
DEMIX Layers: Disentangling Domains for Modular Language Modeling

Anonymous ACL submission

Abstract

We introduce a new domain expert mixture001
(DEMIX) layer that enables conditioning a lan-002
guage model (LM) on the domain of the input003
text. A DEMIX layer includes a collection of004
expert feedforward networks, each specialized005
to a domain, that makes the LM modular: ex-006
perts can be mixed, added, or removed after007
initial training. Extensive experiments with008
autoregressive transformer LMs (up to 1.3B pa-009
rameters) show that DEMIX layers reduce test-010
time perplexity (especially for out-of-domain011
data), increase training efficiency, and enable012
rapid adaptation. Mixing experts during infer-013
ence, using a parameter-free weighted ensem-014
ble, enables better generalization to heteroge-015
neous or unseen domains. We also show it is016
possible to add experts to adapt to new domains017
without forgetting older ones, and remove ex-018
perts to restrict access to unwanted domains.019
Overall, these results demonstrate benefits of020
domain modularity in language models.021

1 Introduction022

Most language models (LM) are trained with data023

homogeneity: all parameters are updated to min-024

imize the loss on all of the data. We refer to this025

as dense training. Dense training leaves variation026

in the data, or domains, to be implicitly discov-027

ered (Aharoni and Goldberg, 2020), assuming that028

models will be able to fit all domains equally well.029

While dense training is convenient, and densely030

trained LMs achieve impressive results (Brown031

et al., 2020), the approach has drawbacks with re-032

spect to generalization, efficiency, and flexibility.033

Even if training data is sourced from many do-034

mains, dense training can in practice emphasize035

subsets of the data in proportion to their ease of036

access (Oren et al., 2019; Fan et al., 2020), limiting037

generalization to less prevalent domains. Updat-038

ing all parameters of the network gets substantially039

more expensive as model size grows (Strubell et al.,040

2019), making fine-tuning or domain adaptation041

x0

h0

DEmix 
Layer

Self 
Attn

Github  
Code

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

Medical 
Papers

U.S. Court 
Opinions

Training 

COVID-19 
Papers

FFN 1 FFN 2 FFN 3 FFN 4

Inference 

Figure 1: Illustration of a DEMIX layer in a single
transformer block. During training, expert feedforward
networks are conditionally activated based on the do-
main (here, document provenance) of the input sequence
(i.e., scientific papers or court opinions). At inference
time, the language model has new modular functions:
domain experts can be mixed to handle heterogeneous
domains (e.g., COVID-19 papers), added to adapt to
novel domains (e.g., Github code), or removed to re-
duce the influence of unwanted domains (e.g., social
media). Image attribution in §A.1.

hard to perform with smaller computational bud- 042

gets. It is also difficult to adapt to new domains 043

without forgetting the original data (McCloskey 044

and Cohen, 1989; Aghajanyan et al., 2021) or to 045

restrict access to certain domains the LM has been 046

exposed to during training (e.g., those that contain 047

hatespeech; Bender et al. 2021), leading to risks of 048

unwanted behavior (Gehman et al., 2020). 049

To address these limitations of dense training, we 050

argue that LMs should be designed with modularity. 051

We propose a modular LM that has components 052

specialized to distinct domains in the training data, 053

and can be customized at inference-time by mixing, 054

1



adding, or removing these separated components055

as needed. This design principle emphasizes the056

ability to rapidly adapt the LM after training, a057

need that has been broadly advocated for language058

systems (Dinan et al., 2021; Lazaridou et al., 2021).059

We introduce modularity into an LM with a new060

domain expert (DEMIX) layer that explicitly condi-061

tions the LM on the domain of the input text (when062

it is known), or estimates the input domain during063

inference (when it is not known). A DEMIX layer064

is a drop-in substitute for a feedforward layer in065

a transformer LM (e.g., GPT-3), creating a spe-066

cialized version of the layer (or expert) per domain067

(see Figure 1; §3).068

This is an example of conditional computation069

(Fedus et al., 2021; Lepikhin et al., 2020; Lewis070

et al., 2021; Roller et al., 2021), which follows071

prior literature on mixture of experts (Jacobs et al.,072

1991; Shazeer et al., 2017). Unlike DENSE training,073

conditional computation activates different param-074

eters for different inputs. Instead of learning how075

to route data to experts, the DEMIX layer rout-076

ing mechanism follows from a natural, observable077

segmentation of the data.1078

We identify domains using coarse provenance079

categories (e.g., whether a document is a medi-080

cal research paper or a Reddit post; §2). Train-081

ing on data from eight different domains, we find082

that replacing every feedforward layer in the trans-083

former with a DEMIX layer consistently improves084

in-domain performance (§4). To improve perfor-085

mance in settings in which the target data does086

not clearly align with a single domain, we intro-087

duce a parameter-free probabilistic approach to dy-088

namically estimate a weighted mixture of domains089

during inference (§5). We observe that expert mix-090

ing provides especially strong performance gains091

on novel test-time domains, as well as consistent092

performance improvements on test data from the093

training domains, which may themselves be het-094

erogeneous.095

Our results suggest that DEMIX consistently096

improves model generalization, especially out-of-097

domain, while enabling many new modular capabil-098

ities. Because DEMIX forces experts to specialize099

to domains, the overall model can be (partially)100

disentangled after training. Beyond mixing, we101

can add (§6) or remove (§7) domain experts, pre-102

dictably changing model behavior at inference time.103

1We perform a detailed comparison of learned and DEMIX
routing in §A.5.

Adding experts allows for model adaptation with- 104

out updating all parameters (hence avoiding forget- 105

ting), and removing experts allows for simulating 106

the removal of training domains without additional 107

training. These results, in aggregate, demonstrate 108

the considerable benefits of moving away from 109

treating data homogeneously during language mod- 110

eling. Our code is publicly available.2 111

2 Multi-Domain Corpus 112

To better measure domain modularity, we introduce 113

a new multi-domain corpus constructed with do- 114

main provenance that records the original dataset 115

each document appeared in (Table 10). Defining 116

domains in this way is intuitive and conveys a great 117

deal about the type of language that can be expected 118

in each document. Other accounts of domains (e.g., 119

Lucy and Bamman, 2021; Gururangan et al., 2020) 120

may be studied in future work. While other multi- 121

domain corpora (Koh et al., 2021; Gao et al., 2020) 122

cover many more domains, our corpus is restricted 123

to datasets with more permissive licensing to sup- 124

port reproducibility. 125

We divide our data into training and test domains. 126

The training domains text from eight English cor- 127

pora (top of Table 10), each of which varies in com- 128

plexity and coverage, totaling 73.8B whitespace- 129

separated tokens (§A.2). Our test (or novel) do- 130

mains include eight collections of English text (bot- 131

tom of Table 10), which may or may not align with 132

the training domains. The novel domains allow 133

us to measure how models generalize to a more 134

challenging data distribution shift, where domain 135

boundaries may be less clear. 136

§A.2 has more details on how these data were 137

collected, as well as per-domain token counts. For 138

larger domains, we use an additional 10M tokens 139

for the validation and test sets each. Smaller do- 140

mains have 1M tokens in each (Table 10). To sup- 141

port future work with the data, we also release an 142

API to download and preprocess it into a format 143

compatible with Fairseq (Ott et al., 2019).3 144

3 DEMIX Layer 145

3.1 Background: Mixture-of-Experts 146

Transformers 147

The transformer architecture interleaves multi-head 148

self-attention, layer-norms, and feedforward net- 149

works (Vaswani et al., 2017). Our focus is on the 150

2anonymous.com
3anonymous.com

2

anonymous.com
anonymous.com


feedforward component:151

ht,ℓ = FFN(ht,ℓ−1), (1)152

where ht,ℓ is the vector for the tth token produced153

by layer ℓ.154

Shazeer et al. (2017) propose to replace dense155

feedforward layers with an ensemble of n experts156

FFN1, . . . ,FFNn, assigned weights respectively157

by functions g1, . . . , gn:158

FFN(ht,ℓ−1) =
n∑

j=1

gj(ht,ℓ−1) · FFNj(ht,ℓ−1)

(2)

159

The g function routes tokens to different experts,160

usually each a separate dense feedforward network.161

If g routes to a single expert, then the computa-162

tional cost (in floating-point operations; FLOPs)163

will be same as a corresponding DENSE network,164

even though it has more than n times as many pa-165

rameters.166

3.2 DEMIX Routing167

Previous approaches learn the weighting functions168

g at a token-level, and either assign at most one169

(Fedus et al., 2021) or two (Lepikhin et al., 2020)170

experts per token. This requires careful load bal-171

ancing to encourage the model to use all experts,172

motivating work on explicit balancing mechanisms173

(Lewis et al., 2021).174

Instead of learning g, we use domain metadata175

to route data to experts at the document (i.e., se-176

quence) level. During training, every token in an177

input text is assigned to the same expert based on178

the domain label.179

Let D denote the set of domain labels (i.e., the180

eight labels in Table 10). If we index the experts181

by D and d ∈ D is the domain label for the current182

training instance, then183

gj(ht,ℓ) =

{
1 if j = d
0 otherwise

(3)184

We assume that each training document is asso-185

ciated with a single domain label. However, we186

relax this requirement at inference time (§5), to187

model unseen or heterogeneous domains.188

We perform a detailed comparison of DEMIX189

routing with GSHARD (Lepikhin et al., 2020), a190

mixture-of-experts transformer LM with learned191

token-level routing, in §A.5. Our results suggest192

Parameters per GPU
125M 350M 760M 1.3B

D
E

N
SE

GPUs 32 64 128 128
Total Experts 0 0 0 0
GPUs/expert 0 0 0 0
Total params 125M 350M 760M 1.3B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 45 51

D
E

M
IX

GPUs 32 64 128 128
Total Experts 8 8 8 8
GPUs/expert 4 8 16 16
Total params 512M 1.8B 3.8B 7.0B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 48 55

Table 1: Our specifications for training DENSE and
DEMIX LMs. All models are trained for about 48 hours
on V100 GPUs. DEMIX layers increase the total pa-
rameters of the LM while maintaining (or increasing)
throughput, measured in TFLOPs/GPU. We use the for-
mula described in Narayanan et al. (2021) to calculate
these metrics. See §A.4 for more details.

that learned token-level routing does not enable 193

modularity, underperforms DEMIX at similar com- 194

putational budgets (especially on novel domains), 195

and is much less efficient to train and evaluate. 196

3.3 DEMIX Architecture 197

Our design results in one expert in a DEMIX layer 198

per domain (i.e., eight experts for eight training 199

domains in our multi-domain corpus). 200

We replace every feedforward layer in the trans- 201

former with a separate DEMIX layer, in contrast to 202

previous work (Fedus et al., 2021; Lepikhin et al., 203

2020) that interleaves shared and expert layers. 204

Preliminary experiments showed that interleaving 205

led to worse in-domain performance (see §A.6 for 206

more details). Future work may comprehensively 207

compare different architectural choices. 208

Each expert FFNj is a two-layer MLP with the 209

same dimensions as the original FFN layer of the 210

transformer. This means that the effective number 211

of parameters in the overall DEMIX LM increases 212

(Table 1), without increasing inference runtime. 213

3.4 DEMIX Training 214

To train an LM with DEMIX layers, we partition 215

the GPUs among the domains, so that each GPU 216

is assigned a single domain (along with its cor- 217

responding expert). We fill a mini-batch with k 218

sequences from a particular domain, and we send 219

each mini-batch to its dedicated expert. We use 220

larger batch sizes with distributed data parallel be- 221

tween expert parameters on GPUs assigned to the 222

3



same domain; we assign n/8 GPUs to each domain223

(Table 1).224

Compared to DENSE LMs, DEMIX layers225

achieve the same or slightly higher throughput226

(measured in TFLOPs/GPU) for the same total227

FLOPs per update, despite adding significantly228

more parameters (Table 1). DEMIX achieves229

higher throughput because we while we sync230

shared parameters across all GPUs, we only sync231

expert parameters allocated to the same domain.232

DENSE models sync all parameters across all GPUs.233

As we increase model size, this reduces latency234

costs between GPUs, and hence, faster training.235

3.5 Comparison with Adapters236

DEMIX experts are related to adapters (Bapna and237

Firat, 2019), which add a small feedforward net-238

work into a frozen pretrained LM to enable pa-239

rameter efficient finetuning. In contrast, our focus240

is on efficiently training all of the parameters of241

a modular LM from scratch, and as such is not242

directly comparable to existing adapter schemes.243

Although adapter-style architectures could be used244

for more fine-grained control over which parts of245

the feedforward networks are domain specific, we246

leave exploring such architectural variants to future247

work.248

4 In-Domain Performance249

Our first set of experiments measure in-domain250

performance when replacing the feedforward layers251

in a transformer LM with DEMIX layers.252

4.1 Experimental Setup253

Architecture, Input and Hyperparameters We254

follow the GPT-3 (Brown et al., 2020) architecture255

(small, medium, large, and XL) implemented in256

Fairseq (Ott et al., 2019). We use the GPT-2 (Rad-257

ford et al., 2019) vocabulary of 50,264 BPE types,258

and train with 1,024-token sequences. See §A.7 for259

training hyperparameters.260

Evaluation We follow previous work by report-261

ing performance for a given computational budget262

(Lewis et al., 2021). For each model, we report test263

perplexity after a single run of 48 hours of train-264

ing on differing numbers of NVIDIA V100 32GB265

GPUs (Table 1).266

4.2 Models267

DENSE The first baseline is a DENSE LM, im-268

plemented with distributed data parallel (Li, 2021).269

Parameters per GPU
125M 350M 760M 1.3B

DENSE 20.6 16.5 14.5 13.8
DENSE (balanced) 19.9 15.8 14.3 13.6

+DOMAIN-TOKEN 19.2 15.9 14.3 13.4
DEMIX (naive) 18.4 15.5 14.2 13.8

DEMIX (cached; §5.4) 17.8 14.7 13.9 13.4

Table 2: Average in-domain test-set perplexity across
the 8 domains in the training data. We discuss the last
row in §5.4. See §A.8 for per-domain results.

There is no explicit conditioning on domain. 270

DENSE (balanced) We train dense models on an 271

equal amount of data from each domain. While 272

there is still no explicit conditioning on domain, 273

the gradient updates during training average across 274

all domains represented in a batch. 275

+DOMAIN-TOKEN This model is trained identi- 276

cally to DENSE (balanced), but we prepend a token 277

to every sequence indicating its domain (during 278

training and test time). We ignore the domain to- 279

ken when computing perplexity during evaluation. 280

DEMIX (naive) We replace every feedforward 281

layer in the transformer with a DEMIX layer, and 282

use DEMIX training (§3). Under this naive setting, 283

the test data domain is known (e.g., the CS expert 284

is used for CS test data). We relax this assumption 285

in the next section. 286

4.3 Results 287

Table 2 shows test perplexities, averaged across the 288

eight training domains. Domain balancing is con- 289

sistently helpful for DENSE training. Additional 290

domain information always helps (i.e, domain to- 291

kens or DEMIX layers), but the effects are largest 292

for the smaller models. Overall, domain informa- 293

tion enables the model to better specialize to dif- 294

ferent training domains. However, as the model 295

size grows, the DENSE baseline improves, catch- 296

ing up to the DEMIX (naive) model, at least when 297

considering the average perplexity across domains. 298

4.4 Domain Hetereogeneity 299

However, a more complete view of the experiments 300

with the largest model is shown in Table 3. We see 301

that even at scale, most training domains benefit 302

from DEMIX layers in a naive setting (where the 303

domain label is revealed at test time), but some do 304

not; WEBTEXT, REALNEWS, and REDDIT fare 305

worse than the DENSE baseline. We hypothesize 306

4



1.3B parameters per GPU

Domain DENSE DEMIX DEMIX
(naive) (cached prior; §5.4)

1B 11.8 11.5 11.3
CS 13.5 12.2 12.1

LEGAL 6.8 6.7 6.7
MED 9.5 9.2 9.1

WEBTEXT 13.8 14.6 14.3
REALNEWS 12.5 13.3 13.1

REDDIT 28.4 30.6 28.1
REVIEWS 14.0 12.6 12.5

Average 13.8 13.8 13.4

Table 3: Test perplexity by domain for largest models.
We discuss the last column in §5.4.

1B

Le
ga

l

C
S

M
ed

W
eb

te
xt

R
ea

ln
ew

s

R
ed

di
t

R
ev

ie
w

s

Domain

1B

Legal

CS

Med

Webtext

Realnews

Reddit

Reviews

E
xp

er
t

1x

2x

4x

6x

8x
pe

rp
le

xi
ty

 in
cr

ea
se

Figure 2: Heatmap of expert performance ratios, using
the largest DEMIX LM (1.3B parameters per GPU).
The diagonal indicates that expert specialization to their
own domain. While some experts (e.g., 1B, MED) do
not transfer well to most domains in the training corpus,
WEBTEXT and REALNEWS experts transfer much bet-
ter, confirming the heterogeneity of those domains.

that DENSE training is advantageous for hetere-307

ogenous domains. Heterogeneous domains have308

a higher overlap with other training domains, and309

therefore, benefit from parameter sharing.310

We support this explanation with a matrix of311

performance ratios across all domain experts (Fig-312

ure 2), comparing the performance of all experts313

against the expert explicitly trained for each do-314

main. Experts perform best on their assigned do-315

main. However, the experts assigned to domains316

that benefit from DENSE training perform relatively317

well on many training domains.318

These findings suggest overall that a discrete319

notion of domain is too rigid. In the next section,320

we soften Equation 3 into a mixture of experts.321

5 Mixing Experts at Inference Time 322

The previous section established that incorporating 323

DEMIX layers improves LM performance on test 324

data from known training domains. In practice, 325

however, text may not come with a domain label, 326

may straddle multiple domains, or may not belong 327

to any of the domains constructed at training time. 328

In these cases, rather than a hard choice among 329

experts (Equation 3), we propose to treat g1, . . . , gn 330

as mixture coefficients, transforming the domain 331

membership of an input text into a matter of proba- 332

bilistic belief. Unlike previously proposed mixture- 333

of-experts formulations (Shazeer et al., 2017; Lep- 334

ikhin et al., 2020), this approach is parameter-free 335

and computed only at test time. 336

5.1 Dynamic Domain Mixtures 337

Consider the probabilistic view of language model- 338

ing, where we estimate p(xt | x<t). We introduce 339

a domain variable, Dt, alongside each word. We 340

assume that this hidden variable depends on the 341

history, x<t, so that: 342

p(xt | x<t)=

n∑
j=1

p(xt | x<t, Dt = j) · p(Dt = j | x<t)︸ ︷︷ ︸
gj

(4)

343

This model is reminiscent of class-based n-gram 344

LMs (Brown et al., 1992; Saul and Pereira, 1997). 345

We have already designed the DEMIX LM to 346

condition on a domain label, giving a form for 347

p(Xt | x<t, Dt = j). We now further treat 348

g1, . . . , gn as a posterior probability over domains, 349

calculated either globally or at each timestep. 350

To do this, we apply Bayes’ rule: 351

p(Dt = j | x<t)=
p(x<t | Dt = j) · p(Dt = j)

p(x<t)
(5) 352

=
p(x<t | Dt = j) · p(Dt = j)∑n

j′=1 p(x<t | Dt = j′) · p(Dt = j′)

(6)

353

The conditional probabilities of word sequences 354

given a domain label, as noted above, are already 355

defined by the DEMIX LM. For the prior over 356

domain labels, we consider three alternatives: 357

Uniform Set a uniform prior across domains. 358

Updating Set the prior at timestep t to be an 359

exponentially weighted moving average of the pos- 360

teriors from previous timesteps: 361

p(Dt = j) ∝
t−1∑
t′=1

λt−t′ · p(Dt′ = j | x<t′) (7) 362

5



Parameters per GPU
125M 350M 760M 1.3B

DENSE 25.9 21.4 18.4 17.8
DENSE (balanced) 25.3 19.6 18.3 17.1

+DOMAIN-TOKEN 24.8 20.4 18.4 18.0

DEMIX (naive) 28.8 23.8 21.8 21.1
DEMIX (average) 27.2 22.4 21.5 20.1
DEMIX (uniform) 24.5 20.5 19.6 18.7

DEMIX (updating) 21.9 18.7 17.6 17.1
DEMIX (cached) 21.4 18.3 17.4 17.0

Table 4: Average perplexity on novel domains. Mixing
domain experts with a prior estimated using a small
amount of data in the target domain outperforms all
other baselines. See §A.8 for per-domain results.

During evaluation, this moving average is calcu-363

lated over the posterior at the end of each sequence.364

The decay factor avoids putting too much weight365

on calculations made early in the dataset, when366

posterior calculations are noisier (§A.9). We per-367

formed a small grid search to set the value λ, and368

found that λ = 0.3 worked well.369

Cached We calculate the posterior over domain370

labels from additional data from the test distribu-371

tion, and fix the prior to that estimate. We use 100372

sequences from the validation set to estimate the373

prior, which we found to result in stable posterior374

probabilities. See §A.9 for more details, and Figure375

8 for an illustration of expert mixing.376

5.2 Visualizing Domain Membership377

In Figure 7, we plot domain posteriors calculated378

using the largest DEMIX LM from §4 and the up-379

dating prior, after 100 sequences of validation data.380

For training domains, the associated domain label381

has the highest probability, but some of the do-382

mains are more hetereogeneous than we assumed.383

More variation is observed for the novel domains.384

However, generally we find the domain posterior385

distribution to be sparse; suggesting that after esti-386

mating the domain posterior, not all experts need387

to be active for test evaluation.388

5.3 Experimental Setup389

Here, we experiment with the corpus of novel do-390

mains (Table 10). We evaluate the three mixture391

treatments of DEMIX layers (§5.1) against five392

baselines. No new models are trained for this ex-393

periment beyond those used in §4.394

DENSE and DENSE (balanced) These are the395

basic baselines from §4.396

+DOMAIN-TOKEN Here test data is evaluated 397

using each domain label token, and we choose the 398

lowest among these perplexity values per test set. 399

DEMIX (naive) Similar to +DOMAIN-TOKEN, 400

we evaluate the data separately with each of the 401

eight experts, and report the lowest among these 402

perplexity values per test set. 403

DEMIX (average) At every timestep, we take a 404

simple average of the eight experts’ predictions. 405

5.4 Results 406

Novel Domain Performance Ensembling 407

DEMIX experts outperforms DENSE baselines 408

and using experts individually (i.e., the “naive” 409

baseline), and caching a prior before evaluation 410

results in the best average performance (Table 4). 411

Ensembling DEMIX experts with a cached prior 412

allows smaller models to match or outperform 413

much larger DENSE models. Weighted ensembling 414

outperforms simple averaging and mixing with 415

a uniform prior, confirming the importance of 416

sparsity in the expert mixture. These results 417

demonstrate that modularity need not come at a 418

cost to generalization to new domains.4 419

In-Domain Performance We can also apply the 420

expert mixture variant of inference (using a cached 421

prior) to the training domains; see the last line of 422

Table 2. We see performance improvements across 423

all training domains for every scale, though the 424

largest gains come from hetereogeneous domains 425

(Table 3 and §A.8; across all model sizes, RED- 426

DIT improves on average 10.7%, WEBTEXT 2.4%, 427

REALNEWS 1.9%), confirming that domain labels 428

may not align with the most effective boundaries. 429

5.5 Summary 430

As opposed to other token-level routing mecha- 431

nisms (e.g., Lepikhin et al. 2020), expert mixing in 432

DEMIX is introduced at test-time and is parameter- 433

free; it instead makes use of Bayesian inference 434

with specialized experts to improve generalization. 435

Expert mixing dynamically increases model capac- 436

ity at test-time, while avoiding the need to learn 437

token-level routing patterns during training, which 438

is expensive and breaks modularity (§A.5). 439

4We have separately observed that with expert mixing,
our largest DEMIX LM closely approaches the performance
of GPT-3 Da-Vinci (Brown et al., 2020) on another novel
domain, the LM benchmark PTB (Marcus et al., 1993). See
§A.13 for more details.

6



6 Domain Adaptation with New Experts440

Domain adaptation is an important technique to441

improve LM performance in new domains that are442

rare or unseen during training. A popular technique443

for adapting LMs is domain-adaptive pretraining444

(DAPT; Gururangan et al. 2020), which involves445

continued DENSE training of the LM on the target446

domain. However, DAPT with DENSE training (or447

DENSE-DAPT) is expensive (Strubell et al., 2019)448

and may entail forgetting domains learned during449

earlier training phases (Aghajanyan et al., 2021),450

since it updates all parameters of the LM towards451

the target domain. These issues make adapting452

large LMs less feasible, especially in domains that453

change frequently over time (Luu et al., 2021).454

DEMIX layers allow for cheap adaptation with-455

out forgetting through a technique we call DEMIX-456

DAPT (see Figure 9 for an illustration). To adapt457

to a new domain, we initialize a new expert in each458

DEMIX layer using the parameters of the nearest459

pretrained expert, which we identify using domain460

posteriors from §5. We then train the added expert461

on target data, updating only the new expert param-462

eters. For inference, we mix experts with a cached463

prior (§5).464

6.1 Experimental Setup465

We compare DEMIX-DAPT to DENSE-DAPT on466

the novel domains. We report test perplexity after467

adapting to each domain for 1 hour with 8 NVIDIA468

V100 32GB GPUs, tracking validation perplexity469

every 10 minutes for early stopping. We adapt to470

each novel domain with the same hyperparame-471

ters as §4, except with a 10x smaller learning rate.472

DEMIX-DAPT updates about 10% of the total pa-473

rameters in the DEMIX LM, while DENSE-DAPT474

updates all parameters of the DENSE LM.475

6.2 Results476

Adding One Expert We display examples of477

DEMIX-DAPT and DENSE-DAPT on a single do-478

main in Figure 3. As DENSE-DAPT proceeds, its479

performance on the training domains progressively480

worsens (see §A.14 for results with larger LMs). In481

contrast, DEMIX-DAPT reduces perplexity on the482

novel domain without forgetting.483

Adding Eight Experts We find that adding all484

eight experts adapted to novel domains to the485

DEMIX model from §4 significantly reduces per-486

plexity on novel and previously seen domains (Ta-487

ble 5) while also helping in-domain for smaller488

10

20

30

D
en

se
-D

A
P

T
P

P
L

CORD-19

20

30

40
Gutenberg

0 30 60
# Minutes of DAPT

10

20

30

D
E

M
ix

-D
A

P
T

P
P

L

0 30 60
# Minutes of DAPT

20

30

40

Training Domains Target Domain

Figure 3: Adapting an LM (125M parameters per GPU)
to CORD-19 or GUTENBERG. Top row: with DENSE-
DAPT, average perplexity on all training domains de-
grades. Bottom row: DEMIX-DAPT avoids forgetting
while achieving close (for GUTENBERG) or better (for
CORD-19) performance on the target domain.

Parameters per GPU
Domains # Experts 125M 350M 760M 1.3B

TRAINING
8 17.8 14.7 13.9 13.4
16 17.7 14.6 13.7 13.4

NOVEL
8 21.4 18.3 17.4 17.0
16 16.0 14.0 13.5 12.5

Table 5: Average perplexity in training and novel do-
mains before and after adding 8 experts adapted to the
novel domains (via DEMIX-DAPT). Adding experts
reduces perplexity on novel and training domains.

models (perhaps surprisingly, given the fact that 489

their domain experts are frozen). For example, 490

across all model sizes, on average, we see a 2.4% 491

reduction on MED, 1.8% reduction on REALNEWS, 492

and 2% reduction on REDDIT (see §A.8 for details). 493

7 Removing Experts 494

DENSE LMs are also prone to unexpected behavior 495

when deployed. For example, they may generate 496

hatespeech (Gehman et al., 2020), which is unde- 497

sirable for user-facing tasks (Xu et al., 2020). 498

We argue that DENSE training contributes to un- 499

expected model behavior, as domains are learned 500

diffusely over the parameter space, and it is diffi- 501

cult to restrict the model’s access to certain training 502

domains during inference. Some mechanisms have 503

been introduced to steer a DENSE model towards 504

(Keskar et al., 2019; Dathathri et al., 2020) and 505

away (Welleck et al., 2019) from certain behaviors, 506

but they tend to be expensive or require retrain- 507

ing the model with a different objective, which 508

7



125M Parameters per GPU

Domain +EXPERT –EXPERT –DOMAIN

1B 13.7 25.5 30.4
CS 15.7 22.4 25.4
LEGAL 8.9 20.9 22.7
MED 12.4 18.6 21.9
WEBTEXT 20.9 27.3 25.4
REALNEWS 18.9 26.7 25.0
REDDIT 34.4 47.8 51.3
REVIEWS 20.5 39.0 43.0

Average 18.2 28.5 30.6

Table 6: Removing a domain expert (–EXPERT) de-
grades perplexity on the corresponding domain, ap-
proaching the performance of an LM that has not been
exposed to that domain (–DOMAIN). Here we bold the
worst performing model for each domain.

becomes less feasible as the LM grows in size.509

DEMIX layers offer a simple mechanism for510

cheap, lightweight control of large LMs: since do-511

main experts specialize (Figure 2), experts assigned512

to unwanted domains can be disabled at test-time.5513

7.1 Experimental Setup514

Does disabling an expert simulate a model that has515

not been exposed to a particular training domain?516

To answer this question, we compare three settings:517

+EXPERT, a DEMIX LM with all experts active,518

–EXPERT, a DEMIX LM with a domain expert519

deactivated, and –DOMAIN, a DEMIX LM trained520

from scratch without a particular domain.6521

For all settings, we use a DEMIX LM (125M522

parameters per GPU) from §4 and expert mixing523

with a cached prior (§5) for inference.524

7.2 Results525

Removing a domain expert harms model perfor-526

mance on the associated domain, in most cases ap-527

proaching the performance of a model that has not528

been exposed to data from that domain (Table 6).529

In some cases (e.g., WEBTEXT and REALNEWS),530

–EXPERT even underperforms –DOMAIN. This531

leads us to conjecture that most domain-specific532

learning happens within the DEMIX layer.533

Our preliminary analysis here suggests that534

DEMIX enables LMs with removable parts, for535

quick adaptation to situations in which a particu-536

lar training domain is unwanted for inference. We537

5Removing an expert offers no guarantee of having fully
forgotten content from the removed domain, since there are
shared parameters in the model.

6We replace the removed domain with GUTENBERG, since
our cluster allocates training jobs via 8-GPU nodes.

leave further exploration of this mechanism and its 538

potential for LM control to future work. 539

8 Related Work 540

Document metadata has been used to improve topic 541

models (Mimno and McCallum, 2012), adapt RNN- 542

based LMs (Jaech and Ostendorf, 2018), learn doc- 543

ument representations (Card et al., 2018), and im- 544

prove text generation control (Zellers et al., 2019; 545

Keskar et al., 2019). Other inference-time methods 546

(Dathathri et al., 2020; Liu et al., 2021) may be 547

used to steer text generation with DEMIX experts. 548

Future work may explore applying DEMIX to 549

multilingual settings, as multilingual models ben- 550

efit from language-specific parameters (Fan et al., 551

2020; Pfeiffer et al., 2020; Chau et al., 2020). 552

DEMIX-DAPT is closely related to model ex- 553

pansion techniques in reinforcement learning or vi- 554

sion (Rusu et al., 2016; Draelos et al., 2017) as well 555

as adapter modules for pretrained LMs (Houlsby 556

et al., 2019; Pfeiffer et al., 2020). DEMIX-DAPT 557

may be combined with continual learning meth- 558

ods, such as regularization (Kirkpatrick et al., 559

2017), meta-learning (Munkhdalai and Yu, 2017), 560

episodic memory (de Masson d’Autume et al., 561

2019), and data replay (Sun et al., 2019). 562

Multi-domain models have been studied in ma- 563

chine translation (Pham et al., 2021) and supervised 564

settings (Wright and Augenstein, 2020), and with 565

smaller dense LMs (Maronikolakis and Schütze, 566

2021). Previous studies have shown the importance 567

of considering domains when adapting LMs (Ram- 568

poni and Plank, 2020; Gururangan et al., 2020). 569

Our study establishes the importance of consider- 570

ing domains when training LMs from scratch. 571

9 Conclusion 572

We introduce DEMIX layers, which provide modu- 573

larity to an LM at inference time, addressing lim- 574

itations of dense training by providing a rapidly 575

adaptable system. DEMIX layers experts can be 576

mixed to handle heterogeneous or unseen domains, 577

added to iteratively incorporate new domains, and 578

removed to restrict unwanted domains. Future 579

work may combine domain and token-level routing, 580

discover domains automatically with unsupervised 581

learning, or scale the number of training domains. 582

8



References583

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,584
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.585
2021. Better fine-tuning by reducing representational586
collapse. In 9th International Conference on Learn-587
ing Representations, ICLR 2021, Virtual Event, Aus-588
tria, May 3-7, 2021. OpenReview.net.589

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised590
domain clusters in pretrained language models. In591
Proceedings of the 58th Annual Meeting of the Asso-592
ciation for Computational Linguistics, pages 7747–593
7763, Online. Association for Computational Lin-594
guistics.595

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,596
James Glass, and Preslav Nakov. 2018. Predict-597
ing factuality of reporting and bias of news media598
sources. In Proceedings of the 2018 Conference on599
Empirical Methods in Natural Language Processing,600
pages 3528–3539, Brussels, Belgium. Association601
for Computational Linguistics.602

Ankur Bapna and Orhan Firat. 2019. Non-parametric603
adaptation for neural machine translation. In Pro-604
ceedings of the 2019 Conference of the North Amer-605
ican Chapter of the Association for Computational606
Linguistics: Human Language Technologies, Volume607
1 (Long and Short Papers), pages 1921–1931, Min-608
neapolis, Minnesota. Association for Computational609
Linguistics.610

Jason Baumgartner, Savvas Zannettou, Brian Keegan,611
Megan Squire, and Jeremy Blackburn. 2020. The612
pushshift reddit dataset.613

Emily M. Bender, Timnit Gebru, Angelina McMillan-614
Major, and Shmargaret Shmitchell. 2021. On the615
dangers of stochastic parrots: Can language mod-616
els be too big? In Proceedings of the 2021 ACM617
Conference on Fairness, Accountability, and Trans-618
parency, FAccT ’21, page 610–623, New York, NY,619
USA. Association for Computing Machinery.620

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-621
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.622
Class-based n-gram models of natural language.623
Computational Linguistics, 18(4):467–480.624

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie625
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind626
Neelakantan, Pranav Shyam, Girish Sastry, Amanda627
Askell, Sandhini Agarwal, Ariel Herbert-Voss,628
Gretchen Krueger, Tom Henighan, Rewon Child,629
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,630
Clemens Winter, Christopher Hesse, Mark Chen, Eric631
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,632
Jack Clark, Christopher Berner, Sam McCandlish,633
Alec Radford, Ilya Sutskever, and Dario Amodei.634
2020. Language models are few-shot learners.635

Dallas Card, Chenhao Tan, and Noah A. Smith. 2018.636
Neural models for documents with metadata. Pro-637
ceedings of the 56th Annual Meeting of the Associa-638
tion for Computational Linguistics (Volume 1: Long639
Papers).640

Caselaw Access Project. Caselaw access project. 641

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 2020. 642
Parsing with multilingual BERT, a small corpus, and 643
a small treebank. In Findings of the Association 644
for Computational Linguistics: EMNLP 2020, pages 645
1324–1334, Online. Association for Computational 646
Linguistics. 647

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, 648
Thorsten Brants, Phillipp Koehn, and Tony Robinson. 649
2014. One billion word benchmark for measuring 650
progress in statistical language modeling. 651

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, 652
Noah A. Smith, and Matt Gardner. 2021. A dataset 653
of information-seeking questions and answers an- 654
chored in research papers. In Proceedings of the 655
2021 Conference of the North American Chapter of 656
the Association for Computational Linguistics: Hu- 657
man Language Technologies, pages 4599–4610, On- 658
line. Association for Computational Linguistics. 659

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane 660
Hung, Eric Frank, Piero Molino, Jason Yosinski, and 661
Rosanne Liu. 2020. Plug and play language models: 662
A simple approach to controlled text generation. In 663
8th International Conference on Learning Represen- 664
tations, ICLR 2020, Addis Ababa, Ethiopia, April 665
26-30, 2020. OpenReview.net. 666

Cyprien de Masson d’Autume, Sebastian Ruder, Ling- 667
peng Kong, and Dani Yogatama. 2019. Episodic 668
memory in lifelong language learning. 669

Emily Dinan, Gavin Abercrombie, A. Stevie Bergman, 670
Shannon Spruit, Dirk Hovy, Y-Lan Boureau, and 671
Verena Rieser. 2021. Anticipating safety issues in 672
e2e conversational ai: Framework and tooling. 673

T. Draelos, N. Miner, Christopher C. Lamb, Jonathan A. 674
Cox, Craig M. Vineyard, Kristofor D. Carlson, 675
William M. Severa, C. James, and J. Aimone. 2017. 676
Neurogenesis deep learning: Extending deep net- 677
works to accommodate new classes. 2017 Interna- 678
tional Joint Conference on Neural Networks (IJCNN), 679
pages 526–533. 680

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi 681
Ma, Ahmed El-Kishky, Siddharth Goyal, Man- 682
deep Baines, Onur Celebi, Guillaume Wenzek, 683
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi- 684
taliy Liptchinsky, Sergey Edunov, Edouard Grave, 685
Michael Auli, and Armand Joulin. 2020. Beyond 686
english-centric multilingual machine translation. 687

William Fedus, Barret Zoph, and Noam Shazeer. 2021. 688
Switch transformers: Scaling to trillion parameter 689
models with simple and efficient sparsity. 690

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 691
ing, Travis Hoppe, Charles Foster, Jason Phang, 692
Horace He, Anish Thite, Noa Nabeshima, Shawn 693
Presser, and Connor Leahy. 2020. The pile: An 694
800gb dataset of diverse text for language modeling. 695

9

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/N19-1191
https://doi.org/10.18653/v1/N19-1191
https://doi.org/10.18653/v1/N19-1191
http://arxiv.org/abs/2001.08435
http://arxiv.org/abs/2001.08435
http://arxiv.org/abs/2001.08435
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://aclanthology.org/J92-4003
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/p18-1189
https://case.law/
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
http://arxiv.org/abs/1906.01076
http://arxiv.org/abs/1906.01076
http://arxiv.org/abs/1906.01076
http://arxiv.org/abs/2107.03451
http://arxiv.org/abs/2107.03451
http://arxiv.org/abs/2107.03451
https://ieeexplore.ieee.org/document/7965898
https://ieeexplore.ieee.org/document/7965898
https://ieeexplore.ieee.org/document/7965898
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027


Samuel Gehman, Suchin Gururangan, Maarten Sap,696
Yejin Choi, and Noah A. Smith. 2020. RealToxi-697
cityPrompts: Evaluating neural toxic degeneration698
in language models. In Findings of the Association699
for Computational Linguistics: EMNLP 2020, pages700
3356–3369, Online. Association for Computational701
Linguistics.702

Github Archive Project. Github archive project.703

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext704
corpus.705

Suchin Gururangan, Ana Marasović, Swabha706
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,707
and Noah A. Smith. 2020. Don’t stop pretraining:708
Adapt language models to domains and tasks. In709
Proceedings of the 58th Annual Meeting of the710
Association for Computational Linguistics, pages711
8342–8360, Online. Association for Computational712
Linguistics.713

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer714
Ball. 2021. Cuad: An expert-annotated nlp dataset715
for legal contract review.716

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,717
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-718
mundo, Mona Attariyan, and Sylvain Gelly. 2019.719
Parameter-efficient transfer learning for nlp.720

Robert Jacobs, Michael Jordan, Steven Nowlan, and721
Geoffrey Hinton. 1991. Adaptive mixture of local722
expert. Neural Computation, 3:78–88.723

Aaron Jaech and Mari Ostendorf. 2018. Low-rank rnn724
adaptation for context-aware language modeling.725

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,726
Caiming Xiong, and Richard Socher. 2019. Ctrl: A727
conditional transformer language model for control-728
lable generation.729

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A730
method for stochastic optimization.731

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,732
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,733
Kieran Milan, John Quan, Tiago Ramalho, Ag-734
nieszka Grabska-Barwinska, Demis Hassabis, Clau-735
dia Clopath, Dharshan Kumaran, and Raia Hadsell.736
2017. Overcoming catastrophic forgetting in neural737
networks.738

Pang Wei Koh, Shiori Sagawa, Henrik Mark-739
lund, Sang Michael Xie, Marvin Zhang, Akshay740
Balsubramani, Weihua Hu, Michihiro Yasunaga,741
Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne742
David, Ian Stavness, Wei Guo, Berton Earnshaw, Im-743
ran Haque, Sara M Beery, Jure Leskovec, Anshul744
Kundaje, Emma Pierson, Sergey Levine, Chelsea745
Finn, and Percy Liang. 2021. WILDS: A benchmark746
of in-the-wild distribution shifts. In Proceedings of747
the 38th International Conference on Machine Learn-748
ing, volume 139 of Proceedings of Machine Learning749
Research, pages 5637–5664. PMLR.750

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri- 751
bovskaya, Devang Agrawal, Adam Liska, Tayfun 752
Terzi, Mai Gimenez, Cyprien de Masson d’Autume, 753
Sebastian Ruder, Dani Yogatama, Kris Cao, Tomas 754
Kocisky, Susannah Young, and Phil Blunsom. 2021. 755
Pitfalls of static language modelling. 756

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 757
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 758
Krikun, Noam Shazeer, and Zhifeng Chen. 2020. 759
Gshard: Scaling giant models with conditional com- 760
putation and automatic sharding. 761

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman 762
Goyal, and Luke Zettlemoyer. 2021. Base layers: 763
Simplifying training of large, sparse models. 764

Shen Li. 2021. Getting started with distributed data 765
parallel. 766

Alisa Liu, Maarten Sap, Ximing Lu, Swabha 767
Swayamdipta, Chandra Bhagavatula, Noah A. Smith, 768
and Yejin Choi. 2021. Dexperts: Decoding-time con- 769
trolled text generation with experts and anti-experts. 770

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin- 771
ney, and Daniel Weld. 2020. S2ORC: The semantic 772
scholar open research corpus. In Proceedings of the 773
58th Annual Meeting of the Association for Compu- 774
tational Linguistics, pages 4969–4983, Online. Asso- 775
ciation for Computational Linguistics. 776

Li Lucy and David Bamman. 2021. Characterizing 777
english variation across social media communities 778
with bert. 779

Kelvin Luu, Daniel Khashabi, Suchin Gururangan, Kar- 780
ishma Mandyam, and Noah A. Smith. 2021. Time 781
waits for no one! analysis and challenges of temporal 782
misalignment. ArXiv, abs/2111.07408. 783

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat- 784
rice Santorini. 1993. Building a large annotated cor- 785
pus of english: The penn treebank. Comput. Lin- 786
guist., 19(2):313–330. 787

Antonios Maronikolakis and Hinrich Schütze. 2021. 788
Multidomain pretrained language models for green 789
NLP. In Proceedings of the Second Workshop on Do- 790
main Adaptation for NLP, pages 1–8, Kyiv, Ukraine. 791
Association for Computational Linguistics. 792

M. McCloskey and N. Cohen. 1989. Catastrophic in- 793
terference in connectionist networks: The sequential 794
learning problem. Psychology of Learning and Moti- 795
vation, 24:109–165. 796

David Mimno and Andrew McCallum. 2012. Topic 797
models conditioned on arbitrary features with 798
dirichlet-multinomial regression. 799

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta 800
networks. Proceedings of machine learning research, 801
70:2554–2563. 802

10

https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
http://arxiv.org/abs/2103.06268
http://arxiv.org/abs/2103.06268
http://arxiv.org/abs/2103.06268
http://arxiv.org/abs/1902.00751
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
http://arxiv.org/abs/1710.02603
http://arxiv.org/abs/1710.02603
http://arxiv.org/abs/1710.02603
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://wilds.stanford.edu/
https://wilds.stanford.edu/
https://wilds.stanford.edu/
http://arxiv.org/abs/2102.01951
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2103.16716
http://arxiv.org/abs/2103.16716
http://arxiv.org/abs/2103.16716
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
http://arxiv.org/abs/2105.03023
http://arxiv.org/abs/2105.03023
http://arxiv.org/abs/2105.03023
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
http://arxiv.org/abs/2102.06820
http://arxiv.org/abs/2102.06820
http://arxiv.org/abs/2102.06820
http://arxiv.org/abs/2102.06820
http://arxiv.org/abs/2102.06820
https://aclanthology.org/2021.adaptnlp-1.1
https://aclanthology.org/2021.adaptnlp-1.1
https://aclanthology.org/2021.adaptnlp-1.1
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/1206.3278
http://arxiv.org/abs/1206.3278
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519722/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519722/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519722/


Deepak Narayanan, Mohammad Shoeybi, Jared Casper,803
Patrick LeGresley, Mostofa Patwary, Vijay Anand804
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,805
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,806
and Matei Zaharia. 2021. Efficient large-scale lan-807
guage model training on gpu clusters using megatron-808
lm.809

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.810
Justifying recommendations using distantly-labeled811
reviews and fine-grained aspects. In Proceedings812
of the 2019 Conference on Empirical Methods in813
Natural Language Processing and the 9th Interna-814
tional Joint Conference on Natural Language Pro-815
cessing (EMNLP-IJCNLP), pages 188–197, Hong816
Kong, China. Association for Computational Lin-817
guistics.818

Yonatan Oren, Shiori Sagawa, Tatsunori Hashimoto, and819
Percy Liang. 2019. Distributionally robust language820
modeling. In Proceedings of the 2019 Conference on821
Empirical Methods in Natural Language Processing822
and the 9th International Joint Conference on Natu-823
ral Language Processing (EMNLP-IJCNLP), pages824
4227–4237, Hong Kong, China. Association for Com-825
putational Linguistics.826

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,827
Sam Gross, Nathan Ng, David Grangier, and Michael828
Auli. 2019. fairseq: A fast, extensible toolkit for829
sequence modeling. In Proceedings of the 2019 Con-830
ference of the North American Chapter of the Associa-831
tion for Computational Linguistics (Demonstrations),832
pages 48–53, Minneapolis, Minnesota. Association833
for Computational Linguistics.834

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-835
bastian Ruder. 2020. MAD-X: An Adapter-Based836
Framework for Multi-Task Cross-Lingual Transfer.837
In Proceedings of the 2020 Conference on Empirical838
Methods in Natural Language Processing (EMNLP),839
pages 7654–7673, Online. Association for Computa-840
tional Linguistics.841

MinhQuang Pham, Josep Maria Crego, and François842
Yvon. 2021. Revisiting multi-domain machine trans-843
lation. Transactions of the Association for Computa-844
tional Linguistics, 9:17–35.845

Project Gutenberg. Project gutenberg.846

Alec Radford, Jeff Wu, Rewon Child, David Luan,847
Dario Amodei, and Ilya Sutskever. 2019. Language848
models are unsupervised multitask learners.849

Alan Ramponi and Barbara Plank. 2020. Neural unsu-850
pervised domain adaptation in NLP—A survey. In851
Proceedings of the 28th International Conference852
on Computational Linguistics, pages 6838–6855,853
Barcelona, Spain (Online). International Committee854
on Computational Linguistics.855

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,856
and Jason Weston. 2021. Hash layers for large sparse857
models.858

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des- 859
jardins, Hubert Soyer, James Kirkpatrick, Koray 860
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 861
2016. Progressive neural networks. 862

Lawrence Saul and Fernando Pereira. 1997. Aggre- 863
gate and mixed-order Markov models for statistical 864
language processing. In Second Conference on Em- 865
pirical Methods in Natural Language Processing. 866

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 867
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and 868
Jeff Dean. 2017. Outrageously large neural networks: 869
The sparsely-gated mixture-of-experts layer. In 5th 870
International Conference on Learning Representa- 871
tions, ICLR 2017, Toulon, France, April 24-26, 2017, 872
Conference Track Proceedings. OpenReview.net. 873

Emma Strubell, Ananya Ganesh, and Andrew McCal- 874
lum. 2019. Energy and policy considerations for 875
deep learning in NLP. In Proceedings of the 57th 876
Annual Meeting of the Association for Computational 877
Linguistics, pages 3645–3650, Florence, Italy. Asso- 878
ciation for Computational Linguistics. 879

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019. 880
Lamol: Language modeling for lifelong language 881
learning. 882

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 883
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 884
Kaiser, and Illia Polosukhin. 2017. Attention is all 885
you need. 886

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, 887
Russell Reas, Jiangjiang Yang, Doug Burdick, Dar- 888
rin Eide, Kathryn Funk, Yannis Katsis, Rodney Kin- 889
ney, Yunyao Li, Ziyang Liu, William Merrill, Paul 890
Mooney, Dewey Murdick, Devvret Rishi, Jerry Shee- 891
han, Zhihong Shen, Brandon Stilson, Alex Wade, 892
Kuansan Wang, Nancy Xin Ru Wang, Chris Wilhelm, 893
Boya Xie, Douglas Raymond, Daniel S. Weld, Oren 894
Etzioni, and Sebastian Kohlmeier. 2020. Cord-19: 895
The covid-19 open research dataset. 896

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di- 897
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu- 898
ral text generation with unlikelihood training. 899

Dustin Wright and Isabelle Augenstein. 2020. Trans- 900
former based multi-source domain adaptation. In 901
Proceedings of the 2020 Conference on Empirical 902
Methods in Natural Language Processing (EMNLP), 903
pages 7963–7974, Online. Association for Computa- 904
tional Linguistics. 905

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason 906
Weston, and Emily Dinan. 2020. Recipes for safety 907
in open-domain chatbots. 908

Yelp Reviews. Yelp reviews. 909

Rowan Zellers, Ari Holtzman, Hannah Rashkin, 910
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and 911
Yejin Choi. 2019. Defending against neural fake 912
news. In NeurIPS. 913

11

http://arxiv.org/abs/2104.04473
http://arxiv.org/abs/2104.04473
http://arxiv.org/abs/2104.04473
http://arxiv.org/abs/2104.04473
http://arxiv.org/abs/2104.04473
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1432
https://doi.org/10.18653/v1/D19-1432
https://doi.org/10.18653/v1/D19-1432
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.1162/tacl_a_00351
https://doi.org/10.1162/tacl_a_00351
https://doi.org/10.1162/tacl_a_00351
www.gutenberg.org
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.aclweb.org/anthology/2020.coling-main.603
https://www.aclweb.org/anthology/2020.coling-main.603
https://www.aclweb.org/anthology/2020.coling-main.603
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/1606.04671
https://www.aclweb.org/anthology/W97-0309
https://www.aclweb.org/anthology/W97-0309
https://www.aclweb.org/anthology/W97-0309
https://www.aclweb.org/anthology/W97-0309
https://www.aclweb.org/anthology/W97-0309
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/1909.03329
http://arxiv.org/abs/1909.03329
http://arxiv.org/abs/1909.03329
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/1908.04319
http://arxiv.org/abs/1908.04319
http://arxiv.org/abs/1908.04319
https://doi.org/10.18653/v1/2020.emnlp-main.639
https://doi.org/10.18653/v1/2020.emnlp-main.639
https://doi.org/10.18653/v1/2020.emnlp-main.639
http://arxiv.org/abs/2010.07079
http://arxiv.org/abs/2010.07079
http://arxiv.org/abs/2010.07079
https://www.yelp.com/dataset
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf


A Appendix914

A.1 Image attribution915

Images retrieved from emojipedia.org or916

istockphoto.com.917

A.2 Collecting Domains918

For most domains, we use the associated919

sources, listed in Table 10, without modifica-920

tion. For GUTENBERG, we use the scrap-921

ing tool provided in https://github.com/922

aparrish/gutenberg-dammit. For BREAKING923

NEWS, we identify a list of factually reli-924

able English news sources, using the list cu-925

rated by Baly et al. (2018). Specifically,926

we filter on "high" factuality in the data927

provided in this repository: https://github.928

com/ramybaly/News-Media-Reliability. We929

then use Newspaper3K (https://newspaper.930

readthedocs.io/en/latest/) to scrape the lat-931

est 1000 articles from each site. After dropping932

duplicates, we arrive at about 20K articles from933

400 news sources. We provide downloading links934

and general instructions at anonymous.com.935

A.3 Dataset Anonymization936

To anonymize certain datasets, we apply a suite937

of regexes that aim to identify common patterns938

of user-identifiable data and substitute them with939

dummy tokens. We display anonymization regexes940

and associated dummy tokens in Table 11.941

A.4 Calculating TFLOPs/GPU942

We use the formula presented in Narayanan943

et al. (2021) to calculate TFLOPs/GPU and944

TFLOPs/update. The spreadsheet that contains945

the calculations and formula can be accessed here:946

anonymous.com947

A.5 Gshard Comparison948

Here we describe empirical comparisons between949

DEMIX and GSHARD, the token-level mixture950

of experts transformer proposed by Lepikhin et al.951

(2020). As opposed to DEMIX, which uses domain952

labels to route data to experts, GSHARD learns953

a token-level routing mechanism during training.954

Each token in every other layer is sent to two of k955

experts, and this routing is updated via backpropa-956

gation.957

As GSHARD is emblematic of an learned routing958

procedure, we are generally interested if GSHARD959

naturally learns to specialize experts to domains,960

Parameters per GPU
125M 350M 760M 1.3B

D
E

N
SE

GPUs 32 64 128 128
Total Experts 0 0 0 0
GPUs/expert 0 0 0 0
Total params 125M 350M 760M 1.3B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 45 51

D
E

M
IX

GPUs 32 64 128 128
Total Experts 8 8 8 8
GPUs/expert 4 8 16 16
Total params 512M 1.8B 3.8B 7.0B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 48 55

G
SH

A
R

D GPUs 32 64 128 -
Total Experts 32 64 128 -
GPUs/expert 1 1 1 -
Total params 1B 6.7B 29.5B -

TFLOPs/update 675 4120 30,000 -
TFLOPs/GPU 15 16 19 -

Table 7: Our specifications for training DENSE, DEMIX,
and GSHARD LMs. All models are trained for about 48
hours on V100 GPUs. DEMIX layers increase the total
parameters of the LM while maintaining (or increasing)
throughput, measured in TFLOPs/GPU. We use the for-
mula described in Narayanan et al. (2021) to calculate
these metrics. See §A.4 for more details.

whether its experts are modular, and how GSHARD 961

LM generally performs compared to DEMIX and 962

DENSE models on our multi-domain corpus. 963

Experimental Setup We aim to make minimal 964

changes to the overall architecture of the model, 965

to focus on the differences afforded by token-level 966

routing (vs. DEMIX routing). As such, we keep all 967

architecture and computational budgets the same 968

as our DEMIX and DENSE baselines (we gener- 969

ally display results for the 125M, 350M, and 760M 970

parameter LMs). We only add the GSHARD rout- 971

ing procedure to every other layer, which involves 972

routing each token to the top-2 experts of that layer. 973

This additionally necessitates a load balancing loss 974

to prevent only a minority of experts from being 975

used (Lepikhin et al., 2020). All GSHARD experts 976

are of the same size as our DEMIX experts, i.e., 977

each expert is a two layer MLP with the same di- 978

mensions as the original feedforward layer of the 979

transformer. We display hyperparameters used to 980

train GSHARD in §A.7. 981

Model Scale In DEMIX, we always add the 982

same number of experts as the number of train- 983

ing domains (in our case 8), and use extra com- 984

putation to increase the batch size for each expert. 985

Our GSHARD implementation, on the other hand, 986

12

emojipedia.org
istockphoto.com
https://github.com/aparrish/gutenberg-dammit
https://github.com/aparrish/gutenberg-dammit
https://github.com/aparrish/gutenberg-dammit
https://github.com/ramybaly/News-Media-Reliability
https://github.com/ramybaly/News-Media-Reliability
https://github.com/ramybaly/News-Media-Reliability
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
anonymous.com
anonymous.com


allocates one expert per GPU. This means that987

GSHARD adds many more experts to the system,988

which results in a substantially larger increase in989

model size (Table 7). Unlike DEMIX, GSHARD990

results in an increase in FLOP count relative to991

the DENSE model, due to a variety of additional992

computation during training, like load balancing993

and routing to two experts for every token, which994

DEMIX does not need.995

Training efficiency However, unlike DEMIX,996

which increases model size while maintaining or997

improving GPU throughput, GSHARD in fact re-998

duces GPU throughput during training (Table 7).999

This is due to the necessity of expensive all-to-all1000

operations in GSHARD which mediate communica-1001

tion between experts on different GPUs that are ac-1002

tivated for different tokens of the same document.71003

These all-to-all operations are bottlenecked by the1004

quality of GPU communication channels on the1005

cluster. We also found that additional inefficiencies1006

are introduced via GSHARD’s load balancing, since1007

some experts are not used at test time. DEMIX has1008

no load balancing or all-to-all communication. It1009

uses all experts to maximum efficiency, because1010

we simply assign GPUs to domains for our routing1011

protocol.1012

Evaluation efficiency Another benefit to1013

DEMIX is that its experts specialize to their1014

domain, and only a sparse subset of them are1015

activated at test time. Does token-level routing1016

via GSHARD also result in a modular model? We1017

explore this question by computing the average1018

gating probabilities in the GSHARD router across1019

all experts for all test data in each domain. We1020

generally find that gating probabilities in GSHARD1021

have high entropy across experts regardless of1022

domain, suggesting that the token-level routing1023

procedure does not in fact result in modularity1024

out-of-the-box and all experts are needed for all1025

input texts (Figure 4). As we increase computa-1026

tional budget, this issue is exacerbated; we need1027

128 GPUs to evaluate on the test data for the final1028

model. Whereas with DEMIX, we only need 81029

GPUs to compute the domain posterior on a subset1030

of the validation data. Moreover, because the1031

domain posterior is usually sparse, one can use an1032

even smaller number of GPUs for evaluating on1033

test data, loading only those experts with non-zero1034

7https://images.nvidia.com/events/
sc15/pdfs/NCCL-Woolley.pdf

Parameters per GPU
125M 350M 760M 1.3B

DENSE (balanced) 19.9 15.8 14.3 13.6
DEMIX 17.8 14.7 13.9 13.4

GSHARD 17.2 14.3 14.2 -

Table 8: Average in-domain test-set perplexity across
the 8 domains in the training data. We discuss the last
row in §5.4. See §A.8 for per-domain results.

Parameters per GPU
125M 350M 760M 1.3B

DENSE (balanced) 25.9 21.4 18.4 17.8
DEMIX 21.4 18.3 17.4 17.0

GSHARD 24.0 19.5 18.9 -

Table 9: Average perplexity on novel domains. Mixing
domain experts with a prior estimated using a small
amount of data in the target domain outperforms all
other baselines. See §A.8 for per-domain results.

probabilities. 1035

Model performance As noted earlier, our 1036

GShard implementation substantially increases the 1037

effective parameter count of the model relative to 1038

DEMIX (Table 7). While this expansion of model 1039

size by GShard translates to better in-domain per- 1040

formance than DEMix for the 32 and 64 GPU set- 1041

tings, we observe the DEMix LMs consistently out- 1042

perform GShard on the novel domains regardless 1043

of computational budget (Table 9). Surprisingly, 1044

GSHARD underperforms DEMIX even in-domain 1045

for the 760M parameter model (Table 8), despite 1046

being 4x larger in effective parameter count (Ta- 1047

ble 7). This suggests that domain-modularity is an 1048

important mechanism to improve model general- 1049

ization, in addition to model size. We believe there 1050

is a rich area of future work to investigate how to 1051

combine token- and domain-level routing, to real- 1052

ize the benefits of increasing parameter count while 1053

maintaining domain modularity at scale. 1054

Summary Our results suggest that while 1055

GSHARD is an effective method for substantially in- 1056

creasing model size under a fixed budget, it comes 1057

with large costs to training and evaluation effi- 1058

ciency, does not result in a modular LM. The lack 1059

of modularity also implies that GSHARD suffers 1060

from similar downstream issues as DENSE mod- 1061

els, e.g., forgetting after adaptation and lack of 1062

lightweight controllability, though we leave a close 1063

exploration of those phenomena to future work. 1064

13

https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf


0
3
6
9

12
15
18
21
24
27
30

Layer 1 Layer 3 Layer 5

1B C
S

Le
ga

l
M

ed
W

eb
te

xt
R

ea
ln

ew
s

R
ed

di
t

R
ev

ie
w

s

0
3
6
9

12
15
18
21
24
27
30

Layer 7

1B C
S

Le
ga

l
M

ed
W

eb
te

xt
R

ea
ln

ew
s

R
ed

di
t

R
ev

ie
w

s

Layer 9

1B C
S

Le
ga

l
M

ed
W

eb
te

xt
R

ea
ln

ew
s

R
ed

di
t

R
ev

ie
w

s

Layer 11

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

Figure 4: Average gating probabilities across domains (x-axis) for each expert (y-axis) in the expert layers of a
GSHARD LM with 125M parameters per GPU. We observe high entropy of gating probabilities across experts and
domains in each expert layer, with similar results in larger models.

Overall, DEMIX LMs are substantially simpler and1065

more efficient for training and evaluation, and even1066

outperform GSHARD (especially out of domain)1067

despite being substantially smaller, suggesting the1068

importance of domain modularity as an alternative1069

mechanism to model scaling for improving gener-1070

alization in LMs.1071

A.6 Interleaving Experiments1072

We hypothesize that shared layers may serve as a1073

bottleneck to find shared features between domains,1074

and may impact performance adversely when train-1075

ing domains are highly different from one another.1076

Indeed, preliminary experiments suggest that in-1077

terleaving expert layers causes large performance1078

hits in the most distinct domains, i.e., those with1079

lower vocabulary overlap with other domains in the1080

corpus.1081

A.7 Hyperparameter Assignments1082

We display hyperparameter assignments for LM1083

pretraining in Tables 13, 14,15, and 16. We set the1084

total number of training steps based on this allo-1085

cated runtime, set 8% of these steps to be warm-1086

up, and use the Adam optimizer (Kingma and Ba,1087

2017) with a polynomial learning rate decay. Learn-1088

ing rates are tuned for each model separately over1089

{0.0001, 0.0003, 0.0005}, taking the fastest learn-1090

ing rate that avoids divergence. Each worker pro-1091

cesses two sequences of length 1,024, and gradients1092

are accumulated over 8 updates. We clip gradients1093

if their L2 norm exceeds 0.1. These settings are1094

inspired by Lewis et al. (2021). 1095

A.8 Per-Domain Results 1096

We display the rest of the per-domain test results in 1097

the spreadsheets at the following link: anonymous. 1098

com 1099

A.9 Domain Posterior Calculations 1100

We track calculated domain posteriors over se- 1101

quences of development data in Figure 5 (training 1102

domains) and Figure 6 (novel domains). The do- 1103

main posteriors are noisier for earlier sequences, 1104

stabilizing usually after around 50 sequences. For 1105

all experiments, we conservatively use 100 se- 1106

quences of data to compute the domain posterior, 1107

though one may be able to accurately calcuate the 1108

domain posterior for some domains with less data. 1109

A.10 Domain Posterior Heatmaps 1110

In this section, we display heatmaps of the com- 1111

puted domain posteriors in Figure 7, for 100 se- 1112

quences of data in the training and novel domains. 1113

A.11 Illustration of Expert Mixing 1114

See Figure 8 for an illustration of expert mixing. 1115

A.12 Illustration of DEMIX-DAPT 1116

See Figure 9 for an illustration of DEMIX-DAPT. 1117

A.13 GPT-3 Da-Vinci Comparison 1118

We conduct an experiment comparing our largest 1119

DEMIX LM with GPT-3 Da-Vinci from Brown 1120

14

anonymous.com
anonymous.com
anonymous.com


0.00

0.25

0.50

0.75

1.00

P
(D

 | 
X

)

Med RealNews Reddit OpenWebText

0 25 50 75 100
number of blocks

0.00

0.25

0.50

0.75

1.00

P
(D

 | 
X

)

Reviews

0 25 50 75 100
number of blocks

CS

0 25 50 75 100
number of blocks

Legal

0 25 50 75 100
number of blocks

1B

1b openwebtext realnews reviews cs legal med reddit

Figure 5: Calculated domain posteriors for 8 training domains.

0.00

0.25

0.50

0.75

1.00

P
(D

 | 
X

)

CORD-19 Github Gutenberg Breaking News

0 25 50 75 100
number of blocks

0.00

0.25

0.50

0.75

1.00

P
(D

 | 
X

)

Legal Contracts

0 25 50 75 100
number of blocks

ACL Papers

0 25 50 75 100
number of blocks

Tweets

0 25 50 75 100
number of blocks

Yelp Reviews

1b openwebtext realnews reviews cs legal med reddit

Figure 6: Calculated domain posteriors for 8 novel domains.

15



Domain Corpus # Train (Eval.) Tokens

T
R

A
IN

IN
G

1B 30M NewsWire sentences (Chelba et al., 2014) 700M (10M)
CS 1.89M full-text CS papers from S2ORC (Lo et al., 2020) 4.5B (10M)
LEGAL 2.22M U.S. court opinions, 1658 to 2018 (Caselaw Access Project) 10.5B (10M)
MED 3.2M full-text medical papers from S2ORC (Lo et al., 2020) 9.5B (10M)
WEBTEXT† 8M Web documents (Gokaslan and Cohen, 2019) 6.5B (10M)
REALNEWS† 35M articles from REALNEWS (Zellers et al., 2019) 15B (10M)
REDDIT Reddit comments from pushshift.io (Baumgartner et al., 2020) 25B (10M)
REVIEWS† 30M Amazon product reviews (Ni et al., 2019) 2.1B (10M)

Total 73.8B (80M)

Domain Corpus # Train (Eval.) Tokens

N
O

V
E

L

ACL PAPERS 1.5K NLP papers from ACL (Dasigi et al., 2021) 1M (1M)
BREAKING NEWS† 20K latest articles from 400 English news sites (Baly et al., 2018) 11M (1M)
CONTRACTS† 500 commercial legal contracts (Hendrycks et al., 2021) 1.5M (1M)
CORD-19 400K excerpts from COVID-19 research papers (Wang et al., 2020) 60M (10M)
GITHUB 230K public Github repository contents (Github Archive Project) 200M (10M)
GUTENBERG 3.2M copyright-expired books (Project Gutenberg) 3B (10M)
TWEETS† 1M English tweets from 2013-2018 8M (1M)
YELP REVIEWS† 6M Yelp restaurant reviews (Yelp Reviews) 600M (10M)

Table 10: Domains that make up our multi-domain training corpus, including the size of our training and evaluation
(i.e. validation and test) data, in whitespace-separated tokens. † indicates datasets that we (partially) anonymize (§2).
REDDIT was extracted and obtained by a third party and made available on pushshift.io, and was anonymized
by Xu et al. (2020); we use their version. See Appendix §A.2 for more details on how these data were collected. All
datasets are fair use for research purposes according to their original licenses. Please check anonymous.com for
more details.

Category Link to Regex Dummy Token

Email https://regex101.com/r/ZqsF9x/1 <EMAIL>
DART https://regex101.com/r/0tQ6EN/1 <DART>
FB User ID https://regex101.com/r/GZl5EZ/1 <FB_USERID>
Phone Number https://regex101.com/r/YrDpPD/1 <PHONE_NUMBER>
Credit Card Number https://regex101.com/r/9NTO6W/1 <CREDIT_CARD_NUMBER>
Social Security Number https://regex101.com/r/V5GPNL/1 <SSN>
User handles https://regex101.com/r/vpey04/1 <USER>

Table 11: Anonymization schema. We anonymize text using the regexes provided in the above links for the
categories listed.

et al. (2020), using the zero-shot language model-1121

ing evaluation they report: Penn TreeBank (Marcus1122

et al. 1993; Table 17). We observe that the largest1123

DEMIX LM achieves competitive results with the1124

GPT-3 Da-Vinci result with a fraction of the com-1125

putation, and gives large performance boosts on1126

this benchmark over our other DENSE baselines.1127

These results further suggest the importance of do-1128

main modularity as a mechanism to improve gener-1129

alization performance, in addition to model scaling.1130

A.14 Perplexity changes after DENSE-DAPT1131

In Table 12, we display the average perplexity1132

change after performing DENSE-DAPT on a new1133

domain. We observe that across all model sizes,1134

DENSE-DAPT improves performance in the novel1135

domain, at the cost of a large performance hit in1136

the training domains. 1137

16

pushshift.io
anonymous.com
https://regex101.com/r/ZqsF9x/1
https://regex101.com/r/0tQ6EN/1
https://regex101.com/r/GZl5EZ/1
https://regex101.com/r/YrDpPD/1
https://regex101.com/r/9NTO6W/1
https://regex101.com/r/V5GPNL/1
https://regex101.com/r/vpey04/1


Parameters
125M 350M 760M 1.3B

DENSE-
DAPT

T +70.1% +21.4% +16.7% +20.6%
N –55.1% –46.6% –38.3% –44.4%

Table 12: Average change in perplexity in training (T) and novel (N) domains after DENSE-DAPT. Negative values
indicate better performance relative to the original DENSE LM. While average perplexity in the novel domains
decreases more for DENSE-DAPT, this comes at the cost of a significant deterioration in performance in training
domains.

Computing Infrastructure 32 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 small

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 300,000

save interval updates 6,000

validation interval 3,000

number of warmup steps 24,000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 13: Hyperparameters for pretraining the LM with 125M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

17



Computing Infrastructure 64 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 medium

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 120,000

save interval updates 3,000

validation interval 2,000

number of warmup steps 9,600

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 14: Hyperparameters for pretraining the LM with 350M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

Computing Infrastructure 128 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 large

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 65,000

save interval updates 2,000

validation interval 1,000

number of warmup steps 5,200

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 15: Hyperparameters for pretraining the LM with 760M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

18



Computing Infrastructure 128 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 XL

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 50000

save interval updates 2,000

validation interval 500

number of warmup steps 4000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 16: Hyperparameters for pretraining the LM with 1.3B parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

19



1B C
S

Le
ga

l

M
ed

W
eb

te
xt

R
ea

ln
ew

s

R
ed

di
t

R
ev

ie
w

s

x< 102, 400

1B
CS

Legal
Med

Webtext
Realnews

Reddit
Reviews

D
10

2,
40

0

Training Domains
C

O
R

D
-1

9

G
ith

ub

G
ut

en
be

rg

B
re

ak
in

g 
N

ew
s

C
on

tra
ct

s

A
C

L

Tw
ee

ts

Y
el

p

x< 102, 400

1B
CS

Legal
Med

Webtext
Realnews

Reddit
Reviews

D
10

2,
40

0

Novel Domains

0.0

0.5

1.0
P(

D
t|x

<
t)

0.0

0.5

1.0

P(
D

t|x
<

t)

Figure 7: Estimates of posteriors p(Dt | x<t) with
a DEMIX LM (1.3B parameters per GPU), after 100
sequences (i.e., 102,400 tokens) of data in training (top
heatmap) and novel domains (bottom heatmap).

DENSE (1.3B params per GPU) 29.4
DEMIX (cached; 1.3B params per GPU) 21.8

GPT-3 Da-Vinci 20.5

Table 17: Zero-shot perplexity on the Penn TreeBank
Corpus (Marcus et al., 1993), comparing our largest
DENSE and DEMIX baselines with GPT-3 Da-Vinci,
the largest Brown et al. (2020). Our largest DEMIX LM
gains a large boost in performance over DENSE baseline,
approaching the performance of GPT-3 Da-Vinci with
a fraction of the compute budget.

x<t

“ The COVID-19 pandemic is 
caused by severe acute  

respiratory syndrome 
coronavirus-2 (SARS-CoV-2)  
and has spread worldwide…”

xt

P(Dt |x<t)

Dt

FFN 2 FFN 3 FFN 4FFN 1

Figure 8: Illustration of inference with domain expert
mixing. For a given input text x<t from CORD-19, we
estimate a posterior domain probabilities p(Dt | x<t),
informed by a prior that is either iteratively updated
during inference, or is precomputed and cached on held-
out data. In this example, the model assigns highest
domain probabilities to the medical and news domains.
We use these probabilities in a weighted mixture of
expert outputs to compute the output xt.

20



3. Adapt new expert, freezing all other parameters

x<t

1. Calculate Domain Posteriors

2. Copy “closest” expert

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

P(Dt |x<t)

Dt

COVID-19 
Papers

COVID-19 
Papers

Figure 9: Illustration of DEMIX-DAPT. First, we es-
timate domain posteriors on a held out sample of the
target domain (in this case, CORD-19). We then ini-
tialize a new expert with the parameters of the most
probable expert under the domain posterior distribution.
Finally, we adapt the parameters of the newly initialized
expert to the target domain, keeping all other parameters
in the LM frozen.

21


