022b) operates on both continuous co-
ordinates and categorical atom types. Subsequent works(Xu
et al., 2023; 2024a) introduced structured latent spaces to
enhance scalability and controllability. For larger molecules,
GCDM (Morehead & Cheng, 2024) incorporated geometry-

complete local frames and chirality-sensitive features into
SE(3)-equivariant networks. EBD (Park & Shen, 2024)
performs hierarchically by first sampling scaffolds before
refining atom positions through blurring-based denoising.
Yet, they only model static structures while in this work we
study the problem of their temporal correlation in MD.

ML-based Molecular Dynamics. Modeling the dynamics
of geometric data presents significant challenges due
to complex multi-object interactions, data scarcity, and
high-dimensional spaces. Prior works such as EGNN
(Satorras et al., 2021b) and SE(3)-Transformer (Fuchs
et al., 2020) enhance model generalization by incorporating
equivariance principles into their architectural designs
(Brandstetter et al., 2022; Xu et al., 2024b). Timewarp
(Klein et al., 2023) adopts an autoregressive approach
to learn dynamic transition and emulate MD trajectories
through simulation rollouts. These frame-to-frame
prediction methods, despite their progress, suffer from
compounding errors, while diffusion-based generative
models prevent such accumulation by modeling entire
trajectories holistically. GeoTDM (Han et al., 2024) directly
models trajectories by introducing diffusion processes and
architectures with equivalence guarantees. EquiJump (dos
Santos Costa et al., 2024) employs a two-sided stochastic
interpolant framework with an SO(3)-equivariant model
to bridge all-atom proteins time steps directly, effectively
capturing long-range temporal correlations in protein dy-
namics. While MDGen (Jing et al., 2024b) also introduces
a end-to-end full trajectory modelling paradigm through a
flow-based model, such a framework was designed specially
for modeling torsions in peptides conditioned on at least
one key frame, whereas we seek to design an approach that
generalizes across diverse molecular systems.

3. Preliminaries
Geometric representation of molecular dynamics. In
this work, we represent each molecular dynamics trajec-
tory as a collection of static structures, or equivalently
conformers that evolve through time. Each frame of con-
former at timestep t is viewed as a geometric graph G(t) :=
(h,x(t), E) where each row hi ∈ RH is the node feature
of atom i such as its atomic number, x(t)

i ∈ R3 is the Eu-
clidean coordinate of atom i at timestep t, and E is the set of
edges induced by the chemical bonds between atoms. The
trajectory with length T is correspondingly represented as
x[T ] := x(0:T−1) ∈ RT×N×3.

Geometric diffusion model for static structure gen-
eration. Geometric diffusion models (Xu et al., 2022;
Hoogeboom et al., 2022a; Xu et al., 2023) are a family
of diffusion-based generative models (Sohl-Dickstein
et al., 2015; Ho et al., 2020a; Song & Ermon, 2019; Song
et al., 2021) dedicated to capture the distribution of static
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conformer structures p(x|h, E), given the configuration
of the molecular graph specified by the node feature h
and edge connectivity E . Inheriting the framework of
diffusion models, they feature a Markovian forward noising
process that gradually perturbs x0 toward xT through
T diffusion steps, with the Gaussian transition kernel
q(xτ |xτ−1) = N (xτ ;

√
1− βτxτ−1, βτ I), where βτ is

the noise schedule such that xT is close to the Gaussian
prior N (0, I). The reverse process denoises toward the
clean data using pθ(xτ−1|xτ ) = N (xτ−1;µθ(xτ ; τ), σ

2
τ I).

The model is optimized via (Ho et al., 2020a)

Lstruct = Ex0∼Dstruct,τ,ϵ∼N (0,I)∥ϵ− ϵθ(xτ , τ)∥22, (1)

where Dstruct is the conformer dataset, τ ∼ Unif(1, T ),
xτ =

√
ᾱτx0 +

√
1− ᾱτϵ with ᾱτ being certain noise

schedule, and ϵθ is a parameterization of the mean
satisfying µθ(xτ , τ) = 1√

ατ
(xτ − βτ√

1−ᾱτ
ϵθ(xτ , τ)).

A critical property of geometric diffusion models
lies in the SE(3)-invariance of their marginal1, i.e.,
pθ(x0) = g · pθ(x0), g ∈ SE(3), where g is an arbitrary
group action in SE(3) that consists of all 3D rotations
and translations, and pθ(x0) = p(xT )

∏T
τ=1 pθ(xτ−1|xτ ).

This is achieved by parameterizing ϵθ with an equivariant
graph neural network (Satorras et al., 2021b;a; Xu et al.,
2022) such that g · ϵθ(xτ , τ) = ϵθ(g · xτ , τ) which
guarantees the SE(3)-equivariance of the transition kernel
pθ(xτ−1|xτ ) at each step τ .

Problem definition. In this work, we seek to design a
diffusion model that captures the distribution of molec-
ular dynamics p(x[T ]) given node features h and edges
E . Based on this goal, we are additionally interested in
two relevant subtasks, namely forward simulation, which
models the conditional distribution p(x(1:T−1)|x(0)) given
the initial structure x(0), and interpolation, which models
p(x(1:T−2)|x(0),x(T−1)) given both the initial frame x(0)

and final frame x(T−1).

4. Method
In this section, we detail our approach that learns to gener-
ate MD trajectories by aligning the structural distributions
temporally along the MD trajectory. In § 4.1, we introduce
the overall framework of conformer pretraining and tempo-
ral alignment for MD generation. In § 4.2, we propose a
temporal interpolator module that effectively couples the
conformer model and temporal layers through an interpola-
tion operation. In § 4.3, we discuss the key implementations
of EGINTERPOLATOR.

1For conciseness we henceforth omit the conditions h, E in
p(x0|h, E) unless otherwise specified.

4.1. Trajectory Generation by Aligning Structure Model

Motivation. While substantial research has advanced the
modeling of static structure distributions p(x), generaliz-
ing this paradigm to molecular dynamics trajectories re-
mains inherently challenging for two primary reasons. 1.
Data scarcity. Unlike conformer modeling, which benefits
from extensive datasets such as GEOM-QM9 (Ramakrish-
nan et al., 2014) and GEOM-Drugs (Axelrod & Gomez-
Bombarelli, 2022), molecular dynamics simulations incur
prohibitive computational costs. Consequently, existing MD
datasets (Chmiela et al., 2017; Meersche et al., 2024) are typ-
ically constrained to specific molecular systems or limited
molecular classes, significantly restricting generalizability
across diverse molecular types. 2. Modeling complexity.
MD trajectories inhabit high-dimensional spaces with an
additional temporal dimension. The inherent complexity
of the joint distribution p(x[T ]) is further exacerbated by
data scarcity, as insufficient training samples create greater
sparsity in the high-dimensional data support, thereby com-
plicating accurate density estimation.

Our solution. We propose to leverage a pretrained static
structure (conformer) diffusion model and transforming it
into an MD generation model, by stacking additional train-
able temporal layers to enforce temporal consistency along
each MD trajectory. Formally, given a pretrained conformer
diffusion model ϵθ inducing the marginal pθ(x), we de-
vise ϵ′ψ for modeling the MD distribution pψ(x[T ]), where
ψ = {θ, ϕ} with ϕ representing parameters in the additional
temporal layers, indicating that the MD generative model
with parameter set ψ is partially initialized from the pre-
trained structure model θ. The MD diffusion model is then
optimized on the MD trajectory dataset with the loss

Ltraj = E
x
[T ]
0 ∼Dtraj,τ,ϵ[T ]∥ϵ[T ] − ϵ′ψ(x

[T ]
τ , τ)∥22, (2)

where x
[T ]
τ =

√
ᾱτx

[T ]
0 +

√
1− ᾱτϵ

[T ], τ ∼ Unif(1, T ),
and ϵ[T ] ∼ N (0, I) is the i.i.d. Gaussian noise.

Our proposal effectively addresses the core challenges. We
mitigate MD data scarcity by initializing with a conformer
model trained on large-scale datasets, transferring gener-
alization capability to unseen molecules. Furthermore,
our two-stage pipeline decomposes the complex modeling
of p(x[T ]) into manageable subproblems: conformer pre-
training first models each frame independently, yielding
p̃θ(x

[T ]) =
∏T−1
t=0 pθ(x

(t)) without temporal correlation.
The second stage incorporates additional parameters ϕ to
capture the temporal dependency across different frames,
leading to the joint distribution pψ(x[T ]) with ψ = {θ, ϕ}.
This approach efficiently offloads the complexity by using
p̃θ(x

[T ]) as an anchor. The flowchart of our proposed frame-
work is depicted in Fig. 1.
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Figure 2. Flowchart of cascaded temporal interpolator.

4.2. Temporal Interpolator

With the proposed framework, it is still yet unrevealed how
to allocate the additional parameters ϕ to capture the tem-
poral dependency across frames for aligning the structures
into an MD trajectory. To this end, we introduce a novel
temporal interpolator module that entangles the pretrained
structure denoiser ϵθ with the additional temporal network
ϵϕ through a linear interpolation:

ϵ′ψ(x
[T ]
τ , τ) =αx̃[T ]

τ + (1− α)ϵϕ(x̃
[T ]
τ , τ),

s.t. x̃[T ]
τ = [ϵθ(x

(t)
τ , τ)]T−1

t=0 , (3)

where α ∈ R is the interpolation coefficient, and
[ϵθ(x

(t)
τ , τ)]T−1

t=0 is the concatenation along the temporal
axis for the outputs ϵθ(x

(t)
τ ) at frames 0 ≤ t ≤ T − 1.

Intuitively, Eq. 3 mixes the output from the structure model
ϵθ together with the the temporal model ϵϕ as the final
output ϵ′ψ, making it both structural and temporal-aware.
Notably, compared with other mixing strategies, our design
has several unique benefits, evidenced both in training and
inference time.

We start by showing that the interpolation mechanism in
Eq. 3 implicitly induces an intermediate distribution for the
temporal network to learn. We reveal such insight in the
following theorem.

Theorem 4.1 (Informal). Suppose ϵθ perfectly models
p(x) and ϵ′ψ perfectly models p(x[T ]), then the interpo-
lation in Eq. 3 implicitly induces the distribution p̂(x[T ]) ∝
p(x[T ])β p̃(x[T ])1−β for ϵϕ, where β = 1

1−α .

Temporal interpolator reduces training overhead. In-
stead of directly matching the highly complex MD distribu-
tion p(x[T ]), the temporal network is now expected to model
an intermediate transition between the frame-independent
distribution p̃(x[T ]) obtained from the structure model and
the target MD distribution p(x[T ]), with β = 1

1−α defining
the weight. By this means, we relieve from the optimization

difficulty for learning the MD distribution by leveraging
the interpolation p̂(x[T ]) as the stepping stone, while also
effectively taking advantage from the conformer pretrain-
ing by incorporating p̃(x[T ]). Besides, another core design
lies in that we inherit the output from the structure model
x̃
[T ]
τ as the input to the temporal model, instead of feeding

in the original noised trajectory x
[T ]
τ . This is beneficial in

terms of facilitates the optimization for ϵϕ. Consider the ex-
treme case that the frame-independent distribution is close
to the MD distribution, i.e., p̃(x[T ]) ≈ p(x). According to
Theorem 4.1, we have that the implicit distribution for the
temporal model to approach would be p̂(x[T ]) ≈ p̃(x[T ]).
Therefore, equivalently the temporal model only needs to
satisfy ϵθ(x̃

[T ]
τ , τ) ≈ x̃

[T ]
τ , which can be simply realized

by the residual connection and thus negligible optimization
effort is required for ϵϕ. Empirically, we adopt the parame-
terization of α = σ(k) where σ(·) is the Sigmoid function
to ensure a smooth interpolation, where k is a learnable
parameter optimized during training.

Temporal interpolator enables flexible inference. Further-
more, our design unlocks intriguing potentials at inference
time. First, by manually setting α = 1, we completely
blocks the output from the temporal network and the output
from ϵ′ψ exactly equals [ϵθ(x

(t)
τ , τ)]T−1

t=0 , which is equiva-
lent to performing the original structure generation with T
being the batch size. Such property implies that our model
always preserves the original conformer generation capa-
bility when setting α = 1. Furthermore, by progressively
decreasing α, the trajectory samples obtained by the interpo-
lator will exhibit increasing temporal consistency since the
temporal network implicitly aligns the structures temporally
with the strength 1− α.

Temporal interpolator preserves equivariance. Impor-
tantly, the linear interpolation rule for our temporal inter-
polator preserves the SE(3)-equivariance, given the SE(3)-
equivariance of both the structure and the temporal mod-
els. This property is vital in terms of ensuring the SE(3)-
invariance of the marginal, a critical inductive bias to pro-
mote data efficiency.

Cascaded temporal interpolator. Given the justifications
for the interpolator, we further extend such operation in
a block-wise manner, enabling more expressive informa-
tion fusion between the pretrained structure model and the
additional temporal module. Specifically, we perform the
interpolation for the output from the structure and temporal
model at the l-th block with α(l) ∈ R being the coefficient.
Furthermore, we also incorporate the interpolation between
each layer in the temporal block and the output from the
structure block. Detailed flowchart can be found in Fig. 2.
Such design inherits the benefits of the interpolator while
permitting a much denser information flow between the
network that evidently improves optimization.
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4.3. Instantiation of EGINTERPOLATOR

Based on the dedicated design of the temporal interpola-
tor in § 4.2, we describe the overall instantiation of our
framework following the paradigm depicted in § 4.1.

Conformer pretrainings stage. The first stage of our
pipeline is the structure pretraining using the large scale
conformer dataset Dstruct. For the structure model ϵθ, we
resort to Equivariant Graph Convolution Layer (EGCL) pro-
posed by (Satorras et al., 2021b) as the basic building block,
whose update is denoted by

x′,h′ = fES(x,h, E), (4)

where ES is shorthand for Equivariant Structure layer. The
denoiser ϵθ consists of L layers of fES stacked sequentially,
and is optimized using the loss in Eq. 1 for structure pre-
training.

MD training stage. With the pretrained conformer model
ϵθ, we conduct the second stage, the MD training stage with
the limited-size MD dataset Dtraj, with the additionally ini-
tialized temporal network ϵϕ. For the temporal network, we
utilize the Equivariant Temporal Attention Layer introduced
in Han et al. (2024) to capture the temporal dependency
across different frames using attention. In form, we have

x′[T ],h′[T ] = fET(x
[T ],h[T ], E), (5)

where ET refers to Equivariant Temporal layer. In particular,
we design each temporal block as a stack of three layers,
with one ET layer on the top, one on the bottom, and an
ES layer in the middle. Such design is demonstrated to be
favorable in practice due to the dense entanglement of both
the structure and temporal layers. For each ES layer in the
pretrained model, we initialize one temporal block, which,
by putting together, constitutes one temporal interpolator
block, leading to L temporal interpolator blocks in total.
The model is then optimized using the trajectory denoising
loss in Eq. 2 with the pretrained ES layers freezed. By
this means, the final model is not only a performant MD
generative model, but also yields exactly no performance
degradation on the pretraining task of conformer generation,
an interesting property that is never assured in previous
works.

Forward simulation and interpolation. Our model can
naturally support structure-conditioned MD generation such
as the forward simulation, which conditions on the first
frame x(0), and interpolation, which conditions on the first
and last frames, namely x(0) and x(T−1). Such purpose can
be fulfilled by treating the conditioning frames as additional
control signal, which is preserved without adding any noise.
The conditioning frames are then passed along with the
noisy frames into the interpolator and finally removed from
the output to ensure the loss is only computed over the noisy
frames.

5. Experiments
We refer to our framework as EGINTERPOLATOR, which
leverages pretrained spatial layers from BASICES, our
lightweight structure learning model. In this section, we
evaluate EGINTERPOLATOR on its ability to generate realis-
tic molecular dynamics (MD) trajectories for unseen organic
molecules under practical data constraints—specifically,
limited MD simulations of training molecules supplemented
by diverse static structural data.

5.1. Conformer Pretraining

Datasets. We use GEOM-QM9 (Ramakrishnan et al., 2014)
and GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022)
following prior work in conformer generation (Xu et al.,
2022; Ganea et al., 2021). Our spatial model is pretrained
separately on each dataset, using the same train/validation
splits as Xu et al. (2022) and a preprocessing pipeline sim-
ilar to Ganea et al. (2021) (details in Appendix). This
results in 37.7K/4.7K training/validation molecules with
188.6K/23.7K conformers for QM9 and 38.0K/4.8K train-
ing/validation molecules with 190.0K/23.7K conformers for
Drugs. Unlike Xu et al. (2022); Shi et al. (2021a), who use a
subsample of 200 molecules for testing, we evaluate on the
full test set from the (Xu et al., 2021) codebase: 964 QM9
molecules (117.9K conformers) and 958 Drugs molecules
(68.9K conformers).

Experimental Setup. We train our base BASICES model
on this conformer generation task up to 800K steps for both
QM9 and Drugs, learning 1000 denoising steps over only
heavy atom coordinates. (Further details in Appendix).

Baselines: We compare the performance of our pretrained
spatial models to that reported in Xu et al. (2022), namely
GEODIFF-A as well as CONFGF (Shi et al., 2021a). Due
to the different test benchmark, we compare metrics solely
as a check of effective model learning over structure and
conformer distributions.

Metrics. Per prior work in the space, we utilize the
Coverage and Matching metrics (Ganea et al., 2021; Xu
et al., 2022) (Details in Appendix). We report both the Re-
call (R) to measure diversity of generated conformers and
Precision (P) to measure accuracy of the samples. We utilize
the default threshold δ values for coverage metrics, 0.5Å for
QM9 and 1.25Å for Drugs.

Results & Discussion. Results are summarized in Figure 3.
Our pretrained BASICES model performs competitively
with prior SOTA methods. Notably, our training framework
yields significant gains on Drugs, likely due to the emphasis
on heavy atoms. For QM9, we prioritize precision-based
metrics relevant to MD pretraining, which leads to slightly
lower COV/MAT-R scores but superior fidelity in conformer
bond angle and bond length distributions (see Appendix).
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A. Coverage and Matching Results on QM9 and GEOM-Drugs

Method COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Mean Med. Mean Med. Mean Med. Mean Med.

Q
M

9 CONFGF 88.49 94.31 0.2673 0.2685 46.43 43.41 0.5224 0.5124
GEODIFF-A 90.54 94.61 0.2104 0.2021 52.35 50.10 0.4539 0.4399
BASICES 80.38 82.12 0.2819 0.2941 58.83 55.13 0.4298 0.4230

D
ru

gs CONFGF 62.15 70.93 1.1629 1.1596 23.42 15.52 1.7219 1.6863
GEODIFF-A 88.36 96.09 0.8704 0.8628 60.14 61.25 1.1864 1.1391
BASICES 93.15 100.00 0.7932 0.7812 69.68 76.35 1.0837 1.0381

B. Generated Conformers

Figure 3. (A) reports the performance of BASICES along with borrowed numbers from (Xu et al., 2022) on SOTA baselines; (B) Highlights
example conformers sampled from BASICES on both QM9 and Drugs.

5.2. Molecular Dynamics Finetuning

To generate MD data for diverse organic and drug-like
molecules, we subsample QM9 and Drugs datasets, result-
ing in 1109/1018/240 train/validation/test splits for QM9
and 1137/1044/100 for Drugs. We then perform five, all-
atom (including hydrogens), explicit-solvent simulations
of 5 ns per molecule. In the test set, four trajectories are
used as reference data and the fifth serves as an oracle base-
line (MD ORACLE). Full simulation details and force field
parameters are provided in the Appendix.

Experimental setup. Unless otherwise noted, all models
are trained with trajectory time-steps ∆t = 5.2 ps. We
also continue to learn across heavy atoms and use 1000
denoising steps throughout all MD generation experiments.

Baselines. We compare the performance of our EGINTER-
POLATOR framework against that of GEOTDM (Han et al.,
2024), a recent all-atom trajectory diffusion model. In ad-
dition, we implement Markovian, autoregressive baselines
using EGNN (Hoogeboom et al., 2022a) and the Equivari-
ant Transformer (Thölke & Fabritiis, 2022) as push-forward
networks, representing a mainstream alternative to diffusion-
based approaches. These are denoted as AR + EGNN and
AR + ET, respectively.

5.3. Unconditional Generation

In the unconditional generation setting, we train models
to generate 2.6 ns trajectories with no reliance on a refer-
ence frame. For evaluation, we sample ten unconditional
generations per molecule, resulting in 26 ns of generated
trajectories. We focus on QM9 for this setting given the
smaller memory footprint of these molecules.

Distributional Results. We assess the similarity be-
tween generated and reference trajectories using average
Jensen–Shannon divergence (JSD) across key collective
variable distributions, including bond lengths and bond an-
gles—features tightly constrained by molecular energet-
ics—as well as torsion angles and the top components from

time-lagged independent component analysis (TICA), which
captures slow dynamical modes. As shown in Table 1,
EGINTERPOLATOR outperforms baselines on all metrics,
exhibiting substantially closer alignment with ground-truth
distributions. These results are further illustrated in Fig-
ure 4A and Figure 4B in a direct comparison to GeoTDM
(Han et al., 2024) on an example molecule.

5.4. Forward Simulation

In the forward simulation setting, models are trained to gen-
erate 1.3 ns trajectories conditioned on a reference frame.
We then extend these to 5.2 ns using successive block diffu-
sion roll-outs, sampling five such trajectories per molecule.
This setting focuses on GEOM-Drugs to target larger and
more complex atomic systems (see Appendix).

Distributional Results. Once again, across all metrics in
Table 1, EGINTERPOLATOR outperforms baselines and gen-
erates samples that more closely align with ground-truth
distributions. More importantly, we highlight that EGIN-
TERPOLATOR in fact approaches the distributional fidelity
of the replicate MD ORACLE with respect to the torsion and
TICA component variables.

Dynamical Results. We moreover evaluate torsional dy-
namics via decorrelation time and find that EGINTERPO-
LATOR better captures distinct relaxation behaviors within
molecules compared to GeoTDM (Fig. 4E,F,G). Further-
more, by constructing Markov State Models (MSMs) from
torsion angles and clustering into 10 metastates, we observe
strong agreement in metastate occupancy between gener-
ated and reference trajectories (Fig. 4C). Our model even
surpasses MD oracle baselines in capturing coarse-grained
dynamical distributions (Fig. 4D).

5.5. Interpolation

In the interpolation (or transition path sampling) setting,
models are trained to generate 0.52 ns trajectories condi-
tioned on both start and end reference frames. Here we
discuss results for Drugs, with QM9 details in the Ap-
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Table 1. Performance Comparison on QM9 Unconditional Generation and Drugs Forward Simulation

Method
JSD (Mean — Median) (↓)

Bond Angle Bond Length Torsion TICA 0 TICA 0,1

Q
M

9
MD ORACLE 0.042 0.028 0.032 0.031 0.192 0.134 0.318 0.291 0.413 0.394

AR + EGNN 0.702 0.677 0.770 0.780 0.702 0.761 0.770 0.788 0.820 0.824

AR + ET 0.705 0.746 0.680 0.721 0.553 0.586 0.568 0.562 0.783 0.786

GEOTDM 0.691 0.690 0.676 0.670 0.489 0.527 0.449 0.453 0.691 0.694

EGINTERPOLATOR 0.305 0.292 0.210 0.188 0.363 0.380 0.417 0.406 0.636 0.642

D
ru

gs

MD ORACLE 0.036 0.023 0.030 0.028 0.215 0.131 0.484 0.494 0.610 0.630

AR + EGNN 0.663 0.655 0.748 0.784 0.723 0.741 0.716 0.731 0.806 0.821

AR + ET 0.765 0.766 0.733 0.745 0.526 0.533 0.565 0.558 0.791 0.795

GEOTDM 0.640 0.645 0.643 0.645 0.498 0.503 0.531 0.550 0.712 0.720

EGINTERPOLATOR 0.173 0.153 0.1419 0.112 0.377 0.388 0.454 0.441 0.650 0.644

A CB D

E F G

Figure 4. (A) Bond length distributions and (B) torsion angle distributions of reference trajectories (red), our generations (green), and
GeoTDM generations (blue). MSM occupancies computed from reference trajectories versus our generations (C) or MD oracles (D).
Autocorrelations of each torsion angle in an example molecule from reference trajectories (E), our generations (F), and GeoTDM (G).
The gray dashline denotes the decorrelation threshold of 1/e.

pendix. Moreover, as this task requires conditioning on
both endpoints, we compare only against the machine learn-
ing baseline GeoTDM (Han et al., 2024). We however adopt
the MSM pipeline from (Jing et al., 2024c) to benchmark
against MD oracle trajectories of varying lengths.

Evaluation. Following (Jing et al., 2024c), we evaluate
interpolation as a transition path sampling task. After con-
structing an MSM from reference trajectories, we identify
two distant metastates as start and end states and sample
900 frame pairs accordingly. We then generate 900 inter-
polation trajectories with our model and compare them to
reference and MD oracle trajectories using JSD over metas-
tate occupancies. Given the high barrier and rare transition
between states, we also report valid path rate, average path
probability, and valid path probability (details in Appendix).

Results. As shown in Fig. 5D, our 0.52 ns trajectories
achieve the lowest JSD and highest average path probabil-
ity, outperforming MD oracles of the same length and even
matching longer trajectories in terms of path quality. While
long MD oracles have higher valid path rates, our model ex-
cels at generating high-probability valid transitions. Fig. 5A,
B illustrates the reference free energy surface (FES) and
metastate assignments for a representative molecule, with a
generated trajectory successfully traversing key states and
reaching end states—highlighting the model’s capacity for
efficient and meaningful transition path sampling.

5.6. Ablations

Structural Pretraining. We ablate structural pretraining by
evaluating a variant of our framework, EGINTERPOLATOR-

7
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B

A C

D

State 6 State 9 State 5 State 8 State 1 State 3

Figure 5. (A) Reference free energy surface along the top two TICA components. (B) Generated interpolation trajectory projected on the
reference surface. Red point is the start frame, Orange point is the end frame. Reference surface is colored by the metastate assignment.
(C) Key frames from intermediate metastates in the generated trajectory. (D) Statistics evaluating the JSD with the reference trajectories,
valid path rate, average path probability, and valid path probability of our generated trajectories and replicate MD oracles.

Table 2. Ablation study on QM9 and Drugs.

Method
JSD (Mean — Median) (↓)

Bond Angle Bond Length Torsion Decorrelation

Mean Median Mean Median Mean Median Mean Median

Q
M

9 OURS-N 0.538 0.538 0.583 0.580 0.441 0.494 0.619 0.718

OURS 0.305 0.292 0.210 0.188 0.363 0.380 0.607 0.727

D
ru

gs OURS-N 0.332 0.332 0.386 0.383 0.455 0.466 0.720 0.833

OURS 0.173 0.153 0.142 0.112 0.377 0.388 0.670 0.794

Naive, trained directly on trajectories without any conformer
pretraining. On both QM9 (unconditional generation) and
Drugs (forward simulation), we observe degraded fidelity in
bond length, angle, and torsion distributions, along with di-
minished de-correlation behavior (see table 2 and Figure in
Appendix). These results highlight that structural pretrain-
ing enriches limited dynamic data and facilitates learning of
accurate spatiotemporal distributions.

Frozen BASICES Layers. To assess the benefit of fine-
tuning the frozen spatial encoder, we train a fully end-to-end
version of EGINTERPOLATOR on the Drugs forward sim-
ulation task. As shown in Figure 6, performance remains
largely unchanged across metrics, indicating that the pre-
trained spatial model generalizes well without task-specific
tuning, while the temporal layers effectively capture the
necessary dynamic information.

The values of α. We present the values of α after conver-
gence in Sec. F. Interestingly, we observe that the values of
α exhibit shared pattern across different tasks on the same
dataset while varying across different datasets, indicating
that α captures dataset-specific temporal correlation.

Bond Angle Bond Length Torsion Decorrelation0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

JS
D 

Sc
or

e 
(

)

JSD Metrics by Category
EGInterpolator (Mean)
EGInterpolator (Median)
EGInterpolator-F (Mean)
EGInterpolator-F (Median)

Figure 6. JSD metrics computed for Bond Angles, Bond Lengths,
Torsions, and Decorrelation Times. Compared between EGINTER-
POLATOR (green) and EGINTERPOLATOR-F (purple).

6. Discussion
Limitation. As shown in Table 1, our model, as a deep
generative model-based surrogate, may not yield MD simu-
lation that is at exactly the same level of accuracy as the MD
oracle. Yet, it still produces MD trajectories of very high
quality and is able to generalize to novel molecular systems.

Conclusion. We have introduced a diffusion model for mod-
eling MD distributions by pretraining a structure model on
conformer dataset and then finetuning on trajectory dataset.
At the core of our approach is an module named EGInter-
polator that mixes the output from the pretrained structure
model and the temporal model to captures the temporal de-
pendency. Our approach demonstrates strong performance
in terms of producing realistic MD trajectories on diverse
benchmarks and tasks.
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Hernández, G., Hoffmann, M., Plattner, N., Wehmeyer,
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A. Experiments Continued
A.1. Optimizing for Conformer Precision Metrics

As discussed in Section 5.1, we prioritize precision-based conformer quality metrics when selecting our base structure
model. While this may come at the cost of lower COV/MAT-R scores, we observe superior fidelity in bond length, bond
angle, and torsion angle distributions—an aspect we consider more critical for a pretrained structure module.

Table 3. Conformer metrics on QM9 compared between two checkpoints.

Checkpoint COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓

Mean Med. Mean Med. Mean Med. Mean Med.

99 89.37 93.55 0.2838 0.2932 54.49 51.79 0.4828 0.4741
539 80.38 82.12 0.2819 0.2941 58.83 55.13 0.4298 0.4230

We highlight this point using two checkpoints of the BASICES model trained on QM9. In Table 3 we can see that while 539
lacks in COV-R, it does substantially better than 99 in COV/MAT-P metrics. In Figure 7, we then see that 539 reflects high
quality bond angle, length, and torsion distributions, as compared to 99. We select checkpoint 539 for the conformer results
reported in Section 5.1 and for training the downstream trajectory models.

A.2. QM9 Interpolation

MSM_JSD Valid path rate Average path prob. Valid path prob.
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Figure 6. Statistics evaluating the JSD with the reference trajectories, valid path rate, average path probability, and valid path probability
of our generated trajectories and replicate MD oracles.

For the interpolation task on QM9 dataset, as shown in Figure 6, our 0.52 ns trajectories consistently achieve the lowest
Jensen-Shannon Divergence (JSD) and the highest average path probability, outperforming MD oracles of the same duration.
It reveals that our method can samples transition paths between far metastates more efficiently. While the MD oracles exhibit
higher valid path rates in this setting, our model still performs competitively in generating high-probability valid transitions.

Figure 11 illustrates several free energy surfaces (FES) and corresponding metastate assignments for representative molecules.
We observe that the generated trajectories successfully traverse key intermediate states and reach the appropriate end states,
demonstrating the model’s ability to perform efficient and meaningful transition path sampling.
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A.3. Trajectory Model Ablations

A.3.1. GENERALIZATION TO AN EXTENDED TEST SET

To further assess the robustness of our QM9 unconditional generation model, we evaluate performance on an extended test
set of 959 molecules, which includes the original test set from Section 5.2. As shown in Table 4, we compare GEOTDM (Han
et al., 2024), EGINTERPOLATOR-N (without structure pretraining), and our full EGINTERPOLATOR model. While all
models perform comparably on this larger evaluation set, EGINTERPOLATOR consistently outperforms the baselines,
underscoring its strong generalization and the value of structural pretraining.

Table 4. JSD Metric (↓) for QM9 Unconditional Generation. Top: Trained on Standard Train, evaluated on Enlarged Test. Bottom:
Trained on Enlarged Train, evaluated on Standard Test.

Train → Test Method Bond Angle Bond Length Torsion TICA 0 TICA 0,1

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Standard → Enlarged
GEOTDM 0.690 0.690 0.674 0.668 0.488 0.529 0.452 0.451 0.695 0.699
EGINTERPOLATOR-N 0.539 0.538 0.584 0.582 0.447 0.492 0.438 0.440 0.678 0.685
EGINTERPOLATOR 0.307 0.293 0.214 0.194 0.361 0.385 0.416 0.409 0.633 0.639

Enlarged → Standard
GEOTDM 0.757 0.757 0.782 0.793 0.488 0.533 0.454 0.453 0.697 0.703
EGINTERPOLATOR-N 0.470 0.460 0.540 0.544 0.433 0.481 0.443 0.440 0.681 0.691
EGINTERPOLATOR 0.296 0.286 0.261 0.247 0.370 0.388 0.405 0.394 0.636 0.638

A.3.2. CONTRIBUTION OF AN EXTENDED TRAIN SET

While our framework is motivated by the scarcity of trajectory data, we also evaluate model performance under increased
supervision. We train on an enlarged dataset—4× larger than the original—comprising 4437 molecules, with the original
split from Section 5.2 as a subset. As shown in Table 4, while EGINTERPOLATOR-N and EGINTERPOLATOR interestingly
do not improve substantially with more data, the latter maintains a clear advantage. This highlights the continued value of
structural pretraining even in higher-data regimes.

B. Experimental Details
B.1. Conformer Pretraining

B.1.1. DATA PREPROCESSING

The datasets obtained from the (Xu et al., 2022) codebase are provided as pickle files, each containing a list of PyTorch
Geometric data objects representing individual conformers. We apply the following filtering steps to ensure data quality.
First, we verify that the saved RDMol objects can be successfully sanitized using RDKit. Next, we remove any conformers
exhibiting fragmentation in their RDMol representations. Following (Ganea et al., 2021), we also account for conformers
that may have reacted in the original data generation process. Namely, we compare the canonical SMILES strings derived
from both the saved SMILES and the corresponding RDMol, and discard any conformers where the two do not match. We
also exclude any molecules whose saved SMILES cannot be converted into a valid RDMol by RDKit. Lastly, specific to our
method, we remove hydrogens from the molecules according to rdkit.Chem.RemoveHs 2 and retain heavy atoms. For
QM9, this leaves [C, N, O, F]. For Drugs, we have [C, N, O, S, P, F, Cl, Br, I, B, Si].

B.1.2. TRAINING DETAILS

We train both the QM9 and Drugs conformer models using 4 NVIDIA RTX A4000 GPUs, with an effective batch size of
128 (32 samples per GPU) and a learning rate of 1× 10−4. Training is carried out until convergence, typically around 800K
steps. As described in Section 5.1, all models are trained using 1000 diffusion steps. We adopt a DDPM framework (Ho
et al., 2020b) with a linear noise schedule. Additionally, we employ an equivariant loss function that leverages optimal
Kabsch alignment (Kabsch, 1976), with more details in Section C.4.

2Note that RemoveHs does not eliminate all hydrogen atoms and may retain chemically relevant ones (see the RDKit documentation).
Our method explicitly incorporates and models such retained hydrogens.
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B.1.3. EVALUATION DETAILS

We evaluate the quality of generated conformers using Coverage (COV-P) and Matching (MAT-P), both based on the root
mean square deviation (RMSD) computed after Kabsch alignment (Kabsch, 1976).

Let Sg and Sr denote the sets of generated and reference conformers, respectively. The metrics are defined as:

COV-P(Sg, Sr) =
1

|Sg|

∣∣∣∣{Ĉ ∈ Sg

∣∣∣∣ min
C∈Sr

RMSD(Ĉ, C) ≤ δ

}∣∣∣∣ , (6)

MAT-P(Sg, Sr) =
1

|Sg|
∑
Ĉ∈Sg

min
C∈Sr

RMSD(Ĉ, C), (7)

where δ is a predefined threshold. COV-R and MAT-R, inspired by Recall, are defined analogously by swapping Sg and Sr.

Following (Xu et al., 2022), we set |Sg| = 2 × |Sr| per molecule. The results reported in Section 5.1 correspond to the
average COV-*/MAT-* scores across all test molecules. COV-P reflects precision by measuring the fraction of generated
conformers that are sufficiently close to the reference set (within threshold δ), while MAT-P captures the mean deviation of
each generated conformer from its closest reference match. High COV and low MAT scores indicate greater fidelity and
precision in conformer generation.

B.2. Molecular Dynamics for Small Molecules

B.2.1. PARAMETERIZATION

We run all-atom molecular dynamics simulations, including hydrogens, using OpenMM (Eastman et al., 2017) and employ
openmmforcefields to apply small molecule force field parameterizations developed by the Open Force Field Initiative
(OpenFF) (Boothroyd et al., 2023). We follow the setup guidelines provided in the openmmforcefields GitHub reposi-
tory. Specifically, we adopt the openff-2.2.1 (Sage) (McIsaac et al., 2024) small molecule force field in conjunction
with a base amber/protein.ff14SB.xml protein force field and a combination of amber/tip3p standard.xml
and amber/tip3p HFE multivalent.xml for explicit solvent and ion parameters. Continuing with standard hyper-
parameters, we set the nonbonded cutoff to 0.9 nm and the switch distance to 0.8 nm. Hydrogen mass repartitioning (HMR)
is applied with a mass of 1.5 amu, along with constraints on all hydrogen bonds. Long-range electrostatic interactions are
computed using the Particle Mesh Ewald (PME) method under periodic boundary conditions. A padding of 1.5 nm is used
for the explicit solvent box.

B.2.2. SIMULATION

All molecular dynamics simulations are performed using a friction coefficient of 1 ps−1, a temperature of 300 K, and
an integration timestep of 4 fs, employing the LangevinMiddleIntegrator (Zhang et al., 2019). As described in
Section 5.2, five independent trajectories are generated per molecule, each initialized from a conformer assigned to that
molecule in the selected data subset. Each trajectory simulation begins with energy minimization, followed by 5000 steps of
equilibration under constant volume and temperature (NVT) conditions. This is followed by a 5 ns production run under
constant pressure and temperature (NPT) conditions, comprising a total of 1.25M integration steps. Trajectory simulation is
parallelized across 32 NVIDIA RTX A4000 GPUs and saved with a frame rate of 400 fs/0.4 ps.

B.3. Trajectory Finetuning

B.3.1. DATASET PREPARATION

As mentioned in Section 5.2, we randomly sample a subset of the molecules from the GEOM-QM9 and Drugs conformer data
to generate trajectory data from. As this is quite costly, for Drugs we generate simulations for the standard train/validation/test
splits mentioned in Section 5.2. For QM9, we generate data for enlarged train/test sets along with the standard validation set.
We then subsample 25% of the enlarged splits to be the standard train/test sets. A summary of the dataset splits is provided
below:

• Drugs:

– Standard splits: 1137/1044/100 train/validation/test molecules
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(5682/5209/496 associated trajectories)

• QM9:

– Standard splits: 1109/1018/240 train/validation/test molecules
(5534/5080/1193 associated trajectories)

– Enlarged sets: 4437/959 train/test molecules
(22132/4793 associated trajectories)

As a note, out of the test trajectories, we select 1 out of 5 per molecule to be the MD ORACLE baseline. Moreover, we
filter out any molecules over 60 atoms in the Drugs dataset to reduce memory usage variance. Finally, the test set for the
interpolation is a subset of the standard test sets mentioned above. We further define this process of selection in Section B.6
and B.3.3.

B.3.2. TRAINING PROTOCOL

While the compute setup and batch size vary across datasets and generation settings, we consistently employ a DDPM
framework with a linear noise schedule and train all models using 1000 diffusion steps. A fixed learning rate of 1× 10−4 is
used and training is performed until convergence. Additionally, we adopt an equivariant loss function based on optimal
global Kabsch alignment of trajectories, as detailed in Section C.4. Setting-specific training configurations are provided in
Sections B.4-B.6.

B.3.3. EVALUATION METRICS

Jensen-Shannon Divergence. We compute the JSD as implemented in scipy, where m = (p+ q)/2:√
D(p || m) +D(q || m)

2
(8)

• Torsions: The 1D JSD is computed over a 100-bin histogram discretized across [−π, π].

• Bond Angles: The 1D JSD is computed over a 100-bin histogram discretized across [0, π].

• Bond Lengths: The 1D JSD is computed over a 100-bin histogram discretized across [100, 220] pm.

• Torsion decorrelation: The 1D JSD is computed over 275-bin histogram discretized across [5, 1380] ps, which are
corresponding to the minimum and maximum torsion decorrelation time of molecules across the dataset.

• TICA-0 and TICA-0,1: We reduce the dimensionality of the trajectory by time-lagged independent component analysis
(TICA). Then 1D, 2D JSDs are computed over 100-bin histograms on the first TICA component (TICA-0) and the
first two components (TICA-0,1), respectively. Since different molecules have totally different TICA projections and
values, we use the minimum and maximum values from each molecule as its unique discretization range for TICA-0
and TICA-0,1. We use 10.4 ps (2 steps) lag time for QM9 and 20.8 ps (4 steps) for drugs.

Markov State Models. We intensively use Markov State Models (MSM) for interpolation tasks. We featurize reference
trajectories with all torsion angles except for those within an aromatic ring. Then TICA is performed on the torsion-based
trajectories. After dimensionality reduction, a k-means clustering algorithm is used to discretize the trajectories to 100
clusters. An MSM analysis is performed on the trajectories of 100 states and PCCA+ spectral clustering from PyEMMA
package (Scherer et al., 2015) is used to aggregate clusters to 10 coarse metastates. A second MSM analysis is done on the
coarse trajectories. We use 52 ps (10 steps) lag time for QM9 and 104 ps (20 steps) for drugs.

To sample the start and end frames used in the interpolation task, we compute the flux matrix over the 10 metastates. To
construct a high barrier and rare transition probability, we choose the two states with least flux between them as start and
end states. Then we randomly sample 900 start and end frames from the corresponding states, and those frames are used as
the conditions in the interpolation inference process. The generated trajectories undergo the same featurization process, and
then projected on the TICA components defined by the reference trajectories. They are further discretized according to the
reference metastate assignments, and a new MSM is performed on the discretized generation trajectories.
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To compare the generation with reference trajectories, we compute the JSD over the metastate occupancy probabilites. To
evaluate interpolation sampling quality, we compute the average path probability, valid path rate, and valid path probability
as described in (Jing et al., 2024c). The average path probability is the average of all paths’ likelihood for transitioning
from the start to the end. The valid path rate is the fraction of paths that successfully traverse from the start to the end. The
valid path probability is the average of all valid paths’ likelihood (excluding zero-probability paths). To fairly compare
the generation and MD oracle, we truncate the MD oracle trajectories to varying time length, and sample 900 transition
paths based on the MSM constructed from the metastates. With the sampled transition paths, we can compute the JSD over
metastates, average path probability, valid path rate, and valid path probability of MD oracles.

B.4. Unconditional Generation Details

Training. Training is conducted by denoising randomly sampled 2.6 ns segments (500 frames) from the training trajectories.
For QM9, we utilize 8 NVIDIA RTX A4000 GPUs with an effective batch size of 32 (4 samples per GPU), training the
models for 400 epochs.

Evaluation. For each molecule in the test set, we generate ten independent 2.6 ns segments (500 frames each). Distributional
histograms are then computed from these generated trajectories and compared against those derived from four reference 5 ns
molecular dynamics (MD) trajectories. Results reported for this model setting for QM9 include both the standard test in
Section 5.3 and enlarged test set in Section A.3.2-A.3.3.

B.5. Forward Simulation Details

Training. Training is conducted by randomly sampling 251-frame segments at a 5.2 ps frame rate and denoising the
subsequent 250 frames (corresponding to 1.3 ns), conditioned on the initial frame-0. For the Drugs dataset, we utilize 4
NVIDIA A100 GPUs with an effective batch size of 32 (8 samples per GPU), training the models for 400 epochs.

Evaluation. For each molecule in the test set, we generate five forward roll-outs of 5.2 ns (1,000 frames total), each
conditioned on the first frame of a reference trajectory. Distributional histograms are then computed from the generated
trajectories and compared against those obtained from four reference 5 ns molecular dynamics (MD) trajectories. For a fair
comparison, we truncate our generation trajectories to the same length as the reference trajectories in evaluation. Results
reported for this model setting for Drugs are based on the standard test set in Section 5.4.

B.6. Interpolation Details

Training. Training is conducted by randomly sampling 101-frame segments at a 5.2 ps frame rate and denoising the middle
99 frames (corresponding to ≈0.52 ns), conditioned on frame-0 and frame-100. For the QM9 dataset, we utilize 2 NVIDIA
A100 GPUs with an effective batch size of 128 (64 samples per GPU), training the models for 300 epochs. For the Drugs
dataset, we utilize 4 NVIDIA A100 GPUs with an effective batch size of 32 (8 samples per GPU), training the models for
400 epochs.

Evaluation. For each molecule in the test set, we perform featurization, dimensionality reduction, and clustering on the
reference trajectories. We then construct an MSM on the discretized trajectories and retain only those test molecules for
which all microstates from clustering are represented in the MSM. After filtering, this yields 124 QM9 and 36 Drug test
molecules. Due to computational constraints, we subsample 80 QM9 molecules while using all 36 Drug molecules for
inference and evaluation. For each selected test molecule, we generate 900 interpolation trajectories conditioned on 900
sampled start and end states. For each MD oracle length, we also sample 900 transition paths. We report the average results
across all molecules successfully modeled by the MSM, as shown in Section 5.5, Figure 5, as well as Section A.2, Figure 6
(see details in Section B.3.3).

C. Method Details
C.1. Molecule Input Representation

Throughout our framework, input molecules are represented as 2D heterogeneous graphs. The bonding network includes
both the original bond types present in the molecule and additional higher-order edges that we incorporate. Specifically, we
include edges up to third-order for both the QM9 and Drug datasets. Following the approach of (Shi et al., 2021b), this
augmentation is designed to facilitate more effective information transfer between atoms involved in bond angle and torsion
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angle interactions.

Table 5. Atom and bond embedding specifications.

Embedding Type Input Dimension

Atom Embedding Atomic Number 30
Bond Embedding No Bond, Bond Type, 2nd/3rd-order edge 4

We defined learned embeddings for atom type as well as bond type. Moreover, we also provide input node features per atom,
largely based on (Ganea et al., 2021). Below, we provide a table with these details. These two information sources, the
learned embedding and input features, as combined in our embedding module as described in Section C.2.

Table 6. Node feature vector based on atom-level properties.

Atom Features

Indices Description Options Type

0–1 Aromaticity true, false One-hot
2–7 Hybridization sp, sp2, sp3, sp3d, sp3d2, other One-hot
8 Partial charge R Value
9–16 Implicit valence 0, 1, 2, 3, 4, 5, 6, other One-hot
17–24 Degree 0, 1, 2, 3, 4, 5, 6, other One-hot
25–28 Formal charge -1, 0, 1, other One-hot
29–35 In ring of size x 3, 4, 5, 6, 7, 8, other k-hot
36–39 Number of rings 0, 1, 2, 3+ One-hot
40–42 Chirality CHI TETRAHEDRAL CW,

CHI TETRAHEDRAL CCW, unspecified/other
One-hot

C.2. Architectures

Embeddings. Across all of our models—both conformer and trajectory—we use a hidden dimension of 128 and a diffusion
timestep embedding dimension of 32. For molecular embeddings, we combine atom type embeddings and atom-level
features via a single linear projection: Rnode dim+ft dim → Rnode dim.

BASICES. As introduced in Section 4.3, our BASICES architecture consists of 6 Equivariant Graph Convolution (EGCL)
layers, following the formulation in (Satorras et al., 2021b). To promote interaction between invariant and equivariant
representations, we insert a Geometric Vector Perceptron (GVP) (Jing et al., 2021) transition layer after each EGCL block.
The full model contains approximately 918K parameters.

EGINTERPOLATOR. As described in Section 4.3, EGINTERPOLATOR extends BASICES by introducing temporal attention
to model dependencies across trajectory frames. Specifically, we incorporate the Equivariant Temporal Attention Layer
(ETLayer) from (Han et al., 2024) to capture temporal structure through attention mechanisms. The architecture is
constructed by stacking an additional sequence of ETLayer + EGCL + ETLayer on top of each pretrained EGCL layer from
BASICES, as illustrated in Figure 2. We retain the use of GVP-based transition layers and introduce LayerNorm (Ba et al.,
2016) at key interpolation steps to improve numerical stability. The resulting model comprises 6 layers and contains 3.3M
parameters in total, with 2.3M trained during trajectory finetuning in the EGINTERPOLATOR framework.

C.3. Conditional Generation

We control the conditional generation by setting appropriate entries of a conditioning mask m to either 1 or 0. Let m[t, a]
denote the conditioning status for frame t and atom a. We define the mask as follows:

• Forward simulation:

m[t, :] =

{
1 t = 0

0 otherwise
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• Interpolation:

m[t, :] =

{
1 t ∈ {0,M}
0 otherwise

,

where M is the index of the final frame.

In the unconditional setting, we default to m[:, :] = 0. To incorporate this conditioning information, we use a condition state
embedding added to the invariant node features, with the same hidden dimension as the main model. The conditioning mask
is also used to restrict the denoising process and loss computation to frames where m[t′, :] = 0.

C.4. Kabsch Alignment

Inspired by (Xu et al., 2022), we propose to use trajectory-level Kabsch alignment to find the optimal rotation and translation
between the noisy trajectory x

[T ]
τ and the input trajectory x

[T ]
0 at diffusion step τ . This corresponds to the following

optimization problem:

R∗, t∗ = argmin
R,t

∥Rx[T ]
τ + t− x

[T ]
0 ∥2. (9)

In practice, this can be realized by extending the original Kabsch algorithm (Kabsch, 1976) on the set of points with the
temporal dimension T combined into the number of points dimension N , that forms a point cloud with effective number of
points T ×N . Afterwards, we re-compute the target noise ϵ̄ based on the aligned x̄

[T ]
τ = R∗x

[T ]
τ + t∗ and the clean data

x
[T ]
0 by the forward diffusion process, and then match the output of EGINTERPOLATOR towards re-computed noise ϵ̄ after

alignment.

C.5. Baselines

Autoregressive Models. In the autoregressive baseline configuration, molecular dynamics trajectories are modeled
autoregressively under the Markov assumption, whereby the model—either EGNN (Satorras et al., 2021b) or Equivariant
Transformer (Thölke & Fabritiis, 2022)—learns the transition distribution p(xt+1|xt). To ensure fair comparison, we
maintain consistent timestep intervals and frame counts across all datasets during both training and inference phases,
matching the parameters used in our proposed methods. For both architectures, we employ identical model configurations
consisting of six stacked layers of EGCL or Equivariant Transformer blocks, respectively, to maintain experimental
consistency.

GEOTDM. The training setup and embedding configurations for our implementation of GEOTDM are aligned with those
used in our proposed framework. Following the architecture described in (Han et al., 2024), the model consists of 6 stacked
layers of EGCL and ETLayer blocks, resulting in a total of 1.4M parameters.

D. Proofs
D.1. Proof of Theorem 4.1

For better readability we restate Theorem 4.1 below.
Theorem 4.1. Suppose ϵθ perfectly models p(x) and ϵ′ψ perfectly models p(x[T ]), then the interpolation in Eq. 3, namely,

ϵ′ψ(x
[T ]
τ , τ) = αx̃[T ]

τ + (1− α)ϵϕ(x̃
[T ]
τ , τ), s.t. x̃[T ]

τ = [ϵθ(x
(t)
τ , τ)]T−1

t=0 ,

implicitly induces the distribution p̂(x[T ]) ∝ p(x[T ])β p̃(x[T ])1−β for ϵϕ, where β = 1
1−α .

Proof. Upon perfect optimization, we have the connection between the denoiser and the score of the underlying distribu-
tion (Song & Ermon, 2019; Song et al., 2021):

ϵθ(x
(t)
τ , τ) = −

√
1− ᾱτ∇ log p(x(t)), ∀0 ≤ t ≤ T − 1, 0 ≤ τ ≤ T , (10)

and similarly,

ϵ′ψ(x
[T ]
τ , τ) = −

√
1− ᾱτ∇ log p(x[T ]), ∀0 ≤ τ ≤ T . (11)
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By leveraging Eq 10 for all frames 0 ≤ t ≤ T − 1, we have

x̃[T ]
τ = [ϵθ(x

(t)
τ , τ)]T−1

t=0 = −
√
1− ᾱτ∇ log p̃(x[T ]), (12)

where p̃(x[T ]) is the joint of i.i.d. framewise distributions p(x). Combining with the interpolation rule in Eq. 3, we have

ϵϕ =
1

1− α
ϵ′ψ − α

1− α
x̃[T ]
τ , (13)

= (−
√
1− ᾱτ )

(
1

1− α
∇ log p(x[T ])− α

1− α
∇ log p̃(x[T ])

)
, (14)

= (−
√
1− ᾱτ )

(
β∇ log p(x[T ]) + (1− β)∇ log p̃(x[T ])

)
, (15)

where β = 1
1−α . Now, consider the distribution p̂(x[T ]) ∝ p(x[T ])β p̃(x[T ])1−β , we have

∇ log p̂(x[T ]) = β∇ log p(x[T ]) + (1− β)∇ log p̃(x[T ]). (16)

Therefore, ϵϕ = −
√
1− ᾱτ∇ log p̂(x[T ]). This verifies that the interpolation rule implicitly induces the distribution

p̂(x[T ]) with ϵϕ as its score network. Furthermore, the induction is unique, since for any distribution q(x[T ]) satisfying
ϵϕ = −

√
1− ᾱτ∇ log q(x[T ]), we have that ∇ log p̂(x[T ]) = ∇ log q(x[T ]), which gives us q(x[T ]) = p̂(x[T ]) due to the

property of Stein score as demonstrated in (Hyvärinen & Dayan, 2005; Song & Ermon, 2019).

D.2. Proof of Equivariance

Theorem D.2. EGINTERPOLATOR is SE(3)-equivariant. Namely, g · fEGI(x
[T ]) = fEGI(g · x[T ]), for all g ∈ SE(3) where

fEGI is the mapping defined per EGINTERPOLATOR.

Proof.

ϵ′ψ(x
[T ]
τ , τ) = αx̃[T ]

τ + (1− α)ϵϕ(x̃
[T ]
τ , τ), s.t. x̃[T ]

τ = [ϵθ(x
(t)
τ , τ)]T−1

t=0 ,

It suffices to show that the temporal interpolator in Eq. 3 is SE(3)-equivariant, since the SE(3)-equivariance of the structure
model ϵθ and ϕ directly follows the original works of (Satorras et al., 2021b) and (Han et al., 2024), respectively. For any
g := (R, t) ∈ SE(3), we have [ϵθ(Rx

(t)
τ + t, τ)]T−1

t=0 = R[ϵθ(x
(t)
τ , τ)]T−1

t=0 + t = Rx̃
[T ]
τ + t. Therefore, we have

ϵ′ψ(Rx[T ]
τ + t, τ) = α(Rx̃[T ]

τ + t) + (1− α)ϵϕ(Rx̃[T ]
τ + t, τ) (17)

= αRx̃[T ]
τ + (1− α)Rϵϕ(x̃

[T ]
τ , τ) + αt+ (1− α)t, (18)

= R
(
αx̃[T ]

τ + (1− α)ϵϕ(x̃
[T ]
τ , τ)

)
+ t, (19)

= Rϵ′ψ(x
[T ]
τ , τ) + t, (20)

which concludes the proof.
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E. Additional Results
E.1. Conformer Pretraining: QM9

Figure 7. Distributions computed from reference conformers shown in red, Checkpoint 539 in green, and Checkpoint 99 in purple. We see
that 539 aligns more closely with reference distributions across all collective variables and shows improved discretization of torsional
states.

Above we show the additional plot associated with Section 5.1 and A.1. The plots above correspond to the following
molecules (left to right):

N#C[C@](O)(CO)CCO, C[C@@H](O)[C@@H](CO)CC#N,
C[C@@H](O)CCOCCO, CC[C@@H](CC=O)[C@@H](C)O
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E.2. Unconditional Generation: QM9

Figure 8. Distributions computed from reference QM9 trajectories (red), EGINTERPOLATOR (green), and GeoTDM (purple). Across all
examples, our framework more closely matches the reference distributions across all collective variables and better captures torsional state
discretizations than GeoTDM.

The figure above provides additional examples corresponding to the distributional analysis in Section 5.3. The molecule
featured in the main paper in Figure 4A and 4B is:

CC[C@H](C#CC=O)CO

The plots above correspond to the following molecules (left to right):

C#CCCC[C@@H](C)CO, CC[C@@](C#N)(CO)OC,
COCCCO, CC[C@H](C#CC=O)CO
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E.3. Forward Simulation: Drugs

Figure 9. Autocorrelations of individual torsion angles for an example molecule, comparing reference trajectories with generations from
EGINTERPOLATOR and GeoTDM. For the challenging task of capturing temporal de-correlation behavior, EGINTERPOLATOR closely
follows the reference dynamics, whereas GeoTDM fails to model frame-to-frame correlations effectively.

The figure above provides additional examples corresponding to the dynamical analysis in Section 5.4. The molecule
featured in the main paper in Figure 4E-G is:

O=C(O)c1[nH]c2ccc(Cl)cc2c1CC(=O)N1CCN(c2ccccc2)CC1

The plots above correspond to the following molecules (left to right):

Cc1ccc(C)c(CN2C(=O)NC3(CCCCC3)C2=O)c1,
COc1ccc(NS(=O)(=O)c2ccc3c(c2)Cc2ccccc2-3)cn1,

COc1ccc(S(=O)(=O)Nc2c(C(=O)O)[nH]c3ccccc23)c(OC)c1
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Figure 10. Distributions computed from reference Drugs trajectories (red), EGINTERPOLATOR (green), and GeoTDM (purple). Across all
examples, our framework aligns closely with reference distributions across all collective variables and exhibits improved torsional state
discretization compared to GeoTDM.

The figure above provides additional examples related to the distributional analysis in Section 5.4.

The plots above correspond to the following molecules (left to right):

NS(=O)(=O)c1ccc(CCNC(=O)COC(=O)CN2C(=O)[C@H]3CCCC[C@H]3C2=O)cc1,
COc1ccc(C(=O)N2CCc3cc(OC)c(OC)cc3C2)cc1OC,

Cc1ccc2c(c1)C(=O)N(CCCCO)C2=O,
COC(=O)C1CCN(Cc2cc(=O)oc3cc(OC)ccc23)CC1,

CCOC(=O)CSC1=Nc2ccccc2C2=N[C@H](CC(=O)NCc3ccc(OC)cc3)C(=O)N12
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E.4. Interpolation: QM9

Figure 11. Generated QM9 interpolation trajectories from EGINTERPOLATOR, projected on the reference surface. The red point denotes
the start frame, and the orange point denotes the end frame. The reference surface is colored by metastate assignment. Each row
corresponds to a different molecule, and each column shows a generated interpolation. These examples illustrate the model’s ability to
generate efficient and meaningful transition paths.

The figure above provides additional examples related to the analysis in Section A.2.

The trajectories correspond to the following QM9 molecules (top to bottom):

C#C[C@@](O)(CC)COC, N#CC[C@H](O)CCCO,
C[C@H](C=O)NCC=O, CCC[C@@H](O)CC#N
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E.5. Interpolation: Drugs

Figure 12. Generated Drug interpolation trajectories from EGINTERPOLATOR, projected onto the reference surface. The red point
indicates the start frame, and the orange point indicates the end frame. The reference surface is colored by metastate assignment. Each
row corresponds to a different molecule, and each column shows a generated interpolation. These examples highlight the model’s ability
to generate efficient and meaningful transition paths.

The figure above provides additional examples related to the analysis in Section 5.5. The molecule featured in the main
paper in Figure 5B is:

O=C(CCCSc1nc2ccccc2[nH]1)NCc1ccccc1F

The trajectories above correspond to the following Drug molecules (top to bottom):

COc1ccc(S(=O)(=O)Nc2c(C(=O)O)[nH]c3ccccc23)c(OC)c1,
Cn1c(C(=O)NCCN2CCOCC2)cc2c(=O)n(C)c3ccccc3c21,

O=C(c1ccc(Br)o1)N1CCN(c2ccccc2F)CC1,
CCOC(=O)c1c(C)[nH]c(C)c1C(=O)CSc1ncccn1

25



Align Your Structures: Generating Trajectories with Structure Pretraining for Molecular Dynamics

0 1 2 3 4 5
Layer

0.20

0.15

0.10

0.05

0.00

Lo
gi

t V
al

ue

denoiser.alpha_h_s

0 1 2 3 4
Layer

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Lo
gi

t V
al

ue

denoiser.alpha_h_t

0 1 2 3 4 5
Layer

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Lo
gi

t V
al

ue

denoiser.alpha_h_t_2

0 1 2 3 4 5
Layer

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Lo
gi

t V
al

ue

denoiser.alpha_x_s

0 1 2 3 4 5
Layer

0.10

0.05

0.00

0.05

0.10

Lo
gi

t V
al

ue

denoiser.alpha_x_t

0 1 2 3 4 5
Layer

0.025

0.020

0.015

0.010

0.005

0.000

Lo
gi

t V
al

ue

denoiser.alpha_x_t_2

Logit Values per Layer for Alpha Parameters

Figure 13. The logits of α for each spatial and temporal layer after convergence on QM9 unconditional generation task.
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Figure 14. The logits of α for each spatial and temporal layer after convergence on QM9 interpolation task.

F. More Results on α

We present the plots of the logits of α after the training has converged on QM9 unconditional generation task (Fig. 13), QM9
interpolation task (Fig. 14), DRUGS forward simulation task (Fig. 15), and DRUGS interpolation task (Fig. 16), respectively.
Interestingly, we observe that the trend of alpha is generally shared across different tasks on the same dataset, while they
also exhibit divergent behaviors across different datasets. This indicates that α is able to capture the temporal consistency
that is shared across tasks while being dataset specific.
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Figure 15. The logits of α for each spatial and temporal layer after convergence on DRUGS forward simulation task.
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Figure 16. The logits of α for each spatial and temporal layer after convergence on DRUGS interpolation task.

G. Statements and Discussions
G.1. Limitations Cont. and Future Opportunities

Our results demonstrate that structural pretraining significantly enhances all-atom diffusion models for simulating small
molecule molecular dynamics trajectories. Nonetheless, our work has limitations that highlight directions for future research.
As noted in Section 6, machine learning methods still lag behind ground-truth MD simulations in terms of physical accuracy.
Future work may therefore explore improved learning objectives, molecular parameterizations, and the incorporation of
physics-based regularization to help bridge this gap.

While our focus is on the challenging domain of organic small molecules, molecular dynamics is broadly applicable to
larger N -body systems, such as peptides and protein–ligand complexes. Future work may extend our framework to these
more complex settings, leveraging structural pretraining to enable generative modeling of larger biomolecular simulations.
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Additionally, although our approach effectively reproduces distributions and dynamics consistent with classical mechanics,
it remains subject to the inherent biases of molecular dynamics simulations. Future research may explore aligning both
conformer and trajectory generation more closely with Boltzmann-distributed energy landscapes to improve thermodynamic
fidelity.

G.2. Ethics and Impacts Statement

This work develops generative models for molecular dynamics to advance efficient, accurate simulation in chemistry and
biology. While such models can accelerate scientific discovery, they also raise concerns around AI safety and dual-use risks,
particularly in the design of harmful chemical or biological agents.

Our goal is to support beneficial applications in drug discovery, materials science, and molecular understanding through
data-efficient and physically grounded modeling. All models are trained on publicly available, non-sensitive data and are
released under open licenses to promote transparency and responsible use. We encourage continued dialogue on the safe
development and deployment of generative AI in the physical and natural sciences.
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