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Abstract

In this work, we introduce several schemes001
to leverage description-augmented embedding002
similarity for dataless intent classification us-003
ing current state-of-the-art (SOTA) text embed-004
ding models. We report results of our methods005
on three commonly used intent classification006
datasets and compare against previous works007
of a similar nature. Our work shows promising008
results for dataless classification scaling to a009
large number of unseen intents, yielding com-010
petitive results to, and in some situations outper-011
forming strong zero-shot baselines, all without012
training on labelled or task-specific data. Fur-013
thermore, we provide qualitative error analysis014
of the shortfalls of this methodology to help015
guide future research in this area.016

1 Introduction017

Task-oriented dialogue systems (TODS) by design,018

aid the user in accomplishing tasks within specific019

domains, and can have a wide range of applications020

from shopping (Yan et al., 2017) to healthcare (Wei021

et al., 2018; Valizadeh and Parde, 2022). Modu-022

lar TODS (Wen et al., 2017) will typically contain023

an intent classification component (Louvan and024

Magnini, 2020; Chen et al., 2019; Su et al., 2022)025

used by the dialogue manager to determine the026

appropriate task the user intends to complete. In027

recent years, neural-based models using supervised028

training have reached state-of-the-art on many natu-029

ral language processing tasks, including intent clas-030

sification. However, supervised learning methods031

require human-labelled data for a predefined set of032

intents, which may be time-consuming and labour-033

intensive to acquire (Xia et al., 2018), and may have034

poor scalability if new intents are added, or task def-035

inition changed. An early approach to tackle this036

problem is dataless intent classification (Chang037

et al., 2008; Song and Roth, 2014) which aimed to038

leverage the pairwise similarities between semantic039

representations of utterances and intent classes to040

perform classification without reliance on human- 041

labelled data. However, this approach relies heavily 042

on the quality of semantic representations (Chang 043

et al., 2008). In recent years, successful zero-shot 044

intent classification approaches (Liu et al., 2019; 045

Yan et al., 2020; Yin et al., 2019) have received 046

greater attention, whereby learning conducted us- 047

ing labelled examples of a subset of seen intent 048

labels is transferred to unseen intents. However, 049

these methods still require human-labelled data, 050

and tend to bias towards seen intents, with the num- 051

ber of unseen intents also generally much lower 052

that seen intents (Liu et al., 2022; Zhang et al., 053

2022). With the significant recent advancements in 054

the quality of text embedding models (Muennighoff 055

et al., 2023), we explore the potential for dataless 056

intent classification methods using a number of re- 057

cent state-of-the-art text embedding models. We 058

introduce several approaches for generating inter- 059

mediate textual representations for intents, most no- 060

tably using intent label descriptions, and formalise 061

our methodology. We perform extensive evalua- 062

tion of our methods, including scenarios with large 063

numbers of intents from different domains, using 064

three commonly used intent classification datasets. 065

We summarise our contributions as follows: 066

• We introduce a new scheme for generating 067

intent descriptions with an aim to minimise 068

reliance on human expert input. 069

• We show that our intent descriptions yield 070

significant improvements over label tokeniza- 071

tion and synthetic utterances through exten- 072

sive evaluation. 073

• We aggregate and explore the potential of a 074

multitude of current SOTA text embedding 075

models for dataless classification. 076

• We implement and evaluate a method for gen- 077

erating and utilising synthetic examples for 078

dataless classification. 079

• We extensively evaluate our methodology 080

on three commonly used intent classification 081
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datasets and report on the results.082

• We provide qualitative error analysis aimed at083

guiding future work.084

2 Related Works085

2.1 Generalized Zero-Shot Learning086

Zero-shot learning (ZSL) (Yin et al., 2019) aims to087

leverage learning previously performed on labeled088

examples from seen tasks to unseen tasks, of which089

there are no labeled examples available for super-090

vised training. ZSL has seen increasing popularity091

in the domain of intent classification (Liu et al.,092

2019; Yan et al., 2020) in recent years, whereby093

models are trained on a subset of intent labels and094

evaluated on another disjoint subset of intent labels.095

In more recent years, the concept of generalized096

zero-shot learning (GZSL) has seen an increase097

in prominence in the domain, in which the perfor-098

mance on both seen and unseen classes are consid-099

ered in tandem (Zhang et al., 2022; Lamanov et al.,100

2022). Several GZSL approaches learn a label pro-101

totype space during training, which is transferred102

to unseen classes through methods such as inter-103

class relationship modelling (Zhang et al., 2021)104

and prototype adaptation (Zhang et al., 2022). Ap-105

proaches such as (Lamanov et al., 2022) encode106

the utterance and labels in a sentence-pair setup,107

with template-based lexicalisation of labels used as108

class prototypes. Other approaches exist that use109

label prototypes as centroids in Gaussian mixture110

models trained on seen class utterances (Yan et al.,111

2020; Liu et al., 2022). An issue that can occur with112

GZSL is bias towards seen classes (Zhang et al.,113

2022), which can lead to significantly lower perfor-114

mance on unseen classes. It is also difficult to see115

the efficacy of transfer to a large number of diverse116

unseen classes, as the number of unseen classes in117

evaluation are also typically much smaller than the118

number of seen classes.119

2.2 Dataless Classification120

Dataless text classification (Chang et al., 2008) is121

defined as tackling text classification without prior122

training on any labelled data. Generally regarded as123

a precursor to zero-shot text classification, this ap-124

proach typically leverages sentence representations125

without any training on labelled data, by comparing126

the semantic representations between a sentence127

and that of the intent classes (Song and Roth, 2014).128

(Zha and Li, 2019) utilises “seed" words associated129

with each intent class to further contextualise the130

intent class representation, as a single word may 131

often be insufficient to encapsulate the meaning 132

of the class (Chen et al., 2015). Some approaches 133

further leverages class hierarchy to augment classi- 134

fication performance (Li et al., 2016; Popov et al., 135

2019). 136

3 Methodology 137

3.1 Problem Definition 138

Let C be a set of intents supported by a task- 139

oriented dialogue system, U =
⋃
{Uc}c∈C defines 140

the set of all user utterances, Uc = {ui}1≤i≤nc is 141

the set of utterances belonging to intent class c. The 142

model undergoes no task-specific training and is 143

tasked with making an intent prediction ŷi for a pre- 144

viously unseen utterance ui at inference time. We 145

follow the paradigm set by previous works in data- 146

less text classification (Chang et al., 2008; Song 147

and Roth, 2014) to conduct nearest-neighbour clas- 148

sification over the sentence embedding space. For 149

a given utterance ui, an encoder h(·) and a set 150

of class label representations {lc}c∈C , we make a 151

prediction ŷi as follows: 152

ŷi = argmax
c

s(h(ui),h(lc)) 153

where s(u,v) = u · v/||u||2||v||2 is the cosine 154

similarity between two vectors. 155

In order to conduct nearest-neighbour classifica- 156

tion using intent labels, we require an intermediate 157

representation, or prototype, which encapsulates 158

to some degree the meaning of a class (Zha and 159

Li, 2019), from which we can obtain a suitable 160

embedding. A commonly used approach in data- 161

less classification is to use the labels (Chang et al., 162

2008). 163

3.2 Label Tokenization 164

A class prototype is obtained by tokenizing intent 165

labels directly, inserting spaces and replacing char- 166

acter separators, i.e. 167

AddToPlaylist → Add To Playlist
oil_change_how→ Oil Change How

However, this approach depends on the descrip- 168

tiveness of the original intent labels, which can 169

vary significantly between datasets and tasks. As 170

such, we propose an additional step to produce 171

intent label descriptions which we hypothesise 172

can (1) better align the semantic representation 173
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with the characteristics of the class and (2) pro-174

vide more consistent performance across datasets175

or approaches without requiring in-task data, which176

previous works (Lamanov et al., 2022) have shown177

could improve performance over purely using tok-178

enized labels.179

3.3 Our Approach180

3.3.1 Intent Description181

Our objective for generating intent label descrip-182

tions is to produce a brief description of the intent183

expressed by the user in a given utterance, while en-184

suring the process requires minimal expert human185

effort as to remain scalable for large numbers of186

intent classes. We formalise our process for writing187

intent descriptions as follows:188

Label Preservation The resulting intent descrip-189

tion must contain tokens from the original in-190

tent label i.e. car_rental → User wants191

to rent a car, or replace with an appropriate192

word (lexical cognates, synonyms etc.).193

Format Consistency Descriptions should be194

written in the declarative form, beginning with195

either "User is [asking|saying]", or196

"User wants [to]", and aim to introduce197

minimal extraneous tokens. Our approach differs198

from the template-based approach in (Lamanov199

et al., 2022) in that we use exclusively the declar-200

ative form in writing our descriptions to maintain201

consistency across intent classes and datasets. Ex-202

ample descriptions can be seen in Table 1, more203

examples can be found in Appendix A.1.204

Label Description

abbreviation “user is asking what an abbrevia-
tion stands for or means"

flight_no “user is asking about a flight
number"

AddToPlaylist “user wants to add a song to a
playlist"

food_last “user wants to know how long a
food lasts

maybe “user is expressing uncertainty"

Table 1: Example descriptions for intent labels from
each of the datasets used in our experimentation (Sec-
tion 4.1).

In our experimentation (Section 4), our intent205

descriptions added on average 6.6 tokens to the206

tokenized intent labels (1.9 → 8.5), with 98.3%207

of descriptions containing at least one of the label 208

tokens in exact form, and 82.7% of all label tokens 209

preserved. 210

3.3.2 Synthetic Examples 211

We compare additionally against synthetic utter- 212

ance generated for each intent class. We leverage 213

gpt-3.5-turbo (OpenAI, 2023) for this pur- 214

pose, by including the tokenized intent labels and 215

label description within the prompt to generate a 216

set S of questions or commands fitting said intent 217

i.e. “Given a category tokenized_intent and 218

the description description, Please generate 219

n different example sentences of users asking ques- 220

tions or making commands that fit the given cate- 221

gory.". At inference time, we sample k synthetic 222

examples for c classes and make prediction ŷi as 223

follows: 224

ŷi = argmax
c

∑k
m s(h(ui),h(s

c
m))

k
225

226where scm denotes the mth example utterance be- 227

longing to intent class c ∈ C. Examples of syn- 228

thetic utterances can be found in Appendix A.1. 229

We report on the results separately in Section 5.5 230

and the full results can be seen in Appendix A.2. 231

We also consider synthetic examples generated us- 232

ing gpt-4 but found the average performance to 233

be lower on our task (Appendix A.3). 234

4 Experiments 235

4.1 Datasets 236

We evaluate our methods on three commonly used 237

English task-oriented dialogue (TOD) system in- 238

tent classification datasets. (1) ATIS (Hemphill 239

et al., 1990) is an English air-travel information 240

system dataset containing 18 intent classes. For 241

comparison, we follow previous works (Zhang 242

et al., 2022) in filtering out intent classes con- 243

taining fewer than 5 examples. (2) SNIPS-NLU 244

(Coucke et al., 2018) contains 7 intent classes, to- 245

talling 14,484 utterances. (3) CLINIC (Larson 246

et al., 2019) is a dataset for out-of-scope intent clas- 247

sification, with 150 intents and 22,500 utterances 248

spanning 10 domains. As our method does not 249

involve fine-tuning on task-specific data, we con- 250

sider entire datasets to consist of unseen data for 251

evaluation. 252

4.2 Models 253

We select 11 models from the Massive Text Em- 254

bedding Benchmark (MTEB) (Muennighoff et al., 255
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2023) that are in the top 20 at the time of writ-256

ing1. Our selections are based of the following257

criteria: (1) the model weights must be released258

(2) documentation of training methods and experi-259

mentation details must be readily available. Addi-260

tionally, owing to computational limits2, we only261

consider models up to 3GB in size. Basic model262

specifications are shown in Table 2.263

Model s dh l µMTEB

InstructORLarge 1.34 768 512 61.59

E5-v2Base 0.44 768 512 61.50
E5-v2Large 1.34 1024 512 62.25
Multilingual-E5Large 2.24 1024 514 61.50
E5Large 1.34 1024 512 61.42

GTESmall 0.07 384 512 61.36
GTEBase 0.22 768 512 62.39
GTELarge 0.67 1024 512 63.13

BGESmall 0.13 384 512 62.17
BGEBase 0.44 768 512 63.55
BGELarge 1.34 1024 512 64.23

OpenAI-Ada-002 - 1536 8191 60.99

Table 2: Specifications of selected models grouped by
training method. Column s shows model size (GB), dh
embedding dimensions, l maximum sequence length
and µMTEB averaged performance on MTEB bench-
mark.

InstructOR (Su et al., 2023) embeds the utter-264

ance with a task description, allowing for task-265

specific conditioning at inference time, with good266

performance on unseen domains. Trained on 330267

datasets using a contrastive learning objective (Ni268

et al., 2022). This family of models is initialised269

from GTR (Ni et al., 2022) models, which are in-270

turn initialised from T5 (Raffel et al., 2020) models.271

E5 (Wang et al., 2022) performs unsupervised272

pretraining on the model on ∼270M text pairs us-273

ing an InfoNCE (van den Oord et al., 2019) ob-274

jective with other utterances within the batch act-275

ing as negative examples, followed by supervised276

fine-tuning on 3 datasets. We select the Base and277

Large variants, initialised from bert-base-uncased278

and bert-large-uncased-whole-word-masking re-279

spectively.280

GTE (Li et al., 2023) pretrains the model on281

∼800M text pairs and fine-tunes using 33 datasets.282

1November-December 2023
2All experiments conducted using a single 9GB GPU

The contrastive learning objective used in this work 283

considers, for each query-document pair (qi, di) in 284

a batch, the pairwise relation to the remaining ex- 285

amples {(qj , dj)}j ̸=i. The embedding similarities 286

s(qi, dj), s(qi, qj), s(di, dj) are added to the parti- 287

tion function, where s(q, d) is the cosine similarity 288

between two embeddings. 289

BGE The work (Xiao et al., 2023) initialised 290

from BERT (Devlin et al., 2019) models and trained 291

using RetroMAE (Xiao et al., 2022) whereby both 292

the input sentence and sentence embeddings in an 293

autoencoder setup are randomly masked during 294

MLM training. The authors use [CLS] token em- 295

beddings as the sentence representation. Our ex- 296

perimentation showed a slight improvement when 297

using averaged token embeddings (Mean perfor- 298

mance +0.82% Tokenized-labels, +1.06% Class- 299

description). 300

We report results in Section 5 for all E5, 301

GTE and BGE models using averaged token em- 302

beddings as sentence representations. We ad- 303

ditionally compare model performances against 304

a commonly used embedding model in Ope- 305

nAI’s text-embedding-ada-002 (Neelakan- 306

tan et al., 2022) which we refer to in our tables as 307

‘OpenAI-Ada-002’. 308

5 Results 309

5.1 Baselines and Terminology 310

We compare the performance of our methods 311

against several unknown intent classification meth- 312

ods previously detailed in Section 2. Here we clar- 313

ify the terminology used henceforth to refer to these 314

methods in our results. We refer to scores on un- 315

seen intent labels reported by (Zhang et al., 2021) 316

as ICR, (Yan et al., 2020) as SEG, (Liu et al., 2022) 317

as ML-SEG, dataless approach trained using origi- 318

nal data from (Lamanov et al., 2022) as TIROrig 319

and likewise TIRSyn for training on synthetic data. 320

We refer to the results of the adapted method of 321

(Gidaris and Komodakis, 2018) reported in (Zhang 322

et al., 2022) as CosT and the reported main results 323

as LTA. 324

5.2 Metrics 325

Following from previous works (Zhang et al., 2022; 326

Lamanov et al., 2022), we report Accuracy and 327

Macro-F1 scores for intent classification on each 328

of the datasets. In addition, we also compute the 329

average of Accuracy and F1 score for direct model 330
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Model ATIS SNIPS CLINIC
Acc F1 Mean Acc F1 Mean Acc F1 Mean

B
as

el
in

es

ICR (Zhang et al., 2021) 35.54 34.54 35.04 - - - - - -
SEG (Yan et al., 2020) - - - 69.61 69.31 69.46 - - -
ML-SEG (Liu et al., 2022) - - - 77.08 75.97 76.53 - - -
TIROrig (Lamanov et al., 2022) - - - - - - 63.90 73.10 68.50
TIRSyn (Lamanov et al., 2022) - - - - - - 58.00 61.30 59.65
CosT (Zhang et al., 2022) 46.04 45.21 45.62 47.73 62.84 55.28 62.73 70.28 66.50
LTA (Zhang et al., 2022) 66.09 55.02 60.55 90.09 84.22 87.16 73.18 75.74 74.46

To
ke

ni
ze

d
In

te
nt

La
be

ls

InstructORLarge 12.41 25.03 18.72 82.71 82.07 82.39 64.50 61.02 62.76
E5-v2Base 13.20 27.58 20.39 77.30 76.96 77.13 65.33 62.40 63.87
E5-v2Large 14.67 38.61 26.64 70.83 69.15 69.99 61.56 59.24 60.40
Multilingual-E5Large 16.41 28.53 22.47 59.90 58.80 59.35 59.13 55.56 57.34
E5Large 44.71 36.43 40.57 75.68 73.21 74.44 70.27 67.96 69.11
OpenAI-Ada-002 21.88 30.09 25.98 83.32 82.19 82.75 68.25 65.70 66.97
GTESmall 14.28 27.21 20.75 74.94 73.04 73.99 69.38 67.55 68.47
GTEBase 68.99 42.34 55.66 82.37 81.14 81.75 71.56 69.74 70.65
GTELarge 45.14 34.42 39.78 80.13 78.60 79.36 70.44 68.64 69.54
BGESmall 11.40 27.60 19.50 79.20 76.81 78.00 71.67 69.89 70.78
BGEBase 52.15 39.34 45.74 77.73 75.88 76.81 73.85 72.24 73.05
BGELarge 48.24 40.11 44.17 80.60 78.74 79.67 74.05 72.45 73.25

In
te

nt
La

be
lD

es
cr

ip
tio

ns

InstructORLarge 42.44 42.97 42.70 85.85 85.35 85.60 78.35 76.98 77.67
E5-v2Base 64.73 40.20 52.47 87.75 87.23 87.49 72.38 69.87 71.12
E5-v2Large 60.48 41.80 51.14 87.84 86.77 87.31 72.34 70.50 71.42
Multilingual-E5Large 73.23 38.69 55.96 84.64 83.11 83.88 73.17 71.48 72.33
E5Large 60.22 41.33 50.77 89.00 88.83 88.92 75.45 74.20 74.83
OpenAI-Ada-002 58.97 43.71 51.34 89.71 89.28 89.50 78.75 76.86 77.81
GTESmall 68.87 42.92 55.90 84.62 84.22 84.42 71.35 69.41 70.38
GTEBase 67.05 42.27 54.66 86.60 86.22 86.41 75.60 73.91 74.75
GTELarge 66.52 44.71 55.62 86.65 86.01 86.33 76.71 75.12 75.92
BGESmall 57.22 40.19 48.70 86.01 85.01 85.51 73.05 70.96 72.00
BGEBase 55.88 44.21 50.05 88.66 87.98 88.32 78.10 76.52 77.31
BGELarge 59.26 47.50 53.38 89.58 89.01 89.30 79.63 78.38 79.00

Table 3: Performance of baseline and selected models on 3 intent classification tasks. We report accuracy, macro-f1
score and the mean of both for each dataset. For each metric, bold denotes highest score, underline denotes
second-highest

comparison similar to (Gritta et al., 2022). Results331

are shown in full in Table 3.332

5.3 Methods using Tokenized Labels333

Despite a lack of task-specific fine-tuning, models334

using tokenized intent labels generally performed335

comparably to most of the baselines on unseen in-336

tents. The average performance across all mod-337

els for each dataset is shown in Table 4. The338

best-performing model (GTEBase) outperforms339

ICR (+20.63 Mean) on the ATIS dataset, SEG340

(+12.30 Mean) and ML-SEG (+5.23 Mean) on341

the SNIPS-NLU dataset and both TIR approaches342

(+2.15 Mean vs TIROrig, +11.00 Mean vs TIRSyn) 343

on the CLINIC dataset. GTEBase outperforms 344

CosT on all 3 datasets (+10.04 Mean ATIS, +26.47 345

Mean SNIPS-NLU, +4.15 Mean CLINIC); how- 346

ever, it also significantly underperforms LTA on all 347

3 datasets (-4.89 Mean ATIS, -7.79 Mean SNIPS- 348

NLU, -4.92 Mean CLINIC). We note the average 349

performance across 12 models remains compet- 350

itive with baselines other than LTA, though this 351

approach appears quite sensitive to model as indi- 352

cated by the comparatively high standard deviation 353

(Table 4). 354
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Method ATIS SNIPS CLINIC

Tokenized
Intent Labels

µ 31.70 76.30 67.18
σ 12.72 6.53 5.05

Intent Label
Description

µ 51.89 86.91 74.54
σ 3.77 3.02 3.02

Desc-Tok µ 20.19 10.61 7.36
σ -8.95 -3.51 -2.03

Table 4: Performance mean µ and standard deviation σ
across all 12 selected models for each of the 3 evaluation
datasets. Desc-Tok denotes the individual differences in
performance between using tokenized labels and intent
descriptions.

5.4 Methods using Intent Descriptions355

Our method using intent label descriptions yields356

a significant improvement over using tokenized la-357

bels (Table 4), with an average increase per model358

of +20.19% on the ATIS dataset, +10.61% on the359

SNIPS dataset and +7.36% on the CLINIC dataset.360

This appears to support our hypthesis (1) (Section361

3.2) in that the additional contextualisation added362

through describing the label via a declarative sen-363

tence better encapsulates the semantic information364

represented by a label. We also note from Ta-365

ble 4 that the standard deviation in performance366

across models is significantly lower when using367

descriptions, supporting our hypothesis (2) that368

descriptions can improve consistency across mod-369

els and approaches. Our overall best performing370

model (BGELarge) also considerably outperforms371

the strongest baseline (LTA) in both SNIPS (89.30372

vs 87.16) and CLINIC (79.00 vs 74.46). We do373

note that all of our approaches underperform on the374

ATIS dataset compared to the baseline, with our375

overall best-performing approach yielding 53.38376

vs 60.55, we provide further insight into possible377

reasons in Section 6 to help guide future research.378

5.5 Methods using Synthetic Data379

We evaluate the efficacy of methods using syn-380

thetic examples by generating a set of n = 20381

synthetic examples, from which we sample k to382

act as class prototypes, we repeat this procedure 20383

times and compute the average performance across384

all samples. Table 5 shows averaged model perfor-385

mance across all 12 selected models and samples386

for k = [1, 3, 5, 10, 15]. For full results see Ta-387

ble 11 in Appendix A.2. We conducted additional388

experimentation with k > 15 but found further in-389

creasing k did not yield significant improvements390

k Metric ATIS SNIPS CLINIC
µ σ µ σ µ σ

k
=

1 Mean 23.59 8.42 71.37 5.51 53.87 5.42
∆Label -6.15 -4.23 -4.94 -1.02 -13.31 0.37
∆Desc -24.08 4.38 -15.54 2.57 -20.60 2.48

k
=

3 Mean 28.63 7.41 77.27 4.16 64.65 3.21
∆Label -1.10 -5.23 0.96 -2.37 -2.53 -1.84
∆Desc -19.03 3.37 -9.64 1.22 -9.82 0.27

k
=

5 Mean 30.05 6.74 78.54 3.98 67.29 2.81
∆Label 0.31 -5.90 2.24 -2.55 0.11 -2.23
∆Desc -17.62 2.70 -8.36 1.04 -7.18 -0.13

k
=

1
0 Mean 30.80 5.33 79.63 3.57 69.24 2.48

∆Label 1.06 -7.31 3.32 -2.96 2.06 -2.57
∆Desc -16.87 1.29 -7.28 0.63 -5.23 -0.46

k
=

1
5 Mean 31.12 5.15 80.06 3.46 69.99 2.50

∆Label 1.38 -7.49 3.75 -3.07 2.80 -2.55
∆Desc -16.55 1.12 -6.85 0.52 -4.49 -0.44

Table 5: Averaged mean of accuracy and macro-f1
scores experiments conducted across 20 samples and
12 models using k number of synthetic examples per
intent class. ∆Label and ∆Desc are differences to the
averaged performance of methods using tokenized la-
bels and intent descriptions respectively.

in performance. We note our method using k = 15 391

synthetic examples outperforms tokenized labels 392

on SNIPS (80.06 vs 76.30) and CLINIC (69.99 vs 393

67.18) datasets, but underperforms slightly on the 394

ATIS dataset (31.12 vs 31.70). Synthetic examples 395

underperforms description-based methods by a con- 396

siderable margin on all datasets, suggesting single 397

intent label descriptions can be more powerful as 398

class prototypes than synthetic instances. We note 399

also the higher standard deviation σ in performance 400

compared to the description-augmented method but 401

lower compared to methods using tokenized labels. 402

6 Analysis 403

Figure 1 shows the embeddings generated by our 404

best-performing model (BGELarge) on the 3 eval- 405

uation datasets visualised using t-SNE (van der 406

Maaten and Hinton, 2008), along with the embed- 407

ding for the intent label description. Due to the 408

challenge to readability posed by the large number 409

of intents in the CLINIC dataset, instead sample 410

the 15 top-performing (100% accuracy) and lowest- 411

performing (24.47% accuracy) intent classes for 412

illustration, with the results shown in Figures 1c 413

and 1d respectively. 414

In-Domain Saturation We observe a poor align- 415

ment on the ATIS dataset between the intent label 416

descriptions (Figure 1a) and utterance embeddings 417

corresponding to each class, possibly explaining 418
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(a) (b)

(c) (d)
Figure 1: t-SNE (van der Maaten and Hinton, 2008) visualisation of embeddings computed using BGELarge, class
label description embeddings are shown in black and labelled. (a) Embeddings of ATIS (b) Embeddings of SNIPS
(c) Embeddings of top 15 classes from CLINIC (d) Embeddings of bottom 15 classes from CLINIC.

Dataset µsin σsin µsout σsout ∆s %∆s

ATIS 0.80 0.06 0.73 0.05 0.07 8.33
SNIPS 0.76 0.04 0.68 0.03 0.08 10.09
CLINIC 0.83 0.05 0.68 0.04 0.15 17.98

Table 6: Mean embedding similarity of sentences within
the same class (in) and different classes (out). ∆s de-
notes the average difference between in-class and out-
class, %∆s denotes the percentage average difference
of similarity.

the poor performance in general on this dataset419

across models. We note the single-domain nature420

of the ATIS dataset, with all utterances relating to421

air-travel/flight, additionally, we note the signifi-422

cantly imbalanced nature of the ATIS dataset (Nan423

et al., 2021), with ∼ 74% of utterances belonging424

to the flight class, which is a label that overlaps425

the domain of the dataset. We hypothesise this may426

lead to the intent label descriptions being much427

worse at capturing semantic information distinct428

to each class. This is supported by analysis on the429

pairwise embedding similarities of utterances be-430

longing to the same class vs utterances belonging to431

difference classes (Table 6) where models’ embed-432

dings on the ATIS dataset consistently had lower433

percentage-difference in embedding similarity be-434

tween in-class and out-class, implying more diffi-435

culty in distinguishing the utterances using solely436

embeddings. This issue does not appear as promi- 437

nently in SNIPS or CLINIC likely due to domains 438

being largely more distinct, though it is still visible 439

in the lower-performing classes in CLINIC (Figure 440

1d). 441

Keyword/Lexical Overlap Another source 442

of misclassifications may arise in situations 443

whereby the class utterance embedding 444

spaces overlap, whilst the intent label de- 445

scription embedding is aligned with the 446

utterance embeddings. This can be seen for 447

example with SearchScreeningEvent 448

←→ SearchCreativeWork in Figure 1b, 449

play_music ←→ update_playlist and 450

user_name ←→ change_user_name from 451

Figure 1d. This appears to be due to the significant 452

lexical overlap between utterances within the two 453

classes, i.e. referring to common topics, keywords, 454

irrespective of the domain of the classes. 455

Embedding Similarity Analysis We perform ad- 456

ditional analysis on the mean embedding similarity 457

of sentences within the same intent class (in-class) 458

and of different intents (out-class). For a set of 459

intent classes C and utterances U , we calculate the 460

mean in-class similarity sin and out-class similarity 461

sout as 462

sin =
1

|C|
∑
c∈C

∑
ui∈Uc

∑
uj∈Uc\{ui}

s(h(ui),h(uj))

nc(nc − 1)
463
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Model sin sout ∆s %∆s

InstructORLarge 0.87 0.79 0.08 0.09
E5-v2Base 0.82 0.74 0.08 0.09
E5-v2Large 0.82 0.75 0.07 0.08
Multilingual-E5Large 0.84 0.79 0.06 0.07
E5Large 0.81 0.72 0.09 0.11
GTESmall 0.84 0.76 0.07 0.09
GTEBase 0.82 0.75 0.08 0.10
GTELarge 0.83 0.75 0.08 0.09
BGESmall 0.67 0.49 0.18 0.27
BGEBase 0.71 0.56 0.15 0.21
BGELarge 0.71 0.55 0.16 0.23
OpenAI-Ada-002 0.81 0.72 0.08 0.10

Table 7: Mean µ of pairwise embedding similarity be-
tween in-class (sin) and out-class (sout) utterances for
each selected model. ∆s denotes the difference between
sin and sout, %∆s

.
464

sout =
1

|C|
∑
c∈C

∑
ui∈Uc

∑
uj∈Uc′

s(h(ui),h(uj))

ncnc′
465

where Uc and Uc′ denotes the set of utterances be-466

longing to class c and all classes other than c′467

respectively, nc is the number of utterances in468

set Uc. The mean in-class and out-class similar-469

ity scores are shown per dataset (Table 6), and470

per model (Table 7) . From a basic correlation471

analysis of the mean embedding similarity against472

a number of metrics, we note for model perfor-473

mance on the MTEB benchmark there exists a474

strong positive correlation to the difference ∆s be-475

tween in-class and out-class examples (Pearson476

r = 0.72, p < 0.01) as well as %∆s (Pearson477

r = 0.73, p < 0.01), and there exists a strong neg-478

ative correlation to the mean out-class similarity479

µsout (Pearson r = −0.71, p < 0.01). Addition-480

ally we observe a strong correction between the481

aforementioned measures to model performance482

on the CLINIC dataset: mean difference (Pearson483

r = 0.74, p < 0.01), percentage-mean-difference484

(Pearson r = 0.72, p < 0.01) and mean out-class485

(Pearson r = −0.71, p < 0.01). We hypothesise486

that this indicates the quality of model embeddings487

as indicated by the mean difference between in-488

class and out-class to matter more with higher num-489

bers of intent classes, and that this task in turn is a490

good indicator for text embedding model quality.491

Analysis Summary Our proposed approach per-492

forms well overall against the strong baseline meth-493

ods in unseen intent classification; however, it494

struggles in certain instances with overlaps in in- 495

tents within the same domain, particularly if the 496

class definition is non-distinct from other classes 497

in domain i.e. flight from the ATIS dataset. To 498

tackle such issues, future work may investigate the 499

introduction of a hierarchical intent structure that is 500

inferred in a dataless context to maintain scalability. 501

The results of our experiments have shown intent 502

label descriptions can perform well as intent pro- 503

totypes in this problem setting, and that the naive 504

addition of synthetic examples may yield worse 505

performance; however, synthetic examples may be 506

able to supplement dataless classification using in- 507

tent label descriptions i.e. to tackle issues relating 508

to lexical overlap between classes, hierarchical in- 509

tent classes. 510

Limitations Our approach nonetheless contains 511

a number of limitations: We have identified issues 512

with the descriptiveness of individual labels ear- 513

lier in this section, and textual labels may not be 514

readily available for certain datasets, though sum- 515

marisation methods may be effectively applied to 516

few user utterances to produce such labels. Future 517

work may also investigate the application of de- 518

scriptions to tasks outside of intent classification, 519

such as emotion recognition (Rashkin et al., 2019). 520

7 Conclusion 521

Dataless classification allows for scaling to a large 522

number of unseen classes without requiring train- 523

ing on labelled, task-specific data. The benefits 524

of such an approach can enhance development of 525

task-oriented dialogue systems in application to 526

data-poor or compute-limited scenarios where sup- 527

ported intents may also change as the system is 528

developed. In this paper, we have explored the 529

potential of current SOTA text embedding models 530

in dataless intent classification settings using three 531

different approaches for representing intent classes 532

and compared our results against strong zero-shot 533

learning baselines. We proposed a method for stan- 534

dardising the generation of intent label descriptions 535

with an aim to minimise the amount of human an- 536

notations required to further support scaling to high 537

numbers of intent classes. Our results have shown 538

that description-augmented dataless classification 539

methods can achieve comparable, and sometimes 540

superior performance to zero-shot methods on the 541

task of intent classifcation. 542
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A.1 Table of intents, descriptions and sampled808

synthetic examples generated using809

gpt-3.5-turbo810

See Table 8 (ATIS), Table 9 (SNIPS) and Table 10811

(CLINIC).812

A.2 Full table of results for approach using813

synthetic examples generated using814

gpt-3.5-turbo815

See Table 11.816

A.3 Table of averaged mean and standard 817

deviation statistics for examples 818

generated using gpt-4 819

See Table 12. 820
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Intent Description Synthetic Examples

abbreviation
user is asking what an
abbreviation stands for
or mean

“what does eta stand for?"
“can you tell me the meaning of atc?"
“what is the abbreviation vfr referring to?"

aircraft user is asking about an
aircraft

“what is the maximum speed of this aircraft?"
“can you provide me with the dimensions of the aircraft?"
“how many passengers can this aircraft accommodate?"

airfare user is asking about
fares, costs or airfares

“what are the airfare options for a round-trip flight from new york to los angeles?"
“can you provide me with the cost of a first-class airfare from london to paris?"
“how much does it usually cost for a one-way airfare from tokyo to sydney?"

airline user is asking about an
airline/airlines

“which airline offers the most affordable tickets from los angeles to new york?"
“can you recommend any airlines that provide extra legroom for tall passengers?"
“what are the baggage restrictions for this airline?"

airport user is asking about an
airport/airports

“which airports in new york have direct flights to los angeles?"
“can you provide me with information about the nearest airport to my current location?"
“how long does it take to get from the city center to heathrow airport?"

capacity user is asking about
capacity (of an aircraft)

“what is the seating capacity of a boeing 747 aircraft?"
“can you tell me the maximum passenger capacity of a airbus a380?"
“what is the cargo capacity of a cessna 172 aircraft?"

cheapest user is asking about the
cheapest (fare)

“can you find me the cheapest flight from new york to los angeles?"
“i need the cheapest airfare available for a one-way trip from london to barcelona."
“what is the cheapest flight i can get from chicago to miami during the christmas holidays?"

city user is asking about a
city or place

“can you provide me with flight options to new york city?"
“what are the popular attractions in san francisco?"
“which airlines operate flights to tokyo?"

day_name user is asking about a
day (of the week)

“which day of the week is the best to book a flight?"
“can you tell me the day of the week for my flight to new york?"
“what is the departure day for the flight to london?"

distance
user is asking for the
distance between
places/locations

“what is the distance between new york and los angeles?"
“calculate the distance from london to paris."
“how far is it from sydney to melbourne?"

flight user is asking about
available flights

“what flights are available from new york city to los angeles tomorrow?"
“can you please check if there are any direct flights from london to tokyo?"
“i need to book a one-way flight from chicago to miami on the 15th of june."

flight_no user is asking about a
flight number

“what is the flight number for the flight from new york to london?"
“can you provide me with the flight number for the 6:00 am departure to los angeles?"
“i need to know the flight number for the red-eye flight to chicago."

flight_time
user is asking about
departue time or
schedule for a flight

“what is the flight time for the next available flight to new york?"
“can you tell me the departure time for flight 123 to london?"
“i need to know the schedule for flights leaving tomorrow morning."

ground_fare
user is asking about the
ground fare at a
destination

“what is the average ground fare in los angeles?"
“can you provide information about ground fares in paris?"
“how much should i expect to pay for ground transportation in london?"

ground_service
user is asking about
ground service at a
location

“what are the available ground services at this airport?"
“can you provide me with information about ground services at the destination airport?"
“is there wheelchair assistance available as part of the ground services?"

meal user is asking about
meals/catering

“what meal options are available for the flight?"
“can i request a vegetarian meal for my flight?"
“do you have any special meals for passengers with dietary restrictions?"

quantity
user is asking about the
quantity/amount of
something

“how many flight attendants are there on this flight?"
“could you tell me the total weight of the luggage allowed per passenger?"
“how many passengers are currently on board the plane?"

restriction user is asking about
restrictions

“can you please provide me with the baggage restrictions for my upcoming flight?"
“what are the restrictions on carrying liquids in my hand luggage?"
“are there any age restrictions for children traveling alone on your flights?"

Table 8: Intents, descriptions and synthetic examples for the ATIS dataset.
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Intent Description Synthetic Examples

AddToPlaylist user wants to add a song to a
playlist

“hey, can you please add this new release to my workout
playlist?"
“add the latest hit by taylor swift to my party playlist, please."
“can you include this classic rock track in my road trip playlist?"

BookRestaurant user wants to book/make a
reservation at a restaurant

“can you help me book a table at a fancy restaurant for this
saturday?"
“i would like to make a reservation for two at the most popular
restaurant in town."
“what is the best way to book a restaurant online?"

GetWeather user wants to know about the
weather

“what will be the weather like tomorrow?"
“can you provide me with a detailed weather forecast for the
next week?"
“is it going to rain today?"

PlayMusic user wants to play a song
“hey, playmusic! can you play ’shape of you’ by ed sheeran?"
“playmusic, please play some soothing music to help me relax."
“i’m in the mood for some throwback tunes. playmusic, can you
play ’don’t stop believin’ by journey?"

RateBook user wants the rating of/to rate a
book

“can anyone recommend a ratebook website where I can find
reviews and ratings for the latest bestsellers?"
“what’s the highest-rated ratebook on the market right now? i
want to make sure i’m picking something worthwhile."
“i’d like some suggestions for popular ratebooks in the fantasy
genre. any recommendations?"

SearchCreativeWork user wants to find a creative
work (book, song etc.)

“can you help me search for a creative work that is similar to
harry potter?"
“i’m looking for a book recommendation, search for a creative
work with a thrilling mystery plot."
“find me a song that has won multiple awards and has a catchy
melody."

SearchScreeningEvent
user wants to know when a
movie is on/screening time of a
movie

“when is the next screening event for the movie avengers:
endgame?"
“what are the screening times for the romantic comedy crazy,
stupid, love?"
“can you tell me the showtimes for the movie joker in theaters
nearby?"

Table 9: Intents, descriptions and synthetic examples for the SNIPS dataset.
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Intent Description Synthetic Examples

timezone user is asking about
timezone

“can you please tell me the current timezone in new york city?"
“what is the timezone difference between san francisco and
tokyo?"
“i need to know the exact timezone utc offset for london."

fun_fact user wants to know a
fun fact

“tell me a fun fact about the eiffel tower!"
“i need a fun fact to impress my friends at dinner tonight."
“give me a fun fact about dolphins, please."

date user wants to know the
current date

“what is today’s date?"
“can you tell me the current date?"
“i need to know the date, please."

what_can_i_ask_you user wants to know
what can be asked

“what kind of questions are appropriate to ask you?"
“can you provide me with a list of topics that i can ask you
about?"
“i’m curious, what type of questions am i allowed to ask in this
category?"

todo_list_update user wants to update or
change todo list

“how can i edit my current todo list?"
“can you show me how to modify my existing tasks in the todo
list?"
“is there a way to change the priority of items on the todo list?"

bill_balance user wants to know
their bill balance

“what is my current bill balance?"
“can you please provide the details of my bill balance?"
“i need to know how much is due on my bill."

schedule_meeting user wants to schedule
meeting

“can you help me schedule a meeting for next week?"
“i need assistance in setting up a meeting with our new client."
“how do i go about scheduling a team meeting for tomorrow?"

routing user wants to know
about routing number

“what is a routing number and why is it important for banking?"
“how can i find the routing number for my bank account?"
“can you explain the specific purpose of a routing number in
online transactions?"

food_last user wants to know how
long a food lasts

“how long can i safely keep cooked chicken in the refrigerator?"
“what is the shelf life of fresh milk at room temperature?"
“can you give me some tips on how to extend the life of avoca-
dos?"

bill_due user wants to know
when a bill is due

“hey, can you remind me when my electricity bill is due?"
“what’s the due date for my credit card bill this month?"
“i need to know when my phone bill is due. can you help me
with that?"

time user is asking for the
time

“what is the current time?"
“could you please tell me what time it is?"
“do you have the time?"

freeze_account user wants to freeze
their account

“how can i freeze my account temporarily?"
“i need to put a hold on my account, can you assist me?"
“please freeze my account until further notice."

rollover_401k user wants to know
about 401k rollover

“how can i rollover my 401k into a new retirement account?"
“can you explain the process of a 401k rollover to me?"
“what are the benefits of doing a rollover with my 401k?"

travel_alert user wants to know
about travel alerts

“are there any current travel alerts that i should be aware of?"
“notify me if there are any travel alerts for my upcoming desti-
nation."
“can you provide me with the latest travel alerts for international
travel?"

translate user wants to translate
“can you translate this document from english to french?"
“excuse me, i need assistance translating this menu into spanish."
“how can i translate this phrase into italian?"

Table 10: Intents, descriptions and synthetic examples for 15 intents from the CLINIC dataset.
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Model ATIS SNIPS CLINIC
Acc F1 Mean Acc F1 Mean Acc F1 Mean

n
=

1

InstructORLarge 32.77 23.99 28.38 72.60 69.26 70.93 56.94 53.71 55.32
E5-v2Base 27.01 19.30 23.16 70.28 66.52 68.40 50.05 47.21 48.63
E5-v2Large 29.50 19.12 24.31 68.09 64.41 66.25 47.24 44.54 45.89
Multilingual-E5Large 23.85 18.37 21.11 64.02 60.24 62.13 45.68 43.54 44.61
E5Large 28.57 20.22 24.40 69.35 66.13 67.74 54.44 51.38 52.91
OpenAI-Ada-002 30.86 19.40 25.13 75.35 72.78 74.07 57.70 54.42 56.06
GTESmall 25.87 20.15 23.01 65.42 62.17 63.80 51.37 48.41 49.89
GTEBase 25.34 20.33 22.83 69.09 65.89 67.49 53.10 50.04 51.57
GTELarge 29.94 21.83 25.88 70.02 66.56 68.29 54.95 51.72 53.34
BGESmall 27.44 21.32 24.38 66.60 62.76 64.68 52.69 49.56 51.13
BGEBase 24.57 20.62 22.59 70.39 66.52 68.46 55.24 52.21 53.72
BGELarge 33.97 23.83 28.90 71.31 67.29 69.30 58.17 54.73 56.45

n
=

3

InstructORLarge 39.20 29.25 34.22 76.71 72.39 74.55 67.88 64.84 66.36
E5-v2Base 35.75 26.97 31.36 76.25 71.56 73.90 63.52 60.63 62.08
E5-v2Large 40.41 27.85 34.13 75.68 70.98 73.33 62.35 59.47 60.91
Multilingual-E5Large 25.07 25.90 25.48 75.67 70.93 73.30 60.56 58.19 59.37
E5Large 37.33 29.64 33.48 74.57 70.24 72.40 67.18 64.25 65.72
OpenAI-Ada-002 46.96 26.53 36.74 82.42 80.27 81.34 68.77 65.77 67.27
GTESmall 24.50 26.95 25.72 71.00 67.40 69.20 62.38 59.16 60.77
GTEBase 30.05 27.82 28.93 74.57 70.63 72.60 64.69 61.76 63.23
GTELarge 40.40 29.40 34.90 75.04 71.23 73.14 65.78 62.67 64.23
BGESmall 29.24 27.49 28.37 73.49 68.98 71.23 64.59 61.72 63.16
BGEBase 28.35 27.00 27.67 73.83 69.23 71.53 66.59 63.66 65.13
BGELarge 38.30 28.14 33.22 74.83 70.09 72.46 68.05 64.62 66.34

n
=

5

InstructORLarge 41.77 32.86 37.31 78.36 74.08 76.22 70.30 67.51 68.90
E5-v2Base 34.49 28.76 31.63 78.53 73.47 76.00 66.75 63.94 65.34
E5-v2Large 36.82 29.53 33.17 78.02 73.66 75.84 65.70 62.76 64.23
Multilingual-E5Large 31.29 29.28 30.29 76.21 72.18 74.19 64.36 61.78 63.07
E5Large 37.24 32.79 35.01 76.04 71.20 73.62 69.63 66.62 68.13
OpenAI-Ada-002 45.01 28.38 36.70 84.56 82.60 83.58 70.81 68.03 69.42
GTESmall 32.92 30.05 31.48 73.21 69.16 71.18 65.63 62.58 64.10
GTEBase 29.90 30.02 29.96 76.54 72.13 74.33 67.11 63.95 65.53
GTELarge 41.92 32.41 37.17 75.73 71.18 73.45 68.48 65.38 66.93
BGESmall 35.33 32.64 33.99 72.85 68.06 70.46 67.15 64.35 65.75
BGEBase 27.94 29.49 28.72 76.61 71.90 74.25 69.42 66.52 67.97
BGELarge 35.79 32.38 34.08 76.26 71.00 73.63 70.68 67.64 69.16

n
=

1
0

InstructORLarge 47.38 33.77 40.58 80.58 76.50 78.54 72.37 69.68 71.03
E5-v2Base 37.04 32.17 34.60 80.31 74.92 77.61 69.59 66.86 68.23
E5-v2Large 46.80 32.53 39.66 79.11 74.31 76.71 68.65 65.70 67.17
Multilingual-E5Large 30.88 32.70 31.79 78.71 74.43 76.57 67.87 65.39 66.63
E5Large 41.44 34.74 38.09 77.83 73.35 75.59 72.42 69.62 71.02
OpenAI-Ada-002 46.60 32.90 39.75 85.57 83.46 84.51 73.30 70.60 71.95
GTESmall 32.71 33.53 33.12 74.77 70.42 72.59 67.48 64.56 66.02
GTEBase 28.05 31.23 29.64 77.35 72.76 75.06 69.50 66.44 67.97
GTELarge 45.05 35.25 40.15 76.29 71.67 73.98 69.86 66.90 68.38
BGESmall 36.24 34.44 35.34 75.95 71.13 73.54 68.96 66.27 67.61
BGEBase 31.14 31.62 31.38 78.15 73.07 75.61 71.48 68.73 70.10
BGELarge 43.19 35.56 39.38 77.77 72.44 75.10 72.36 69.39 70.88

n
=

1
5

InstructORLarge 40.59 35.40 37.99 80.57 75.75 78.16 73.10 70.54 71.82
E5-v2Base 42.17 34.44 38.31 80.25 74.65 77.45 70.18 67.50 68.84
E5-v2Large 47.71 33.67 40.69 79.86 74.66 77.26 69.70 66.69 68.19
Multilingual-E5Large 28.31 33.48 30.89 79.91 75.32 77.61 69.31 66.76 68.03
E5Large 42.42 36.31 39.36 78.02 73.00 75.51 73.13 70.26 71.69
OpenAI-Ada-002 48.13 34.26 41.20 87.04 85.03 86.03 73.97 71.36 72.66
GTESmall 38.54 34.38 36.46 75.03 70.32 72.68 68.63 65.60 67.12
GTEBase 33.68 32.35 33.02 78.27 73.56 75.92 69.86 66.73 68.29
GTELarge 37.98 34.38 36.18 77.78 72.93 75.36 70.51 67.62 69.07
BGESmall 28.06 34.30 31.18 75.43 70.54 72.98 70.20 67.56 68.88
BGEBase 27.20 31.08 29.14 78.92 73.65 76.29 71.93 69.15 70.54
BGELarge 42.22 37.06 39.64 78.76 73.43 76.10 73.17 70.24 71.71

Table 11: Results per model using k synthetic examples averaged across 20 samples.
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k Metric ATIS SNIPS CLINIC
µ σ µ σ µ σ

k
=

1 Mean 24.51 10.15 67.63 5.48 51.63 5.13
∆Label -7.19 -2.58 -8.68 -1.05 -15.56 0.08
∆Desc -27.38 6.37 -19.29 2.46 -22.92 2.12

k
=

3 Mean 31.19 8.61 73.25 4.49 63.71 2.76
∆Label -0.51 -4.11 -3.06 -2.04 -3.47 -2.29
∆Desc -20.70 4.84 -13.66 1.47 -10.83 -0.25

k
=

5 Mean 33.29 7.90 74.73 4.16 66.54 2.35
∆Label 1.59 -4.82 -1.57 -2.37 -0.64 -2.70
∆Desc -18.60 4.13 -12.18 1.14 -8.00 -0.67

k
=

1
0 Mean 36.12 7.51 76.28 3.49 68.92 2.08

∆Label 4.42 -5.21 -0.02 -3.04 1.73 -2.97
∆Desc -15.77 3.73 -10.63 0.48 -5.63 -0.94

k
=

1
5 Mean 36.17 7.13 76.78 3.75 69.74 1.93

∆Label 4.47 -5.59 0.48 -2.78 2.55 -3.12
∆Desc -15.72 3.36 -10.13 0.73 -4.81 -1.09

Table 12: Averaged mean of accuracy and macro-f1 scores experiments conducted across 20 samples and 12
models using k number of synthetic examples per intent class generated using gpt-4-1106-preview. ∆Label

and ∆Desc are differences to the averaged performance of methods using tokenized labels and intent descriptions
respectively.

16


