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Abstract

Comprehensive breast density estimation is crucial in mammogram assessment and cancer
risk stratification, yet many existing Al-based radiomics methods designed for this purpose
often tackle tissue segmentation and classification as separate tasks. To address this limi-
tation, we propose a multi-head convolutional neural network (MH-CNN) that integrates
these functions into a unified end-to-end architecture. Built on a ResNet101 encoder, our
approach learns high-level features for breast density segmentation while parallel network
heads perform continuous density regression and BI-RADS classification overlaid in the re-
sulting images. Evaluation on the VinDr mammogram dataset yielded a Dice coefficient of
84.57% for segmentation, a mean absolute error (MAE) of 5.92% for density regression, and
80.51% accuracy for BI-RADS classification. These results suggest that the MH-CNN can
streamline clinical workflows by providing objective and reliable breast density assessments.
Keywords: Breast cancer, CNN, Mammography, Radiomics, Segmentation.

1. Introduction

Breast density is a key imaging biomarker in mammography and a significant independent
risk factor for female breast cancer (Gudhe et al., 2022). As part of its standardized eval-
uation framework, the American College of Radiology has established the Breast Imaging-
Reporting and Data System (BI-RADS), which classifies breast density into four categories
ranging from 0-100% and distinguished by a 25% increment. High percentage breast density
(PBD), particularly evident in BI-RADS categories 3 and 4, is associated with an increased
risk of cancer and reduced mammogram screening sensitivity due to the potential obscu-
ration of tumors by radiopaque fibroglandular tissues (Behravan et al., 2024). Given that
breast cancer remains one of the most frequently diagnosed malignancies worldwide and the
leading cause of cancer-related mortality among women (Chen et al., 2021) thus emphasizes
the critical need for comprehensive mammogram interpretation strategies. In this context,
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accurate and automatic radiomics-based assessment of breast density is essential, not only
for aiding radiologists and junior doctors in risk stratification but also for addressing the
inherent subjectivity and inter-observer discrepancies that often characterize typical human
visual analysis. However, current deep learning approaches for PBD assessment predomi-
nantly focus solely on either segmentation (Larroza and Llobet, 2022) or classification (Wu
et al., 2017), or treat both tasks as separate processes (Saffari et al., 2020).

2. Method

We introduce a multi-head convolutional neural network (MH-CNN) that integrates segmen-
tation, regression, and classification tasks into a unified end-to-end framework. Leveraging a
shared ResNet101-backbone encoder for feature extraction, our MH-CNN performs breast
density segmentation, continuous density regression, and BI-RADS classification concur-
rently via dedicated parallel heads. The model’s network layout is depicted in Fig. 1.

Cross

mmiin {7 Entropy |—

Loss

Classifcation Head

— PBD%

Y a— Y a—
o Focal
o —| g — —
N EI i i
Regression Head

(Botlleneck | (— Segment
/ Output

ResNet 101 Backbone (Encoder) . Focal
L H H ~— Tversky —
N & Loss

Segmentation head

L 7
Avg. Pooling ‘

952q

<«—— Aepano

Figure 1: The deep MH-CNN architecture showing the process pipeline

2.1. Process Overview

Given an input mammogram X, the MH-CNN uses ResNet101 encoder to extract high-
level features F' = foncoder(X;0), where 0 is encoder parameters. The shared feature map
F' is then fed into three parallel heads: the segmentation head outputs S = fseg(F'; Pseg)
and is optimized using the Focal Tversky loss, L, = FocalTversky(S,Y); where Y is
groundtruth mask. The regression head outputs R = freg(F’; dreg) With the FocalRegLoss,
L;eg = FocalRegLoss(R, Yieg); and the classification head yields C' = fes(F'; ¢e1s) with the
Cross Entropy Loss, L.s = CrossEntropy(C, Y5). Note that ¢ denotes the parameters of
the respective heads. The total training loss, with weighting coefficients \ is defined as,

E'T = )\segﬁseg + )\regﬁreg + AasLels

Using phase-based training we facilitate end-to-end learning for joint segmentation, regres-
sion, and classification tasks to achieve a unified model for streamlined PBD assessment.
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Figure 2: Visualization results during (a) Training and (b) Inference

3. Experimental Settings and Outcomes

Dataset: The experiments were conducted on the VinDr-Mammo dataset (Nguyen et al.,
2023) consisting of 20,000 mammograms obtained from 5,000 mammography exams (four
images per patient). From this dataset, 590 mammo samples were randomly selected and
split into training and validation subsets using an 80/20 ratio. Corresponding groundtruth
density masks annotated by expert radiologists from (Gudhe et al., 2022) were used for
model supervision.

Training Setup: The model was implemented using PyTorch and trained for 250 epochs
with two Nvidia RTX 3080 GPUs. Training was prioritized in phases, initially focusing
on segmentation, followed by regression, and finally BI-RADS classification. This phased
strategy was adopted due to density imbalance within the skewed training data identified
during preprocessing. Additional training configurations included the adoption of AdamW
optimizer with a weight decay of 0.0001 and an initial learning rate of 5e-05.

Result Summary: Fig. 2(a) demon-
strates accurate breast density segmenta-

tion, closely aligning with expert annota- Table 1: Quantitative Results

tions. Fig. 2(b) showcases the model’s ro-  Metric Outcome (%)
bust generalization to unseen data through  pice Coefficient + 84.57
simultaneous density segmentation and  \AR 1 05.92
PBD classification overlay. To our knowl- . ccification Accuracy + 80.51

edge, this is the first unified approach
for joint segmentation and classification of
breast density without additional post-processing. Numeric results are listed in Table 1.
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