
DeCaFlow: A Deconfounding Causal Generative Model

Abstract

We introduce DeCaFlow, a deconfounding causal
generative model. In stark contrast to prior works,
DeCaFlow requires training once per dataset with
observational data and the causal graph, and en-
ables accurate causal inference on continuous vari-
ables under the presence of hidden confounders.
We extend previous theoretical results to show
that a single instance of DeCaFlow provides cor-
rect estimates for all causal queries identifiable
with do-calculus, leveraging proxy variables when
do-calculus alone is insufficient. Moreover, we
extend these results to counterfactual queries as
well. Our empirical results on datasets such as
Ecoli70—with 3 independent hidden confounders,
tens of observed variables and hundreds of causal
queries—show that DeCaFlow outperforms exist-
ing approaches, while demonstrating its out-of-the-
box applicability to any given causal graph.

1 INTRODUCTION

Causal inference concerns how changes in one variable
affect others, which is crucial to evaluate the effects of in-
terventions in real-world applications [14, 64, 74]. Often,
however, empirical trials are infeasible due to ethical, fin-
ancial, or practical constraints, and thus answering causal
queries from observational data becomes essential. Unfor-
tunately, this is a especially challenging task due to the
presence of unmeasured hidden confounders [1, 19].

Our goal here is to enable practical and accurate causal infer-
ence on continuous variables under the presence of hidden
confounders. To this end, we build on two key concepts:
i) causal generative models (CGMs) [9, 25, 29, 55, 73], a
class of generative models that can generate samples from
the observational, interventional and (sometimes) counter-
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Figure 1: DeCaFlow can be effortlessly applied to highly
complex causal graphs, as that of the Ecoli70 dataset [56],
with multiple hidden confounders and dozens of variables.
We dash hidden confounders, and highlight direct hidden-
confounded effects as identifiable (and thus correctly estim-
ated by DeCaFlow), or unidentifiable.

factual distributions;1 and ii) proxy variables, i.e., condi-
tionally independent variables that yield information about
the hidden confounders [41, 42, 42, 66]. Consequently, we
introduce the DeCaFlow, a CGM which provides correct es-
timates of a broad class of interventional and counterfactual
queries under hidden confounding and, in stark contrast with
existing CGMs [66, 71, 72], it requires training once per
dataset with only observational data and the causal graph.
We prove theoretically that DeCaFlow correctly estimates
interventional and counterfactual queries that are identi-
fiable with do-calculus, leveraging proxy variables when
do-calculus alone is insufficient. Specifically, we first extend
recent advances in proximal causal inference by Miao et al.
[41] and Wang and Blei [66] to include counterfactual causal
queries. Then, we integrate proximal-identifiability with do-
calculus, expanding the number of identifiable queries of
which DeCaFlow is shown to provide correct estimates.
As proof of the claimed flexibility, Fig. 1 shows the causal

1We defer the reader to §E for a discussion on relevant works.
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graph of the Ecoli70 dataset [56], comprising 43 observed
variables and 3 hidden confounders, which DeCaFlow can
effortlessly model despite the complex settings, and accur-
ately recovers diverse causal effects after a single training
process. Remarkably, green edges in the figure represent
direct causal effects that DeCaFlow can estimate despite the
presence of hidden confounders. We empirically validate all
our claims on semi-synthetic and real-world experiments,
demonstrating that DeCaFlow outperforms existing alternat-
ives while being widely applicable out-of-the-box.

2 BACKGROUND

Definition 1. A (confounded) Structural Causal Model
(SCM) is a triplet M := (f, Pu, Pz) describing a data-
generating process over D observed (endogenous) variables
x := (x1, x2, . . . , xD) ∈ X :

xi := fi(pa(i), ui, z) for i = 1, 2, . . . , D , (1)
with u := (u1, u2, . . . , uD) ∼ Pu , z ∼ Pz ,

where fi is the causal mechanism to compute xi from its
observed causal parents, pa(i), the i-th exogenous variable,
ui, and the hidden confounders, z ∈ Z .

While we make the dependence on the hidden confounders
explicit for all observed variables in Eq. 1, we assume
w.l.o.g. that a subset of them may not be directly affected
by the hidden confounders. Furthermore, given a SCMM,
we denote by G the faithful causal graph that it induces,
representing a direct causal relationship between pairs of
endogenous and hidden variables only if it exists.

Definition 2. A causal query Q(M) := pM(y| do(t), c)
is a distribution over y ∈ x (the outcome variable), as a
result of intervening upon the variable t ∈ x (the treatment
variable). Additionally, Q(M) denotes an interventional or
counterfactual query if the variable c is, respectively, the
empty set or the vector of observed factual values, xf.

We call a causal query identifiable if it can be expressed as
a function of the observational distribution, pM(x), and the
causal graph G [47]. As a result, any SCM inducing the same
graph and matching the observational distribution produces
correct estimates of that causal query. Moreover, any identi-
fiable query can be rewritten this way using a set of three
rules, the do-calculus [46], yet in the presence of hidden
confounders this may not be possible and we risk producing
incorrect estimates due to unaccounted confounders.

Causal normalizing flows (CNFs) [25] are the basis of De-
CaFlow, given their strong guarantees despite mild assump-
tions. Given a causal graph G, a CNF Tθ is a masked autore-
gressive normalizing flow [44] built such that it defines an
unconfounded SCMMθ = (Tθ, Pu) inducing G by design.

As demonstrated by Javaloy et al. [25], CNFs are a remark-
able family of CGMs as they not only form a parametric
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Figure 2: Example of DeCaFlow architecture for the
causal graph G in Fig. 5 during training (Eq. 4). Circles
represent input/output variables of the masked conditional
normalizing flows, and black dots conditional inputs. ε is a
non-causal random variable needed to model z with Tϕ.

family of identifiable SCMs, but they can provably approx-
imate the underlying SCM in the three rungs of Pearl’s
ladder of causation [47] simply by maximizing the observed
joint evidence, i.e., maxθ log pθ(x). Furthermore, CNFs
are also equipped with an exact do-operator for efficient
sampling of any causal query, enabling their use for complex
causal-inference tasks. Their main downside is the need to
assume the absence of hidden confounders to guarantee the
capabilities above, limiting their application.

3 DECONFOUNDING CAUSAL
NORMALIZING FLOWS

LetM be an underlying confounded SCMM, as in Def. 1,
of which we have access to N i.i.d. observations as well as
to the faithful causal graph, G. Our goal is to design and
learn a CGM that can accurately estimate as many causal
queries from the original SCM as possible, despite hidden
confounding. In other words, we seek a substitute model of
M to accurately perform causal inference.

Assumptions. We assume all variables to be continuous,
and the SCMM to have C1-diffeomorphic equations con-
ditioned on z, and to induce an acyclic causal graph G.
We now present the deconfounding causal normalizing flow,
or DeCaFlow for short, a CGM which extends CNFs [25]
to account for hidden confounding while retaining all their
theoretical properties. To achieve this, DeCaFlow follows an
architecture akin to variational autoencoders [31] as shown
in Fig. 2, i.e., DeCaFlow comprises two main components:
i) a generative network that exploits structural constraints
to faithfully modelM, given a substitute of z; and ii) an
inference network which approximates the intractable pos-
terior distribution of z as modeled by the generative network,
given the observed endogenous variables. In the following,
we provide further details on both networks:

Generative network. We use CNFs [25] as our starting
point, and adapt them to take the hidden confounders as con-
ditional inputs by using conditional masked autoregressive
normalizing flows [69]. The resulting model, Tθ , is thus an
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invertible transformation conditioned on z, describing a data-
generating process mapping a set of exogenous variables to
endogenous ones and vice versa, i.e., Tθ,z(x) = u ∼ Pu

and x = T−1
θ,z(u) , where we further exploit the graph G to

ensure that the generative process is faithful, i.e., that

pθ(x | z) =
D∏
i=1

pθ(xi | pa(i), z) , (2)

similar to Def. 1 and, just as in that definition, only the
children of z are actually conditioned on z in Eq. 2.

Deconfounding network. To model the posterior of z
given our observations as modeled by Tθ , i.e., the abduction
step needed to compute counterfactuals [47], we use another
masked autoregressive conditional normalizing flow [69],
as it can approximate this distribution arbitrarily well. Once
again, we exploit knowledge of G and mask the resulting
network, Tϕ, such that it models z using only the strictly
necessary variables to ease its learning:

qϕ(z | x) = qϕ (z | ch(z) ∪ pa(ch(z))) . (3)

We provide in §C a more general version of Eq. 3, and an
empirical validation on the choice of architecture in §B.2.

Training process. We jointly train both networks as typic-
ally done in deep latent-variable models, i.e., we maximize
the evidence lower bound (ELBO) [31]:

L(θ,ϕ) = Eqϕ [log pθ(x, z)] + H(qϕ(z | x)) (4)
= Eqϕ [log pθ(x | z)]−KL[qϕ(z | x)∥ p(z)] ,

where p(z) is the prior of z, KL the Kullback-Leibler diver-
gence [34], and H the differential entropy [32]. Optimizing
the ELBO encourages that: i) the generative network ex-
plains the observations given samples from qϕ (first term of
Eq. 4); ii) the deconfounding network prevents allocating
information exclusive of x in z (entropy term in Eq. 4); and
iii) DeCaFlow matches the observation distribution, pM(x),
as all the theory relies on it. More specifically, the last point
is encouraged since

max
ϕ,θ

L(ϕ,θ) =min
ϕ,θ

KL[pM(x)∥ pθ(x)]

+ KL[qϕ(z | x)∥ pθ(z | x)] . (5)

DeCaFlow is however susceptible to posterior collapse [67]
as a result of using the ELBO, i.e., to the KL term in Eq. 4
precipitately vanishing, and the posterior hence equating the
prior. Fortunately, we can leverage existing solutions and,
e.g., employ annealing or KL balancing terms [63].

4 ESTIMATION OF CAUSAL QUERIES
UNDER HIDDEN CONFOUNDING

By leveraging recent results in proximal-identifiability, we
next show that DeCaFlow not only preserves the properties

of CNFs, but expand them. While we present here a short
summary, all derivations can be found in §A.

4.1 INTERVENTIONAL QUERIES
First, we consider hidden-confounded interventional queries,
i.e., queries of the form Q(M) = pM(y| do(t)) , where
y, t ∈ ch(z) are any two children of the hidden confounder.
We formalize the following proposition in §A.2:

Proposition 4.1 (Informal). A query pM(y| do(t)) , where
y, t ∈ ch(z) are two different children of z, is identifiable if
there exists a (potentially empty) subset of variables b ⊂
x \ {t, y}, and two proxies n,w ∈ x \ {t, y,b} such that:
1. (b, z) forms a valid adjustment set,

2. w is a proxy variable given b, i.e., w⊥⊥ (t,n)|b, z ,

3. n is a null proxy variable given b, i.e., y⊥⊥n| t,b, z,

4. both w and n yield enough information about z.

Prop. 4.1 extends the results of Miao et al. [41] and Wang
and Blei [66] to prove identifiable of queries under hidden
confounding even if treatment and outcome have observed
parents in common, rendering causal queries identifiable in
the infinite-data regime by leveraging proxy information,
thus complementing classical do-calculus [35]. Intuitively,
w is used to build a function which “substitutes” the hidden
confounder for that query, and n ensures that this substitute
yields the correct estimate. Next, we expand the class of
identifiable causal queries by introducing the queries iden-
tifiable with Prop. 4.1 as an additional base case for the
recursive steps of do-calculus:

Corollary 4.2. An interventional query is identifiable if,
using do-calculus, it can be reduced to a combination of ob-
servational queries and identifiable interventional queries
in the sense of Prop. 4.1.

Similar to CNFs [25], we can readily interpret the generat-
ive network of DeCaFlow as a parametric confounded SCM
(Def. 1) of the formMθ := (T−1

θ , Pu, Pz). This SCM in-
duces G by design, and since the family of normalizing flows
are universal density approximators,Mθ can match the ob-
servational distribution pM(x) given enough resources. We
can then prove the following:

Corollary 4.3. If DeCaFlow induces the same causal graph
asM and pM(x)

a.e.
= pθ(x), then it correctly estimates any

query identifiable in the sense of Cor. 4.2.

4.2 COUNTERFACTUAL QUERIES
Next, we focus on queries Q(M) = pM(ycf| do(tcf),xf),
where xf is an observed factual. Intuitively, this query rep-
resents the distribution the outcome would have had, had
we intervened on the treatment variable. We demonstrate
a one-to-one correspondence between proxy-identifiable
interventional and counterfactual queries:

Proposition 4.4 (Informal). If a query p(y| do(t)) is iden-
tifiable in the sense of Prop. 4.1, then its counterfactual
counterpart, p(ycf| do(tcf),xf) , is also identifiable.
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Figure 3: ATE and CF error boxenplots [21] of different CGMs on the (a) Sachs and (b) Ecoli70 datasets, aggregating over
all identifiable direct effects after intervening on their 25th, 50th, and 75th percentiles over 5 random initializations.

The proof of Prop. 4.4 exploits the notion of twin SCM [5],
which duplicates the structural equations for the factual
and counterfactual worlds while sharing the exogenous vari-
ables, and the fact that Prop. A.2 (the formal version of
Prop. 4.1) allows for queries with additional covariates as
long as they do not form colliders, which is always the case
with xf in pM(ycf| do(tcf),xf). We can then follow the same
derivations from the previous section to show that:

Corollary 4.5. If DeCaFlow induces the same causal graph
asM and pM(x)

a.e.
= pθ(x), then it correctly estimates any

counterfactual query decomposable as a combination of
(proxy-)identifiable queries using do-calculus.

While the above results can look surprising at first, recall
that we assume continuous endogenous variables and diffeo-
morphic causal generators (§3). Moreover, the correct estim-
ation of counterfactual queries does not come without chal-
lenges: i) we need to accurately estimate pθ(z|x), which
is why it is crucial to correctly design and train qϕ; and ii)
given z and x, we need to accurately perform the abduction
step. Fortunately, the latter step is trivialized using CNFs as
generative networks, since they are bijective given z.

5 EMPIRICAL EVALUATION

We empirically test DeCaFlow on two semi-synthetic data-
sets, showing that it accurately estimates interventional and
counterfactual queries when the requirements of §4 are met.
We provide all details and additional experiments in §B.

Common evaluation. We measure estimation quality us-
ing mean absolute error (MAE) of the average treatment ef-
fect (ATE) and the counterfactual samples. We also account
for differences across observed variables by computing all
errors over standardized variables.

Baselines. We consider three CGMs assuming causal suf-
ficiency: CNFs [25]; ANMs [22]; and DCMs [9]; and the
Deconfounder [65], which uses proxies similar to DeCa-
Flow, yet it needs to train once per outcome. We use as
oracle a CNF [25] that observes the hidden confounders.

Datasets. We consider the Sachs [53] and Ecoli70 [56]
datasets, and randomly generate non-linear SCMs inducing
the same causal graph as the original dataset, see Figs. 1
and 16. We consider additive and nonadditive equations,
measure the effect of interventions on the downstream nodes,
and ensure when generating the SCM that the randomized
effect of the hidden confounder is perceptible.

Results. We present a visualization of the results in Fig. 3,
where we can observe that DeCaFlow consistently outper-
forms every considered CGM for both ATE and counterfac-
tual errors, staying on par with the oracle model. Moreover,
we appreciate a great difference in performance between
DeCaFlow and CNFs, which corroborates the importance
of the additions introduced by DeCaFlow, since a CNF is
equivalent to DeCaFlow with z of size zero.
Moreover, Fig. 3b shows that DeCaFlow is able to closely
match the performance of the oracle model, outperforming
existing approaches. Remarkably, this experiment highlights
every strength of DeCaFlow as it needs to: i) model sev-
eral hidden confounders affecting different sets of variables;
ii) correctly estimate all causal queries with proxy inform-
ation; and iii) achieve the above in an agnostic manner,
i.e., training the model out-of-the-box and one single time,
despite the graph G having 43 observed variables.

6 CONCLUDING REMARKS
In this work, we have introduced DeCaFlow, a CGM that
enables accurate estimation of interventional and counter-
factual queries under hidden confounding. DeCaFlow ex-
pands on CNFs, preserving and expanding their theoretical
properties, while offering several key advantages over prior
approaches. Namely, DeCaFlow can be applied out-of-the-
box to any given causal graph and, training once per dataset,
it correctly estimates a broad class of (potentially hidden-
confounded) interventional and counterfactual queries, in
stark contrast with existing approaches.
Exciting future work includes the use of instrumental vari-
ables [20], as well as applying DeCaFlow to time-varying
settings and to real-world problems such as decision support
systems [54], or policy making [15], to name a few.
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ović, and Kristian Kersting. Relating graph neural
networks to structural causal models. ArXiv preprint,
abs/2109.04173, 2021. URL https://arxiv.or
g/abs/2109.04173.

[74] Siyuan Zhao and Neil Heffernan. Estimating Indi-
vidual Treatment Effect from Educational Studies with
Residual Counterfactual Networks. International Edu-
cational Data Mining Society, 2017.

9

https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
http://proceedings.mlr.press/v139/wang21c.html
http://proceedings.mlr.press/v139/wang21c.html
https://proceedings.neurips.cc/paper/2021/hash/2b6921f2c64dee16ba21ebf17f3c2c92-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2b6921f2c64dee16ba21ebf17f3c2c92-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2b6921f2c64dee16ba21ebf17f3c2c92-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2b6921f2c64dee16ba21ebf17f3c2c92-Abstract.html
https://arxiv.org/abs/1912.00042
https://arxiv.org/abs/1912.00042
https://proceedings.mlr.press/v206/xi23a.html
https://proceedings.mlr.press/v206/xi23a.html
https://proceedings.neurips.cc/paper/2021/hash/5989add1703e4b0480f75e2390739f34-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5989add1703e4b0480f75e2390739f34-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5989add1703e4b0480f75e2390739f34-Abstract.html
https://openreview.net/pdf?id=vouQcZS8KfW
https://openreview.net/pdf?id=vouQcZS8KfW
https://arxiv.org/abs/2109.04173
https://arxiv.org/abs/2109.04173


A CAUSAL IDENTIFIABILITY

A.1 MODEL IDENTIFIABILITY

In this section, we briefly discuss the identifiability (in the sense of Xi and Bloem-Reddy [70]) of those variables that are
indirectly confounded by z or not confounded at all, i.e., of those variables that are not children of any hidden confounder.
As we discuss now, we can reduce our SCM (Def. 1) to a conditional one that only models these aforementioned variables,
recovering the identifiability guarantees from Javaloy et al. [25].

To prove model identifiability, we resort to what we call the induced conditional SCM, which intuitively represents the
original SCM where we restrict our view to a subset of variables, and assume the rest of the variables are given.

Definition 3 (Induced conditional SCM). Given a SCMM = (f, Pu, Pz), and a subset of observed variables x′ ⊂ x, we
define the induced conditional SCM ofM given x′, denoted byM|x′ , to the SCM result of having observed x′, and where
causal generators and exogenous variables are restricted to only those associated with the unconditioned variables, i.e.,
x \ x′.

x1 z x2

x3 x5

x6 x7 x8

(a) Confounded SCM.

•
x1

•
x2

x3 x5

x6 •
x7

x8

(b) Conditional unconfounded SCM.

Figure 4: Example of: (a) a confounded SCMM; and (b) its induced conditional counterpart,M|x′ where the children
of the hidden confounder are observed and fixed, x′ = ch(z) = {x1, x2, x7}. Note that M|x′ does not exhibit hidden
confounding.

We provide a visual depiction of this idea in Fig. 4. Using this definition, we can observe that, if we were to condition on the
children of the hidden confounder, we would be left with a (conditional) unconfounded SCM, as the influence of the hidden
confounder has been completely blocked by conditioning on its children. Now, if we have two models that perfectly match
their marginal distributions, this means that they perfectly match their induced conditional SCM, no matter which value
we observed for ch(z), and we can thus leverage existing results from Javaloy et al. [25] for unconfounded SCMs. More
specifically:

Corollary A.1. Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) that are Markov-equivalent—i.e.,
they induce the same causal graph—and which coincide in their marginal distributions, p(x) a.e.

= p̃(x). Then, both SCMs,
restricted to every variable other than ch(z), are equal up to an element-wise transformation of the exogenous distributions.

Proof. The proof follows almost directly from [25, Theorem 1]. First, note that the two induced conditional SCMs are no
longer influenced by z once that we have observed a specific realization of ch(z), so that we can drop z from their structure,
i.e., we can rewrite them instead as unconfounded SCMs,M|ch(z) = (f|ch(z), Pu|ch(z)) and M̃|ch(z) = (f̃|ch(z), Pũ|ch(z)) .
To ease notation, let us call xc := x \ ch(z) the variables that are not children of z.

Next, note that for almost every realization of ch(z), we have that p(xc| ch(z)) a.e.
= p̃(xc| ch(z)) since p(x)

a.e.
= p̃(x) by

assumption and p(x) = p(xc| ch(z))p(ch(z)) . As a result, for each realization of ch(z) we can apply Theorem 1 of Javaloy
et al. [25], which yields that the two induced conditional SCMs are equal up to an element-wise transformation of the
exogenous distribution.

Finally, since the causal generators and exogenous distributions of the induced SCMs are, for almost every ch(z), identical
to their counterparts in the original SCMs (as we have just discarded those components associated with ch(z)), we get
that, those elements in both SCMs associated with xc, are identical up to said (possibly ch(z)-dependent) component-wise
transformation.
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A.2 QUERY IDENTIFIABILITY
We now prove the identifiability of the causal queries considered in the main text.

To this end, one key property that we will use in the following is that of completeness (as, e.g., in the work of Wang and Blei
[66]). Intuitively, we say that a random variable z is complete given another random variable n if “any infinitesimal change
in z is accompanied by variability in n” [42], yielding enough information to recover the posterior distribution of z. This
concept is similar in spirit to that of variability in the case of discrete random variables [43]. In practice, completeness is
more likely to be achieved the more proxies we measure [3].

Definition 4 (Completeness). We say that a random variable z is complete given n for almost all c if, for any square-
integrable function g(·) and almost all c,

∫
g(z, c)p(z| c,n) dz = 0 for almost all n, if and only if g(z, c) = 0 for almost

all z.

The following proposition (informally simplified in Prop. 4.1) is a generalization of the results previously presented by
Miao et al. [41] and Wang and Blei [66], where we include an additional covariate c to the causal query, and make no
implicit assumptions on the causal graph allowing, e.g., for the treatment and outcome variables to hame some observed
parents in common. However, note that c cannot be a collider (e.g., forming a subgraph of the form n→ c← y). Otherwise,
conditioning on c would make independent variables dependent (in the example, y and n), and the causal effect of t on y
would not be identifiable.

Proposition A.2 (Query identifiability). Given two SCMs M := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume that they
are Markov-equivalent—i.e., they induce the same causal graph—and which coincide in their marginal distributions,
p(x)

a.e.
= p̃(x). Then, they compute the same causal query, p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x, if there exists

two proxies w,n ⊂ x and b ⊂ x, none of them overlapping nor containing variables from the previous subsets, s.t.:

i) w is conditionally independent of (t,n) given b, z and c. That is, w⊥⊥ (t,n)|b, z, c .

ii) n is conditionally independent of y given t, b, z and c. That is, y⊥⊥n| t,b, z, c .

iii) (b, z) forms a valid adjustment set for the query p(y| do(t), c). That is, given c, they are independent of t after severing
any incoming edges to it, t⊥⊥ Gt

(b, z)| c , and they block every backdoor path from t to y.

iv) z is complete given n for almost all t, b, and c,

v) z̃ is complete given w for almost all b and c,

and the following regularity conditions also hold:

vi)
∫∫

p̃(z̃|w,b, c)p̃(w| z̃,b, c) dz̃dw <∞ for all b, c, and

vii)
∫
p̃(y| t,b, z̃, c)2p̃(z̃|b, c) dz̃ <∞ for all t, b, and c.

Proof. First, note that the first three independence assumptions hold for both models,M and M̃, as they induce the same
causal graph. Following the same arguments as Miao et al. [41, Proposition 1], we have that assumptions v), vi), and vii)
guarantee the existence of a function h̃ such that it solves the integral equation over M̃,

p̃(y | t,b, z̃, c) =
∫

h̃(y, t,b,w, c)p̃(w | b, z̃, c) dw , (6)

since assumption vi) ensures that the conditional expectation operator is compact [8], assumption v) that all square-integrable
functions are in the image of the operator (i.e., the operator is surjective), and assumption vii) that p̃(y| t,b, z̃, c) is indeed
part of the image.

We can show that h̃ also solves a similar integral equation, this time over the other SCM,M, as follows:

p(y | t,b,n, c) = p̃(y | t,b,n, c) [equal marginals] (7)

=

∫
p̃(y | t,b,n, z̃, c)p̃(z̃ | t,b,n, c) dz̃ [augment with z̃] (8)

=

∫
p̃(y | t,b, z̃, c)p̃(z̃ | t,b,n, c) dz̃ [assumption ii)] (9)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, c)p̃(z̃ | t,b,n, c) dz̃dw [plug Eq. 6] (10)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, t,n, c)p̃(z̃ | t,b,n, c) dz̃ dw [assumption i)] (11)
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=

∫
h̃(y, t,b,w, c)p(w | t,b,n, c) dw . [equal marginals] (12)

Note that Eq. 12 is a Fredholm equation of the first kind that is implicitly solved by modeling the observational data.
Similarly, we can relate the expression for the interventional distribution of both models:

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, z̃, c)p̃(b, z̃ | c) db dz̃ [augment and ass. iii)] (13)

=

∫
p̃(y | t,b, z̃, c)p̃(b, z̃ | c) dbdz̃ [backdoor criterion] (14)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, c)p̃(b, z̃ | c) db dw dz̃ [plug Eq. 6] (15)

=

∫
h̃(y, t,b,w, c)p(b,w | c) dbdw [equal marginals] (16)

= p(y | do(t), c) , (17)

where the last equality is a consequence of Eq. 12 as we will show now. More specifically, we have that

p(y | t,b,n, c) =
∫

h̃(y, t,b,w, c)p(w | t,b,n, c) dw [Eq. 12] (18)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, t,n, c)p(z | t,b,n, c) dw dz , [augment with z] (19)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, c)p(z | t,b,n, c) dw dz . [assumption i)] (20)

Similarly, we have that

p(y | t,b,n, c) =
∫

p(y | t,b,n, z, c)p(z | t,b,n, c) dz [augment with z] (21)

=

∫
p(y | t,b, z, c)p(z | t,b,n, c) dz . [assumption ii)] (22)

Now, equating both expressions we have that

0 =

∫∫ {
p(y | t,b, z, c)−

∫
h̃(y, t,b,w, c)p(w | b, z, c) dw

}
p(z | t,b,n, c) dz , (23)

which, due to assumption iv), implies that

p(y | t,b, z, c) a.e.
=

∫
h̃(y, t,b,w, c)p(w | b, z, c) dw . (24)

Finally, putting all together we see that we can write the interventional distribution of the original model using h̃,

p(y | do(t), c) =
∫∫

p(y | do(t),b, z, c)p(b, z | c) dbdz [augment and assumption iii)] (25)

=

∫∫
p(y | t,b, z, c)p(b, z | c) dbdz [backdoor criterion] (26)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, c)p(b, z | c) db dz dw [Eq. 24] (27)

=

∫
h̃(y, t,b,w, c)p(b,w | c) db dw , [equal marginals] (28)

which justifies the last equality in Eq. 17.

Using a causal graph similar to the one presented by Miao et al. [41], we now provide some intuition on the semantics of
each random variable in Prop. A.2. More specifically, consider the causal graph that we depict in Fig. 5, and say that we
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want to check if the causal query p(y| do(t)) is identifiable (note that this the same query as in Prop. A.2 but with c = ∅).
As it is common in the causal inference literature [49, 60], t and y represent the treatment and outcome random variables.

n z w

t y

b

Figure 5: Example for which
Prop. A.2 applies, and where
b ̸= ∅ .

More specific to Prop. A.2 are w and n. Here, w is a proxy variable whose role is that of
distinguishing the information from z and other variables, to reconstruct the information
of z and block the backdoor path that z would usually block. Similarly, the variable n
is another proxy variable which, in this case, serves the purpose of verifying that the
substitute formed with w is indeed a good one. Finally, the variable b serves the purpose
of blocking all the remaining backdoor paths that z may not block, so that we can apply
the backdoor criterion.

Moreover, note that for all interventional queries we let c be the empty set, similar to
the results proved by Miao et al. [41] and Wang and Blei [66]. We will consider cases
when c is not empty later in §A.3 to prove counterfactual identifiability. Note also that
Prop. A.2 reduces to previous results when c = b = ∅ .

We now turn our attention towards proving Cor. 4.2, i.e., towards broadening the concept of query identifiability by
introducing Prop. A.2 as a base case of do-calculus. To this end, we introduce the concept of a hedge which will be use later,
but we still strongly recommend reading the work by Shpitser and Pearl [59].

Definition 5 (Hedge, [59, Def. 6]). Let y, t ⊂ x be disjoint sets of variables in G. Let F , F ′ be r-rooted C-forests (see [59,
Def. 5]) such that F ∩ t ̸= ∅, F ′ ∩ t = ∅, F ′ ⊂ F , and r is a subset of the ancestors of y after severing the incoming edges
of t. Then F and F ′ form a hedge for p(y| do(t)) in G.

Corollary 4.2. An interventional query is identifiable if, using do-calculus, it can be reduced to a combination of observa-
tional queries and identifiable interventional queries in the sense of Prop. 4.1.

Proof. With the additional notion of proxy-identifiability provided by Prop. A.2 (informally presented in Prop. 4.1), the
result is just a consequence of applying the identifiability algorithm provided by Shpitser and Pearl [59]. See also [23, 62]
for other references.

Since the do-calculus rules are complete in the classical sense of identifibiability, a query is not identifiable if the aforemen-
tioned algorithm yields a FAIL status (i.e., it executes line 5 of Figure 3 in [59]). If that is the case, then it means that, at
the specific recursive call for which the algorithm failed, the local graph G contains a hedge and the interventional query
p(y| do(t)) is not identifiable in the classical sense.

Crucially, this hedge (F, F ′) expresses the inability of identifying an interventional query of the form p(r| do(t′)) where the
root r is a subset of ancestors of y′ ⊆ y and t′ ⊆ t . Then, this local query can still be proxy-identifiable if Prop. A.2 can be
applied, and thus we can continue running the identification algorithm.

The stated result is then a consequence of successfully applying the logic above each time we find a FAIL status, yielding a
final FAIL status otherwise.

To be even more explicit regarding the identifiability of the queries proven in corollary above, let us callM the original
SCM as usual, and M̃ another SCM inducing the same causal graph asM and which matches the observational marginal
distribution ofM, i.e., p(x) a.e.

= p̃(x). Then, the output of the identifiability algorithm from the corollary above for both
SCMs will be two identical expressions EXP composed of sum, integrals, and products of observational quantities (i.e.,
marginals and conditionals of subsets of x) as well as proxy-identifiable queries of the form p(y| do(t)) as in Prop. A.2.
Therefore,

Q(M) = EXP(M) = EXP(M̃) = Q(M̃) , (29)

where the second equality is a consequence of both SCMs having equal observational distributions (and thus any other
quantity than can derived exclusively from p(x)) and of applying Prop. A.2 for any interventional query that appears in the
expression.

Illustrative example. To understand the implications of Prop. 4.1 and Cor. 4.2, consider the causal graph in Fig. 6, and
suppose we want to compute Q(M) = p(y1| do(t)) . Then, we can proceed as usual and apply the rules of probability theory
and do-calculus to rewrite Q(M) as

Q(M) =

∫
p(y1 | t, y2)p(y2 | do(t)) dy2 . (30)

As a result, the identifiability of p(y2| do(t)) implies that of Q(M). We can then devise a few different scenarios:
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n t

z b m y1

w y2

Figure 6: Causal graph for which the presence or absence of some parts render p(y1| do(t)) identifiable using do-calculus.
Else, Prop. 4.1 yields identifiability if w and n are informative proxies.

1. If there is no edge from z to t, i.e., t /∈ ch(z), then the backdoor criterion [49] holds for {n,b} = pa(t) ⊂ x and both
p(y1| do(t)) and p(y2| do(t)) are identifiable.

2. If there exists a mediator m between t and y2, we can apply the front-door adjustment [49] and both p(y1| do(t)) and
p(y2| do(t)) are identifiable.

3. If y2 is not caused by t, then we have that p(y2| do(t)) = p(y2) and both queries are identifiable.

4. Otherwise, we can still render p(y2| do(t)) identifiable if w and n yield sufficient information about z (intuitively, if the
posterior of z changes enough as we change w and n; see Def. 4) and we can hence apply Prop. 4.1.

The example above nicely illustrates how Prop. 4.1 complements do-calculus: if we find a query unidentifiable due to
reaching a dead end with do-calculus—in this case, p(y2| do(t)))—then Prop. 4.1 provides an additional case for which
the query can still be made identifiable. Moreover, this case clearly shows how Prop. 4.1 extends prior results as these did
not allow for common observable ancestors between outcome and treatment [41, 66]. Nevertheless, note that Prop. 4.1
provides only sufficient conditions for identifiability, and there could exist identifiable queries which do not comply with the
requirements of the proposition.

Corollary 4.3. If DeCaFlow induces the same causal graph asM and pM(x)
a.e.
= pθ(x), then it correctly estimates any

query identifiable in the sense of Cor. 4.2.

Proof. The proof is a direct consequence of the corollary above and the fact that we can interpret DeCaFlow as a dense
parametric family of confounded SCMs inducing the same causal graph asM (similar to the interpretation of Javaloy
et al. [25] as bijective SCMs) by considering the tripletMθ := (T−1

θ , Pu, Pz), where T−1
θ is the inverse of the generative

network that transforms u into x given z. This family being dense is a consequence of the generative networks forming a
family of universal density approximators [25, 44].

To be completely exhaustive, in the following we explore the general proposition Prop. A.2 on all scenarios where t and y
may or may not be directly caused by the hidden confounder, as we show in the following subsections.

A.2.1 Fully hidden-confounded case
In the case where both variables are children of z, we must see whether we can apply do-calculus with Prop. A.2 as an
additional base case, as described in Cor. 4.2.

A.2.2 Hidden-unconfounded case
Assume the case where neither t nor y are children of the hidden confounder, i.e., y, t /∈ ch(z) . In this case, the proof of
Prop. A.2 can be simplified and drop the requirement of finding valid proxy variables.

Corollary A.3. Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume that they are Markov-equivalent—i.e.,
they induce the same causal graph—and coincide in their marginal distributions, p(x) a.e.

= p̃(x). If y, t /∈ ch(z) , then,
p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x .

Proof. The proof follows directly by applying Prop. A.2 with the minimal subset b ⊂ pa(t) \ {c} that blocks all the
backdoor paths, and by noticing that in this case there is no need to use the variables z and z̃. That is, we can go from Eq. 13
to Eq. 17 directly by using only b and the equal-marginals assumption:

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, c)p̃(b | c) db (31)

=

∫
p̃(y | t,b, c)p̃(b | c) db (32)
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=

∫
p(y | t,b, c)p(b | c) db (33)

= p(y | do(t), c) . (34)

Even though we can leverage and simplify Prop. A.2 as shown above, it is worth remarking that, for this particular case,
the model identifiability results described in §A.1 are stronger, as it provides results on the identifiability of the causal
generators and exogenous distributions, and therefore of any causal query derived from them.

A.2.3 Confounded outcome case
For the case where only the outcome variable is a child of the hidden confounder, we can apply a similar reasoning as we did
in the previous case, although this time we cannot leverage the stronger results from Javaloy et al. [25]. More specifically:

Corollary A.4. Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume that they are Markov-equivalent—i.e.,
they induce the same causal graph—and coincide in their marginal distributions, p(x) a.e.

= p̃(x). Assume that t /∈ ch(z) .
Then, p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x .

Proof. The proof is identical to that of Cor. A.3.

z

b t y

Figure 7: Example of a front-
door causal.

Front-door example. While the proof above is trivial given the previous results, it is
worth stressing the importance of modeling the hidden confounder as we do in this work
with DeCaFlow. As an example, consider the SCM depicted in Fig. 7, where we have
that the outcome is directly confounded by z, while t is not. In this case, DeCaFlow can
correctly estimate the causal effects of b and t on y, i.e., to correctly estimate p(y| do(t))
and p(y| do(b)), using z̃ to model the influence of b onto y that is not explained through
t. Other models that do not model z—e.g., an unaware CNF [25]—would be able to
match the observed marginal distribution (as they are universal density approximators)
and therefore to estimate p(y| do(b)) (as it is identifiable through the mediator t using the front-door criterion), yet they
would necessarily fail to estimate p(y| do(t)), since they assume that y⊥⊥b| t yet we know that y⊥̸⊥b| t in the true model. In
other words, an unaware CNF would hold that p(y| do(t)) = p(y| t) which is clearly false by looking at Fig. 7.

To be even more explicit, in this case we would have a data-generating process that factorizes as

p̃(b, t, y, z̃) = p̃(z̃)p̃(b | z̃)p̃(t | b)p̃(y | t, z̃) , (35)

and hence the estimated interventional distribution from DeCaFlow matches the true one:

p(y | do(t)) =
∫

p(y | t,b)p(b) db [b forms a valid adjustment set] (36)

=

∫ {∫
p̃(y | t,b, z̃)p̃(z̃ | t,b) dz̃

}
p̃(b) db [Factorization and eq. marginals] (37)

=

∫∫
p̃(y | t, z̃)p̃(z̃ | b)p̃(b) db dz̃ [Factorization in Eq. 35] (38)

=

∫
p̃(y | t, z̃)p̃(z̃) dz̃ [marginalize b] (39)

= p̃(y | do(t)) . (40)

A.2.4 Hidden-confounded treatment case

z xi

t y

Figure 8: Case with no valid
adjustment set.

When only the treatment variable t is a child of z, we can face two different scenarios:
i) we find a valid adjustment set b blocking all backdoor paths, in which case we can
reason just as in the other partially hidden-confounded case, and ii) we cannot, and then
rely on do-calculus and the identifiability w.r.t. b. For example, if b happens to be a
parent of y which is directly caused by the treatment variable t and the hidden confounder
z as in Fig. 8, we cannot find a valid adjustment set for the causal query, but it may still
serve us if we can identify the same query with the adjustment set as outcome variable.
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Corollary A.5. Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) , assume that they are Markov-equivalent—
i.e., they induce the same causal graph—and coincide in their marginal distributions, p(x) a.e.

= p̃(x). If y /∈ ch(z) then,
p(y| do(t), c) = p̃(y| do(t), c), where y, t, c ⊂ x if there exists b ⊂ x not containing variables from the previous subsets,
such that one of the following two conditions are true:

i) b forms a valid adjustment set for the query p(y| do(t), c).

ii) b blocks all backdoor paths and the query p(b| do(t), c) is identifiable.

Proof. If condition i) holds, then we have a valid adjustment set, and the proof is identical to that of Cor. A.3.

Otherwise, if condition ii) holds, we have that the interventional query on y equals the observational query when conditioned
on b, but that now b is not independent of do(t), i.e.,

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, c)p̃(b | do(t), c) db (41)

=

∫
p̃(y | t,b, c)p̃(b | do(t), c) db (42)

=

∫
p(y | t,b, c)p(b | do(t), c) db (43)

= p(y | do(t), c) , (44)

where we needed to use that the query p(b| do(t), c) is identifiable in the third equality.

A.2.5 Napkin example

z1

z2

w b t y

Figure 9: Napkin causal graph [45].

Finally, we want to show one last illustrative example where DeCaFlow
provides correct estimates of a causal query that is identifiable by the do-
calculus, but neither the backdoor nor the front-door criteria are applicable.
While redundant (as the query is identifiable in the classical sense, and
then Cor. 4.2 applies), we believe it can be a good exercise to convince the
reader. Namely, the graph of Fig. 9 appears as the napkin graph in Pearl and
Mackenzie [45, Fig. 7.5]. What is particularly interesting in this graph is
that w is not a valid adjustment set since, despite blocking the backdoor
path from t to y through b, it forms a collider of z1 and z2.

However, z1 only affects the outcome and z2 only affects the treatment. Following from our previous results, the causal
effect from t to y should be correctly estimated by DeCaFlow. Here, we show that this is the case. First, let us express the
causal query of interest in another form applying do-calculus:

p(y | do(t)) = p(y | do(y), do(t)) = [Rule 3 of do-calculus since y⊥⊥ Ḡt,b̄
b | t] (45)

= p(y | t, do(b)) = [Rule 2 of do-calculus y⊥⊥ Gb̄,t
t | b] (46)

=
p(y, t| do(b))
p(t| do(b))

[Conditional probability] (47)

Once we have this expression, let us work on the numerator, considering that DeCaFlow is Markov-equivalent with the
graph in Fig. 9:

p(y, t | do(b)) =
∫

p(y, t | b,w)p(w) dw [Backdoor criterion] (48)

=

∫∫∫
p̃(y, t, z̃1, z̃2 | b,w)p(w) dw dz̃1 dz̃2 [Eq. marginals] (49)

=

∫∫∫
p̃(y|t, z̃1, z̃2,b,w)p̃(t|z̃1, z̃2,b,w)p̃(z̃1, z̃2|w)p(w) dw dz̃1 dz̃2 [Factorization] (50)

=

∫∫∫
p̃(y | t, z̃2)p̃(t | z̃2,b)p̃(z̃1, z̃2 | w)p(w) dw dz̃1 dz̃2 [Do-calculus rule 1] (51)
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Figure 10: Example of the transition from (a) the regular depiction of a (confounded) SCM, to (b) an explicit SCM where
the exogenous variables are drawn, and (c) a counterfactual twin SCM where the data-generating process is replicated in the
“factual and counterfactual worlds”. Figure (c) also depicts which nodes are observed and which are severed in order to
compute a counterfactual query of the type p(ycf| do(tcf),xf) .

=

∫ ∫
p̃(y | t, z̃2)p̃(t | z̃2,b)p̃(z̃1, z̃2) dz̃1 dz̃2 [Marginalize w] (52)

=

∫ ∫
p̃(y | t, z̃2)p̃(t | z̃2,b)p̃(z̃1)p̃(z̃2) dz̃1 dz̃2 [z̃1⊥⊥ Gz2] (53)

=

∫
p̃(y | t, z̃2)p̃(z̃1) dz̃1

∫
p̃(z̃2)p̃(t | z̃2,b) dz̃2 [Separate integrals] (54)

= p̃(y | do(t)) p̃(t | do(b)) [DeCaFlow estimate] (55)

Note also that, as shown in Eq. 40, DeCaFlow correctly estimates p(t| do(b)). Therefore, if we substitute Eq. 55 in Eq. 47,
we have that

p(y | do(t)) =
p̃(y| do(t)) p(t| do(b))

p(t| do(b))
= p̃(y | do(t)) . (56)

That is, we have explicitly shown that DeCaFlow correctly estimates the true causal query p(y| do(t)).

A.3 COUNTERFACTUAL QUERY IDENTIFIABILITY

In this section, we show that counterfactual query identifiability is a direct result of the interventional query identifiability
from the previous section.

In order to formally define counterfactuals, in this section we introduce the concept of counterfactual SCMs in a rather
untraditional fashion. Namely, we combine the concepts of twin networks from Pearl [47] (which replicates the data-
generating process) and that of counterfactual SCMs from Peters et al. [49] (which defines a counterfactual prior to the
intervention) as follows:

Definition 6 (Counterfactual twin SCM). Given a SCMM = (f, Pu, Pz), we define its counterfactual twin SCM as a
SCMMcf where all structural equations are duplicated, and the exogenous noise is shared across replications, and where
additionally one of the halves is observed (“the factual world”), and the other half is unobserved (“the counterfactual world”).

We provide in Fig. 10 a more intuitive depiction on the construction of these counterfactual twin networks. From this
definition, one can recover the counterfactual SCM defined by Peters et al. [49] by just focusing on the replicated part
of the counterfactual twin network, and conditioning the exogenous noise and hidden confounder on the observed half,
i.e., (f, Pu|xf , Pz|xf) . Similarly, one can compute the usual counterfactual query by performing an intervention on the
counterfactual twin network, i.e., by replacing the intervened equations by the constant intervened value, and computing the
query conditioned on the factual variables, p(ycf| do(tcf),xf). This is visually represented in Fig. 10c.

In order to prove query identifiability in the counterfactual setting, we need to use the following technical result regarding
the completeness of a random variable:
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Lemma A.6. If a random variable z is complete given n for almost all b, as given by Def. 4, then it is complete given n for
almost all b and c, where c is another continuous random variable.

Proof. We prove this result by contradiction. Assume that the result does not hold, then there must exist a non-zero measure
subset of the space of b×c for which there exists a square-integrable function g(·) such that

∫
g(z,b, c)p(z|b, c,n) dz = 0

for almost all n, but g(z,b, c) ̸= 0 for almost all z.

Since this subset has positive measure, there must contain an ε-ball within. If we now focus on the b-projection of this ball
where we fix c to its value on the center, we have that it is a subset of non-zero measure in the space of b (as otherwise it
would be zero-measure in the Cartesian-product measure), where the function g(·, c) breaks our initial assumption of the
completeness of z. Thus, we reach a contradiction.

Given Def. 6, it is rather intuitive that, if a causal query is identifiable in a SCMM, then it has to be identifiable in both
halves of its induced counterfactual twin SCMMcf, as they are identical. More importantly, we can now leverage again
Prop. A.2, this time with c = xf, to prove counterfactual query identifiability whenever we have interventional query
identifiability.

Proposition A.7 (Counterfactual identifiability). Given two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃), assume that
they are Markov-equivalent—i.e., they induce the same causal graph—and that they coincide in their marginal distributions,
p(x)

a.e.
= p̃(x). Then, if a query p(y| do(t)) is identifiable in the sense of Prop. A.2, where y, t ⊂ x, the query p(ycf| do(tcf),xf)

is also identifiable in the induced counterfactual twin SCM as long as the regularity conditions still hold, i.e., if:

i)
∫∫

p̃(z̃|w,b, c)p̃(w| z̃,b, c) dz̃dw <∞ for almost all b, c, and

ii)
∫
p̃(y| t,b, z̃, c)2p̃(z̃|b, c) dz̃ <∞ for almost all t, b, and c.

Proof. We essentially need to prove that the independence and completeness assumptions keep holding when we add the
factual covariate, c = xf .

For the independence, we need to show that, if we have a set of variables that fulfill the independence conditions from
Prop. A.2, then this set of variables keeps holding them if we include c = xf . This is, however, easy to show since factual
and counterfactual variables only have “tail-to-tail” dependencies, i.e., they are connected only through the shared exogenous
variables. As a result, if two variables from the same half are conditionally independent given a third set of variables,
conditioning on the other half cannot change this independence.

For the completeness, we need to show that introducing the factual variable retains the completeness assumed in Prop. A.2,
which is direct to show using Lemma A.6. Specifically, it holds that

i) z is complete given n for almost all t, b, and c, and

ii) z̃ is complete given w for almost all b and c.

Therefore, the requirements of Prop. A.2 hold when we append a factual variable to the twin network, and thus we can
reapply all the results from the previous sections to the counterfactual cases.

Once proven the result above, proving Cor. 4.3 is direct by following the exact same steps as we did in §A.2 to the
counterfactual twin network instead of the original network.

It is important to note that, while the results above provide counterfactual identifiability whenever we have interventional
identifiability, we still rely on how much of a good approximation the encoder is to the inverse of the decoder in the proposed
DeCaFlow model. That is, the quality of the encoder determines how well we can perform the abduction step to compute
counterfactuals. This consideration is unique to counterfactuals, as we just have to sample from the prior of z in the case of
interventional queries.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 ABLATION STUDY

We conduct a simple ablation to understand the extent for which misspecifying the size of z affects DeCaFlow, as well as its
sensitivity to the number of available proxies.
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Figure 12: Ablation study. Counterfactual error as we
change the number of proxy variables, S, and the latent
dimensionality, Dz. We plot mean and 95% CI over 5 real-
izations, intervening on the 25th, 50th, and 75th percentile
value of t.
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Figure 13: ATE absolute error varying the number of avail-
able proxies (S) and the dimensionality of the latent space
(Dz). Mean and 95% confidence interval over 5 realizations
and all interventions, made in percentiles 25, 50 and 75 of t.
Oracle represents a causal normalizing flow that observes z.
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Fig. 11: G.

Experimental setup. We consider two synthetic SCMs, with linear and non-linear causal equations, that
follow the causal graph G depicted in the inset figure, comprising two independent hidden confounders
affecting every variable, and S null proxies. We evaluate how well DeCaFlow estimates p(y| do(t)) as
we change the number of proxy variables, S, and the specified latent dimensionality, Dz.

In addition, we show the equations that we have used for the ablation study. There exist two unobserved
confounders, z1 and z2. Note that the proxies available in the nonlinear experiment are bounded or
periodic, specially sigmoids and hyperbolic tangents saturate and max(0, x) loses all the information
about the confounder for negative values and sines and cosines are periodic functions. In other words,
the distributions p(z | ni) are not complete, we lose information about z when in the transformations to
each n. However, if we add more proxies of the confounders, the information that the proxies contain about the confounder
is higher, and the causal effect of x1 on x2 becomes recoverable.
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z1 ∼ Pz1

z2 ∼ Pz2

t = 1.5 · z1 + 0.5 · z2 + 0.4 · ut

y = −0.75 · z1 + 0.6 · z2 + 0.9 · t + 0.3 · uy

n1 = −0.5 · z1 + 0.3 · z2 + 0.5 · u2

n2 = 0.75 · z1 − 0.4 · z2 + 0.4 · u2

n3 = −0.85 · z1 + 0.6 · z2 + 0.6 · u3

n4 = 0.6 · z1 + 0.6 · z2 + 0.55 · u4

n5 = −0.8 · z1 + 0.4 · z2 + 0.4 · u5

n6 = 0.9 · z1 − 0.7 · z2 + 0.6 · u6

n7 = −0.72 · z1 + 0.5 · z2 + 0.56 · u8

n8 = 0.78 · z1 + 0.4 · z2 + 0.58 · u8

n9 = −0.55 · z1 + 0.7 · z2 + 0.6 · u9

n10 = 0.88 · z1 + 0.3 · z2 + 0.4 · u10



z1 ∼ Pz1

z2 ∼ Pz2

t =
z21
4

· sin
(z2
2

)
+ z1 + 0.6 · ut

y =
z1 · t
4

+ 0.8 · z2 + 0.5 · t + x1 · u2 · 0.3 + 0.2 · uy

n1 = 0.6 · z21 +
(z2
4

)3

+ 0.3 · sin
(z2
2

)
+ 0.5 · u1

n2 = sin
(z1
2

)
+ cos

(z2
3

)
+ 0.4 · u2

n3 = cos
(z1
2

)
− tanh

(z2
3

)
+ 0.6 · u3

n4 = tanh
(z1
2

)
+ σ

(z2
2

)
+ 0.55 · u4

n5 = σ
(z1
2

)
+max(0,−z2) + 0.4 · u5

n6 = max(0, z1)− 0.5 ·max(0, z2) + 0.6 · u6

n7 = max(0,−z1) + 0.3 ·max(0,−z2) + 0.5 · z1 · u7

n8 = 0.8 ·max(0, z1) + 0.3 ·max(0, z2) + 0.58 · u8

n9 = 0.75 ·max(0,−z1) + 0.5 ·max(0, z2) + 0.6 · u9

n10 = 0.3 · z31 + 0.5 · |z2|+ 0.4 · u10

Results. Fig. 12 shows the counterfactual error for every considered case, where we clearly observe that adding proxies
reduces the error, with a drastic change as we add the second proxy, corroborating the requisites of Prop. 4.1. Similarly,
underestimating Dz increases error (especially under causal sufficiency, Dz = 0) while overestimating it does not seem to
have an effect. This indicates that, indeed, the entropy term in Eq. 4 prevents non-shared information from being modeled
through z, as discussed in §3.

Next, we present in Fig. 13 the ATE error committed for each combination of proxies and latent dimension, complementing
Fig. 12. If we observe the ATE error, we extract the same conclusion as observing counterfactual error, the causal effect is
not recoverable with less than two proxies, and more proxies result in better estimates. On the other hand, the selection of
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the dimension of the latent space bigger than the true dimension of the latent confounders does not affect the performance
negatively.

B.2 ABLATION STUDY FOR ENCODER SELECTION
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Figure 14: Ablation for encoder selection in Sachs’ dataset.
Metrics and 95% CI over 5 realization and all confounded
identifiable effects, intervening on percentiles 25, 50 and 75
of each intervened variable. Oracle represents a causal normal-
izing flow that observes all the confounders.

We have performed an ablation study for selecting the
encoder in the Sachs’ dataset, where we evaluate the
errors in the estimations of causal queries using a con-
ditional normalizing flow (Flow) and a multilayer per-
ceptron (MLP) as encoders. We also evaluate the impact
of using the warm-up regularization [63] in the KL term.
We can observe in Fig. 14 that we achieve lower errors
when applying a regularized flow. This is able to model
dependent latent variables and provides a more flexible
representation. In addition, we can appreciate that apply-
ing the warm-up regularization term is useful and does
not produce negative effects.

The improvement achieved by the flow is explained by the
following practical aspects of the conditional normalizing
flows. First, we can efficiently introduce the factorization
proposed in Eq. 3, taking advantage of the structure of the
causal graph (see Fig. 23 for an example), while this factorization implies the use of several MLP. Second, normalizing flows
are universal density approximators and do not need to assume specific posterior distributions (i.e. Gaussians). Note that
every continuous distribution can be modeled by a conditional normalizing flow, following the Knöthe-Rosenblatt transport.

B.3 ABLATION ON ENCODER FACTORIZATION
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Figure 15: Ablation for posterior factorization in Ecoli dataset.
Boxenplots of error metrics in the identifiable edges of Fig. 1.
DeCaFlow-ch uses Eq. 57 and DeCaFlow-all uses Eq. 60 for
posterior factorization.

Using a conditional normalizing flow as the encoder al-
lows us to model the dependencies between the observa-
tions and the posterior of the latent variables as desired.

We propose in Eq. 3 (extended in Eq. 60) a factorization
in which each hidden confounder depends on its parents
(other hidden confounders), its children and the parents
of its children, avoiding cycles. If a child of an unob-
served confounder, c, has other parents, then that child is
a collider between the hidden confounders and the other
parents of c. Therefore, conditioned on c, the hidden con-
founder is dependent of the other parents of c, given c.
That is the reason because we consider sensible to include
the other parents of c in the factorization of the hidden
confounder, z.

However, we also provide an ablation study on the Ecoli dataset, where we show that this factorization indeed helps to
the estimation of causal queries. Note that in the Ecoli dataset, lacY is a collider between eutG and cspG. Therefore,
conditioned on lacY, the two hidden confounders eutG and cspG become dependent. The factorization of Eq. 60 implies
that the posterior of cspG is modeled employing all the children of cspG and also the parents of its children, with eutG

among them. This dependency can be modeled by our encoder in an autoregressive manner.

This factorization incorporates more variables to approximate the posterior of the hidden confounders, compared with a
simpler approach that consist in modeling only children dependencies:

qϕ(z | x) =
Dz∏
k=1

qϕ (zk | ch(zk)) (57)

As shown in Fig. 15, leveraging the factorization of Eq. 60 reduces the errors estimating causal queries in complex graphs,
where colliders and dependent hidden confounders are present.

B.4 SEMI-SYNTHETIC SACHS’ DATASET
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Table 1: Performance metrics on Sachs datasets. Meanstd over five runs and all causal queries of interest. Interventions on
Raf, Mek and Akt and evaluating on confounded identifiable effects. Bold indicates significantly better results (95% CI
from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Nonadditive

Model MMD obs MMD int |ATE err| |CF err| MMD obs MMD int |ATE err| |CF err|
×104 ×104 ×102 ×102 ×104 ×104 ×102 ×102

Oracle CNF 4.841.84 7.506.17 6.056.83 10.0310.29 5.962.37 6.712.97 2.342.02 4.843.43

Aware DeCaFlow 2.150.54 7.043.87 4.496.76 12.958.00 5.122.42 7.5816.92 5.165.61 1.831.65
Deconfounder – − 34.3433.45 71.1386.98 – − 8.1410.69 63.1579.12

Unaware
CNF 5.801.58 73.9488.78 44.4939.12 56.0938.89 5.111.90 12.7920.73 9.7415.71 15.1515.37
ANM 83.8613.41 110.28112.43 22.4214.06 29.4012.22 81.907.21 60.40144.08 23.8813.94 28.9712.44
DCM 87.802.95 125.59118.20 21.2111.34 28.256.96 14.234.57 69.74390.81 8.447.96 27.5023.71

PKC PKA

Raf Jnk

Mek Erk Akt P38

Plcg PIP3 PIP2

Figure 16: Sachs’ graph. Green
edges mark proxy-identifiable
effects.

This dataset represents a network of protein-signaling in human T lymphocites. Every
variable, except PKA and Plcg can be intervened upon; therefore, there is not only one
causal query of interest, but tens of possible causal queries can arise in this setting. This
highlights one of the strengths of DeCaFlow, because we only need a single trained
model to answer all identifiable causal queries.
The original data contains a total of 853 observational samples; however, we have decided
to evaluate our model on semi-synthetic data because of the following reasons:

• The original network of Sachs et al. [53] contains cycles, which is a violation of one
of our assumptions. However, we have found different versions of the causal graph
[28, 39] that do not contain cycles. Therefore, we have decided to employ the causal
graph that appears in the library bnlearn [57]—a recognized library for Bayesian Nerwork learning—as ground truth
causal graph. The best way to ensure that the causal graph used is the ground truth is by generating samples according to
the causal graph. In addition, that causal graph is the one used by Chao et al. [9].

• We can compare our model with one of the baseline models, DCM, with the same dataset as Chao et al. [9] used.

• Semi-synthetic data allow us to compute all metrics to evaluate causal queries, having the ground truth.

For generating the data in this experiment, we have followed the procedure proposed by Chao et al. [9], where they take
the causal graph of Sachs et al. [53] and the empirical distribution of the root nodes, and generate the rest of the variables
with random non-linear mechanisms. In addition, exogenous variables have been included in an additive and non-additive
manner, respectively.
In the following, we complement the figures presented in §5 with a table that summarizes all the interesting metrics,
evaluated on the confounded identifiable causal queries shown in Fig. 16. Interventional distributions and counterfactuals
have been computed intervening in percentiles 25, 50 and 75 of the intervened variable.
Since observational MMD is computed only once, the statistics given in Tab 1 are calculated only over 5 runs. On the
other hand, we have as many interventional MMDs per run as interventions have been made. However, the statistics of
interventional MMD are computed over all the interventions of all intervened variables and 5 runs (5 runs × 3 intervened
variables = 15 samples). Finally, statistics over counterfactual error and ate error aggregate all the intervention-outcome
pairs over the five runs. For example, in this case we intervene in 3 variables, performing 3 different interventions and
evaluate in 3, 2, and 1 variable, respectively, for each intervened variable, and we have a total of (3+2+1)×3×5 = 90 different
measurements to compute the statistics.
The metrics in Tab 1 indicate that DeCaFlow outperforms all baselines across all interventional and counterfactual causal
queries in both settings of the semi-synthetic datasets. However, as discussed in §6, a limitation of our empirical approach is
that the differences in observational MMD, the selection criterion for CGMs, are marginal between the oracle, DeCaFlow,
and CNF. Notably, DeCaFlow even achieves a lower MMD than the oracle. This discrepancy arises because the number of
variables is large, and the MMD differences are on the order of 10−4.

B.5 SEMI-SYNTHETIC ECOLI70 DATASET
The Ecoli 70 dataset represent the gene expression of 46 genes of the RNA-seq of Escherichia coli bacteria. The assumed
causal graph comes from the study of [56], which provides insight into the regulatory mechanisms governing E. coli gene
expression. Examples of interventions in these networks are gene knockout and gene overexpression [37]. A priori, there
could be several variables in which intervening can be interesting in evaluating the effects in the cell.
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Table 2: Performance metrics on Ecoli70 dataset. ATE and CF error statistics computed aggregating all causal queries and 5
runs. Intervened and evaluated on the direct confounded identifiable causal effects of Fig. 1. Bold indicates significantly
better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Nonadditive

Model MMD obs MMD int |ATE err| |CF err| MMD obs MMD int |ATE err| |CF err|
×104 ×104 ×102 ×102 ×104 ×104 ×102 ×102

Oracle CNF 2.340.62 6.055.28 5.047.42 9.9112.46 1.490.57 4.058.22 3.514.84 1.671.64

Aware DeCaFlow 2.420.82 7.043.87 4.496.76 12.958.00 1.580.65 9.2222.38 8.7917.91 2.152.10
Deconfounder – − 27.3526.17 82.15116.90 – − 30.0033.24 9.909.47

Unaware
CNF 2.981.15 10.2512.13 23.9125.16 34.0223.90 1.950.77 10.2020.87 12.7219.21 2.452.06
ANM 32.802.81 44.3317.62 21.8823.89 31.3320.64 13.173.95 27.5631.57 15.0418.18 2.711.88
DCM 31.650.27 49.5036.83 24.4533.31 30.2224.83 18.786.01 33.3736.14 15.0722.37 2.362.08

For this experiment, we have generated the data in the same way as done with Sachs’ dataset with random mechanisms, but
in this case, since we do not have enough samples, root nodes follow standard Gaussian distributions. We have included
an additive and a nonadditive ways of including exogenous variables. In this case, we have used a semi-synthetic dataset
because the real dataset available in bnlearn [57] contains only 9 samples.

In Fig. 1 we show the causal graph of this setting. In addition, note that Fig. 1 has been extracted from our Alg. 6 of causal
effect identfiability. That is, we have specified the causal graph and the variables that are unmeasured, and our Algorithm
returns (in green) all the paths that are identifiable by DeCaFlow. Consider that black arrows are also identifiable, not only by
DeCaFlow, but also for any CGM that approximates the observed data. In red, arrows that are not identifiable by DeCaFlow
because there are not enough proxies to infer an unbiased causal effect.

A table summarizing the results obtained in the estimation confounded identifiable causal queries are presented in Tab 2.
The statistics have been computed in the same way as in Sachs’ dataset. In the case of ATE and CF error, they have been
computed only on the direct confounded identifiable paths, i.e., the green paths in Fig. 1.

DeCaFlow significantly outperforms the baselines in ATE and counterfactual estimation in the additive setting and in
ATE estimation in the nonadditive setting. The MMD differences, both observational and interventional, are negligible
between the oracle, DeCaFlow, and CNF, likely due to the high number of variables diluting estimation bias. Counterfactual
differences in the nonadditive setting are also insignificant. However, compared to the oracle, the gap between the oracle
and unaware CGMs is smaller than in the additive case. While DeCaFlow reaches an intermediate point, the difference
remains insignificant.

B.5.1 Comment on Deconfounder results

One may realize that the errors committed by the Deconfounder of [65, 66] are greater than the errors committed by the
unaware models. First of all, we want to underline that, although the Deconfounder allows us to predict counterfactuals, the
algorithm does not present any guarantees of a correct counterfactual estimation because it does not model the exogenous
variables of the SCM. That is the reason of the bad performance in couterfactual estimation.

On the other hand, let us justify some of the other paths where the errors of the Deconfounder are greater than unaware
models. In Sachs’ datasetto model the causal effect Ekt→Akt, the factorization model of the deconfounder uses Raf, Mek,

Jnk and P38 to extract the substitute confounder; the factorization model assumes that all those variables are independent
conditioned to z̃, while that is not the case in the true SCM and, therefore, this SCM violates the independence assumption of
[65]. The same argument is valid for the paths yceP→yfaD, lacA→yaeM, yceP→yfaD, ydeE→pspA and pspB→pspA.

ATE error CF error
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Oracle DeCaFlow Deconfounder CNF ANM DCM

Figure 17: ATE and CF error evaluating only links where
deconfounder should work in the additive case.

On the other hand, the paths lacZ→yaeM, asnA→lacY

are frontdoor paths that DeCaFlow can identify because
it models the hidden confounder following the true causal
graph. However, the Deconfounder is not designed to
model this paths. To evaluate its performance for front-
door paths, Deconfounder uses the same variables as
DeCaFlow to extract the substitute of the confounder.
However, the Deconfounder assumes independence condi-
tioned to the substitute confounder and that is not the case;
therefore, we are violating the independence assumption
again.
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Table 3: Performance metrics on Ecoli70 dataset. Statistics computed an all samples over 5 runs, intervening and evaluating
only in the causal effects that Deconfounder should solve. Bold indicates significantly better results (95% CI from a
Mann-Whitney U test). Lower error values indicate better performance.

Model |ATE err| ×102 |CF err| ×101

Oracle CNF 8.3110.95 1.491.86

Aware
DeCaFlow 7.787.30 1.871.50

Deconfounder 14.3515.24 12.0315.81

Unaware
CNF 27.8230.17 4.013.62
ANM 27.6329.74 3.643.15
DCM 42.4554.23 4.084.12

Table 4: Performance metrics on Ecoli70 dataset. Statistics computed on all unconfounded direct effects and 5 runs. Bold
indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Nonadditive

Model MMD int |ATE err| |CF err| MMD int |ATE err| |CF err|
×104 ×102 ×102 ×104 ×102 ×102

Oracle CNF 3.723.73 2.002.27 1.273.49 1.942.96 1.921.99 1.764.10

Aware DeCaFlow 4.534.98 2.002.07 1.312.93 2.836.36 1.931.95 1.623.87

Unaware
CNF 4.776.09 2.022.21 1.223.18 2.977.64 1.951.92 1.713.93
ANM 34.728.56 3.573.02 2.024.09 15.1312.57 3.533.15 2.645.34
DCM 36.2314.29 3.482.75 2.692.30 21.2213.68 3.422.63 3.003.42

The only two paths that meet the Deconfounder assumptions in Fig. 1 are lacA→lacY and yedE→pspB. And we can
observe that in those paths, the Deconfounder performs at least as well as unaware methods. On the other hand, all the factor
models used for the Deconfounder implementation (PPCA, Deep exponential families and Variational autoencoder) assume
additive noise. Therefore, interventional distributions in nonadditive settings are not computable theoretically with these
models.

B.5.2 Metrics on the other paths

ATE error CF error

Additive

0.0

0.1

0.2

ATE error CF error

Nonadditive

Oracle DeCaFlow CNF ANM DCM

Figure 18: Error boxenplots on the Ecoli70 dataset for differ-
ent CGMs, averaged over all unconfounded direct effects (see
Fig. 1) after intervening in their 25th, 50th, and 75th percent-
iles and 5 random realizations of the experiment.

In this subsection we include a comparison between all the
models in the unconfounded and the unidentifiable effects.
For unconfounded effects, our expectation is to observe
that all the CGMs achieve a performance comparable
with the oracle. On the other hand, we expect to have
higher errors in unidentifiable effects, since we do not
have theoretical guarantees.

Unconfounded Effects. The results for unconfounded
effects are summarized in Fig. 18 and Tab 4, consider-
ing only direct effects for ATE and counterfactual error
computations. As expected, DeCaFlow and CNF achieve
metrics comparable to the oracle in both ATE and counter-
factual estimations, particularly evident in Fig. 18, where
error distributions are nearly identical. 4 does not show
statistically significative differences between DeCaFlow and CNF. Notably, architectures based on causal normalizing flows
outperform ANM and DCM, which model each causal mechanism, fi, with separate networks. This difference is crucial in
settings with many variables and complex relations, where scalability is essential. Unlike ANM and DCM, which suffer
from error propagation and limited scalability, causal normalizing flows leverage a single amortized model, making them
more efficient in high-dimensional scenarios.

Finally, note that the Deconfounder has not been included in these metrics because it is not designed for unconfounded
queries and there are many queries, while one Deconfounder model is needed for each query.
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Figure 19: Error boxenplots on the Ecoli70 dataset for different CGMs, averaged over all unidentifiable direct effects (see
Fig. 1) after intervening in their 25th, 50th, and 75th percentiles and 5 random realizations of the experiment.

Table 5: Performance metrics on Ecoli70 dataset. Statistics computed on all unidentifiable direct effects and 5 runs. Bold
indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance

Additive Nonadditive

Model MMD int |ATE err| |CF err| MMD int |ATE err| |CF err|
×104 ×102 ×103 ×105 ×102 ×102

Oracle CNF 3.713.52 1.791.36 5.8815.16 16.986.87 1.751.59 1.624.57

Aware DeCaFlow 3.803.61 3.957.89 33.6280.37 23.0221.96 1.751.66 1.884.97

Unaware
CNF 4.544.81 4.7510.65 44.76126.36 20.226.68 2.323.80 2.136.25
ANM 34.385.17 7.4312.64 52.70137.99 130.7141.64 4.013.82 2.937.21
DCM 35.494.95 7.6713.93 67.46132.21 198.2358.62 3.432.76 3.293.92

Unidentifiable Effects. The results for unidentifiable effects—causal queries that violate the assumptions in §4—are
summarized in Fig. 19 and Tab 5. Notably, the oracle performs significantly better than the other CGMs. As seen in
Fig. 19, error distributions are highly skewed, with ATE and counterfactual errors reaching extreme values—considering that
metrics are computed on the standardized variables. Tab 5 shows no significant differences between the metrics achieved by
DeCaFlow and CNF.

B.5.3 Hyper-parameters and splits
We have performed a hyperparameter grid search in both experiments on semi-synthetic datasets, exploring a large
combination of hyperparameters for each model and dataset.

These are the parameters that were modified for each model:

• CNF: the number of neurons and hidden layers of the single-layer flow, the type of flow (MAF, NSF). LR scheduler
reducing on plateau and early stopping were applied with Adam optimizer [30].

• DeCaFlow: number of neurons and hidden layers of the single-layer causal flow (generative network), type of flow
of generative network (MAF, NSF), number of neurons and hidden layers of the single-layer encoder flow (inference
network), type of encoder flow (MAF, NSF), KL regularization (True, False). LR scheduler reducing on plateau and
early stopping was applied with the Adam optimizer [30].

• Deconfounder: type of factorization model (PPCA, VAE, Deep Exponential Families), number of neurons and hidden
layers (in case of deep models), type of outcome model (MLP, random forest, linear regression), number of neurons and
hidden layers of the outcome model (in case of deep models).

• DCM: number of neurons and hidden layers of each network, learning rate and number of iterations (we have not
introduced early stopping or learning rate scheduler). The rest of hyperparameters were selected to the default value in
the original code.

• ANM: an automatic search was performed across several models in the original DCM code. This search is performed
with the DoWhy package [7].

The selection was based on the matching of the observational for the causal generative models and, in the Deconfounder, the
factorization networks were selected by the likelihood of the observed variables and the outcome models with maximum
likelihood.
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Model Epoch Tr. [s] (20000 samples) Interventional [s] (2500 samples) CF [s] (2500 samples)

Oracle 0.640.06 0.300.02 0.360.03
DeCaFlow 0.980.10 0.280.02 0.350.04
CNF 0.600.07 0.260.01 0.320.05

Table 6: Computation times per model across training and evaluation regimes for Ecoli Additive Dataset. Mean and standard
deviation of the training and inference time over 100 epochs in training and over 7 interventions in inference.

Model Epoch Tr. [s] (20000 samples) Interventional [s] (2500 samples) CF [s] (2500 samples)

Oracle 0.320.06 0.080.001 0.1020.010
DeCaFlow 0.750.12 0.050.004 0.0860.005
CNF 0.330.06 0.0480.003 0.0650.006

Table 7: Computation times on the Sachs’ Additive Dataset. Mean and standard deviation of the training and inference time
over 100 epochs in training and over 3 interventions in inference.

Although including all hyperparameters would be very extensive, we give here a sample of the hyperparameters selected for
DeCaFlow in the Ecoli additive dataset:

• Hidden neurons of causal flow (generative network): 3× 128

• Type of causal flow (generative network): neural spline flow (NSF) [13].

• Hidden neurons of encoder flow (inference network): 3× 64

• Type of flow (inference network): neural spline flow (NSF) [13].

• Regularize: True (warm-up: 30 epochs)

• Total number of parameters: 182k.

Both experiments were performed with 25,000 data, split into 80%, 10%, 10% (train, validation, and test). All metrics are
given over the test dataset.

B.5.4 Processing times
All the experiments were conducted on CPU. Although the experiments were carried out on a cluster of different CPU, we
include here two tables for the two semi-synthetic datasets (Tab 6 and Tab 7) with the processing times measured in a CPU
Intel(R) Core(TM) i7-13650HX laptop, just to show that even in a laptop CPU, the training and inference times are sensible
even for large datasets as the Ecoli dataset.

Note that DeCaFlow takes more time in training. This is because the network is more complex, due to the inference network,
and that we have to sample from the posterior distribution. However, the difference in inference is not that relevant. In fact,
DeCaFlow takes less time than the oracle in inference, even when they are sampling the same number of variables (hidden
confounders + observed variables). The unaware causal flow (CNF) only samples from the observed variables. That is why
the inference time is lower.

B.6 LAW SCHOOL FAIRNESS USE-CASE
Taking inspiration from the experiments by Kusner et al. [36] and Javaloy et al. [25] we test whether, by modeling
the confounded SCM with DeCaFlow, we can leverage it for more than causal-query estimation and, in particular, for
counterfactual-fairness prediction.

Dataset and objective. Our aim is to train a gradient-boosted decision tree [16] on the law school dataset [68], which
comprises of 21 790

law students who were admitted by the Law School Admissions Council (LSAC) from 1991 through 1997. We have
performed an experiment similar to that carried out by Kusner et al. [36], where race and sex were treated as sensitive
attributes. We have considered the following variables to include in our study:

• Race: binary indicator of the race that distinguish between white and non-white.

• Sex: binary indicator of the sex that distinguish between male and female.
• Fam: family income.
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uS Sex GPA uG
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Figure 21: Confounded SCM modeled by DeCaFlow.

• LSAT: the grade achieved in the Law School Admission Test (LSAT).

• UGPA: the undergraduate grade point average (GPA) of the student previous to the admission.

• FYA: first-year average grade.

• Decile3: the decile of the grades in the third year of university. This is the variable to predict.

Sex GPA

Race LSAT Know Decile3

Fam FYA

Figure 20: Assumed causal graph in
§B.6. Only the classifiers consider
Decile3.

For our purpose, we consider that an estimator, ŷ, is fair if it meets Demographic
parity, defined in [36, Def. 3] as follows. A predictor ŷ satisfies demographic
parity if the predicted distributions for different values of a sensitive attribute are
equal: p(ŷ | t = 0) = p(ŷ | t = 1). We evaluate the difference between predicted
distributions using MMD—a lower distance between the predictions for the two
groups of a sensitive attributes denotes a fairer predictor.
The assumed causal graph is slightly different from that of Kusner et al. [36], since
their purpose is to make a fair prediction FYA accounting only for Race, Sex,
LSAT and UGPA. However, we include Fam and FYA as predictors and the task is to
predict Decile3 and the assumed causal graph is the one of Fig. 20.

Proposed DeCaFlow-based fair predictor. We propose to model the confounded causal graph presented in Fig. 21,
where are explicitly shown the exogenous variables, that are independent of the other variables of the graph except of their
associated endogenous variable.
Afterwards, we predict the outcome, Decile3 from the extracted latent variable that acts as substitute of the knowledge
and the exogenous variables of FYA and Fam, following the causal graph of Fig. 20, using a gradient-boosted decision
tree [16]: p̃(Decile3 | uFI,uFYA, z). DeCaFlow models z and the exogenous variables as independent from Race and
Sex. Therefore, the prediction of Decile3 should be we more fair yet slightly less accurate.

Baselines. The baselines used to compare our approach are the methods Fair K and Fair add proposed in Kusner et al.
[36]. Fair K is a fair predictor categorized in Level 2 in Kusner et al. [36], which postulates that the student’s knowledge,
know affects GPA, LSAT, FYA and Decile 3, following the distributions described below.

Fam ∼ N
(
bFam + wR

FamRace, 1
)
,

GPA ∼ N
(
bG + wK

G know+ wR
GRace+ wS

GSex+ wFam
G Fam, σ2

G

)
,

LSAT ∼ Poisson
(
exp(bL + wK

L know+ wR
LRace+ wS

LSex+ wFam
L Fam)

)
,

FYA ∼ N
(
wK

F know+ wR
F Race+ wS

FSex+ wFam
F Fam, 1

)
,

Decile3 ∼ Poisson
(
exp(wK

Dknow+ wR
DRace+ wS

DSex+ wFam
D Fam)

)
,

know ∼ N (0, 1).

(58)

Then, the posterior distribution know is inferred using Monte Carlo with the probabilistic programming language Pyro [6].
The outcome is predicted using the inferred know using a gradient-boosted decision tree [16]: p̃(Decile3 | know).
On the other hand, Fair Add predicts the outcome from the residuals of predicting each variable with each parent,
which guarantees that these residuals are independents of Race and Sex. That is, the predictor estimates the distribu-
tion p(Decile3 | rFam, rUGPA, rLSAT, rFYA), where these residuals are computed as:

rFam = Fam− E[Fam | Sex, Race]
rUGPA = UGPA− E[GPA | Sex, Race, Fam]
rLSAT = LSAT− E[LSAT | Sex, Race, Fam]
rFYA = FYA− E[FYA | Sex, Race, Fam]

(59)
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All predictors used are gradient-boosted decision trees [16].
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Figure 22: Distribution of predicted Decile3. A fair pre-
dictor yields similar distributions across the considered groups
per attribute (Sex and Race).

Table 8: Test RMSE on Decile3 prediction and MMD of
inter-group predictive distributions.

Unfair Unaware DeCaFlow Fair K Fair Add Mean

RMSE 1.413 1.419 1.604 2.817 2.826 2.83
MMD 0.163 0.147 0.0054 10−5 10−4 0

Results. Tab 8 provides the prediction error (RMSE)
and the difference between group distributions (MMD)
for the proposed DeCaFlow-based predictor, comparing
with an Unfair predictor that uses sensitive attributes;
an Unaware predictor that excludes sensitive attributes,
and two fair predictors, Fair K and Fair Add, as initially
proposed by Kusner et al. [36].

We observe in Fig. 22 that DeCaFlow yields a much fairer
predictor than the Unfair one, as the per-race predicted
distributions remain much closer together. Looking at
Tab 8, we find that this indeed comes at a small cost in
RMSE, corroborating our intuitions, while the other two
fair predictors incur a much higher predictive cost.

More in detail, although the fair methods proposed by
Kusner et al. [36] achieve significantly better demo-
graphic parity than our approach using DeCaFlow (as
indicated by a much lower MMD), their predictive per-
formance is substantially inferior. Specifically, their per-
formance is comparable to predicting the outcome using only the mean of the distribution, which serves as a baseline
in Tab 8. In contrast, DeCaFlow achieves a 98% reduction in MMD while incurring only an 11% increase in RMSE, as
illustrated in Fig. 22.

These experiments demonstrate that leveraging DeCaFlow to model confounded Structural Causal Models is beneficial
beyond causal query estimation, leading to improved overall performance.

C IMPLEMENTATION DETAILS

C.1 POSTERIOR FACTORIZATION OF THE DECONFOUNDING NETWORK

DeCaFlow is capable of modeling confounded SCMs that contain several hidden confounders, z = {zk}Dz

k=1, as in the
Sachs’ dataset (Fig. 16), Ecoli dataset (Fig. 1) or the Napkin graph (Fig. 9). In such cases, the posterior over latent variables
factorizes. We propose a factorized posterior in which each hidden confounder is conditioned on its children and the parents
of its children.

qϕ(z | x) =
Dz∏
k=1

qϕ

zk | pa(zk) ∪ ch(zk) ∪
⋃

c∈ch(zk)

(pa(c) \ {zj : j ≥ k})

 (60)

Since we propose to use a conditional normalizing flow as the encoder, the interdependencies between the hidden confounders
are modeled in an autoregressive manner.

The rightmost part of the conditioning set accounts for collider-induced associations: conditioning on a child of zk, c, makes
zk dependent on other parents of c. Other parents of c can also be hidden confounders. To model this, a causal ordering of
the z components is assumed to avoid cycles in factorization, but it does not affect estimation, as collider associations have
no inherent causal direction.

C.2 REGULARIZATION OF THE KULLBACK-LEIBLER TERM IN ELBO

We propose the implementation of a warm-up adaptive regularization term that weights the contribution of the Kullback-
Leibler term in the ELBO, to avoid posterior collapse [63].

In the training loop, if the current epoch is lower than the predefined warm-up parameter, the KL term is weighted by β, that
is defined as β = min(1,KL[qϕ(z|x)∥ p(z)]).
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Algorithm 1 KL regularization term in the training loop

1: function ELBO COMPUTATION(epoch, warmup, θ, ϕ)
2: if epoch < warmup:
3: L(ϕ, θ) = Eqϕ [log pθ(x| z)]− β ·KL[qϕ(z|x)∥ p(z)]
4: else:
5: L(ϕ, θ) = Eqϕ [log pθ(x| z)]−KL[qϕ(z|x)∥ p(z)]
6: return L
7: end function

With this, we encourage the model to improve the reconstruction of the data in the first epochs, ignoring the KL term if
the posterior is very similar to the prior, i.e., if KL ≈ 0, then β ≈ 0 and L(ϕ, θ) ≈ Eqϕ [log pθ(x| z)]. After the warm-up
epoch, the loss is equivalent to the regular expression of ELBO.

We have tested in the ablation study of §B.2 that the inclusion of the regularization term is useful in the Sachs’ dataset. On
the other hand, when posterior collapse does not occur, the β term will be upper bounded by 1, therefore, not affecting the
training process.

C.3 STRUCTURAL INDUCTIVE BIAS
As presented in the original paper of Javaloy et al. [25], the adjacency matrix that represents the causal graph is an input of
the normalizing flow. In this case, we introduce the structural constrains between i) exogenous and endogenous variables
and ii) conditional variables and endogenous variables.

This allows that our deconfounding network factorizes the posterior distribution as shown in Eq. 3, modeling each hidden
confounder as a function of its children, its parents and the parents of its children.

On the other hand, the structural information in the generative network allow to model each endogenous variable exclusively
from its parents, whether its parents are other endogenous variables or hidden confounders, following Eq. 2.

We include in Fig. 23 a fully-detailed illustration of the architecture of DeCaFlow for the Napkin causal graph (Fig. 9), where
it is shown in detail how its structural constraint is introduced in each conditional normalizing flow. To do so, DeCaFlow
exploits MADE (Masked Autoencoder for Distribution Estimation) [17], which can be implemented with custom masks that
specify the functional dependencies [10].

Finally, note that the do-operator is inherited from the original paper of Causal Normalizing flows, and the details about it
deserve a new section: §D.

D DO-OPERATOR

We introduce here the algorithms that DeCaFlow employ to generate interventional samples and counterfactuals. But first,
we include those of Javaloy et al. [25], since we leverage these CNFs as building blocks for DeCaFlow. Note that the
notation applied for DeCaFlow is slightly different from the that used in the causal flows, naming the intervened variable as
t, instead of xi, in order to be consistent with the notation used in §2 and §4. However, note that both variables play the same
role, and that t ⊂ x.

D.1 DO-OPERATOR IN CAUSAL NORMALIZING FLOWS

Algorithm 2 Algorithm to sample from the interventional distribution, P (x | do(xi = α)). From Javaloy et al. [25].

1: function SAMPLEINTERVENEDDIST(i, α)
2: u ∼ Pu ▷ Sample a value from the observational distribution.
3: x← T−1

θ (u)
4: xi ← α ▷ Set xi to the intervened value α.
5: ui ← Tθ(x)i ▷ Change the i-th value of u.
6: x← T−1

θ (u)
7: return x ▷ Return the intervened sample.
8: end function

The computation of counterfactuals follows the steps of abduction, action and prediction postulated by [48]. The abduction
step consists of using the observations to determine the value of the exogenous variables. Then, action is computing the
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intervention, modifiying the causal mechanism of the intervened variable and prediction consist of using the exogenous
variables and the modified SCM to compute the counterfactual.

Algorithm 3 Algorithm to sample from the counterfactual distribution, P (xcf | do(xi = α),xf). From Javaloy et al. [25].

1: function GETCOUNTERFACTUAL(xf, i, α)
2: u← Tθ(x

f) ▷Abduction: Get u from the factual sample.
3: xif ← α ▷Action: Set xi to the intervened value α.
4: ui ← Tθ(x

f)i ▷Action: Change the i-th value of u.
5: xcf ← T−1

θ (u) ▷Prediction: Get counterfactual
6: return xcf ▷ Return the counterfactual value.
7: end function

D.2 DO-OPERATOR IN INTERVENTIONAL DISTRIBUTIONS WITH DECAFLOW
The sampling process consists of sampling first from the prior distribution of the latent variables and from the distribution of
the exogenous variables. Then, one can use the generative network (Tθ) to take samples of the rest of variables, changing
the components of u associated with t. Note that z is not the input of the normalizing flow, but a condition (or context).
Therefore, z is transformed neither in the forward nor the reverse pass of the flow.

Algorithm 4 Algorithm to sample from the interventional distribution, P (x | do(t = α)) with DeCaFlow.

1: function SAMPLEINTERVENEDDIST(t, α)
2: z ∼ Pz ▷ Sample a value from the prior of z.
3: u ∼ Pu ▷ Sample a value from the observational distribution.
4: x← T−1

θ,z(u)
5: t← α ▷ Set t to the intervened value α.
6: ut ← Tθ,z(x)t ▷ Change the component of u associated with t.
7: x← T−1

θ,z(u)
8: return x ▷ Return the intervened sample.
9: end function

Additionally, the process to compute the average treatment effect (ATE) involves generating interventional distributions. For
example, to compute the ATE comparing two interventions (α1, α2) in the variable t, we would generate samples of the
interventional distributions, p(x | do(t = α1)), p(x | do(t = α1)), respectively, and approximate their expectations with
MonteCarlo.

ATE = E[x | do(t = α2)]− E[x | do(t = α1)] (61)

Unfortunately, if we were interested in evaluating the ATE on only one variable, y, the process would involve to generate
samples of the whole interventional distribution and select only the samples of the interested variable.

D.3 DO-OPERATOR IN COUNTERFACTUALS WITH DECAFLOW
As part of the abduction step, our model estimates the posterior distribution of hidden confounders given a factual datapoint,
qϕ(z | xf). Therefore, we can sample from the inferred posterior of the hidden confounders, and use those samples as the
condition of the conditional normalizing flows.

Algorithm 5 Algorithm to sample from the counterfactual distribution, P (x | do(t = α)) with DeCaFlow.

1: function GETCOUNTERFACTUAL(xf, t, α)
2: qϕ(z | xf)← Deconfounding network(xf) ▷ Abduction: Get z from the factual sample.
3: z ∼ qϕ(z | xf) ▷Abduction: Sample the posterior distribution.
4: u← Tθ,z(x

f) ▷Abduction: Get u from the factual sample.
5: tf ← α ▷Action: Set t to the intervened value α.
6: ut ← Tθ,z(x

f)t ▷Action: Change the component of u associated with t.
7: xcf ← T−1

θ,z(u) ▷ Prediction: compute the counterfactual
8: return xcf ▷ Return the counterfactual value.
9: end function
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E ADDITIONAL DETAILS ON RELATED WORK OF CAUSAL INFERENCE WITH
HIDDEN CONFOUNDERS

In this section, we go deeper into the methods of causal inference in scenarios where there are unobserved confounders.

E.1 METHODS TAILORED TO GRAPH AND QUERY
First of all, we want to remark that all the following methods have been designed to address causal inferences in specific
causal graphs (or subgraphs), therefore they can be used when there exists the causal relationships presented in Fig. 26.
In the following text, we assume the notation introduced in §2, where z is the hidden confounder, t is the intervened variable
or treatment and y is the outcome, i.e. the variable where we want to evaluate the causal effects.
We have classified the different approaches depending on the graph that they are designed to address. However, there are
two considerations that are common for all these approaches.
First, the methods follow a two-stage process: i) extracting a substitute for the unobserved confounder, z̃, using the variables
affected by the confounder or instrumental variables, and ii) estimating the outcome given this substitute, ỹ ∼ p(y | z̃, t). In
larger causal graphs, one predictor must be trained for each outcome, and one extractor must be trained per independent
confounder.
Second, none of these methods shows the ability of identify counterfactuals, since they do not model exogenous variables.

Presence of null proxies independent of t (Fig. 26a). We say n to be a null proxy of z if it is a child of z independent
of the outcome, y, given z: n⊥⊥ y | z. Methods for estimating causal effects were developed when null proxies of the
confounder were available and those proxies are independent of the intervened variable: n⊥⊥ t | z. We can use these proxies
to infer a substitute. Among these, Allman et al. [2], Kuroki and Pearl [35] studies the case in which the confounder is
categorical and uses matrix factorization to extract a substitute when there are at least three Gaussian proxies [2], when the
conditional distribution of the confounder given the proxy is known or when other proxies are available [35]. Kallus et al.
[26] also employ matrix factorization to cases where the confounder is continuous and the relation with the covariates and
the treatment (but not with the outcome) is linear. In addition, Kallus et al. [27] uses kernel functions to extract the substitute
confounder when the generators are nonlinear. The most relevant method based on deep generative methods is proposed by
Louizos et al. [38], consisting of a VAE to extract the substitute confounder when several null proxies are available, although
there is no theoretical guarantee of its operation and has been shown to struggle with complex distributions in practice
[52]. Finally, Miao et al. [42] offers a regression-based approach to estimate the unobserved confounder under equivalence,
which assumes that any model of the joint achieves element-wise transformations of the latents, which is not feasible to
check: p̃(t, z | n) = p(t, V (z) | n). The graph in which all these methods operate can be found in Fig. 26a.

Presence of two proxies: null and not null (Fig. 26b). When the null proxies affect treatment (see Fig. 26b: the proxy, n,
affects treatment t), Miao et al. [41] offers theoretic guarantees of causal identifiability in the presence of another proxy, w,
and completeness conditions. The proxy w can be active, that is, it can directly affect y. Practically, in Tchetgen et al. [61]
the two-stage proximal least squares (P2SLS) we can find the method to infer the substitute confounder from p(w | t,n).
P2SLS can be implemented using neural networks to achieve greater flexibility.
After the publication of Miao et al. [41], several follow-up works have emerged that aimed to estimate the bridge function,
solving Eq. 12 explicitly. For example, Cui et al. [11] designed a doubly-robust estimator of the ATE by estimating the
bridge function semiparametrically, and Kompa et al. [33], Mastouri et al. [40] apply moment restrictions to estimate the
bridge function using deep neural networks. Other works propose multiple-robust methods when confounder are categorical
[58]

Instrumental variable (Fig. 26c). Another condition that allows causal inference is the presence of instrumental variables
(IVs), i.e. variables that affect only the treatment and are independent of both the unobserved confounder and the outcome
given the treatment (in Fig. 26c, n is an IV). In linear DGP, Angrist and Pischke [4], Pearl [47] demonstrates that a two-stage
regression process mitigates the confounding bias as the only effect that flows from the instrumental variable to the outcome
is through treatment. A substitute of the confounder is extracted by computing the conditional distribution of the treatment
given the instrumental variable: z̃ ∼ p(t | n). Furthermore, [20] develops an extension of this theory to include arbitrarily
complex nonlinear DGP, designing a two-step deep approach, based on neural networks.

Multitreatment affected by a common confounder (Fig. 26d). Finally, the multitreatment scenario (Fig. 26d) has been
studied by Ranganath and Perotte [51], Wang and Blei [65]. It is called multitreatment because all covariates can be seen as
a treatment over the outcome, y. It is assumed that, in the true DGP, there exist several covariates that are independent given
the unobserved confounder. Therefore Wang and Blei [65] propose to use a factorization model, such as probabilistic PCA
or Poisson Matrix Factorization, to infer the substitute confounder. A factorization model assumes that the distribution of all
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the treatments factorizes in the following way: p(t, z) = p(z)
∏d

i=1 p(ti | z), which should allow to construct a substitute of
the confounder from the posterior of z: z̃ ∼ p̃(z̃ | t). However, D’Amour [12] provide counterexamples showing that the
Deconfounder does not achieve nonparametric identification without additional assumptions. Notably, one of the alternatives
D’Amour [12] highlights is the use of proxy variables—precisely the approach adopted by DeCaFlow.

On the other hand, similar to Wang and Blei [65], Ranganath and Perotte [51] proposes a method that uses a VAE as
a factorization model, adding a regularization term to reduce the additional mutual information between the estimated
confounder and treatment tj given the rest of treatments t−j . However, the theoretical guarantees of this approach require an
infinite number of treatments to achieve unbiased estimates of causal effects.

Wang and Blei [66] connect the ideas of Miao et al. [41] and Wang and Blei [65] ensuring causal identification in the
multitreatment setting when it is known that some of the treatments can act as null proxies, that is, they do not affect the
outcome. This assumption allows them to provide theoretical guarantees when the number of treatments does not tend to be
infinite. Even so, a factorization model such as the one Wang et al. [67] propose can only model independent treatments,
given the hidden confounder, which greatly limits its usefulness.

How is Deconfounder Wang and Blei [65, 66] related to our work. As DeCaFlow does, Deconfounder infers the
posterior distribution of the substitute of the confounder from the observational data using a generative model. However, the
application of a factorization model restricts the structural dependencies that we can model. For example, the Deconfounder
cannot model the structural dependencies of Fig. 26b, since the factorization model assumes n⊥⊥ t⊥⊥w | z. In contrast, the
DeCaFlow uses a causal flow, which does allow this dependencies because the causal graph is encoded in the flow.

We also stress that DeCaFlow models the whole confounded SCM, including the exogenous variables. This allows to
compute counterfactuals and train in a query-agnostic manner. In contrast, Deconfounder cannot compute counterfactuals
and needs of a separate model per query.
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t y
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n z w

t y
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t y
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Figure 26: Ad-hoc graphs. (a) Allman et al. [2], Kallus et al. [26, 27], Kuroki and Pearl [35], Louizos et al. [38], Miao et al.
[42] address the case where n is independent of t. (b) Miao et al. [41] is designed for the case where there exist two proxies.
(c) Graph with an instrumental variable, but this graph is out of the scope of our framework. (d) Ranganath and Perotte
[51], Wang and Blei [65, 66] are designed for the multitreatment setting.

E.2 CGM WITH UNOBSERVED CONFOUNDERS
There exist several works that employ causal generative models (CGMs) in the presence of hidden confounders. We explain
here the differences with our proposal, highlighting the practical advantages of DeCaFlow.

Neural Causal Models (NCMs) Xia et al. [71] proposed a class of sequential causal generative models where each
structural equation—i.e., the functional relationship between a variable and its parents in the causal graph—is modeled by
a distinct neural network. The model is trained end-to-end to jointly learn all structural mechanisms. Beyond estimation,
NCMs aim to determine whether a given causal query is identifiable from the data-generating process.

To assess identifiability, their method trains two versions of the model: one that maximizes and one that minimizes the
likelihood of the query under consideration. If both yield the same outcome, the query is deemed identifiable. This approach
formalizes identifiability as an empirical condition based on optimization agreement.

However, the framework has significant practical constraints: i) it only supports finite discrete variables, typically binary and
low-dimensional, due to tractability constraints; ii) it assumes that the true observational distribution is available for training;
iii) two models must be trained per query, leading to high computational cost; and iv) identifiability status is only revealed
post-training, offering no guidance before model execution.

To address counterfactual reasoning, Xia et al. [72] extended NCMs to estimate queries involving latent exogenous variables.
However, their approach relies on rejection sampling to infer hidden confounders, which is inefficient and unsuitable for
continuous or high-dimensional settings, thus limiting its applicability in real-world scenarios.
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In contrast, our approach addresses these limitations. First, we provide a principled criterion to estimate the identifiability
of a query prior to model training. Second, our framework supports continuous variables and scales to high-dimensional
settings. Third, we train a single model that jointly estimates all causal mechanisms and enables efficient inference of
counterfactuals. Fourth, we use variational inference to approximate the posterior of hidden confounders, avoiding the
inefficiency of rejection-based methods. Finally, we guarantee the identifiability of exogenous variables (in the sense of
Xi and Bloem-Reddy [70]) by leveraging the theoretical framework of the causal flows [25]. As a result, our method is
substantially more efficient and suited to real-world applications.

Modular Causal Generative Models Rahman and Kocaoglu [50] introduce a modular framework for high-dimensional
causal inference, where variables influenced by the same hidden confounder are modeled jointly in end-to-end submodules.
A key advantage of this approach is the ability to incorporate pretrained models into submodules, enabling flexible modeling
of complex or structured variables when the modular criterion holds. The method supports continuous and discrete variables
and uses adversarial training to match observational distributions. Symbolic identifiability is computed using the algorithm
of Jaber et al. [24], and they prove that identifiable queries remain estimable under their modular decomposition. However,
the framework does not support counterfactual inference and proximal learning and is based on adversarial optimization.

Compared with this method, our approach trains a single end-to-end model, estimates both observational and counterfactual
distributions also in proximal settings, achieves identifiability in the exogenous distributions, and enables efficient inference
with broad applicability to real-world settings.

Counterfactual Identifiability of Bijective Causal Models Nasr-Esfahany et al. [43] propose a sequential causal model
using conditional normalizing flows to map exogenous to endogenous variables. The model focuses on counterfactual
inference under backdoor and instrumental variable (IV) settings, with identifiability proven only for discrete cases. Proxy
variables are not considered, and the use of invertible mappings over discrete domains makes theoretical claims less robust.
Although the model claims support for continuous data, guarantees are restricted to discrete IV scenarios. It does not model
observational or interventional distributions and lacks parameter amortization due to its sequential structure.

In contrast, our method supports continuous variables, models both observational and interventional distributions, and
enables counterfactual inference under general confounding and proxy settings. It uses a single end-to-end model and scales
efficiently to real-world data.

Learning Functional Causal Models with Generative Neural Networks Goudet et al. [18] propose a method for causal
discovery rather than causal inference under unobserved confounding. Given a Markov equivalence class or graph skeleton,
their approach uses generative neural networks to model each causal direction and selects the graph that best matches
the observational distribution, evaluated via maximum mean discrepancy (MMD). The model is trained sequentially and
assumes no hidden confounders. While not directly comparable to our work, such causal discovery tools may serve as a
preprocessing step when the causal graph is unknown, enabling downstream application of models—such as ours—that
assume a known and correct structure.

F ALGORITHMS FOR CAUSAL QUERY IDENTIFICATION

As explained in §4.2, we can ask DeCaFlow to solve any causal query, but we do not have the guarantee that the estimation
that DeCaFlow returns is correct unless the query is identifiable. Therefore, we provide the practitioner with algorithms to
check the identifiability of causal queries.

Specific treatment-outcome pair. We start presenting the Alg. 6 to identify a causal query specifying the pair treatment and
outcome, which is valid for estimating the interventional distribution of the outcome, p(y| do(t), c), and the counterfactual
one, p(ycf| do(t),xf), since we postulated in §4 that the latter is identifiable if the former is.

We have employed this algorithm in all the paths of Sachs and Ecoli70 datasets to check the identifiability of all the direct
causal effects, where y is a child of t, in order to get a visual representation of the identifiable queries of a complex graph.
However, due to the large number of possible causal queries resulting from all edge combinations in the 43-node Ecoli70
dataset, we have not analyzed identifiability for all undirected queries. If one is interested in evaluating a query which
involves several outcomes, {y1, y2, ..., yO}, one causal query per yi should be evaluated.

Evaluation on all the variables. Although the Alg. 7 consist of applying Alg. 6 iteratively, we also find it interesting
to include the extension to identify causal queries evaluated on all variables in the dataset, which is useful for using
DeCaFlow as a generative model for the interventional distribution, p(x | do(t)), or offering complete counterfactual
samples, p(xcf | do(t),xf), intervening in a specific variable, t ⊂ x.

F.1 PIPELINE FOR USING DECAFLOW
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Algorithm 6 Identification of causal queries that include intervention and outcome (t, y)

Require: Graph G, intervention variable t, outcome variable y, covariates c, hidden variables z
Ensure: Boolean indicating if query is identifiable

1: z← hidden variables that are parents of both t and y
2: return True if z is ∅ ▷ Unconfounded is identifiable
3: for all zk ∈ z do
4: Comment: Each zk is an independent component of z
5: n-proxies← children of zk d-separated from t given (z, c)
6: w-proxies← children of zk d-separated from y given (z, c)
7: if there exist n ∈ n-proxies and w ∈ w-proxies such that n is d-separated from w given (z, c) then
8: zk is deconfounded
9: end if

10: end for
11: return all zk are deconfounded

Algorithm 7 Identification of causal queries, intervening in t and evaluating in all variables

Require: Graph G, intervention variable t, hidden variables z
Ensure: Boolean indicating if the interventional distribution is identifiable

1: z← hidden variables that are parents of t
2: for all xi ∈ descendants of t do
3: Comment: Evaluate only on descendants of the intervention
4: Check (t, xi) identifiability with Alg. 6
5: end for
6: return all (t,xi) are identifiable
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Query Qi
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DeCaFlow trained
Check Query identifiability
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Alg. 4 and Alg. 5

Q̂i(M) ⌢

NoYes

Figure 27: Block diagram of the pipeline.

Our framework provides a systematic approach to solving causal
queries by integrating DeCaFlow, a model trained on observational
data, with algorithms designed for query identifiability analysis.

As depicted in the pipeline, the framework takes as input a dataset
D, a causal graph G, and a set of N interesting queries {Qi}Ni=1. The
process begins by training DeCaFlow on D and G, enabling it to learn
the confounded SCM,M.

Simultaneously, the identifiability of each causal query Qi is assessed
using dedicated algorithms (Alg. 6 and Alg. 7). If Qi is identifiable,
the trained DeCaFlow is used to estimate Qi(M) (Alg. 4 and Alg. 5),
yielding the estimated causal effect Q̂i(M). If Qi is not identifiable,
the framework indicates that answering the query is not feasible given
the available data and causal structure. Other causal queries can be
answered by the model without retraining, provided that their identi-
fiability is verified beforehand.

This workflow ensures a principled approach to causal inference,
leveraging both data-driven modelling and theoretical guarantees on
identifiability. Both the DeCaFlow model and the algorithms for query
identifiability and estimation will be included in the code that we will
provide upon acceptance.

Validation with interventional data. As a final step in the pipeline in real-world scenarios, especially in sensitive
applications, we encourage practitioners to validate the framework with interventional data. Causal queries such as average
treatment effects (ATEs) can be validated if a randomized experiment is available in which interventions are carried out on
the treatment variable.

However, in cases where experiments on the required variable are not available, our framework can still be partially
validated by assessing the completeness of the inferred hidden confounder given the observed proxies. This can be done by
evaluating causal effects in another causal query that shares the same hidden confounder. Specifically, if a causal query Q1
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lacks interventional data, but another query Q2 involving the same hidden confounder is estimated correctly, the inferred
confounder of Q2 can be postulated as a valid substitute for estimating Q1. This indirect validation method provides a way
to assess the reliability of our framework without requiring direct interventions for every confounded query.
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Figure 23: Example of complete DeCaFlow architecture, applied to the specific graph of Fig. 9. Both the deconfounding
network and the generative network are conditional normalizing flows that factorize the distributions of the posterior and
endogenous variables following Eq. 3 and Eq. 2, respectively. Within networks, functional dependencies are represented
following the compacted version of Javaloy et al. [25, Fig. 4(c)]. The orange edges of the encoder corresponds to the collider
association in the posterior factorization, and G̃ encodes that associations.

35



Figure 24: Schematic view of sampling process from interventional distribution in graph of Fig. 6, intervening in t. By
sampling from the prior of the hidden confounders, p(z), and the base distribution of the exogenous variables, p(u), we
get samples of the empirical marginal interventional distribution pθ(y| do(t)) through MonteCarlo integration. Note that
sampling from the interventional distribution only requires the generative network, Tθ. Dashed gray arrows represent the
cancellation of causal effect due to the intervention.

Abduction Action Prediction

Figure 25: Schematic view of counterfactual inference with the graph of Fig. 6, intervening in t. This inference can be
done from a single point, we only sample from ε. Both thedeconfounding network, Tϕ, and the generative network, Tθ , are
needed. Dashed gray arrows represent the cancellation of causal effect due to the intervention.
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