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The patient is a 52-year-old male with a blood
type of A, with a BMI of 26. He has completed
high school education and resides in a less
socioeconomically deprived area, with private
insurance and a stable income. The patient
presents with hepatocellular carcinoma (HCC)
and cirrhosis secondary to hepatitis C virus
(HCV) infection. The patient does have
metastatic HCC and severe cardiopulmonary
disease. He is persistently non-compliance,
despite having social support.
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secondary to hepaits C virus infection. Given
these factors, particularly the metastatic nature
of his HCC and severe cardiopulmonary
disease, the patient is not expected to survive
beyond one-year post-ransplant. Therefore, he
currently does not meet the criteria for liver
transplantation candidacy and should undergo
further evaluation and intervention to address
these issues before reconsidering
transplantation
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The most critical factor is the
presence of metastatic HCC, which
is a contraindication for liver
transplantation due to the high risk of
disease recurrence and poor long-
term prognosis.
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Figure 1: Overall framework for the multi-agent modeling approach designed to support clinical decision-making.

Abstract

As large language models (LLMs) transition from static predictors
to autonomous agents, a promising application lies in simulating
real-world, multi-disciplinary clinical committees responsible for
life-or-death decisions such as organ transplant eligibility. This
vision paper explores the design and deployment of multi-agent
LLM systems that emulate role-specialized clinicians collaborating
to assess high-stakes medical cases. Using empirical insights from
a simulation of a liver transplant selection committee, we highlight
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how even highly accurate agents can propagate disparities in the ab-
sence of subgroup-sensitive reasoning and explainability. We argue
that multi-agent LLMs must go beyond role emulation to incorpo-
rate counterfactual rationalization, inter-agent transparency, and
clinician-in-the-loop arbitration. Our vision sets forth a roadmap for
building accountable, equitable, and trustworthy multi-agent LLM
systems that can support, not replace critical clinical deliberation.
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1 Introduction

As large language models (LLMs) evolve into autonomous agents
capable of reasoning, memory, and collaboration, their use in high-
stakes domains like medicine is accelerating [1, 2]. One frontier
application is the simulation of clinical committees through multi-
agent LLM systems collections of specialized agents that mirror
real-world medical roles such as transplant surgeons, hepatologists,
or social workers [3, 4]. These systems promise to standardize
clinical decision-making, expand access to expert-level evaluation,
and support scalability in resource-constrained settings [5, 6].

However, with this promise comes risk. In medical contexts,
especially in life-critical domains like organ transplantation, deci-
sions made by clinicians determine who receives limited life-saving
treatments. Transplant eligibility decisions, for example, require
nuanced judgment that balances clinical prognosis with psychoso-
cial and ethical considerations [7, 8, 9]. In the United States, these
decisions are made by multidisciplinary transplant committees.
Simulating such committees with LLM agents introduces a new
sociotechnical paradigm where Al not only assists, but potentially
decides who gets care.

This paper presents a vision for fair and explainable multi-agent
LLM systems in clinical settings, grounded in a case study of liver
transplant eligibility assessment. We simulate over 8,000 patient
evaluations using a committee of LLM-based agents each role-
tuned and interacting under orchestrated clinical protocols. De-
spite achieving high accuracy in identifying medical contraindi-
cations and predicting survival, the system exhibited systematic
disparities. Patients from marginalized groups particularly women,
Black individuals, and those with low socioeconomic status re-
ceived disproportionately lower eligibility scores. These disparities
stemmed from agents’ reliance on social proxy features such as
insurance status, education level, and the Area Deprivation Index
(ADI), compounded by the absence of patient-specific rationale or
counterfactual reasoning (7, 8, 9].

Moreover, the architecture of multi-agent LLM systems intro-
duces novel failure modes. Each agent operates semi-autonomously,
producing decisions without full visibility into the others’ reason-
ing. While this mirrors real clinical practice, it creates challenges for
interpretability and post hoc auditing critical components for trust
in clinical AI [10, 11]. Unlike single-model classifiers, these systems
distribute judgment across agents with disjoint observations and
distinct objectives, making system-level transparency difficult to
achieve [12, 13].

This vision paper identifies these architectural limitations and
proposes a new agenda for agentic Al in healthcare one that embeds
fairness constraints, supports case-level explainability, and enables
clinician-in-the-loop oversight. Our broader contribution is to argue
that in domains where Al systems influence or decide who receives
care, design choices must be driven by equity and accountability
from the outset [14, 15]. Multi-agent Al systems, if left unchecked,
risk encoding and legitimizing historical disparities under the ve-
neer of objectivity. We propose a design framework that combines
subgroup-aware model training, counterfactual simulation modules,
and explainability stacks with deployment protocols that mitigate
the digital divide. In the sections that follow, we summarize our
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empirical findings from the transplant simulation, review key fail-
ure modes in multi-agent clinical Al and propose a roadmap for
building systems that are not only high-performing, but also just
and transparent.

2 Empirical Insight: A Multi-Agent Simulation
of Transplant Committee Decision-Making

To understand the practical implications of agentic Al in high-stakes
healthcare settings, we designed a simulated transplant selection
committee using multiple role-specialized LLM agents tasked with
evaluating and selecting patients for transplantation. This section
provides the empirical grounding for our proposed vision, drawing
on a large-scale, retrospective cohort of liver transplant recipients
in the U.S. and structured simulation of committee-based decision-
making.

2.1 Data Source and Cohort

We leveraged data from the Scientific Registry of Transplant Recip-
ients (SRTR), a national U.S. registry encompassing all candidates
and recipients of solid organ transplants. The study cohort included
adult patients (>18 years) who underwent deceased donor liver
transplantation (DDLT) between January 2004 and June 2024.

To test the robustness of the AI system under complex clini-
cal conditions, 16.4% of the cohort was augmented with synthetic
contraindication profiles randomly assigned from a set of medi-
cally recognized ineligibility criteria, including metastatic hepato-
cellular carcinoma (HCC), extrahepatic malignancies, severe car-
diopulmonary comorbidities, active substance use, and persistent
noncompliance.

Each case comprised 59 variables, including standard clinical
indicators (e.g., MELD score, liver disease etiology), demographic
factors (age, sex, race/ethnicity), and social determinants of health
(insurance type, education level). We additionally incorporated
Area Deprivation Index (ADI), a validated geospatial measure of
neighborhood-level socioeconomic status, which was merged via
ZIP code using publicly available census tract data.

2.2 Multi-Agent Architecture and Role
Configuration

To simulate multidisciplinary clinical deliberation, we developed a
five-agent architecture using GPT-4 models orchestrated through
CrewAl (v0.63.6) and LangChain. Agents were assigned the follow-
ing roles: transplant hepatologist (committee chair), transplant sur-
geon, cardiologist, social worker, and medical scribe. Each domain-
specialized agent received natural language vignettes created by
the scribe, which translated structured SRTR data into narrative
form.

Prompts were carefully engineered for domain fidelity and in-
cluded zero-shot and chain-of-thought reasoning variants. A self-
consistency protocol sampling each agent’s decision five times and
returning the modal output was applied to enhance decision sta-
bility. Committee voting was based on majority consensus, with
the hepatologist agent responsible for adjudicating ties, reflecting
clinical governance norms in transplant boards.
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2.3 Performance and Fairness Assessment

The Al-staffed committee demonstrated high accuracy in core clini-
cal tasks. Across 8,412 patient vignettes, the system achieved 98.2%
accuracy in detecting transplant contraindications and over 94%
accuracy in predicting post-transplant survival at both 6 and 12
months.

However, subgroup analysis revealed concerning patterns of
inequity:

e Disparate Impact (DI): Female patients had a DI of 0.78

compared to male patients; Black patients 0.85 compared to
White; patients with high school education or less scored
0.82; and those from the most socioeconomically deprived
areas (ADI quintile 5) had a DI of 0.64. All scores fell below
the accepted fairness threshold of 0.80, suggesting systematic
under-selection.
Attribution Patterns: Cosine similarity analysis of agent
rationales revealed domain-aligned behavior (e.g., cardiol-
ogists prioritized cardiovascular risk). However, the social
worker agent placed disproportionate weight on non-clinical
features particularly insurance type, education level, and ADI
which are tightly coupled with structural inequities in access
to care.
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Figure 2: Disparity and Attribution Metrics in Multi-Agent Al:
(a—d) Disparate Impact (DI) scores across sex, ethnicity, race,
and education reveal consistent under-classifzication of dis-
advantaged groups. (e) Cosine similarity analysis highlights
differential reliance on clinical vs. socioeconomic variables
across agent roles.

2.4 Implications for Systemic Bias in
Multi-Agent Al

While overall performance was strong, these findings illustrate a
broader concern: agentic Al systems especially those structured to
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simulate real-world decision roles may inadvertently amplify insti-
tutional biases embedded in historical data. Without mechanisms
for fairness optimization, transparency, and clinical oversight, these
systems risk reinforcing rather than correcting disparities in care
allocation.

Figure 2 illustrates both the disparity metrics (DI) across sub-
groups and role-specific attribution weights for selected features,
highlighting how system-level disparities may emerge from the
interaction of well-calibrated but siloed agents.

This simulation provides a critical empirical foundation for re-
thinking how agentic systems are designed, governed, and deployed
in healthcare particularly in contexts where the stakes are nothing
less than life or death.

2.5 Failure Modes

Despite strong diagnostic performance, our empirical evaluation
uncovered three interrelated failure modes that limit the clinical
viability, fairness, and transparency of multi-agent LLM systems in
high-stakes healthcare applications.

(1) Proxy Bias in Role-Specialized Reasoning. Although
each agent was prompted to emulate domain-specific ex-
pertise (e.g., cardiologist focusing on cardiac risk), feature
attribution analyses revealed heavy reliance on non-clinical
social proxies such as insurance status, education level, and
Area Deprivation Index (ADI). These proxies, while corre-
lated with clinical outcomes in the training data, are often en-
tangled with historically marginalized group characteristics
(e.g., race, gender, or socioeconomic status). For example, the
“social worker” agent disproportionately penalized patients
with public insurance or lower education, leading to sys-
tematically lower eligibility classifications for these groups.
This reveals how role-aligned agents can amplify structural
inequities under the guise of professional specialization.

(2) Lack of Case-Level Explainability and Counterfactual
Reasoning. Although agents produced rationales in natural
language, they lacked formalized attribution mechanisms
(e.g., saliency maps, token-level importance) and could not
support counterfactual queries such as: “Would this patient
have been accepted if their ZIP code indicated lower socioe-
conomic deprivation?” This absence of trajectory-aware or
causal reasoning means that even correct classifications lack
auditable justification. In clinical domains where decisions
often hinge on small differences in risk-benefit interpreta-
tion, this black-box opacity erodes trust, accountability, and
recourse, especially for borderline cases.

(3) Opaque Consensus Mechanisms and Intra-Agent De-
pendencies. Final committee-level decisions were reached
via majority vote, with the transplant hepatologist serving
as a tie-breaker. However, there was no traceability into
how agents influenced each other, nor visibility into inter-
agent disagreement. This structure obscures whether dis-
agreements stemmed from interpretive variance, uncertainty,
or bias. In practice, such opacity undermines not only clini-
cal accountability but also violates emerging Al governance
requirements that demand decision traceability and dispute
resolution mechanisms for Al-assisted diagnostics.
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Figure 3: A modular blueprint for building equitable multi-agent LLM systems in medicine. Each pillar outlines key design
considerations from fairness optimization and temporal explainability to clinician-in-the-loop oversight and infrastructure for

equitable deployment necessary for responsible integration of Agentic Al into high-stakes clinical workflows.

Together, these failure modes illustrate that even high-performing
agentic systems when deployed without explicit fairness constraints,
transparency scaffolding, or human oversight can codify institu-
tional biases, mask error pathways, and exclude vulnerable popula-
tions from life-saving interventions.

3 Vision: A Blueprint for Equitable Multi-Agent
Systems

Our empirical findings highlight that achieving technical accuracy
is not sufficient in high-stakes clinical settings. Multi-agent sys-
tems must be built with equity, transparency, and context-specific
governance from the ground up. Below, we outline a blueprint with
four interconnected pillars for developing responsible and socially
aligned multi-agent LLM systems in medicine:

¢ Subgroup-Aware Constraints and Fairness Optimiza-
tion. Traditional model evaluation metrics (e.g., accuracy,
AUROC) mask disparities in treatment across protected sub-
groups. We advocate embedding fairness objectives such as
Disparate Impact (DI), equalized odds, or subgroup calibra-
tion directly into agent loss functions [16]. In multi-agent set-
tings, these constraints should operate both at the individual
agent level and at the level of final consensus decisions. Ap-
proaches such as adversarial debiasing [17], representation-
level regularization [18], and fairness-aware ensembling can
help mitigate proxy discrimination (e.g., when education
level/ insurance status stand in for socioeconomic status).

e Trajectory-Aware Explainability and Counterfactual
Modules. Clinical decisions are temporally grounded and
often hinge on trends (e.g., improving liver function) rather
than single-timepoint data. Therefore, explanation modules
must move beyond static feature attribution. We propose the
integration of time-aware attribution methods (e.g., Tempo-
ral SHAP, Integrated Gradients) [19, 20] to highlight not just
what features mattered, but when. Additionally, embedding
conditional generative models such as Causal GANs [21] or

counterfactual transformers [22] enables systems to answer
"what-if" queries: Would a patient’s eligibility status change
if their insurance type or ZIP code were different?

¢ Clinician-in-the-Loop Governance and Oversight. In
settings where Al influences human judgment, the burden
of justification must be high. Multi-agent systems should
expose internal disagreement, provide uncertainty estimates
per agent, and support structured clinician arbitration. This
may include interactive dashboards for reviewing agent ratio-
nales, weighted voting schemes based on domain confidence,
and mechanisms to record and learn from clinician overrides
[23]. Real-time flagging of low-confidence cases can help
ensure human accountability in ambiguous scenarios.

e Equitable Infrastructure and Deployment Protocols.
The benefits of agentic Al should not be limited to tertiary
care centers or well-resourced institutions. Federated learn-
ing, domain adaptation, and privacy-preserving fine-tuning
can enable site-specific calibration without centralizing pro-
tected health data [24]. We also emphasize importance of
interoperability with existing systems, edge-compatible de-
ployment for bandwidth-constrained hospitals, and open-
source toolkits to reduce barriers to adoption. Equity must
be embedded not only in model design, but in the ecosystem
of tools, funding, and governance frameworks that enable
sustained and inclusive use.

As large language models evolve from assistants to autonomous
decision-makers, clinical AI governance must evolve as well. Fair-
ness and explainability can no longer be treated as post hoc audits
they must be engineered as first-class constraints in the design,
training, and deployment of multi-agent healthcare systems. This
blueprint offers a path forward: one that ensures such systems do
not just mimic clinical reasoning, but elevate it in ways that are
just, transparent, and aligned with institutional and societal values.
Code Availability: https://github.com/gazarfar/Liver-Transplant-
Al-Agent-Committee/
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