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Abstract

In this work, we introduce several schemes
to leverage description-augmented embedding
similarity for dataless intent classification us-
ing current state-of-the-art (SOTA) text embed-
ding models. We report results of our methods
on three commonly used intent classification
datasets and compare against previous works
of a similar nature. Our work shows promising
results for dataless classification scaling to a
large number of unseen intents, yielding com-
petitive results to, and in some situations outper-
forming strong zero-shot baselines, all without
training on labelled or task-specific data. Fur-
thermore, we provide qualitative error analysis
of the shortfalls of this methodology to help
guide future research in this area.

1 Introduction

Task-oriented dialogue systems (TODS) by design,
aid the user in accomplishing tasks within specific
domains, and can have a wide range of applications
from shopping (Yan et al., 2017) to healthcare (Wei
et al., 2018; Valizadeh and Parde, 2022). Modu-
lar TODS (Wen et al., 2017) will typically contain
an intent classification component (Louvan and
Magnini, 2020; Chen et al., 2019; Su et al., 2022)
used by the dialogue manager to determine the
appropriate task the user intends to complete. In
recent years, neural-based models using supervised
training have reached state-of-the-art on many natu-
ral language processing tasks, including intent clas-
sification. However, supervised learning methods
require human-labelled data for a predefined set of
intents, which may be time-consuming and labour-
intensive to acquire (Xia et al., 2018), and may have
poor scalability if new intents are added, or task def-
inition changed. An early approach to tackle this
problem is dataless intent classification (Chang
et al., 2008; Song and Roth, 2014) which aimed to
leverage the pairwise similarities between semantic
representations of utterances and intent classes to

perform classification without reliance on human-
labelled data. However, this approach relies heavily
on the quality of semantic representations (Chang
et al., 2008). In recent years, successful zero-shot
intent classification approaches (Liu et al., 2019;
Yan et al., 2020; Yin et al., 2019) have received
greater attention, whereby learning conducted us-
ing labelled examples of a subset of seen intent
labels is transferred to unseen intents. However,
these methods still require human-labelled data,
and tend to bias towards seen intents, with the num-
ber of unseen intents also generally much lower
that seen intents (Liu et al., 2022; Zhang et al.,
2022). With the significant recent advancements in
the quality of text embedding models (Muennighoff
et al., 2023), we explore the potential for dataless
intent classification methods using a number of re-
cent state-of-the-art text embedding models. We
introduce several approaches for generating inter-
mediate textual representations for intents, most no-
tably using intent label descriptions, and formalise
our methodology. We perform extensive evalua-
tion of our methods, including scenarios with large
numbers of intents from different domains, using
three commonly used intent classification datasets.
We summarise our contributions as follows:

* We introduce a new scheme for generating
intent descriptions with an aim to minimise
reliance on human expert input.

* We show that our intent descriptions yield
significant improvements over label tokeniza-
tion and synthetic utterances through exten-
sive evaluation.

* We aggregate and explore the potential of a
multitude of current SOTA text embedding
models for dataless classification.

* We implement and evaluate a method for gen-
erating and utilising synthetic examples for
dataless classification.

* We extensively evaluate our methodology
on three commonly used intent classification



datasets and report on the results.
* We provide qualitative error analysis aimed at
guiding future work.

2 Related Works

2.1 Generalized Zero-Shot Learning

Zero-shot learning (ZSL) (Yin et al., 2019) aims to
leverage learning previously performed on labeled
examples from seen tasks to unseen tasks, of which
there are no labeled examples available for super-
vised training. ZSL has seen increasing popularity
in the domain of intent classification (Liu et al.,
2019; Yan et al., 2020) in recent years, whereby
models are trained on a subset of intent labels and
evaluated on another disjoint subset of intent labels.
In more recent years, the concept of generalized
zero-shot learning (GZSL) has seen an increase
in prominence in the domain, in which the perfor-
mance on both seen and unseen classes are consid-
ered in tandem (Zhang et al., 2022; Lamanov et al.,
2022). Several GZSL approaches learn a label pro-
totype space during training, which is transferred
to unseen classes through methods such as inter-
class relationship modelling (Zhang et al., 2021)
and prototype adaptation (Zhang et al., 2022). Ap-
proaches such as (Lamanov et al., 2022) encode
the utterance and labels in a sentence-pair setup,
with template-based lexicalisation of labels used as
class prototypes. Other approaches exist that use
label prototypes as centroids in Gaussian mixture
models trained on seen class utterances (Yan et al.,
2020; Liu et al., 2022). Anissue that can occur with
GZSL is bias towards seen classes (Zhang et al.,
2022), which can lead to significantly lower perfor-
mance on unseen classes. It is also difficult to see
the efficacy of transfer to a large number of diverse
unseen classes, as the number of unseen classes in
evaluation are also typically much smaller than the
number of seen classes.

2.2 Dataless Classification

Dataless text classification (Chang et al., 2008) is
defined as tackling text classification without prior
training on any labelled data. Generally regarded as
a precursor to zero-shot text classification, this ap-
proach typically leverages sentence representations
without any training on labelled data, by comparing
the semantic representations between a sentence
and that of the intent classes (Song and Roth, 2014).
(Zha and Li, 2019) utilises “seed" words associated
with each intent class to further contextualise the

intent class representation, as a single word may
often be insufficient to encapsulate the meaning
of the class (Chen et al., 2015). Some approaches
further leverages class hierarchy to augment classi-
fication performance (Li et al., 2016; Popov et al.,
2019).

3 Methodology

3.1 Problem Definition

Let C be a set of intents supported by a task-
oriented dialogue system, U = | J{U.}.cc defines
the set of all user utterances, U, = {u;}1<i<n, 18
the set of utterances belonging to intent class c. The
model undergoes no task-specific training and is
tasked with making an intent prediction g; for a pre-
viously unseen utterance u; at inference time. We
follow the paradigm set by previous works in data-
less text classification (Chang et al., 2008; Song
and Roth, 2014) to conduct nearest-neighbour clas-
sification over the sentence embedding space. For
a given utterance u;, an encoder h(-) and a set
of class label representations {l.}.cc, we make a
prediction g; as follows:

U; = arg rcna,x s(h(u;), h(l.))
where s(u,v) = u - v/||ul|2]|Vv]|2 is the cosine
similarity between two vectors.

In order to conduct nearest-neighbour classifica-
tion using intent labels, we require an intermediate
representation, or prototype, which encapsulates
to some degree the meaning of a class (Zha and
Li, 2019), from which we can obtain a suitable
embedding. A commonly used approach in data-
less classification is to use the labels (Chang et al.,
2008).

3.2 Label Tokenization

A class prototype is obtained by tokenizing intent
labels directly, inserting spaces and replacing char-
acter separators, i.e.

AddToPlaylist —Add To Playlist
0il_change_how— 0il Change How

However, this approach depends on the descrip-
tiveness of the original intent labels, which can
vary significantly between datasets and tasks. As
such, we propose an additional step to produce
intent label descriptions which we hypothesise
can (1) better align the semantic representation



with the characteristics of the class and (2) pro-
vide more consistent performance across datasets
or approaches without requiring in-task data, which
previous works (Lamanov et al., 2022) have shown
could improve performance over purely using tok-
enized labels.

3.3 Our Approach

3.3.1 Intent Description

Our objective for generating intent label descrip-
tions is to produce a brief description of the intent
expressed by the user in a given utterance, while en-
suring the process requires minimal expert human
effort as to remain scalable for large numbers of
intent classes. We formalise our process for writing
intent descriptions as follows:

Label Preservation The resulting intent descrip-
tion must contain tokens from the original in-
tent label i.e. car_rental — User wants
to rent a car, orreplace with an appropriate
word (lexical cognates, synonyms etc.).

Format Consistency Descriptions should be
written in the declarative form, beginning with
either [asking|saying]", or
"User wants [to]", and aim to introduce
minimal extraneous tokens. Our approach differs
from the template-based approach in (Lamanov
et al., 2022) in that we use exclusively the declar-
ative form in writing our descriptions to maintain
consistency across intent classes and datasets. Ex-
ample descriptions can be seen in Table 1, more
examples can be found in Appendix A.1.

"User is

Label Description

abbreviation “user is asking what an abbrevia-
tion stands for or means"

flight_no “user is asking about a flight
number”

AddToPlaylist “‘user wants to add a song to a
playlist"

food_last “user wants to know how long a
food lasts

maybe “user is expressing uncertainty"

Table 1: Example descriptions for intent labels from
each of the datasets used in our experimentation (Sec-
tion 4.1).

In our experimentation (Section 4), our intent
descriptions added on average 6.6 tokens to the
tokenized intent labels (1.9 — 8.5), with 98.3%

of descriptions containing at least one of the label
tokens in exact form, and 82.7% of all label tokens
preserved.

3.3.2 Synthetic Examples

We compare additionally against synthetic utter-
ance generated for each intent class. We leverage
gpt-3.5-turbo (OpenAl, 2023) for this pur-
pose, by including the tokenized intent labels and
label description within the prompt to generate a
set S of questions or commands fitting said intent
i.e. “Given a category tokenized_intent and
the description description, Please generate
n different example sentences of users asking ques-
tions or making commands that fit the given cate-
gory.". At inference time, we sample %k synthetic
examples for c classes and make prediction g; as
follows:

: > s(h(us), h(s7,))

Ui = arg max

c k

h

where s¢, denotes the m'" example utterance be-
longing to intent class ¢ € C. Examples of syn-
thetic utterances can be found in Appendix A.1.
We report on the results separately in Section 5.5
and the full results can be seen in Appendix A.2.
We also consider synthetic examples generated us-
ing gpt—4 but found the average performance to
be lower on our task (Appendix A.3).

4 Experiments

4.1 Datasets

We evaluate our methods on three commonly used
English task-oriented dialogue (TOD) system in-
tent classification datasets. (1) ATIS (Hemphill
et al., 1990) is an English air-travel information
system dataset containing 18 intent classes. For
comparison, we follow previous works (Zhang
et al., 2022) in filtering out intent classes con-
taining fewer than 5 examples. (2) SNIPS-NLU
(Coucke et al., 2018) contains 7 intent classes, to-
talling 14,484 utterances. (3) CLINIC (Larson
et al., 2019) is a dataset for out-of-scope intent clas-
sification, with 150 intents and 22,500 utterances
spanning 10 domains. As our method does not
involve fine-tuning on task-specific data, we con-
sider entire datasets to consist of unseen data for
evaluation.

4.2 Models

We select 11 models from the Massive Text Em-
bedding Benchmark (MTEB) (Muennighoff et al.,



2023) that are in the top 20 at the time of writ-
ing!. Our selections are based of the following
criteria: (1) the model weights must be released
(2) documentation of training methods and experi-
mentation details must be readily available. Addi-
tionally, owing to computational limits?, we only
consider models up to 3GB in size. Basic model

specifications are shown in Table 2.

Model |'s d,n | pmTEB
InstructORzqpge [ 1.34 768 512 61.59
ES5-v2Base 044 768 512 61.50
E5-V2Large 1.34 1024 512 6225
Multilingual-ES qrgc | 2.24 1024 514 61.50
ESLarge 1.34 1024 512 6142
GTES$mau 0.07 384 512 61.36
GTEBase 022 768 512 62.39
GTE Large 0.67 1024 512 63.13
BGEgmau 0.3 384 512 62.17
BGEBase 044 768 512 63.55
BGE Large 1.34 1024 512 64.23
OpenAlI-Ada-002 - 1536 8191 60.99

Table 2: Specifications of selected models grouped by
training method. Column s shows model size (GB), dj,
embedding dimensions, [ maximum sequence length
and unTEB averaged performance on MTEB bench-
mark.

InstructOR (Su et al., 2023) embeds the utter-
ance with a task description, allowing for task-
specific conditioning at inference time, with good
performance on unseen domains. Trained on 330
datasets using a contrastive learning objective (Ni
et al., 2022). This family of models is initialised
from GTR (Ni et al., 2022) models, which are in-
turn initialised from T5 (Raffel et al., 2020) models.

E5 (Wang et al., 2022) performs unsupervised
pretraining on the model on ~270M text pairs us-
ing an InfoNCE (van den Oord et al., 2019) ob-
jective with other utterances within the batch act-
ing as negative examples, followed by supervised
fine-tuning on 3 datasets. We select the Base and
Large variants, initialised from bert-base-uncased
and bert-large-uncased-whole-word-masking re-
spectively.

GTE (Li et al., 2023) pretrains the model on
~800M text pairs and fine-tunes using 33 datasets.

"November-December 2023
2All experiments conducted using a single 9GB GPU

The contrastive learning objective used in this work
considers, for each query-document pair (g;, d;) in
a batch, the pairwise relation to the remaining ex-
amples {(q;,d;)};~. The embedding similarities
s(qi,d;), s(¢i,q;j), s(di, d;) are added to the parti-
tion function, where s(g, d) is the cosine similarity
between two embeddings.

BGE The work (Xiao et al., 2023) initialised
from BERT (Devlin et al., 2019) models and trained
using RetroMAE (Xiao et al., 2022) whereby both
the input sentence and sentence embeddings in an
autoencoder setup are randomly masked during
MLM training. The authors use [CLS] token em-
beddings as the sentence representation. Our ex-
perimentation showed a slight improvement when
using averaged token embeddings (Mean perfor-
mance +0.82% Tokenized-labels, +1.06% Class-
description).

We report results in Section 5 for all ES,
GTE and BGE models using averaged token em-
beddings as sentence representations. We ad-
ditionally compare model performances against
a commonly used embedding model in Ope-
nAl's text—embedding—ada-002 (Neelakan-
tan et al., 2022) which we refer to in our tables as
‘OpenAl-Ada-002’.

5 Results

5.1 Baselines and Terminology

We compare the performance of our methods
against several unknown intent classification meth-
ods previously detailed in Section 2. Here we clar-
ify the terminology used henceforth to refer to these
methods in our results. We refer to scores on un-
seen intent labels reported by (Zhang et al., 2021)
as ICR, (Yan et al., 2020) as SEG, (Liu et al., 2022)
as ML-SEG, dataless approach trained using origi-
nal data from (Lamanov et al., 2022) as TIRp4
and likewise TIR g, for training on synthetic data.
We refer to the results of the adapted method of
(Gidaris and Komodakis, 2018) reported in (Zhang
et al., 2022) as CosT and the reported main results
as LTA.

5.2 Metrics

Following from previous works (Zhang et al., 2022;
Lamanov et al., 2022), we report Accuracy and
Macro-F1 scores for intent classification on each
of the datasets. In addition, we also compute the
average of Accuracy and F1 score for direct model



Model ATIS SNIPS CLINIC
Acc‘ F1 ‘Mean Acc‘ F1 ‘Mean Acc‘ F1 ‘Mean
ICR (Zhang et al., 2021) 35.54| 34.54| 35.04 - - - - - -
SEG (Yan et al., 2020) - - - 69.61| 69.31| 69.46 - - -
§ ML-SEG (Liu et al., 2022) - - - 77.08| 75.97| 76.53 - - -
3 TIR g (Lamanov et al., 2022) - - - - - - 63.90| 73.10| 68.50
§ TIR 5, (Lamanov et al., 2022) - - - - - - 58.00| 61.30| 59.65
CosT (Zhang et al., 2022) 46.04| 45.21| 45.62| 47.73| 62.84| 55.28|| 62.73| 70.28| 66.50
LTA (Zhang et al., 2022) 66.09| 55.02| 60.55|| 90.09| 84.22| 87.16|| 73.18| 75.74| 74.46
InstructOR 1.41-ge 12.41| 25.03| 18.72| 82.71| 82.07| 82.39|| 64.50( 61.02| 62.76
E5-v2p4se 13.20| 27.58 | 20.39| 77.30| 76.96| 77.13|| 65.33| 62.40| 63.87
< E5-V214rge 14.67| 38.61| 26.64| 70.83| 69.15| 69.99|| 61.56| 59.24| 60.40
S |Multilingual-E57,4rge 16.41| 28.53| 22.47|| 59.90| 58.80| 59.35|| 59.13| 55.56| 57.34
g ESrarge 44.71| 36.43| 40.57| 75.68| 73.21| 74.44|| 70.27| 67.96| 69.11
§ OpenAl-Ada-002 21.88| 30.09| 25.98|| 83.32| 82.19| 82.75|| 68.25| 65.70| 66.97
% GTEg, a1 14.28| 27.21| 20.75| 74.94| 73.04| 73.99|| 69.38| 67.55| 68.47
Y |GTEBgse 68.99| 42.34| 55.66|| 82.37| 81.14| 81.75|| 71.56| 69.74| 70.65
Ea GTE Large 45.14| 34.42| 39.78|| 80.13| 78.60| 79.36|| 70.44| 68.64| 69.54
& |BGEg, a1 11.40| 27.60| 19.50| 79.20| 76.81| 78.00|| 71.67| 69.89| 70.78
BGEpggse 52.15| 39.34| 45.74|| 77.73| 75.88| 76.81|| 73.85| 72.24| 73.05
BGE4rge 48.24| 40.11| 44.17|| 80.60| 78.74| 79.67|| 74.05| 72.45| 73.25
InstructOR 747ge 42.44| 42.97| 42.70|| 85.85| 85.35| 85.60|| 78.35| 76.98| 77.67
E5-v2Base 64.73| 40.20| 52.47| 87.75| 87.23| 87.49|| 72.38| 69.87| 71.12
§ E5-v214rge 60.48| 41.80| 51.14 | 87.84| 86.77| 87.31|| 72.34| 70.50| 71.42
"i Multilingual-ES 7,47 ge 73.23| 38.69| 55.96|| 84.64| 83.11| 83.88|| 73.17| 71.48| 72.33
§ ESLarge 60.22| 41.33| 50.77|| 89.00| 88.83| 88.92|| 75.45| 74.20| 74.83
g OpenAl-Ada-002 58.97| 43.71| 51.34|| 89.71 | 89.28| 89.50|| 78.75| 76.86| 77.81
E GTEsmai 68.87| 42.92| 55.90|| 84.62| 84.22| 84.42|| 71.35| 69.41| 70.38
S GTEpggse 67.05| 42.27| 54.66|| 86.60| 86.22| 86.41|| 75.60| 73.91| 74.75
2 |GTELarge 66.52| 44.71| 55.62|| 86.65| 86.01| 86.33|| 76.71| 75.12| 75.92
§ BGEga1 57.22| 40.19]| 48.70|| 86.01| 85.01| 85.51|| 73.05| 70.96| 72.00
BGEpgse 55.88| 44.21| 50.05|| 88.66| 87.98| 88.32|| 78.10| 76.52| 77.31
BGE L4 ge 59.26| 47.50| 53.38|| 89.58| 89.01| 89.30|| 79.63| 78.38| 79.00

Table 3: Performance of baseline and selected models on 3 intent classification tasks. We report accuracy, macro-fl
score and the mean of both for each dataset. For each metric, bold denotes highest score, underline denotes

second-highest

comparison similar to (Gritta et al., 2022). Results
are shown in full in Table 3.

5.3 Methods using Tokenized Labels

Despite a lack of task-specific fine-tuning, models
using tokenized intent labels generally performed
comparably to most of the baselines on unseen in-
tents. The average performance across all mod-
els for each dataset is shown in Table 4. The
best-performing model (GTEp,s.) outperforms
ICR (+20.63 Mean) on the ATIS dataset, SEG
(+12.30 Mean) and ML-SEG (+5.23 Mean) on
the SNIPS-NLU dataset and both TIR approaches

(+2.15 Mean vs TIR oy, +11.00 Mean vs TIR g,)
on the CLINIC dataset. GTEpg,s outperforms
CosT on all 3 datasets (+10.04 Mean ATIS, +26.47
Mean SNIPS-NLU, +4.15 Mean CLINIC); how-
ever, it also significantly underperforms LTA on all
3 datasets (-4.89 Mean ATIS, -7.79 Mean SNIPS-
NLU, -4.92 Mean CLINIC). We note the average
performance across 12 models remains compet-
itive with baselines other than LTA, though this
approach appears quite sensitive to model as indi-
cated by the comparatively high standard deviation
(Table 4).



Method | ATIS | SNIPS | CLINIC
Tokenized 1 [31.70| 76.30| 67.18
Intent Labels o | 12.72 6.53 5.05
Intent Label 1 |51.89| 86.91| 74.54
Description o | 3.77 3.02 3.02

w|20.19| 10.61 7.36
Dese-Tok | g05| 351 -203

Table 4: Performance mean  and standard deviation o
across all 12 selected models for each of the 3 evaluation
datasets. Desc-Tok denotes the individual differences in
performance between using tokenized labels and intent
descriptions.

5.4 Methods using Intent Descriptions

Our method using intent label descriptions yields
a significant improvement over using tokenized la-
bels (Table 4), with an average increase per model
of +20.19% on the ATIS dataset, +10.61% on the
SNIPS dataset and +7.36% on the CLINIC dataset.
This appears to support our hypthesis (1) (Section
3.2) in that the additional contextualisation added
through describing the label via a declarative sen-
tence better encapsulates the semantic information
represented by a label. We also note from Ta-
ble 4 that the standard deviation in performance
across models is significantly lower when using
descriptions, supporting our hypothesis (2) that
descriptions can improve consistency across mod-
els and approaches. Our overall best performing
model (BGE4,4¢) also considerably outperforms
the strongest baseline (LTA) in both SNIPS (89.30
vs 87.16) and CLINIC (79.00 vs 74.46). We do
note that all of our approaches underperform on the
ATIS dataset compared to the baseline, with our
overall best-performing approach yielding 53.38
vs 60.55, we provide further insight into possible
reasons in Section 6 to help guide future research.

5.5 Methods using Synthetic Data

We evaluate the efficacy of methods using syn-
thetic examples by generating a set of n = 20
synthetic examples, from which we sample k to
act as class prototypes, we repeat this procedure 20
times and compute the average performance across
all samples. Table 5 shows averaged model perfor-
mance across all 12 selected models and samples
for k = [1,3,5,10,15]. For full results see Ta-
ble 11 in Appendix A.2. We conducted additional
experimentation with £ > 15 but found further in-
creasing k did not yield significant improvements

i | Metric|__ATIS SNIPS | CLINIC
plTol pTolpTo
— |Mean | 23.59 | 8.42 | 71.37 | 5.51 | 53.87 | 5.42
I | ALagper | -6.15 |-4.23| -4.94 |-1.02|-13.31| 0.37
= | Apese | -24.08| 4.38 | -15.54| 2.57 | -20.60 | 2.48
« |Mean | 28.63 |7.41|77.27 | 4.16 | 64.65 | 3.21
I ALagper | -1.10 |-5.23| 096 |-2.37| -2.53 |-1.84
= ' Apese |-19.03|3.37 | -9.64 | 1.22 | -9.82 | 0.27
» |Mean | 30.05|6.74 | 78.54 | 3.98 | 67.29 | 2.81
I | ALaper | 031 |-5.90| 224 |-2.55] 0.11 |-2.23
= Apese |-17.62]2.70 | -8.36 | 1.04 | -7.18 |-0.13
S Mean | 30.80 | 5.33 | 79.63 | 3.57 | 69.24 | 2.48
I | ALaber | 1.06 |-7.31] 3.32 [-2.96| 2.06 |-2.57
2 | Apese |-16.87]1.29 | -7.28 | 0.63 | -5.23 |-0.46
0 Mean | 31.12 | 5.15| 80.06 | 3.46 | 69.99 | 2.50
I | ALaber | 138 [-7.49| 3.75 |-3.07| 2.80 |-2.55
2 Desc |-16.55] 1.12 | -6.85 | 0.52 | -4.49 |-0.44

Table 5: Averaged mean of accuracy and macro-fl
scores experiments conducted across 20 samples and
12 models using k£ number of synthetic examples per
intent class. Argpe; and A pes. are differences to the
averaged performance of methods using tokenized la-
bels and intent descriptions respectively.

in performance. We note our method using k = 15
synthetic examples outperforms tokenized labels
on SNIPS (80.06 vs 76.30) and CLINIC (69.99 vs
67.18) datasets, but underperforms slightly on the
ATIS dataset (31.12 vs 31.70). Synthetic examples
underperforms description-based methods by a con-
siderable margin on all datasets, suggesting single
intent label descriptions can be more powerful as
class prototypes than synthetic instances. We note
also the higher standard deviation o in performance
compared to the description-augmented method but
lower compared to methods using tokenized labels.

6 Analysis

Figure 1 shows the embeddings generated by our
best-performing model (BGEf;¢¢) on the 3 eval-
uation datasets visualised using t-SNE (van der
Maaten and Hinton, 2008), along with the embed-
ding for the intent label description. Due to the
challenge to readability posed by the large number
of intents in the CLINIC dataset, instead sample
the 15 top-performing (100% accuracy) and lowest-
performing (24.47% accuracy) intent classes for
illustration, with the results shown in Figures 1c
and 1d respectively.

In-Domain Saturation We observe a poor align-
ment on the ATIS dataset between the intent label
descriptions (Figure 1a) and utterance embeddings
corresponding to each class, possibly explaining
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Figure 1: t-SNE (van der Maaten and Hinton, 2008) visualisation of embeddings computed using BGE 4 ge, class
label description embeddings are shown in black and labelled. (a) Embeddings of ATIS (b) Embeddings of SNIPS
(¢) Embeddings of top 15 classes from CLINIC (d) Embeddings of bottom 15 classes from CLINIC.

Dataset ‘ Wsin Osin ‘,usout T st ‘ As %A

ATIS 0.80 0.06|0.73 0.05|0.07 8.33
SNIPS |0.76 0.04|0.68 0.03 |0.08 10.09
CLINIC |0.83 0.05]| 0.68 0.04 |0.15 17.98

Table 6: Mean embedding similarity of sentences within
the same class (in) and different classes (out). Ay de-
notes the average difference between in-class and out-
class, %A, denotes the percentage average difference
of similarity.

the poor performance in general on this dataset
across models. We note the single-domain nature
of the ATIS dataset, with all utterances relating to
air-travel/flight, additionally, we note the signifi-
cantly imbalanced nature of the ATIS dataset (Nan
et al., 2021), with ~ 74% of utterances belonging
to the £1ight class, which is a label that overlaps
the domain of the dataset. We hypothesise this may
lead to the intent label descriptions being much
worse at capturing semantic information distinct
to each class. This is supported by analysis on the
pairwise embedding similarities of utterances be-
longing to the same class vs utterances belonging to
difference classes (Table 6) where models’ embed-
dings on the ATIS dataset consistently had lower
percentage-difference in embedding similarity be-
tween in-class and out-class, implying more diffi-
culty in distinguishing the utterances using solely

embeddings. This issue does not appear as promi-
nently in SNIPS or CLINIC likely due to domains
being largely more distinct, though it is still visible
in the lower-performing classes in CLINIC (Figure
1d).

Keyword/Lexical Overlap Another source
of misclassifications may arise in situations
whereby the class utterance embedding
spaces overlap, whilst the intent label de-
scription embedding is aligned with the
utterance embeddings. This can be seen for
example with SearchScreeningEvent
+— SearchCreativeWork in Figure 1b,
play_music <— update_playlist and
user_name <— change_user_name from
Figure 1d. This appears to be due to the significant
lexical overlap between utterances within the two
classes, i.e. referring to common topics, keywords,
irrespective of the domain of the classes.

Embedding Similarity Analysis We perform ad-
ditional analysis on the mean embedding similarity
of sentences within the same intent class (in-class)
and of different intents (out-class). For a set of
intent classes C and utterances U/, we calculate the
mean in-class similarity s;, and out-class similarity

Sout a8 s(h(u;), h(uj))
ZZ 2 i)

Nne(ne — 1
ceC i €Ue uj €UN{ui } e(ne )



Model | Sin | Sout | As %A
InstructOR L arge 0.87] 0.79] 0.08 0.09
E5-v2Base 0.82| 0.74| 0.08 0.09
E5-V2Large 0.82| 0.75] 0.07 0.08
Multilingual-E54,.qc | 0.84[0:79/0.06 0.07
ESLarge 0.81] 0.72] 0.09 0.11
GTEsimau 0.84/ 0.76| 0.07 0.09
GTEBase 0.82] 0.75 0.08 0.10
GTE Large 0.83/ 0.75| 0.08 0.09
BGEsman 0.67| 0.49| 0.18 0.27
BGERqse 0.71/ 0.56| 0.15 0.21
BGE Lqrge 0.71] 0.55/ 0.16 0.23
OpenAl-Ada-002 | 0.81] 0.72| 0.08 0.10

Table 7: Mean p of pairwise embedding similarity be-
tween in-class (s;,,) and out-class (s,,;) utterances for
each selected model. A denotes the difference between
Sin and sz, A

ZZ Z . ]))

CEC w; €U uj €U

Sout =

where U, and U denotes the set of utterances be-
longing to class ¢ and all classes other than ¢/
respectively, n. is the number of utterances in
set U.. The mean in-class and out-class similar-
ity scores are shown per dataset (Table 6), and
per model (Table 7) . From a basic correlation
analysis of the mean embedding similarity against
a number of metrics, we note for model perfor-
mance on the MTEB benchmark there exists a
strong positive correlation to the difference Ay be-
tween in-class and our-class examples (Pearson
= 0.72, p < 0.01) as well as %A (Pearson
r = 0.73, p < 0.01), and there exists a strong neg-
ative correlation to the mean out-class similarity
sy (Pearson r = —0.71, p < 0.01). Addition-
ally we observe a strong correction between the
aforementioned measures to model performance
on the CLINIC dataset: mean difference (Pearson
r = 0.74, p < 0.01), percentage-mean-difference
(Pearson r = 0.72, p < 0.01) and mean out-class
(Pearson r = —0.71, p < 0.01). We hypothesise
that this indicates the quality of model embeddings
as indicated by the mean difference between in-
class and out-class to matter more with higher num-
bers of intent classes, and that this task in turn is a
good indicator for text embedding model quality.

Analysis Summary Our proposed approach per-
forms well overall against the strong baseline meth-
ods in unseen intent classification; however, it

struggles in certain instances with overlaps in in-
tents within the same domain, particularly if the
class definition is non-distinct from other classes
in domain i.e. £1ight from the ATIS dataset. To
tackle such issues, future work may investigate the
introduction of a hierarchical intent structure that is
inferred in a dataless context to maintain scalability.
The results of our experiments have shown intent
label descriptions can perform well as intent pro-
totypes in this problem setting, and that the naive
addition of synthetic examples may yield worse
performance; however, synthetic examples may be
able to supplement dataless classification using in-
tent label descriptions i.e. to tackle issues relating
to lexical overlap between classes, hierarchical in-
tent classes.

Limitations Our approach nonetheless contains
a number of limitations: We have identified issues
with the descriptiveness of individual labels ear-
lier in this section, and textual labels may not be
readily available for certain datasets, though sum-
marisation methods may be effectively applied to
few user utterances to produce such labels. Future
work may also investigate the application of de-
scriptions to tasks outside of intent classification,
such as emotion recognition (Rashkin et al., 2019).

7 Conclusion

Dataless classification allows for scaling to a large
number of unseen classes without requiring train-
ing on labelled, task-specific data. The benefits
of such an approach can enhance development of
task-oriented dialogue systems in application to
data-poor or compute-limited scenarios where sup-
ported intents may also change as the system is
developed. In this paper, we have explored the
potential of current SOTA text embedding models
in dataless intent classification settings using three
different approaches for representing intent classes
and compared our results against strong zero-shot
learning baselines. We proposed a method for stan-
dardising the generation of intent label descriptions
with an aim to minimise the amount of human an-
notations required to further support scaling to high
numbers of intent classes. Our results have shown
that description-augmented dataless classification
methods can achieve comparable, and sometimes
superior performance to zero-shot methods on the
task of intent classifcation.
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A Appendix

A.1 Table of intents, descriptions and sampled
synthetic examples generated using
gpt-3.5-turbo

See Table 8 (ATIS), Table 9 (SNIPS) and Table 10
(CLINIC).

A.2 Full table of results for approach using
synthetic examples generated using
gpt-3.5-turbo

See Table 11.
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A.3 Table of averaged mean and standard
deviation statistics for examples
generated using gpt-4

See Table 12.
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Intent

| Description

| Synthetic Examples

user is asking what an

“what does eta stand for?"

abbreviation |abbreviation stands for |“can you tell me the meaning of atc?"
or mean “what is the abbreviation vfr referring to?"
. . “what is the maximum speed of this aircraft?"
. user is asking about an |, . . . - . "
aircraft aircraft can you provide me with the dimensions of the aircraft?
“how many passengers can this aircraft accommodate?"
. . “what are the airfare options for a round-trip flight from new york to los angeles?"
. user is asking about « . . . AP
airfare . can you provide me with the cost of a first-class airfare from london to paris?
fares, costs or airfares | .. . ] .
how much does it usually cost for a one-way airfare from tokyo to sydney?
. . “which airline offers the most affordable tickets from los angeles to new york?"
1 user is asking about an |, e - "
airline o o can you recommend any airlines that provide extra legroom for tall passengers?
airline/airlines « L. e
what are the baggage restrictions for this airline?
. . “which airports in new york have direct flights to los angeles?"
. user is asking about an |., . o . . -
airport AirDOrt/airDorts can you provide me with information about the nearest airport to my current location?
P P “how long does it take to get from the city center to heathrow airport?"
. . “what is the seating capacity of a boeing 747 aircraft?"
. user is asking about « . . . N
capacity capacity (of an aircraft) can you tell me the maximum passenger capacity of a airbus a380?
pacity “what is the cargo capacity of a cessna 172 aircraft?"
. . “can you find me the cheapest flight from new york to los angeles?"
user is asking about the |... . . . N
cheapest i need the cheapest airfare available for a one-way trip from london to barcelona.
cheapest (fare) « . Lo . . . . . i
what is the cheapest flight i can get from chicago to miami during the christmas holidays?
. user is asking about 2 “can you provide me with ﬂlght options to new yOfk city?
city city or place what are the popular attractions in san francisco?
yorp “which airlines operate flights to tokyo?"
. . “which day of the week is the best to book a flight?"
user is asking abouta |., . on
day_name day (of the week) can you tell me the day of the week for my flight to new york?
y “what is the departure day for the flight to london?"
user is asking for the | “what is the distance between new york and los angeles?"
distance distance between “calculate the distance from london to paris."
places/locations “how far is it from sydney to melbourne?"
. . “what flights are available from new york city to los angeles tomorrow?"
. user is asking about « . . . "
flight . . can you please check if there are any direct flights from london to tokyo?
available flights o . . L ) N
i need to book a one-way flight from chicago to miami on the 15th of june.
user is askine about a “what is the flight number for the flight from new york to london?"
flight_no fiaht numbe% “can you provide me with the flight number for the 6:00 am departure to los angeles?"
& “i need to know the flight number for the red-eye flight to chicago.”
user is asking about “what is the flight time for the next available flight to new york?"
flight_time departue time or “can you tell me the departure time for flight 123 to london?"

schedule for a flight

“i need to know the schedule for flights leaving tomorrow morning."

ground_fare

user is asking about the
ground fare at a
destination

“what is the average ground fare in los angeles?"
“can you provide information about ground fares in paris?"
“how much should i expect to pay for ground transportation in london?"

ground_service

user is asking about
ground service at a
location

“what are the available ground services at this airport?"
“can you provide me with information about ground services at the destination airport?"
“is there wheelchair assistance available as part of the ground services?"

user is asking about

“what meal options are available for the flight?"

meal . “can i request a vegetarian meal for my flight?"
meals/catering « . P .. i
do you have any special meals for passengers with dietary restrictions?
user is asking about the | “how many flight attendants are there on this flight?"
quantity quantity/amount of “could you tell me the total weight of the luggage allowed per passenger?"
something “how many passengers are currently on board the plane?"
o user is asking about “can you please pr_ov_lde me with t_he bggg.age_ restrictions for my u‘[')comlng flight?
restriction what are the restrictions on carrying liquids in my hand luggage?

restrictions

“are there any age restrictions for children traveling alone on your flights?"

Table 8: Intents, descriptions and synthetic examples for the ATIS dataset.
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Intent | Description | Synthetic Examples
. user wants to add a song 10 a hey,' can you please add this new release to my workout
AddToPlaylist lavlist playlist?
praylis “add the latest hit by taylor swift to my party playlist, please."
“can you include this classic rock track in my road trip playlist?"
user wants to book/make a can you"help me book a table at a fancy restaurant for this
BookRestaurant . saturday?
reservation at a restaurant . .
i would like to make a reservation for two at the most popular
restaurant in town."
“what is the best way to book a restaurant online?"
user wants to know about the “what will be the weather like tomorrow?"
GetWeather “can you provide me with a detailed weather forecast for the
weather "
next week?
“is it going to rain today?"
“hey, playmusic! can you play ’shape of you’ by ed sheeran?"
PlayMusic user wants to play a song “playmusic, please play some soothing music to help me relax."
“I’m in the mood for some throwback tunes. playmusic, can you
play ’don’t stop believin’ by journey?"
. “can anyone recommend a ratebook website where I can find
user wants the rating of/to rate a . . N
RateBook book reviews and ratings for the latest bestsellers?
“what’s the highest-rated ratebook on the market right now? i
want to make sure i’'m picking something worthwhile."
“1’d like some suggestions for popular ratebooks in the fantasy
genre. any recommendations?"
. “can you help me search for a creative work that is similar to
. user wants to find a creative b
SearchCreativeWork work (book, song etc.) harry potter?
» Song ete. “i’m looking for a book recommendation, search for a creative
work with a thrilling mystery plot."
“find me a song that has won multiple awards and has a catchy
melody."
user wants to know when a “when is the next screening event for the movie avengers:
SearchScreeningEvent | movie is on/screening time of a |endgame?"

movie

“what are the screening times for the romantic comedy crazy,
stupid, love?"

“can you tell me the showtimes for the movie joker in theaters
nearby?"

Table 9: Intents, descriptions and synthetic examples for the SNIPS dataset.
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Intent

| Description

| Synthetic Examples

user is asking about

“can you please tell me the current timezone in new york city?"

timezone . “what is the timezone difference between san francisco and
timezone "
tokyo?
“i need to know the exact timezone utc offset for london."
“tell me a fun fact about the eiffel tower!"
user wants to know a I . . . o
fun_fact i need a fun fact to impress my friends at dinner tonight.
fun fact - . "
give me a fun fact about dolphins, please.
“what is today’s date?"
T wan kn h
date user wants to know the “can you tell me the current date?"

current date

“i need to know the date, please."

what_can_i_ask_you

user wants to know
what can be asked

“what kind of questions are appropriate to ask you?"

“can you provide me with a list of topics that i can ask you
about?"

“I’m curious, what type of questions am i allowed to ask in this
category?"

todo_list_update

user wants to update or
change todo list

“how can i edit my current todo list?"

“can you show me how to modify my existing tasks in the todo
list?"

“is there a way to change the priority of items on the todo list?"

bill_balance

user wants to know
their bill balance

“what is my current bill balance?"
“can you please provide the details of my bill balance?"
“i need to know how much is due on my bill."

schedule_meeting

user wants to schedule
meeting

“can you help me schedule a meeting for next week?"
“i need assistance in setting up a meeting with our new client."
“how do i go about scheduling a team meeting for tomorrow?"

user wants to know

“what is a routing number and why is it important for banking?"

routing . “how can i find the routing number for my bank account?"
about routing number « . . . .
can you explain the specific purpose of a routing number in
online transactions?"
user wants to know how “how long can i safely keep cooked chicken in the refrigerator?"
food_last ) “what is the shelf life of fresh milk at room temperature?"
long a food lasts “« - . .
can you give me some tips on how to extend the life of avoca-
dos?"
user wants to know “hey, can you remind me when my electricity bill is due?"
bill_due - “what’s the due date for my credit card bill this month?"
when a bill is due e o
1 need to know when my phone bill is due. can you help me
with that?"
. . “what is the current time?"
. user is asking for the “« e ow
time could you please tell me what time it is?

time

“do you have the time?"

freeze_account

user wants to freeze
their account

“how can i freeze my account temporarily?"
“i need to put a hold on my account, can you assist me?"
“please freeze my account until further notice."

rollover_401k

user wants to know
about 401k rollover

“how can i rollover my 401k into a new retirement account?"
“can you explain the process of a 401k rollover to me?"
“what are the benefits of doing a rollover with my 401k?"

travel_alert

user wants to know
about travel alerts

“are there any current travel alerts that i should be aware of?"
“notify me if there are any travel alerts for my upcoming desti-
nation."

“can you provide me with the latest travel alerts for international
travel?"

translate

user wants to translate

“can you translate this document from english to french?"
“excuse me, i need assistance translating this menu into spanish."

“how can i translate this phrase into italian?"

Table 10: Intents, descriptions and synthetic examples for 15 intents from the CLINIC dataset.
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Model ATIS SNIPS CLINIC
Acc [ FI [Mean|| Acc | FI [Mean|| Acc [ FI [Mean
InstructOR parge 32.77| 23.99| 28.38|| 72.60| 69.26| 70.93|| 56.94| 53.71| 55.32
E5-v2Base 27.01| 19.30| 23.16|| 70.28| 66.52| 68.40|| 50.05| 47.21| 48.63
E5-V2Large 29.50( 19.12| 24.31|| 68.09| 64.41| 66.25|| 47.24| 44.54 | 45.89
Multilingual-E5 .orge || 23:85| 18.37| 21.11|| 64.02| 60.24| 62.13|| 45.68 | 43.54| 44.61
ESLarge 28.57| 20.22| 24.40|| 69.35| 66.13| 67.74|| 54.44| 51.38| 52.91
'ﬂ‘ OpenAl-Ada-002 30.86| 19.40| 25.13|| 75.35| 72.78| 74.07|| 57.70| 54.42| 56.06
o GTEsman 25.87| 20.15| 23.01|| 65.42| 62.17| 63.80|| 51.37| 48.41| 49.89
GTEBase 25.34| 20.33| 22.83|| 69.09| 65.89| 67.49|| 53.10| 50.04| 51.57
GTELarge 29.94| 21.83| 25.88|| 70.02| 66.56| 68.29|| 54.95| 51.72| 53.34
BGEsmaii 27.44| 21.32| 24.38|| 66.60| 62.76 | 64.68|| 52.69| 49.56| 51.13
BGEpBgse 24.57| 20.62| 22.59|| 70.39| 66.52| 68.46|| 55.24| 52.21| 53.72
BGELarge 33.97| 23.83| 28.90|| 71.31| 67.29| 69.30|| 58.17| 54.73 | 56.45
InstructOR Lo rge 39.20| 29.25| 34.22|| 76.71| 72.39| 74.55|| 67.88| 64.84| 66.36
E5-V2Base 35.75| 26.97| 31.36|| 76.25| 71.56| 73.90|| 63.52| 60.63 | 62.08
E5-v2Large 40.41| 27.85| 34.13|| 75.68| 70.98 | 73.33|| 62.35| 59.47| 60.91
Multilingual-ESparge || 25:07| 25.90| 25.48|| 75.67| 70.93| 73.30|| 60.56| 58.19| 59.37
ESLarge 37.33| 29.64| 33.48|| 74.57| 70.24| 72.40|| 67.18| 64.25| 65.72
O‘T OpenAl-Ada-002 46.96| 26.53| 36.74|| 82.42| 80.27 | 81.34|| 68.77| 65.77| 67.27
o GTEsman 24.50| 26.95| 25.72|| 71.00| 67.40| 69.20|| 62.38| 59.16| 60.77
GTEBase 30.05| 27.82| 28.93|| 74.57| 70.63| 72.60|| 64.69| 61.76| 63.23
GTELarge 40.40| 29.40| 34.90|| 75.04| 71.23| 73.14|| 65.78| 62.67 | 64.23
BGEsmmaii 20.24| 27.49| 28.37|| 73.49| 68.98| 71.23|| 64.59| 61.72| 63.16
BGEpBase 28.35| 27.00| 27.67|| 73.83| 69.23| 71.53|| 66.59| 63.66| 65.13
BGELarge 38.30| 28.14 | 33.22|| 74.83| 70.09| 72.46| 68.05| 64.62| 66.34
InstructOR 1,47 ge 41.77| 32.86| 37.31|| 78.36| 74.08 | 76.22|| 70.30| 67.51| 68.90
E5-v2Base 34.49| 28.76| 31.63|| 78.53| 73.47| 76.00|| 66.75| 63.94| 65.34
E5-v2Large 36.82| 29.53| 33.17|| 78.02| 73.66| 75.84|| 65.70| 62.76| 64.23
Multilingual-ESparge || 31.29| 29.28| 30.29|| 76.21| 72.18| 74.19|| 64.36| 61.78 | 63.07
ESLarge 37.24| 32.79| 35.01|| 76.04| 71.20| 73.62|| 69.63| 66.62| 68.13
“‘T OpenAl-Ada-002 45.01| 28.38| 36.70|| 84.56| 82.60| 83.58|| 70.81| 68.03 | 69.42
o GTEsman 32.921 30.05| 31.48|| 73.21| 69.16| 71.18|| 65.63| 62.58| 64.10
GTEBase 29.90| 30.02| 29.96|| 76.54| 72.13| 74.33|| 67.11| 63.95| 65.53
GTELarge 4192| 32.41| 37.17|| 75.73| 71.18| 73.45|| 68.48| 65.38| 66.93
BGEsmau 35.33| 32.64| 33.99|| 72.85| 68.06| 70.46|| 67.15| 64.35| 65.75
BGEBgse 27.94| 29.49| 28.72|| 76.61| 71.90| 74.25|| 69.42| 66.52| 67.97
BGELarge 35.79| 32.38| 34.08|| 76.26| 71.00| 73.63|| 70.68| 67.64| 69.16
InstructOR 1.4rge 47.38| 33.77| 40.58]| 80.58| 76.50| 78.54|| 72.37| 69.68| 71.03
E5-v2Base 37.04| 32.17| 34.60|| 80.31| 74.92| 77.61|| 69.59| 66.86| 68.23
E5-V2parge 46.80| 32.53| 39.66|| 79.11| 74.31| 76.71|| 68.65| 65.70| 67.17
Multilingual-ESparge || 30.88| 32.70| 31.79|| 78.71| 74.43| 76.57|| 67.87| 65.39| 66.63
- ESrarge 41.44| 34.74| 38.09|| 77.83| 73.35| 75.59|| 72.42| 69.62| 71.02
— | OpenAl-Ada-002 46.60| 32.90| 39.75|| 85.57| 83.46| 84.51| 73.30| 70.60| 71.95
Il GTEsman 32.71| 33.53| 33.12|| 74.77| 70.42| 72.59|| 67.48| 64.56| 66.02
£ GTEBase 28.05| 31.23| 29.64 || 77.35| 72.76| 75.06|| 69.50| 66.44| 67.97
GTErLarge 45.05| 35.25| 40.15|| 76.29| 71.67| 73.98 || 69.86| 66.90| 68.38
BGEsmait 36.24| 34.44| 35.34|| 75.95| 71.13| 73.54|| 68.96| 66.27 | 67.61
BGEBgse 31.14| 31.62| 31.38|| 78.15| 73.07| 75.61|| 71.48| 68.73| 70.10
BGErLarge 43.19| 35.56| 39.38|| 77.77| 72.44| 75.10|| 72.36| 69.39| 70.88
InstructOR 1,47 ge 40.59| 35.40| 37.99|| 80.57| 75.75| 78.16|| 73.10| 70.54| 71.82
E5-v2Base 42.17| 34.44| 38.31|| 80.25| 74.65| 77.45|| 70.18| 67.50| 68.84
E5-V2Large 47.71| 33.67| 40.69|| 79.86| 74.66| 77.26|| 69.70| 66.69 | 68.19
Multilingual-ESparge || 28.31| 33.48| 30.89|| 79.91| 75.32| 77.61|| 69.31| 66.76| 68.03
o ESrarge 42.42| 36.31| 39.36|| 78.02| 73.00| 75.51|| 73.13| 70.26| 71.69
— | OpenAl-Ada-002 48.13| 34.26| 41.20|| 87.04| 85.03| 86.03|| 73.97| 71.36| 72.66
Il GTEsman 38.54| 34.38| 36.46|| 75.03| 70.32| 72.68| 68.63| 65.60| 67.12
£ GTEBase 33.68| 32.35| 33.02|| 78.27| 73.56| 75.92|| 69.86| 66.73| 68.29
GTErLarge 37.98| 34.38| 36.18|| 77.78| 72.93| 75.36|| 70.51| 67.62| 69.07
BGEsmait 28.06| 34.30| 31.18|| 75.43| 70.54| 72.98 || 70.20| 67.56| 68.88
BGEBgse 27.20| 31.08| 29.14|| 78.92| 73.65| 76.29|| 71.93| 69.15| 70.54
BGErLarge 42.22| 37.06| 39.64 || 78.76| 73.43| 76.10|| 73.17| 70.24| 71.71

Table 11: Results per model using k synthetic examples averaged across 20 samples.
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i | Metric | ATIS SNIPS | CLINIC

p T ol pTolpilo
—~ |Mean | 24.51 | 10.15] 67.63 | 5.48 | 51.63 | 5.13
I | Apaber | -7.19 | -2.58 | -8.68 |-1.05|-15.56 | 0.08
= | Apese |-27.38| 6.37 |-19.29 | 2.46 |-22.92| 2.12
« |[Mean |31.19 | 8.61 | 73.25 | 4.49 | 63.71 | 2.76
I | ALgber | -0.51 | -4.11] -3.06 |-2.04| -3.47 |-2.29
2 | Apese |-20.70| 4.84 |-13.66| 1.47 |-10.83 | -0.25
w |[Mean | 3329 | 7.90 | 74.73 | 4.16 | 66.54 | 2.35
I Argber | 1.59 |-4.82] -1.57 |-2.37| -0.64 |-2.70
2 | Apese |-18.60| 4.13 |-12.18 | 1.14 | -8.00 |-0.67
= Mean | 36.12 | 7.51 | 76.28 | 3.49 | 68.92 | 2.08
I | ALaber | 442 |-5.21 | -0.02 [-3.04| 1.73 |-2.97
< | Apese |-15.77| 3.73 |-10.63 | 0.48 | -5.63 | -0.94
ot Mean | 36.17 | 7.13 | 76.78 | 3.75 | 69.74 | 1.93
I | ALaber | 447 |-5.59 | 0.48 |-2.78| 2.55 |-3.12
< | Apese |-15.721 3.36 [-10.13| 0.73 | -4.81 |-1.09

Table 12: Averaged mean of accuracy and macro-fl scores experiments conducted across 20 samples and 12
models using & number of synthetic examples per intent class generated using gpt-4-1106-preview. Arapel
and A pes. are differences to the averaged performance of methods using tokenized labels and intent descriptions
respectively.
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