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ABSTRACT

Recently, lots of algorithms have been proposed for learning a fair classifier from
centralized data. However, how to privately train a fair classifier on decentralized
data has not been fully studied yet. In this work, we first propose a new theoretical
framework, with which we analyze the value of federated learning in improving
fairness. Our analysis reveals that federated learning can strictly boost model
fairness compared with all non-federated algorithms. We then theoretically and
empirically show that the performance tradeoff of FEDAVG-based fair learning
algorithms is strictly worse than that of a fair classifier trained on centralized
data. To resolve this, we propose FEDFB, a private fair learning algorithm on
decentralized data with a modified FEDAVG protocol. Our extensive experimental
results show that FEDFB significantly outperforms existing approaches, sometimes
achieving a similar tradeoff as the one trained on centralized data.

1 INTRODUCTION

As machine learning is now used to make critical decisions that affect human life, culture, and rights,
fair learning has recently received increasing attention. Various fairness notions have been introduced
in the past few years (Dwork et al., 2012; Hardt et al., 2016; Zafar et al., 2017b;a; Kearns et al.,
2018; Friedler et al., 2016). Among various fairness notions, group fairness is the most studied
one (Hardt et al., 2016; Zafar et al., 2017a). Group fairness requires the classifier to treat different
groups similarly, where groups are defined with respect to sensitive attributes such as gender and race.
One of the most commonly used group fairness notions is demographic parity, which requires that
different groups are equally likely to receive desirable outcomes.

There has been a large amount of work in training fair classifiers (Zafar et al., 2017c; Hardt et al.,
2016; Roh et al., 2021), and almost all of these studies assume that the learner has access to the entire
training data. Unfortunately, this is not the case in many critical applications. To see this, consider a
scenario where multiple data owners (e.g. courts or financial institutions) have their own private data.
Even if they are willing to coordinate with the other institutions to obtain a single model that works
well on the combined data, they cannot directly share their data with the others due to the privacy
act. This precisely sets the core question we aim to answer in this paper – how can we privately
train a fair classifier on decentralized data? To answer this, we first study three existing approaches:
Unfederated Fair Learning (UFL), Federated Fair Learning via FEDAVG (FFL via FEDAVG), and
Centralized Fair Learning (CFL). See Fig. 1 for illustration.

Unfederated Fair Learning (UFL) and Centralized Fair Learning (CFL) UFL is the most
naı̈ve yet most private approach. As the name indicates, this strategy refers to a scenario where
multiple data owners simply decide to not coordinate. Instead, each of them learns a fair model on
its local data to serve its own users. This approach is completely private as the participating data
owners share nothing with the others. However, the overall performance of UFL is expected to be
poor, because each data owner may have a highly biased view of the entire data distribution, making
their locally trained classifiers fair only on a biased subset of the data, but not on the entire data.
To evaluate the performance of this approach, we consider the randomized classifier that makes
a prediction using a randomly chosen local classifier. Note that this can be viewed as a random
customer model, i.e., a user drawn from the overall data distribution picks and visits one of the
institutions, uniformly at random. Another extreme approach is CFL, where a fair model is trained on
the pooled data. We expect CFL to achieve the best performance tradeoff, at the cost of no privacy.

Federated Fair Learning via FEDAVG (FFL via FEDAVG) FFL via FEDAVG applies federated
learning (Konečnỳ et al., 2017) together with existing fair learning algorithms. Federated learning is
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Figure 1: A high-level illustration of various approaches to fair learning on decentralized data and our
contributions. Assuming two data owners, from left to right, we show UFL (Unfederated Fair Learning), FFL
via FEDAVG (Federated Fair Learning via FEDAVG), FEDFB (ours), and CFL (Centralized Fair Learning).
In UFL, each data owner trains a locally fair model on its own data, and the customer picks one of them
at random. FFL via FEDAVG applies FEDAVG together with off-the-shelf fair training algorithms for local
training. Our proposed solution FedFB consists of a modified FEDAVG protocol with a custom-designed fair
learning algorithm. CFL is the setting where a fair model is trained on the pooled data. In this work, we
theoretically characterize the strict ordering between the existing approaches and empirically demonstrate the
superior performance of FedFB.

a distributed learning framework, using which many data owners can collaboratively train a model
under the orchestration of a central server while keeping their data decentralized. For instance, under
FEDAVG, the standard aggregation protocol for federated learning, the central server periodically
computes a weighted average of the locally trained model parameters. If each data owner runs a fair
learning algorithm on its own data and these locally trained models are aggregated via FEDAVG, then
one might hope to obtain a model that is accurate and fair on the overall data distribution. We call
this approach Federated Fair Learning via FEDAVG (FFL via FEDAVG).

Goal and Main Contributions The performances of these approaches have not been rigorously
analyzed in the literature. In the first place, it has been unknown whether there is any strict perfor-
mance gap between UFL and FFL via FEDAVG. This makes it unclear whether or not federated
learning is necessary at all for decentralized fair learning. The performance comparison between FFL
via FEDAVG and CFL also remains unclear. Can FFL via FEDAVG always match the performance
of CFL? If not, can we develop a better federated learning approach for decentralized fair learning?
Inspired by these open questions, this work rigorously analyzes the performance of the existing
approaches and proposes a new solution to decentralized fair learning. Our major contributions can
be summarized as follows:

• We develop a theoretical framework for analyzing various approaches for decentralized fair learning.
Using this, we prove the strict ordering between the existing approaches, i.e., under some mild
conditions, UFL < FFL via FEDAVG < CFL, w.r.t. their fairness-accuracy tradeoffs.

• Improving upon the state-of-the-art algorithm for (centralized) fair learning (Roh et al., 2021), we
design FEDFB, a novel approach to learning fair classifiers via federated learning.

• Via extensive experiments, we show that (1) our theoretical findings hold under more general
settings, and (2) FEDFB significantly outperforms the existing approaches on various datasets and
achieves similar performance as CFL.

To the best of our knowledge, our work is the first theoretical performance comparison of various
approaches to fair learning on decentralized data. Moreover, it characterizes the necessity of federated
learning for improved fairness-accuracy tradeoff, and we expect this to expedite the adoption of feder-
ated learning-based approaches. Our proposed solution FEDFB achieves state-of-the-art performance
on many datasets, sometimes achieving a similar tradeoff as the one trained on centralized data.

2 RELATED WORK

Model Fairness Among various algorithms for fair training (Zemel et al., 2013; Jiang & Nachum,
2020; Zafar et al., 2017c;a; Hardt et al., 2016; Roh et al., 2021; 2020), the current state-of-the-art is
FairBatch (Roh et al., 2021), which reweights the samples by solving a bi-level optimization problem,
whose inner optimizer is the standard training algorithm and outer optimizer aims to find the best
weights attached to groups of samples for the sake of model fairness.

Federated Learning Unlike traditional, centralized machine learning approaches, federated learning
keeps the data decentralized throughout training, reducing the privacy risks involved in traditional
approaches (Konečnỳ et al., 2017; McMahan et al., 2017). FEDAVG (McMahan et al., 2017) is the
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first and most widely used federated learning algorithm. The idea is to iteratively compute a weighted
average of the local model parameters, with the weights proportional to the local datasets’ sizes. Prior
work (Li et al., 2020b) has shown that FEDAVG provably converges under some mild conditions. The
design of our proposed algorithm FEDFB is also based on that of FEDAVG.

Federated Fair Learning for Client Parity There have been only a few attempts in achieving
fairness under the federated setting. Moreover, the definition of “fairness” used in the existing
federated learning work is slightly different from the standard notion used in the centralized setting.
One popular definition of fairness in the federated setting is that all clients (i.e. data owners) achieve
similar accuracies (or loss values), which we call client parity, and several algorithms have been
proposed to achieve this goal (Li et al., 2021; 2020a; Mohri et al., 2019; Yue et al., 2021; Zhang et al.,
2020a). To compare our methods with existing federated fair learning algorithms designed for client
parity, we also extend our FEDFB such that it can also achieve client parity instead of the standard
notion of group fairness. In Sec. 5, we will show that FEDFB can achieve as good client parity as the
existing algorithms, though FEDFB is not specifically designed for client parity.

Privacy

Accuracy-fairness performance

UFL
FFL via FedAvg

FedFB

AgnosticFair

CFL

Figure 2: Compar-
ison of various fair
learning methods..

Federated Fair Learning for Group Fairness A few very recent stud-
ies (Ezzeldin et al., 2021; Rodrı́guez-Gálvez et al., 2021; Chu et al., 2021;
Du et al., 2021; Cui et al., 2021), conducted concurrently with our work, also
aim at achieving group fairness under federated learning. In particular, Du
et al. (2021), Rodrı́guez-Gálvez et al. (2021) and Chu et al. (2021) mimic
the centralized fair learning setting by exchanging information for each local
update. In contrast, our FEDFB requires much fewer communication rounds,
ensuring higher privacy and lower communication costs. Simlar to FEDFB,
Ezzeldin et al. (2021) employs FEDAVG and a reweighting mechanism to
achieve group fairness. However, FAIRFED only applies to the case with one single binary sensitive
attribute, while Rodrı́guez-Gálvez et al. (2021) and Chu et al. (2021) are not applicable to demo-
graphic parity. Therefore, we summarize the comparison of UFL, FFL via FEDAVG, CFL, FEDFB
and AGNOSTICFAIR (Du et al., 2021) in terms of performance and privacy in Fig. 2. There is also
work that aims at achieving local fairness for each data owner (Cui et al., 2021). This is in contrast to
our work, which instead focuses on achieving global fairness in the overall data distribution. Our
setting is more appropriate in domains such as criminal justice and social welfare.

3 PERFORMANCE ANALYSIS OF UFL, FFL VIA FEDAVG AND CFL

In Sec. 3.1, we first show the necessity of federation by proving that FFL via FEDAVG can achieve
strictly higher fairness than UFL. We then prove the limitation of FFL via FEDAVG by comparing its
performance with an oracle bound of CFL in Sec. 3.2. These two results together imply that federated
learning is necessary, but there exists a limit on what can be achieved by FEDAVG-based approaches.
We will present informal theoretical statements, deferring the formal versions and proofs to Sec. A.

Problem Setting Denote [N ] := {0, 1, . . . , N − 1} for any N ∈ Z+. We assume I clients, which
have the same amount of data. We further assume a simple binary classification setting with a
binary sensitive attribute, i.e., x ∈ X = R is the input feature, y ∈ Y = [1] is the outcome and
a ∈ A = [A] = [1] is the binary sensitive attribute. Assume x is a continuous variable. The
algorithm we will develop later in Sec. 4 will be applicable to general settings.

We now introduce parameters for describing the data distribution. Let y | x ∼ Bern(η(x)) for all
client i, where η(·) : X → [0, 1] is a strictly monotone increasing function. Assume x | a = a, i =

i ∼ P(i)
a , a | i = i ∼ Bern(qi), where i is the index of the client, P(i)

a is a distribution, and qi ∈ [0, 1]
for a = 0, 1, i ∈ [I]. Let F = {f : X × A → [0, 1]}. Given f ∈ F and data sample (x, a), we
consider the following randomized classifier: ŷ | x, a ∼ Bern(f(x, a)).

Using these definitions, we now define demographic parity, specialized for a binary sensitive attribute:

Definition 1 (Demographic Parity (binary cases)). P(ŷ = 1 | a = 0) = P(ŷ = 1 | a = 1).

To measure how unfair a classifier is with respect to demographic parity (DP), we measure DP
disparity, i.e. the absolute difference between the two positive prediction rates:

DP Disp(f) = |P(ŷ = 1 | a = 0)− P(ŷ = 1 | a = 1)|.
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Figure 3: Fundamental limitation of UFL in terms of fairness range. We visualize the DP disparity of UFL
as a function of local unfairness budgets on three simple Gaussian distributions. The blue horizontal plane is
of perfect fairness. The pink horizontal plane visualizes the value of δ (the lowest DP disparity that UFL can
achieve). (a) (Example 1) On a distribution that satisfies the conditions of Corollary 2. (b, c) On distributions
that do not satisfy the conditions of Corollary 2. In all three cases, the UFL cannot achieve perfect fairness, i.e.,
δ > 0.

3.1 NECESSITY OF FEDERATION: FFL VIA FEDAVG IS STRICTLY BETTER THAN UFL

UFL Optimization We now present the optimization problem solved in the UFL scenario. Here,
for analytical tractability, we will assume the population limit, i.e., the true data distribution is used in
optimization. Recall that clients do not coordinate in this scenario, and each of them solves their own
optimization problem to train a locally fair classifier. In particular, each client i ∈ [I] first sets its
own local fairness constraint εi ∈ [0, 1], and solves the following constrained optimization problem:

min
f∈F

P(ŷ 6= y | i = i), s.t. |P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)| ≤ εi. (UFL(i, εi))

We denote by fεii the solution to UFL(i, εi). Recall that the overall performance of UFL is defined as
the performance of the following mixture of I classifiers:

ŷ | x, a ∼ Bern(fεii (x, a)),w.p. 1/I = Bern

(∑
i∈[I]

fεii (x, a)/I

)
= Bern(fUFL

ε ),

where fUFL
ε :=

∑
i∈[I] f

εi
i (x, a)/I , with ε = (ε0, . . . , εI−1).

The question here is whether the resulting classifier fUFL
ε obtained by UFL can achieve an arbitrary

level of fairness. The following lemma shows that UFL cannot achieve a high enough fairness level
beyond a certain threshold.
Lemma 1 ((Informal) Achievable fairness range of UFL). Let qi = q ∈ (0, 1) for all i ∈
[I]. Under certain conditions, there exists a certain DP disparity threshold δ > 0 such that
minε∈[0,1]I DP Disp(fUFL

ε ) > δ.

A critical condition of Lemma 1 is that the distribution of insensitive attribute x | a is highly
heterogeneous on different clients. (See the detailed statements in Sec. A.2.2 and Sec. A.4.) Therefore,
Lemma 1 implies that UFL fails to achieve strict fairness requirements even without data heterogeneity
on the distribution of sensitive attribute a. The following corollary provides an example satisfying the
conditions of Lemma 1.
Corollary 2 (Informal). Let I = 2 and q0 = q1 = 0.5, η(x) = 1

1+e−x ,P
(i)
a = N (µ

(i)
a , σ(i)2), where

i = 0, 1. Under certain assumptions, if one client has much larger variance than the other, there
exists δ > 0 such that minε0,ε1∈[0,1] DP Disp(fUFL

ε ) > δ.

Note that the condition that one client has a much larger variance than the other contributes to the
“high data heterogeneity” requirement. We provide the explicit form of δ in Corollary 9 in Sec. A.2.2.
Corollary 2 implies that under a limiting case of Gaussian distribution, UFL cannot achieve high
fairness requirements. In Sec. 5.1, we will numerically demonstrate the same claim holds for more
general cases. Next, we give a specific example that satisfies the conditions of Corollary 2, which is
visualized in Fig. 3(a).

Example 1. Let µ(0)
0 = µ

(0)
1 = 0, µ

(1)
0 = 3, µ

(1)
1 = −1, σ(0) = 70 and σ(1) = 1. Then, δ ≈ 0.21.

FFL via FEDAVG Optimization FFL via FEDAVG enables federated training of a fair classifier
on decentralized data. In Sec. A.3.2, we show that the classifier obtained by FFL via FEDAVG is
equivalent to fFFL via FedAvg

ε , the solution to the following constrained optimization problem.
min
f∈F

P(ŷ 6= y)

s.t. |P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)| ≤ εi.
(FFL via FEDAVG(ε))

The following theorem asserts that FFL via FEDAVG can achieve a strictly higher fairness than UFL.
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higher data heterogeneity

Figure 4: Accuracy-fairness tradeoff curves of CFL, FFL via FEDAVG, and UFL for two clients cases.
Here qi denotes the proportion of group 1 in client i ∈ {0, 1}, so |q1 − q0| captures the data heterogeneity of
the distribution. The green dotted vertical line describes the lower bound on DP disparity FFL via FEDAVG can
achieve, and the orange dotted vertical line describes the lower bound on DP disparity UFL can achieve. As
predicted in Thm. 3 and Lemma 4, FFL via FEDAVG’s maximum fairness is strictly higher than that of UFL but
strictly lower than that of CFL. Moreover, the tradeoff curves are strictly ordered in the same order.

Theorem 3 ((Informal) Fundamental values of federated learning for fairness). Let qi =
q ∈ (0, 1) for all i ∈ [I]. Under certain conditions, minε∈[0,1]I DP Disp(fUFL

ε ) >

minε∈[0,1]I DP Disp(fFFL via FedAvg
ε ) = 0.

Similar to Lemma 1, the technical assumptions include high enough heterogeneity of x | a across
the clients. Thm. 3 shows that even with just two clients (I = 2), a non-trivial gap exists between
non-federated algorithms and federated algorithms in their fairness performances. More details are
provided in Sec. A.4. The theorem asserts that, under certain distributional assumptions, by using the
optimal local fairness budgets εi, FFL via FEDAVG can achieve perfect fairness, while UFL cannot.

Remark 1. Extending Thm. 3 to general cases where qi are not all the same remains open. In
particular, the analysis of FFL via FEDAVG for those cases remains open. However, we conjecture
that our lemma holds for more general cases, and we numerically support our conjecture in Sec. 5.

Remark 2. There is a stark difference between this phenomenon and the well-known gain of federated
learning due to an increased sample size, which is almost negligible with a few number of clients.
Our finding on this untapped gain in fairness can better support the need for federated learning even
between a small number of clients, which is the case for most cross-silo federated learning scenarios.

3.2 FFL VIA FEDAVG IS STRICTLY WORSE THAN CFL

While we showed that FFL via FEDAVG can achieve perfect fairness on certain distributions, it is
still unclear whether or not this is the case for every distribution. In this section, we first present the
optimization problem for CFL, whose achievable fairness region can serve as an upper bound on that
of all other federated learning algorithms. We then show the existence of data distributions on which
FFL via FEDAVG achieves a strictly worse fairness performance than CFL. This implies a strict gap
between the performance tradeoff of FFL via FEDAVG and that of CFL.

CFL Optimization We consider the same problem setting as Sec. 3.1. We now model the CFL
scenario as the following constrained optimization problem:

min
f∈F

P(ŷ 6= y), s.t. |P(ŷ = 1 | a = 0)− P(ŷ = 1 | a = 1)| ≤ ε. (CFL(ε))

Denote the solution to CFL(ε) as fCFL
ε . It is clear that fCFL

ε achieves the best accuracy-fairness
tradeoff, at the cost of no privacy. The following lemma shows that there exists some distribution
such that FFL via FEDAVG is strictly worse than CFL when the distribution of sensitive attribute a is
heterogeneous (qi are not all the same).

Lemma 4 ((Informal) A strict gap between FFL via FEDAVG and CFL). When there exist i 6=
j ∈ [I] s.t. qi 6= qj , there exist a distribution such that minε∈[0,1]I DP Disp(fFFL via FedAvg

ε ) >

minε DP Disp(fCFL
ε ) = 0.

Remark 3. A strict gap exists for certain distributions, but not for all distributions.

3.3 NUMERICAL COMPARISONS OF ACCURACY-FAIRNESS TRADEOFFS

One limitation of our current theoretical results is that they only compare the maximum achievable
fairness. Note that such analysis reveals how the tradeoff of accuracy and fairness behaves as the
fairness level increases, but it fails at fully characterizing the entire tradeoff curve. Extending our
theoretical results to fully characterize such tradeoffs is highly non-trivial, so we leave it as future
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work. Instead, we numerically solve each of the optimization problems and visualize the tradeoff
curves achieved by different algorithms.

Shown in Fig. 4 are the tradeoff curves for two clients cases. Let x | a = 0, i = 0 ∼ N (3, 1), x |
a = 1, i = 0 ∼ N (5, 1), x | a = 0, i = 1 ∼ N (1, 1), x | a = 1, i = 1 ∼ N (−1, 1), a | i = 0 ∼
Bern(q0), a | i = 1 ∼ Bern(q1), η(x) = 1

1+e−x , and vary the values of q0 and q1. Note that |q1− q0|
captures the heterogeneity of the sensitive data a, which increases from left to right. First, one can
observe that UFL<FFL via FEDAVG< CFL in terms of the achievable fairness range, as predicted by
our theory. Furthermore, we also observe an increasing gap between the tradeoff curves as the data
heterogeneity increases. Theoretical understanding of this phenomenon remains open.

4 FEDFB FOR IMPROVED FEDERATED FAIR LEARNING

Our findings in the previous section imply that federated learning is necessary, but the current
FEDAVG-based approach might not be the best approach. Can we design a federated learning
algorithm that is strictly better than FEDAVG-based approaches? In this section, we propose a new
federated learning algorithm for fair learning, which we dub FEDFB (short for Federated FairBatch).
Our approach is based on the state-of-the-art (centralized) fair learning algorithm FB (short for
FairBatch) (Roh et al., 2021) and has a few desirable theoretical guarantees. Later in Sec. 5, we
empirically show that FEDFB outperforms FFL via FEDAVG and closely matches the CFL’s tradeoff
on various datasets.
Algorithm 1: FEDFB algorithm
ClientUpdate(i,w,λ):

Update w(i) according to the sample
weights λ;
L

(i)
y,a ←

∑
(i,y,a)=(i,y,a) `(ŷ, y;w),

∀(y, a);
Send w(i), L

(i)
y,a(w) for all (y, a) to

server via a SecAgg protocol;
ServerExecutes:

for each iteration do
Clients perform updates;
w ← SecAgg({w(i)});
Ly,a ← SecAgg({L(i)

y,a}), ∀(y, a);
λ← Update(λ,Ly,a);
Broadcast w and λ to clients;

output :w

We first provide a brief review of the FB algorithm.
FB solves a bi-level optimization problem to learn
a fair classifier on centralized data. The inner opti-
mization problem solves a weighted empirical risk
minimization problem where samples from differ-
ent groups are reweighted by different weights. The
outer optimization problem optimizes the weights
used for the inner problem, with the goal of min-
imizing the unfairness of the classifier. FB works
for various group fairness definitions including de-
mographic parity, equalized odds, and equalized
opportunity. For the case of demographic parity,
the algorithm reduces to the following simple yet
intuitive algorithm. The algorithm starts with equal
weights for two different groups. After training a
model with the initial weights, it computes the sign
of the difference between the two positive predic-
tion rates P(ŷ = 1 | a = 0) − P(ŷ = 1 | a = 1).
If this quantity is zero, then DP Disp is zero, so the
sample weights are not updated. If this is positive,

it decreases the weights for the samples whose y = 1, a = 0 and increases the weights for the samples
whose y = 1, a = 1 so that after retraining, P(ŷ = 1 | a = 0) decreases and P(ŷ = 1 | a = 1)
increases. And vice versa for the other case.

FEDFB is a simple modification of the original FB, which closely simulates the centralized FB
applied to the entire data. Recall that under the FEDAVG protocol, clients periodically share their
locally trained model parameters with the server. Our modification is based on the following simple
observation: the bi-level structure of FB naturally fits the hierarchical structure of federated learning.

More specifically, note that if the clients also share their group-specific positive prediction rates, then
the centralized server can immediately reconstruct the difference between the two positive prediction
rates, measured on the entire data distribution. Therefore, the update rules for the outer optimization
of the original FB algorithm can be implemented at the central server given the extra information.
Then, the central server can broadcast the updated group weights with the clients, which can then
locally train models with the newly reweighted samples.

This precisely describes the essence of FEDFB, and shown in Alg. 1 is the pseudocode of the
FEDFB framework. Note that the update rule for group weights (denoted by λ in the pseudocode)
only requires the sum of the group losses, which enables secure aggregation. In Sec. B.1, we
present the detailed description of the algorithm, which consists of the local training algorithm with
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Table 1: Comparison of accuracy and DP disparity on the synthetic, Adult, COMPAS, and Bank datasets.
FEDFB significantly outperforms the other approaches on all the tested datasets, sometimes nearly matching the
performance of CFL. Note that FFL via FEDAVG sometimes gets a strictly worse performance than FEDAVG.
This can be explained by noting that the average of two fair models may not be fair at all.

SYNTHETIC ADULT COMPAS BANK
METHOD ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)

FEDAVG .886±.003 .406±.009 .829±.012 .153±.022 .655±.009 .167±.037 .898±.001 .026±.003

UFL .727±.194 .248±.194 .825±.008 .034±.028 .620±.019 .088±.055 .892±.002 .014±.006
FFL VIA FEDAVG .823±.102 .305±.131 .801±.043 .123±.071 .595±.005 .059±.009 .893±.000 .017±.001
FEDFB (OURS) .613±.007 .011±.009 .765±.001 .001±.001 .542±.001 .001±.001 .883±.000 .000±.000

CFL .726±.009 .028±.016 .816±.010 .045±.024 .616±.033 .036±.028 .883±.000 .000±.000

reweighted samples, the model/loss aggregation protocol, the group-weight update algorithm, and
the model/group-weight distribution protocol. We highlight a few advantages of FEDFB. First, it
provably converges under some mild technical conditions. We proved it by leveraging the analysis
tools for federated learning and FB – See Thm. 23 for more details. Second, our algorithm is a strict
improvement of FB even in centralized data cases. The original FB algorithm was not applicable if
the sensitive attributes are not binary. We made appropriate changes to the algorithm (with theoretical
guarantees) so that it can also handle more general cases. Thus, we use our version of FB by default
for fair learning in the rest of this paper.

One can note that under FEDFB, clients exchange additional information with the server by com-
municating real-valued loss values in addition to the model parameters. To limit the information
leakage, we also consider a variant of FEDFB, which exchanges the quantized loss values. For
instance, “FEDFB(10bits)” means each loss value is uniformly quantized using 10 bits. Such a loss
quantization scheme limits the amount of additional information shared between the clients and the
server, at the cost of potentially inaccurate group weight updates.
5 EXPERIMENTS

In this section, we numerically study the performance of UFL, FFL via FEDAVG, and CFL for more
general cases, and evaluate the empirical performance of FEDFB. We investigate the fundamental
limitation of UFL under general Gaussian distribution. We compare the accuracy-fairness tradeoff
of UFL, FFL via FEDAVG, and CFL by numerically solving UFL(i, εi), FFL via FEDAVG(ε),
and CFL(ε). More specifically, we first characterize the solutions to these problems up to an unknown
scalar, which can be numerically optimized. See Sec. A for more details. Moreover, we evaluate
FEDFB on both demographic parity and client parity. In each simulation study, we report the summary
statistics across five replications. Similar to the experimental settings used in (Roh et al., 2020), we
train all algorithms using a two-layer ReLU neural network with four hidden neurons to evaluate
the performance of FEDFB for the non-convex case. The results for logistic regression are provided
in Sec. C. We also investigate the empirical relationship between the performance of FEDFB and
the number of clients and incorporate differential privacy to further strengthen the power of FEDFB.
More implementation details are included in Sec. C.
5.1 LIMITATION OF UFL ON GENERAL CASES

The first experiment examines the fairness range of UFL under a more general Gaussian distribution,
which does not satisfy the conditions of Corollary 2. For instance, if the variance of two clients is
similar, then the conditions do not hold. However, we still conjecture that the same phenomenon
holds for more general distributions, and we corroborate our conjecture with numerical experiments.
Shown in Fig. 3(b,c) are the numerically computed lower bound on UFL’s achievable fairness. In
particular, for (b), we let x | a = 0, i = 0 ∼ N (10, 0.22), x | a = 1, i = 0 ∼ N (9.8, 0.22), x |
a = 0, i = 1 ∼ N (0.2, 0.22), x | a = 1, i = 1 ∼ N (0, 0.22), a ∼ Bern(0.2), and for (c), we let
x | a = 0, i = 0 ∼ N (3, 1), x | a = 1, i = 0 ∼ N (5, 1), x | a = 0, i = 1 ∼ N (1, 1), x | a =
1, i = 1 ∼ N (−1, 1), a ∼ Bern(0.5). For both cases, we set η(x) = 1

1+e−x . It is easy to check
that these distributions do not satisfy the conditions of Corollary 2. In particular, the distribution (b)
corresponds to the case that the same group is favored on both clients, and the positive rates of each
group in different clients are distinctive. The distribution (c) represents the case that different groups
are favored on two clients. In both cases, we can see that UFL fails to achieve perfect fairness, i.e.,
δ > 0. We also observe that δ is large on the distribution (c), where different groups are favored on
two clients. This supports our conjecture that UFL’s fairness performance is strictly limited not only
on certain data distributions but also on more general ones.

5.2 ACCURACY-FAIRNESS TRADEOFFS OF UFL, FFL VIA FEDAVG AND CFL

The second experiment extends the experiments conducted in Sec. 3.3. We assess the relationship
between the data heterogeneity and the gap between the three fair learning scenarios with three clients.
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Table 2: Comparison of accuracy and DP disparity on the synthetic dataset with varying heterogeneity.
FEDFB achieves good performance on all the tested levels of heterogeneity. This is because by design, FEDFB
closely matches the operation of CFL, whose performance is independent of data heterogeneity.

LOW DATA HETEROGENEITY MEDIUM DATA HETEROGENEITY HIGH DATA HETEROGENEITY
METHOD ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)

FEDFB (OURS) .669±.040 .058±.042 .613±.007 .011±.009 .627±.019 .030±.026
CFL .726±.009 .028±.016 .726±.009 .028±.016 .726±.009 .028±.016

As shown in Fig. 8, FFL via FEDAVG is observed to achieve a strictly worse tradeoff than CFL and a
strictly higher maximum fairness value than UFL. The results corroborate the benefit and limitation of
FEDAVG-based federated learning in improving fairness. A very interesting observation is that UFL
is observed to obtain a strictly higher accuracy than FFL via FEDAVG. Indeed, this could be attributed
to the fact that the average of locally fair models might not be fair to any sub-distribution, while UFL
at least ensures that each component of the mixture classifier is fair on some sub-distribution.

5.3 FEDFB EVALUATION ON DEMOGRAPHIC PARITY

We assess the empirical performance of FEDFB for both convex and non-convex cases on four
datasets and the performance of FEDFB under different data heterogeneity. We focus on demographic
parity and report DP disparity = maxa∈[A] |P(ŷ = 1 | a = a)− P(ŷ = 1)|, where A is the number
of groups. Note that this is slightly different from the definition we used in the previous sections,
which was used specifically for the case of one binary sensitive attribute.

Baselines We employ three types of baselines: (1) decentralized non-fair training (FEDAVG); (2)
decentralized fair training (UFL, FFL via FEDAVG); (3) centralized fair training (AGNOSTICFAIR,
CFL). Here, for all the algorithms that involve fair training, we use our improved version of FB,
which is the state-of-the-art fair learning algorithm on centralized data. for fairer comparison and
better performance, the implementation of UFL, FFL via FEDAVG, and CFL are all based on FB.
Note that UFL is absolutely private, CFL violates the privacy policy, FEDAVG, FFL via FEDAVG,
and FEDFB share some information at communication rounds without directly sharing the data, and
AGNOSTICFAIR exchanges information for each local update. To have a fairer comparison between
FFL via FEDAVG and FEDFB, we also equalize their differential privacy guarantees (Dwork, 2008)
and compare their performances. See Sec. C for more details. We also report the performance of
FAIRFED, a recently proposed algorithm for achieving demographic parity for binary sensitive groups
in the federated setting (Ezzeldin et al., 2021), and AGNOSTICFAIR in Sec. C.

Datasets (synthetic) We follow Roh et al. (2021) for data generation, but with a slight modifica-
tion to make the dataset more unbalanced. To study the empirical relationship between accuracy,
fairness, and data heterogeneity, we split the dataset in different ways to obtain desired levels of
data heterogeneity. More details are given in Sec. C.2. (real) We use three benchmark datasets:
Adult (Dua & Graff, 2017) with 48,842 samples, COMPAS (ProPublica, 2021) with 7,214 samples,
and Bank (Moro et al., 2014) with 45,211 samples. We follow Du et al. (2021)’s method to preprocess
and split Adult into two clients and Jiang & Nachum (2020)’s method to preprocess COMPAS and
Bank. Then, we split COMPAS into two clients based on age and split Bank into three clients based
on the loan decision. Note that all the datasets are split in heterogeneous ways.
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DP Disparity
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CFL

FedFB

FedFB(10bits)

Figure 5: Accuracy-
fairness tradeoff curves
on the synthetic dataset.
FEDFB nearly matches the
performance of CFL.

Results We present the results for two-layer ReLU neural networks in
Table 1 and leave the results for logistic regression in Sec. C. Table 1
reports the test accuracy and DP disparity of four baselines and FEDFB.
We see a substantial fairness improvement obtained by FEDFB. As ex-
pected, the resulting fairness level of FEDFB is close to that of CFL and
AGNOSTICFAIR. Besides, we observe the poor performance of UFL and
FFL via FEDAVG, which is due to the fundamental limitation of UFL
and FFL via FEDAVG. Table 2 reports the accuracy and fairness of each
method under different data heterogeneity. FedFB is observed to be robust
to data heterogeneity. This agrees with our expectation as FEDFB mimics
the operation of CFL – which is not affected by data heterogeneity – as
much as possible by design. We make a more thorough comparison between CFL and FEDFB by
plotting the accuracy-fairness tradeoff curves in Fig. 5. To demonstrate the performance gain does
not come at the cost of privacy loss, we restrict FEDFB to only exchange 10 bits of information per
communication round. Fig. 5 showcases the benefit of FEDFB in terms of accuracy, fairness and
privacy. In Table 7 and Table 8 in Sec. C, we compare FEDFB and FAIRFED. One can observe that
FEDFB can achieve a strictly improved fairness than FAIRFED. Also, FEDFB is observed to be more
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Figure 6: Comparison of accuracy and Client Parity (CP) disparity on the synthetic, Adult, COMPAS,
and Bank datasets. Even though our algorithm is not specifically designed for CP, it closely matches the
performance of the state-of-the-art fair federated learning algorithms designed for CP.

robust to data heterogeneity. Table 9 in Sec. C shows that FEDFB achieves similar performance as
AGNOSTICFAIR, at much lower cost of privacy.

5.4 FEDFB EVALUATION ON CLIENT PARITY

We evaluate the performance of FEDFB in achieving client parity (CP) and compare it with the
state-of-the-art algorithms for CP. We will measure CP disparity = maxi 6=j∈[I] |L(i) − L(j)|. Here
L(i) is the loss in ith client, see Sec. B.4 for more detail.

Baselines We consider GIFAIR (Yue et al., 2021), Q-FFL (Li et al., 2020a), DITTO (Li et al., 2021),
and the unconstrained baseline FEDAVG (McMahan et al., 2017). GIFAIR and Q-FFL are the most
similar ones to FEDFB. Similar to FEDFB, both GIFAIR and Q-FFL propose a modified aggregation
protocol, under which clients share some additional information with the central server, which then
accordingly adjust the objective function used for the next round of training. The key difference is
that while FEDFB optimizes the coefficients for the primary objective terms (i.e. sample reweighting)
by solving a bi-level optimization problem, GIFAIR updates the coefficient for the penalty terms,
and Q-FFL implicitly updates the weights on each objective term based on nonlinear behaviors of
polynomial functions, which is equivalent to the α-fairness algorithm used in networking (Mo &
Walrand, 2000). The DITTO algorithm combines multitask learning with federated learning to learn a
personalized classifier for each client, improving the accuracy of the clients with low accuracy.

Datasets We use the same datasets as Sec. 5.3, but split the datasets according to their sensitive
attributes to simulate the same setting as assumed by GIFAIR, Q-FFL, and DITTO.

Results Fig. 6 shows that FEDFB offers competitive and stable performances in mitigating the
model bias, especially in the high fairness region. Although Q-FFL achieves better accuracy and
fairness on the synthetic data, under strict fairness constraint, FEDFB and its private variant nearly
achieves the highest accuracy on the other three datasets.

6 CONCLUSIONS

Summary We have investigated how one can achieve group fairness under a decentralized setting.
For the first time in the literature, we developed a theoretical framework for decentralized fair learning
algorithms and analyzed the performance of UFL, FFL via FEDAVG, and CFL. As a result, we provide
novel insights that (1) federated learning can significantly boost model fairness even with only a
handful number of participating clients, and (2) FEDAVG-based federated fair learning algorithms
are strictly worse than the oracle upper bound of CFL. To close the gap between FEDAVG-based
fair learning algorithms and CFL, we propose FEDFB, a new federated fair learning algorithm. The
key idea behind FEDFB is that each client shares extra information about the unfairness of its local
classifier with the server, which then computes the optimal samples weights that need to be used
for the following round of local training. Our extensive experimental results demonstrate that our
proposed solution FEDFB achieves state-of-the-art performance, while still ensuring data privacy.

Open questions (Theory) While we characterized some fundamental limits on tradeoffs of various
approaches, there still remains a large number of open questions. First, as we briefly mentioned in
Sec. 3.3, full theoretical characterization of accuracy-fairness tradeoff still remains open. Our current
theoretical results only study the extreme ends of the tradeoff curves. Moreover, as shown in Sec. 5.2,
some of our experimental results reveal a highly nontrivial phenomenon. Studying this phenomenon
and identifying the exact relationship between various learning algorithms is an interesting open
problem. Furthermore, a three-way tradeoff between accuracy, fairness, and privacy remains widely
open. (Algorithm) It remains open whether or not our proposed solution FEDFB can be applied
for achieving different fairness notions used in the federated setting. In particular, proportional
fairness, i.e., clients who contribute more should receive more rewards (Zhang et al., 2020b; Lyu
et al., 2020b;a), is another popular notion of fairness used in the federated setting, and our current
FEDFB cannot handle it. Extending FEDFB to handle proportional fairness is one future research
direction.
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ETHICS STATEMENT

This work will improve the well-being of individuals in our society by solving ethical issues of AI,
such as the implicit discrimination in machine learning algorithms and the privacy of sensitive data.
Our theoretical and empirical findings assert that a fair machine learning model can be reliably trained
on decentralized data without compromising much privacy.

REPRODUCIBILITY STATEMENT

We have released our implementation in anonymous github1, which contains the code for all the
experiments, including the datasets we use and the implementation of data processing steps. For the
theoretical results, we provide all the necessary assumptions and proof in the Appendix.
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
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Symbol Meaning Symbol Meaning Symbol Meaning
x feature J·K indicator function εi bias in client i
a sensitive attribute f randomized classifier q a ∼ Bern(q)

i client index P(i)
a distribution DP Disp(f) unfairness of f

ŷ predicted class η(x) P(y = 1|x = x) fUFL
ε0,ε1 UFL classifier

Table 3: Commonly used notations.

A APPENDIX - UFL, FFL VIA FEDAVG, CFL ANALYSIS

In this section, we provide the concrete analysis for UFL, FFL via FEDAVG, and CFL. For illustration
purposes, we will start by discussing two clients cases, and then extend the analysis into more clients
cases in Sec. A.4. We begin with the analysis of CFL in Sec. A.1. Then we analyze UFL and FFL via
FEDAVG. To be specific, in Sec. A.2, we analyze the limitation of UFL and present the formal version
of Lemma 1 under two clients cases and Corollary 2. In Sec. A.3, we analyze FFL via FEDAVG
and compare it with UFL and CFL, then we present the formal two-client version of Thm. 3 and
Lemma 4. All the multi-client statements are included in Sec. A.4 We summarize the commonly used
notations in Table 3 .

A.1 CFL ANALYSIS

In this section, we analyze the CFL classifier fCFL
ε given in CFL(ε). We mainly derive the solution

of CFL(ε) in Lemma 5. In Lemma 6 and Lemma 7 we summarize the properties of fCFL
ε .

Lemma 5. Let q ∈ (0, 1). Define g(·) : [−max(q, 1− q),max(q, 1− q)]→ [−1, 1] as

g(λ) =

∫
[η−1( 1

2−
λ

2(1−q) ),+∞]

dP0 −
∫

[η−1( 1
2 + λ

2q ),+∞]

dP1,

then fCFL
ε = {Js(x, a) > 0K + αJs(x, a) = 0K : α ∈ [0, 1]}, where s(x, 0) = 2η(x) − 1 + λ

1−q ,
s(x, 1) = 2η(x) − 1 − λ

q , λ = g−1(sign(g(0)) min{ε, |g(0)|}). Here we denote the indicator
function as JEK : JEK = 1 if E is true, zero otherwise.

Proof. The proof is similar as Menon & Williamson (2018). To solve CFL(ε), we first write the error
rate and the fairness constraint as a linear function of f . Let pa(·) be the pdf of Pa, where a = 0, 1.
Denote the joint distribution of x and a as px,a(x, a). Note that

P(ŷ 6= y)

=

∫
X

∑
a∈A

[f(x, a)(1− η(x)) + (1− f(x, a))η(x)] px,a(x, a) dx

=Ex,af(x, a)(1− 2η(x)) + P(y = 1)

and
P(ŷ = 1 | a = 0)− P(ŷ = 1 | a = 1)

=

∫
X
f(x, 0)p0(x) dx−

∫
X
f(x, 1)p1(x) dx

=

∫
X

∑
a∈A

Ja = 0Kf(x, 0)
px,a(x, a)

P(a = 0)
dx−

∫
X

∑
a∈A

Ja = 1Kf(x, 1)
px,a(x, a)

P(a = 1)
dx

=Ex,a

[
f(x, 0)

Ja = 0K
1− q − f(x, 1)

Ja = 1K
q

]
.

Consequently, our goal becomes solving

minf∈F Ex,af(x, a)(1− 2η(x)) + P(y = 1)

s.t. |Ex,a

[
f(x, 0) Ja=0K

1−q − f(x, 1) Ja=1K
q

]
| ≤ ε. (1)
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Denote the function that minimizes the error rate (ERM) as f̃ ∈ F . It is easy to see that,

f̃(x) ∈ {Jη(x) > 1/2K + αJη(x) = 1/2K : α ∈ [0, 1]} .

Next, consider the following three cases. In particular, we provide the proof for |MD(f̃)| ≤ ε and
MD(f̃) > ε. The proof for MD(f̃) < −ε is similar as the proof for MD(f̃) > ε.

Case 1. |MD(f̃)| ≤ ε: ERM is already fair.

The solution to (1) and CFL(ε) is f̃ .

Case 2. MD(f̃) > ε: ERM is favoring group 0 over group 1.

We will show that solving (1) is equivalent to solving an unconstrained optimization problem.

First, we will prove by contradiction that the solution f? ∈ F to (1) satisfies MD(f?) = ε. We
use f? ∈ F to denote the solution of (1). Suppose the above claim does not hold. Then we have
MD(f?) < ε. To show the contradiction, we construct a f ′ ∈ F that satisfies the fairness constraint
and has a lower error rate than that of f?. Let f ′ be a linear combination of f? and f̃ :

f ′ = af? + (1− a)f̃ ,

where a = MD(f̃)−ε
MD(f̃)−MD(f?)

∈ (0, 1). Then we obtain

MD(f ′) = aMD(f?) + (1− a)MD(f̃) =
ε(MD(f̃)−MD(f?))

MD(f̃)−MD(f?)
= ε.

Denote the error rate P {ŷ 6= y} as e : F → [0, 1]. Then the error rate of f ′ is

e(f ′) = ae(f?) + (1− a)e(f̃) < e(f?),

which is inconsistent to the optimality assumption of f?. Therefore, MD(f?) = ε.

Now, solving CFL(ε) is equivalent to solving

minf∈F Ex,af(x, a)(1− 2η(x)) + P(y = 1)

s.t. |Ex,a

[
f(x, 0) Ja=0K

1−q − f(x, 1) Ja=1K
q

]
| = ε.

Furthermore, the optimization problem above is also equivalent to

minf∈F Ex,af(x, a)(1− 2η(x))− λEx,a

(
f(x, 0)

Ja = 0K
1− q − f(x, 1)

Ja = 1K
q

)
(2)

s.t. |Ex,a

[
f(x, 0)

Ja = 0K
1− q − f(x, 1)

Ja = 1K
q

]
| = ε, (3)

for all λ ∈ R.

Next, our goal is to select a suitable λ such that the constrained optimization problem above becomes
an unconstrained problem, i.e., we will select a suitable λ such that the minimizer to the unconstrained
optimization problem (2) satisfies equality constraint (3).

Note that

Ex,af(x, a)(1− 2η(x))− λEx,a

(
f(x, 0)

Ja = 0K
1− q − f(x, 1)

Ja = 1K
q

)
=Ex,af(x, a)

(
1− 2η(x)− λJa = 0K

1− q + λ
Ja = 1K

q

)
,

then the solution to unconstrained optimization problem (2) is

f̄ ∈ {Js(x, a) > 0K + αJs(x, a) = 0K : α ∈ [0, 1]} ,

14
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Figure 7: Visualization of g(λ) and |g(λ)|. When g(0) = MD(f̃) > ε ≥ 0, the corresponding λ of the best
classifier is λ = g−1(ε) < 0.

where

s(x, a) =

{
−1 + 2η(x) + λ

1−q a = 0

−1 + 2η(x)− λ
q a = 1

.

Since the range of η(x) is [0,1], f̄ with λ > max(q, 1 − q) is no different from f̄ with λ =
max(q, 1 − q); f̄ with λ < −max(q, 1 − q) is no different from f̄ with λ = −max(q, 1 − q).
Therefore, the only thing left is to find the λ ∈ [−max(q, 1− q),max(q, 1− q)] such that f̄ satisfies
the constraint (3).

Now consider the mean difference between the positive rate of two groups:

MD(f̄) = P(ŷ = 1 | a = 0)− P(ŷ = 1 | a = 1)

=

∫ +∞

−∞
Jη(x) >

1

2
− λ

2(1− q)K dP0 −
∫ +∞

−∞
Jη(x) >

1

2
+

λ

2q
K dP1

=

∫
[η−1( 1

2−
λ

2(1−q) ),+∞]

dP0 −
∫

[η−1( 1
2 + λ

2q ),+∞]

dP1

= g(λ).

Note that g(·) : [−max(q, 1−q),max(q, 1−q)]→ [−1, 1] is a strictly monotone increasing function.
Consequently, if and only if λ = g−1(ε), f̄ satisfies (3). Recall that optimization problem (2) with
constraint (3) is equivalent as CFL(ε). Thus, let λ = g−1(ε) and f̄ is the solution of CFL(ε).

Case 3. MD(f̃) < −ε: ERM is favoring group 1 over group 0.

Similarly, like Case 2, we obtain that the solution CFL(ε) is

f̄ ∈ {Js(x, a) > 0K + αJs(x, a) = 0K : α ∈ [0, 1]} ,
where

s(x, a) =

{
−1 + 2η(x) + λ

1−q a = 0

−1 + 2η(x)− λ
q a = 1

,

and λ = g−1(−ε). Combining all the cases above yields the desired conclusion. The proof is now
complete.

Remark 4. Select α = 0, then the solution to CFL(ε) can be written as

f(x, a) =

{
Jη(x) > 1

2 − λ
2(1−q)K a = 0

Jη(x) > 1
2 + λ

2q K a = 1
. (4)

Therefore, Lemma 5 implies that the best classifier of the CFL problem is equivalent to simply
applying a constant threshold to the class-probabilities for each value of the sensitive feature.

15
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Lemma 5 suggests the following property of the solution to CFL(ε).
Lemma 6. If f and g are two solutions to CFL(ε), then f = g almost everywhere.

For illustration purposes, we denote

λCFL
ε = g−1(sign(g(0)) min{ε, |g(0)|}). (5)

Below we summarize some useful properties of λCFL
ε .

Lemma 7. The sign of λCFL
ε and MD(fCFL

ε ) are determined by g(0).

1. If ε < |g(0)|, then MD(fCFL
ε ) = λCFL

ε 6= 0, and g(λCFL
ε ) = sign(g(0))ε. If |g(0)| ≤ ε, then

λCFL
ε = 0 and MD(fCFL

ε ) = g(λCFL
ε ) = g(0).

2. If g(0) > 0 or g(0) < 0, then for any ε ≥ 0, we have λ ≤ 0 or λ ≥ 0, respectively.

Proof. The first property follows directly from the definition of λCFL
ε . Next, we prove the second

property.

When ε > |g(0)|, we have λ = 0 and the first property holds. When g(0) > ε > 0, by the
definition of λCFL

ε , we have λ = g−1(ε) < g−1(g(0)) = 0. When g(0) < −ε < 0, we have
λ = g−1(−ε) > g−1(g(0)) = 0. Combining all the cases above yields the desired conclusion.

A.2 UFL ANALYSIS

With the analysis of CFL in Sec. A.1, in this section, we analyze the UFL classifier UFL(i, εi) for the
case of two clients. For illustration purpose, with I = 2, we denote fUFL

ε0,ε1 = fUFL
ε = (fε00 + fε11 )/2.

In Sec. A.2.1 we introduce some notations for the UFL classifier fUFL
ε0,ε1 that follows from Lemma 5.

In Sec. A.2.2 we analyze the limitation of fUFL
ε0,ε1 as stated in Sec. 3.1. To be more specific, we present

the two clients’ version of Lemma 1, formal version of Corollary 2 and conclude their proof. In
Sec. A.2.3, we analyze the performance gap between fUFL

ε0,ε1 and CFL classifier fCFL
ε .

A.2.1 PROBLEM SETTING

By Lemma 5, the solution to UFL(i, εi) is

fεii (x, a) =

Jη(x) > 1
2 −

λ
UFLi
εi

2(1−q)K a = 0

Jη(x) > 1
2 +

λ
UFLi
εi

2q K a = 1
,

where the associated λUFLi
εi is defined as

λUFLi
εi = g−1

i (sign(gi(0)) min(εi, |gi(0)|)) (6)

and
gi(λ) =

∫
[η−1( 1

2−
λ

2(1−q) ),+∞)

dP(i)
0 −

∫
[η−1( 1

2 + λ
2q ),+∞)

dP(i)
1 .

Note that gi(λ) is the mean difference on ith client E
x∼P(i)

0
f(x, 0)− E

x∼P(i)
1
f(x, 1) of the classifier

of the form (4). Now, the demographic disparity for fUFL
ε0,ε1 can be written as

DP Disp(fUFL
ε0,ε1) =

∣∣∣∣∣12
1∑
i=0

[P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)]

∣∣∣∣∣
=

∣∣∣∣∣∣14
1∑

i,j=0

[
E

x∼P(i)
0
f
εj
j (x, 0)− E

x∼P(i)
1
f
εj
j (x, 1)

]∣∣∣∣∣∣
= |1

4

(
g0(λUFL0

ε0 ) + g0(λUFL1
ε1 ) + g1(λUFL0

ε0 ) + g1(λUFL1
ε1 )

)
|.

For ease of notation, we define local mean difference on ith client as MDi(f) = P(ŷ = 1 |
a = 0, i = i) − P(ŷ = 1 | a = 1, i = i) and local demographic disparity on ith client as

16
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DP Dispi(f) = |MDi(f)|, where i = 0, 1. Since the overall distribution of the data samples is
x | a = a ∼ Pa = P(0)

a /2 + P(1)
a /2, a = 0, 1, g (see the definition of g in Lemma 5) and g0, g1 has

the following relation:

g(λ) =
1

2
g0(λ) +

1

2
g1(λ).

A.2.2 LIMITATION OF UFL

In this section, we mainly analyze the limitation of UFL in Lemma 8, which shows that fUFL
ε0,ε1 can

not achieve 0 demographic disparity in certain cases. Corollary 9 is a specific example of Lemma 8.
Lemma 8 (Formal version of Lemma 1 under two clients cases). Let q ∈ (0, 1). Let c =
min{|g0(0)|, |g1(0)|}. Define ψ : [0, c]× [0, c]→ [−1, 1] as

ψ(ε0, ε1) = MD(fUFL
ε0,ε1) =

1

4
g0(g−1

1 (sign(g1(0))ε1)) +
1

4
g1(g−1

0 (sign(g0(0))ε0))

+
1

4
sign(g0(0))ε0 +

1

4
sign(g1(0))ε1.

(7)

If g0(0)g1(0) < 0 and ψ(ε0, ε1)(g0(0) + g1(0)) > 0 for all ε0, ε1 ∈ [0, c], then for all ε0, ε1 ∈ [0, 1],
DP Disp(fUFL

ε0,ε1) ≥ δ = min{|ψ(ε0, ε1)| : ε0, ε1 ∈ [0, c]} > 0.

Proof. Define δ = min{|ψ(ε0, ε1)| : ε0, ε1 ∈ [0, c]}. The goal is to show that the demographic
disparity has a positive lower bound. Note that the mean difference can be expressed as

MD(fUFL
ε0,ε1) =

1

4

(
g0(λUFL0

ε0 ) + g0(λUFL1
ε1 ) + g1(λUFL0

ε0 ) + g1(λUFL1
ε1 )

)
. (8)

In the following proof, we will show, the mean difference cannot reach 0.

Without any loss of generality, assume |g0(0)| < |g1(0)|. First we consider g1(0) > 0. We will
discuss g1(0) < 0 later. By g0(0)g1(0) < 0 and ψ(ε0, ε1)(g0(0) + g1(0)) > 0 for all ε0, ε1 ∈ [0, c],
we have g0(0) < 0 and ψ(ε0, ε1) > 0 for all ε0, ε1 ∈ [0, c].

First, we will prove that UFL achieves its lowest mean difference when ε0, ε1 ∈ [0, c]. In what
follows, we consider five different cases to derive the desired result.

Case 1. ε0 > |g0(0)|, ε1 > |g1(0)|: ERM is fair on both clients.

By (6), we have λUFL0
ε0 = λUFL1

ε1 = 0. Recall gi(·) is a monotone increasing function, we combine
g1(0) > 0 and Lemma 7 to have g0(g−1

1 (0)) < g0(0) < 0. Applying the above conclusion yields

(8) =
1

2
g0(0) +

1

2
g1(0) > 2

(
1

4
g0(0) +

1

4
g1(0) +

1

4
g0(g−1

1 (0))

)
= 2ψ(g0(0), 0) ≥ δ.

Case 2. ε0 ≤ |g0(0)|, ε1 > |g1(0)|: ERM is unfair on client 0, but fair on client 1.

Applying (6) results in λUFL1
ε1 = 0. By the fact that gi(·) is a strictly monotone increasing function,

we have λUFL0
ε0 = g−1

0 (−ε0) > g−1
0 (g0(0)) = 0. Applying the above conclusion yields

(8) =− 1

4
ε0 +

1

4
g1(0) +

1

4
g0(0) +

1

4
g1(λUFL0

ε0 )
(
λUFL0
ε0 > 0, g1(λUFL0

ε0 ) > g1(0), g0(0) < −ε0

)
>

1

2
g0(0) +

1

2
g1(0) > 2ψ(g0(0), 0) ≥ δ.

Case 3. ε0 ≤ |g0(0)|, ε1 ≤ |g1(0)|: ERM is unfair on both client 0 and client 1.

Applying (6) we have λUFL0
ε0 = g−1

0 (−ε0), λUFL1
ε1 = g−1

1 (ε1). Then we have

(8) =
1

4

(
−ε0 + ε1 + g0(g−1

1 (ε1)) + g1(g−1
0 (−ε0))

)
≥ 1

4

(
−ε0 + ε0 + g0(g−1

1 (ε0)) + g1(g−1
0 (−ε0))

)
= ψ(ε0, ε0) ≥ δ.
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Case 4. ε0 > |g0(0)|, ε1 ≤ |g0(0)|: ERM is fair on client 0 and very unfair on client 1.

By (6), we have λUFL0
ε0 = 0, λUFL1

ε1 = g−1
1 (ε1) > g−1

1 (0). Then we obtain

(8) =
1

4

(
g0(0) + g0(λUFL1

ε1 ) + g1(0) + ε1

)
> (g0(0) + g0(g−1

1 (0)) + g1(0))/4 = ψ(g0(0), 0) ≥ δ.
Case 5. ε0 > |g0(0)|, |g0(0)| ≤ ε1 < |g1(0)|: ERM is fair on client 0 and unfair on client 1.

Applying (6) implies λUFL1
ε1 = g−1

1 (ε1) > g−1
1 (0). Therefore,

(8) =
1

4

(
g0(0) + g0(g−1

1 (ε1)) + ε1 + g1(0)
)

> (g0(0) + g1(0) + g0(g−1
1 (0)) + ε1)/4 > ψ(g0(0), 0) ≥ δ.

Combining all the cases above, we conclude that when g1(0) > 0 DP Disp(fUFL
ε0,ε1) ≥ δ =

min{|ψ(ε0, ε1)| : ε0, ε1 ∈ [0, c]} > 0 for all ε0, ε1 ∈ [0, 1].

Now we consider g1(0) < 0, by the setting |g0(0)| < |g1(0)| and the assumption g0(0)g1(0) < 0
and ψ(ε0, ε1)(g0(0) + g1(0)) > 0, we have g0(0) > 0 and ψ(ε0, ε1) < 0 for all ε0, ε1 ∈ [0, c].
Following similar computation above, Case 1 - Case 5 become:

Case 1. ε0 > |g0(0)|, ε1 > |g1(0)|. Now we have 0 < g0(0) < g0(g−1
1 (0)), thus

(8) < 2

(
1

4
g0(0) +

1

4
g1(0) +

1

4
g0(g−1

1 (0))

)
= 2ψ(g0(0), 0) ≤ −δ.

Case 2. ε0 ≤ |g0(0)|, ε1 > |g1(0)|. Now we have g0(0) > ε0, g1(λUFL0
ε0 ) < g1(0), thus

(8) <
1

2
g0(0) +

1

2
g1(0) < 2ψ(g0(0), 0) ≤ −δ.

Case 3. In this case we have

(8) =
1

4

(
ε0 − ε1 + g0(g−1

1 (−ε1)) + g1(g−1
0 (ε0))

)
= ψ(ε0, ε1) ≤ −δ.

Case 4. Now we have λUFL1
ε1 = g−1

1 (−ε1) < g−1
1 (0), thus

(8) < (g0(0) + g0(g−1
1 (0)) + g1(0))/4 = ψ(g0(0), 0) ≤ −δ.

Case 5. Now we have λUFL1
ε1 = g−1

1 (−ε1) < g−1
1 (0), thus

(8) = (g0(0) + g1(0) + g0(g−1
1 (0))− ε1)/4 < ψ(g0(0), 0) ≤ −δ.

Then we conclude the proof.

Remark 5. Note that c is the smallest local demographic disparity the ERM achieves on clients.
The condition g0(0)g1(0) < 0 implies that the ERM is favoring different groups in different clients.
The condition ψ(ε0, ε1)(g0(0) + g1(0)) > 0 for all ε0, ε1 ∈ [0, c] implies that fUFL

ε0,ε1 favors the same
group as ERM when the constraint is very tight. If the conditions above hold, Lemma 8 suggests that
there exists a lower bound of all the demographic disparity that UFL can achieve. In particular, if the
conditions above hold, UFL fails to achieve perfect demographic parity.

Among the conditions of Lemma 8, g0(0)g1(0) < 0 can be satisfied by the distribution with high
data heterogeneity. To demonstrate the condition ψ(ε0, ε1)(g0(0) + g1(0)) > 0 for all ε0, ε1 ∈ [0, c]
can be satisfied, we consider a limiting Gaussian case. The following corollary serves as an example
that satisfies the conditions of Lemma 8, and provides a more explicit expression of the lowest
demographic disparity UFL can reach in the Gaussian case.
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Corollary 9 (Formal version of Corollary 2). Let q = 0.5, η(x) = 1
1+e−x ,P

(i)
a = N (µ

(i)
a , σ(i)2)

where (µ
(0)
0 − µ(0)

1 )(µ
(1)
0 − µ(1)

1 ) < 0. Then DP Disp(fUFL
ε0,ε1) ≥ δ ≈ 1

4 |g0(0) + g1(0)| > 0 for all
ε0, ε1 ∈ [0, 1] if one of the following condition holds:

1. σ(0) � σ(1), |µ(0)
0 |, |µ

(0)
1 |, |µ

(1)
0 |, |µ

(1)
1 | and µ(1)

0 > µ
(1)
1 : client 0 has much larger variance

than client 1, and client 1 is favoring group 0;

2. σ(1) � σ(0), |µ(0)
0 |, |µ

(0)
1 |, |µ

(1)
0 |, |µ

(1)
1 | and µ(0)

0 > µ
(0)
1 : client 1 has much larger variance

than client 0, and client 0 is favoring group 0.

Proof. In this example, note that local mean difference function of λ can be written as:

gi(λ) = Φ(
η−1( 1

2 + λ)− µ(i)
1

σ(i)
)− Φ(

η−1( 1
2 − λ)− µ(i)

0

σ(i)
), (9)

where Φ(·) is the CDF of the standard Gaussian distribution.

We only provide the proof for condition 1, and the proof for condition 2 is similar. Assume condition
1 holds. By (µ

(0)
0 − µ

(0)
1 )(µ

(1)
0 − µ

(1)
1 ) < 0 and µ(1)

0 − µ
(1)
1 > 0, we have µ(0)

0 − µ
(0)
1 < 0. By (9),

we have g0(0) < 0 and g1(0) > 0. Consequently, combining Lemma 7 and (7) yields

ψ(ε0, ε1) =
1

4

(
g0(g−1

1 (ε1)) + g1(g−1
0 (−ε0))− ε0 + ε1

)
.

First we show that ψ(ε0, ε1) reachs its minimum either at (c, 0) or (0, c) by taking the derivative of
ψ, where c = min{|g0(0)|, |g1(0)|} is the smallest local demographic disparity. And then, we will
estimate the minimum of ψ on [0, 1]× [0, 1].

We take the derivative of ψ with respect to εi and get

∂ψ

∂εi
(ε0, ε1) = sign(gi(0))

(
1 +

g′1−i(g
−1
i (sign(gi(0))εi))

g′i(g
−1
i (sign(gi(0))εi))

)
/4.

By condition 1, we have g0(0) = Φ(−µ
(0)
1

σ(0) )−Φ(−µ
(0)
0

σ(0) ) ≈ 0, thus |g0(0)| � |g1(0)| and c = |g0(0)|.
Since gi are increasing function, i = 0, 1, we have g′i(·) > 0, and thus ∂ψ

∂ε0
< 0, ∂ψ∂ε1 > 0. Therefore,

ψ reaches its extreme value at (0, c) and (c, 0).

Now, we evaluate

ψ(0, c) = (g0(g−1
1 (c)) + g1(g−1

0 (0))− g0(0))/4 >
g1(0)− g0(0) + g0(g−1

1 (c))

4
,

where the inequality comes from g0(0) < 0 to have g1(g−1
0 (0)) > g1(0). And at (c, 0), we have

ψ(c, 0) = (g0(g−1
1 (0)) + g1(0) + g0(0))/4.

In what follows, we will show that min {ψ(c, 0), ψ(0, c)} ≈ δ = g1(0)+g0(0)
4 by proving that

0 > g0(g−1
1 (c)) > g0(g−1

1 (0)) ≈ 0.

Consider ψ(c, 0) and ψ(0, c). Since g1(0) > c, g0(0) < 0, we have

g0(g−1
1 (0)) < g0(g−1

1 (c)) < g0(0) < 0.

Therefore, the only thing left is to show g0(g−1
1 (0)) ≈ 0. We divide the rest of the proof into the

following three cases.

Case 1. µ(1)
1 < µ

(1)
0 < 0: on client 1, the local classifier is favoring group 0 over group 1, and the

positive rate of both groups are under 1
2 .
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Clearly, under this case, we have
∫

[η−1( 1
2 ),∞)

dP(1)
0 =

∫
[0,∞)

dP(1)
0 < 1

2 . We select λ′ < 0 such

that η−1( 1
2 + λ′) = µ

(1)
1 . Then we have

∫
[η−1( 1

2 +λ′),∞)
dP(1)

1 =
∫

[µ
(1)
1 ,∞)

dP(1)
1 = 1

2 , while∫
[η−1( 1

2−
λ′

2(1−q) ),∞)
dP(1)

0 < 0. Thus we get g1(λ′) < 0. Combining g1(0) > 0 and intermediate

value theorem results in λ′ < g−1
1 (0) < 0. Then we obtain

µ
(1)
1 = η−1(

1

2
+ λ′) < η−1(

1

2
+ g−1

1 (0)) < 0

−µ(1)
1 = η−1(

1

2
− λ′) > η−1(

1

2
− g−1

1 (0)) > 0 (η(x)− 1

2
is odd)

. (10)

By plugging (10) into (9), we have the other side of g0(g−1
1 (0)) < 0 is bounded by g0(λ′) =

Φ(
µ
(1)
1 −µ

(1)
1

σ(1) )− Φ(
−µ(1)

1 −µ
(1)
0

σ(1) ). Since σ(1) � |µ(1)
1 |, |µ

(0)
1 |, we get g0(g−1

1 (0)) ≈ 0.

Case 2. 0 < µ
(1)
1 < µ

(1)
0 : on client 1, the local classifier is favoring group 0 over group 1, and the

positive rate of both groups are above 1
2 .

This proof of this case is similar to Case 1.

Case 3. µ(1)
1 < 0 < µ

(1)
0 : with respect to the local classifier trained by client 1, the positive rate of

group 0 is above 1
2 while that of group 1 is under 1

2 .

Without any loss of generality, we assume |µ(1)
1 | < |µ

(1)
0 |. Select λ′′ < 0 such that η( 1

2 −λ′′) = µ
(1)
0 .

Clearly
∫

[η−1( 1
2−λ′′),+∞)

dP(1)
0 =

∫
[µ

(1)
0 ,+∞)

dP(1)
0 = 1

2 , while∫
[η−1( 1

2 +λ′′),+∞)

dP(1)
1 =

∫
[−µ(1)

0 ,+∞)

dP(1)
1 >

∫
[−µ(1)

1 ,+∞)

dP(1)
1 >

1

2
.

Consequently, we get g1(λ′′) < 0 and λ′′ < g−1
1 (0) < 0. Then we draw the same conclusion as (10).

Therefore, g0(g−1
1 (0)) ≈ 0.

Combining all three cases above, we get δ > 0. Then applying Lemma 8 we complete the proof.

A.2.3 COMPARISON BETWEEN UFL AND CFL

In this section, we compare the performance of UFL and CFL. In Lemma 10 and Lemma 11, we
illustrate the conditions for UFL to have the same performance as CFL. In Lemma 12, Lemma 13
and Lemma 14, we illustrate the scenarios when CFL outperforms UFL.

To do the comparison, first we introduce some additional notations. Define the accuracy of a classifier
f as

Acc(f) = P(ŷ = y) = P(y = 0)Ex,a|y=0[1− f(x, a)] + P(y = 1)Ex,a|y=0f(x, a).

Given the required global demographic disparity ε, define the performance of fUFL
ε0,ε1 as:

UFL(ε0, ε1; ε) =

{
Acc(fUFL

ε0,ε1) DP Disp(fUFL
ε0,ε1) ≤ ε

0 o.w.
,

and define performance of fCFL
ε as:

CFL(ε) = Acc(fCFL
ε ).

Now we are able to compare the performance between UFL and CFL with the metric UFL(ε0, ε1; ε)
and CFL(ε). In particular, we will show that, under some mild conditions, maxε0,ε1 UFL(ε0, ε1; ε) <
CFL(ε), which implies the gap between UFL and CFL is inevitable.

We begin with the following two lemmas, which describe the cases that UFL(ε0, ε1; ε) = CFL(ε).
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Lemma 10. Let q ∈ (0, 1). Given an UFL classifier fUFL
ε0,ε1 such that DP Disp(fUFL

ε0,ε1) ≤ ε and a
CFL classifier fCFL

ε , we have UFL(ε0, ε1; ε) ≤ CFL(ε). The equality holds if and only if λUFL0
ε0 =

λUFL1
ε1 = λCFL

ε , where λCFL
ε is defined in (5), λUFL0

ε0 , λUFL1
ε1 are defined in (6).

Proof. The proof is straightforward. Clearly, since fCFL
ε is the optimizer to CFL(ε), we have

UFL(ε0, ε1; ε) ≤ CFL(ε). By Lemma 5, according to the form of the solution to CFL(ε), fUFL
ε0,ε1 is

the solution to CFL(ε) if and only if λUFL0
ε0 = λUFL1

ε1 = λCFL
ε . Thus complete the proof.

Lemma 11. Let q ∈ (0, 1). If the ERM is already fair, i.e., ε ≥ |g(0)|, then

max
ε0,ε1

UFL(ε0, ε1; ε) = CFL(ε).

Proof. Since the ERM is already fair, fCFL
ε is ERM= Jη(x) > 1/2K. Therefore, we take ε0 = ε1 = 1,

and fUFL
ε0,ε1 also equals to ERM. Thus we conclude the lemma.

The next two lemmas describes the cases that UFL(ε0, ε1; ε) < CFL(ε).

Lemma 12. Let q ∈ (0, 1). If g0(0)g1(0) < 0, maxε0,ε1 UFL(ε0, ε1; ε) < CFL(ε) for all ε <
|g(0)|.

Proof. In this proof, we only consider the case that g1(0) > 0, |g1(0)| ≥ |g0(0)|. The proof for
g1(0) > 0 or |g1(0)| ≥ |g0(0)| is similar. Next, we divide the proof into two cases.

Case 1. maxε0,ε1 UFL(ε0, ε1; ε) = 0: UFL cannot achieve ε global demographic disparity.

The conclusion holds.

Case 2. maxε0,ε1 UFL(ε0, ε1; ε) > 0: UFL can achieve ε global demographic disparity.

Since ε < |g(0)|, by Lemma 7, we have λCFL
ε 6= 0. Next, we solve fUFL

ε0,ε1 by solving the local
version of CFL(ε). Combining Lemma 7, g1(0) > 0 and g0(0) < 0 yields λUFL0

ε0 ≥ 0, λUFL1
ε1 ≤ 0.

If λUFL0
ε0 = λUFL1

ε1 , then λUFL0
ε0 = λUFL1

ε1 = 0 6= λCFL
ε . Thus, we conclude the lemma by applying

Lemma 10.

Remark 6. Lemma 12 implies that if ERM is favoring different groups in different clients, there
exists an inevitable gap between the performance of UFL and that of CFL.

Lemma 13. Let q ∈ (0, 1). Let τ = min
{
|g(0)|,max{sign(g(0))g(g−1

0 (0)), sign(g(0))g(g−1
1 (0))}

}
.

If g0(0)g1(0) > 0, we have

max
ε0,ε1

UFL(ε0, ε1; ε)

{
= CFL(ε) for all ε ≥ τ
< CFL(ε) o.w.

.

Proof. Without any loss of generality, assume g0(0), g1(0) > 0. Then by Lemma 7, we have
λUFL0
ε0 ≤ 0, λUFL1

ε1 ≤ 0 for all ε0, ε1 ∈ [0, 1], and g(0) = (g0(0) + g1(0))/2 > 0.

To study the performance of UFL when g0(0)g1(0) < 0, recall that we use fεii to denote the local
classifier trained by client i in UFL analysis. Therefore, f0

i is the local classifier trained by client i
that achieves perfect local fairness.

Next, we discuss two cases to prove the result. In Case 1, we will show that τ = 0, and then prove
that maxε0,ε1 UFL(ε0, ε1; ε) = CFL(ε); in Case 2, we will show that τ > 0, and then prove that
maxε0,ε1 UFL(ε0, ε1; ε) < CFL(ε) when ε < τ .

Case 1. f0
0 = f0

1 : the two local classifiers that achieve perfect local fairness are equal.
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When ε ≥ g(0), the conclusion holds by directly applying Lemma 11. Therefore, in what follows,
we focus on the case that ε < g(0).

Next, we will first, show that when ε = 0, λUFL0
0 = λUFL1

0 = λCFL
0 , which implies that f0

0 = f0
1 =

fCFL
0 .

Since f0
0 = f0

1 , we have λUFL0
0 = λUFL1

0 , and thus g−1
0 (0) = g−1

1 (0). Consequently, we get

g(λUFL0
0 ) = g(λUFL1

0 ) = g(g−1
0 (0)) =

g0(g−1
0 (0)) + g1(g−1

1 (0))

2
= 0 = g(λCFL

0 ).

By the monotonicity of g, we have λUFL0
0 = λUFL1

0 = λCFL
0 and τ = 0. Next, we will show

that, for ε 6= 0, there also exists ε0, ε1 ∈ [0, 1] such that λUFL0
ε0 = λUFL1

ε1 = λCFL
ε , which implies

fUFL0
ε0 = fUFL1

ε0 = fCFL
ε .

Consider ε 6= 0. Select εi = gi(λ
CFL
ε ), i = 0, 1. By Lemma 5 and the monotonicity of g, we

have λCFL
0 < λCFL

ε < 0. Therefore, εi = gi(λ
CFL
ε ) > gi(λ

CFL
0 ) = 0. By Lemma 5, we get

λUFLi
εi = g−1

i (εi) for i = 0, 1. By the selection of εi, we have λCFL
ε = g−1

i (εi). Therefore,
λCFL
ε = λUFL0

ε0 = λUFL1
ε1 when ε 6= 0.

Combining all the discussion above yields fUFL
ε0,ε1 = fCFL

ε for all ε < g(0), thus we conclude
maxε0,ε1 UFL(ε0, ε1; ε) = CFL(ε) for all ε < g(0). Consequently, the lemma holds under Case 1.

Case 2. f0
0 6= f0

1 : the two local classifiers that achieve perfect local fairness are different.

The key idea of this proof is: when MD0(fCFL
ε ),MD1(fCFL

ε ) ≥ 0, then we can always se-
lect ε0 = g0(λCFL

ε ) = MD0(fCFL
ε ) > 0, ε1 = g1(λCFL

ε ) = MD1(fCFL
ε ) > 0 such that

λUFL0
ε0 = g−1

0 (ε0) = λCFL
ε and λUFL1

ε1 = g−1
1 (ε1) = λCFL

ε , thus fUFL
ε0,ε1 = fCFL

ε ; when
MD0(fCFL

ε )MD1(fCFL
ε ) = g0(λCFL

ε )g1(λCFL
ε ) < 0, however, by Lemma 7, for all ε0, ε1 ∈

[0, 1] × [0, 1], we have g0(λUFL0
ε0 )g1(λUFL1

ε1 ) > 0 > g0(λCFL
ε )g1(λCFL

ε ), thus there exist i ∈ {0, 1}
such that λUFLi

εi 6= λCFL
ε and fUFL

ε0,ε1 6= fCFL
ε . Next, we will give rigorous proof.

Since f0
0 6= f0

1 , we have λUFL0
0 6= λUFL1

0 . By Lemma 5, we get g−1
0 (0) 6= g−1

1 (0). Without any
loss of generality, assume g−1

0 (0) < g−1
1 (0), which implies g1(g−1

0 (0)) < g1(g−1
1 (0)) = 0 and

g0(g−1
0 (0)) = 0 < g0(g−1

1 (0)). Thus we get

g1(g−1
0 (0)) < 0 < g0(g−1

1 (0)).

Combining the inequality above and g = g0+g1
2 yields

g(g−1
0 (0)) = g1(g−1

0 (0)) < 0 = g(g−1(0)) < g0(g−1
1 (0)) = g(g−1

1 (0)). (11)
Thus we have

τ = max{sign(g(0))g(g−1
0 (0)), sign(g(0))g(g−1

1 (0))} = g(g−1
1 (0)).

When ε ≥ |g(0)|, by Lemma 11, clearly we have maxε0,ε1 UFL(ε0, ε1; ε) = CFL(ε).

For the other case ε < |g(0)|, by Lemma 7 we have λ = g−1(ε). Similar to Case 1, in order to
achieve λUFL0

ε0 = λUFL1
ε1 = λCFL

ε , we select εi = gi(λ
CFL
ε ).

When ε < g(g−1
1 (0)),

g1(λCFL
ε ) = g1(g−1(ε)) < g1(g−1(g(g−1

1 (0)))) = 0.

Since g1(0) > 0, by Lemma 7 we have g1(λUFL1
ε1 ) ≥ 0, from the monotonicity of g1 we conclude

λUFL1
ε1 6= λCFL

ε . By Lemma 10, we have maxε0,ε1 UFL(ε0, ε1; ε) < CFL(ε) for all ε ≤ τ .

When ε ≥ g(g−1
1 (0)), applying (11) we have

gi(0) > εi = gi(λ) = gi(g
−1(ε)) ≥ gi(g−1(g(g−1

i (0)))) = 0,

where the first inequality comes from Case 1. Thus, λi = g−1(εi) = λ as desired, and we obtain
fUFL
ε0,ε1 = fCFL

ε .

Combining both cases above yields the desired conclusion.
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Remark 7. Recall that we use fεii to denote the local classifier trained by client i in UFL analysis.
In the expression of τ :

min
{
|g(0)|,max{sign(g(0))g(g−1

0 (0)), sign(g(0))g(g−1
1 (0))}

}
,

|g(0)| is the demographic disparity of ERM, sign(g(0))g(g−1
0 (0)) is the demographic disparity of

local classifier f0
0 , and sign(g(0))g(g−1

1 (0)) is the demographic disparity of local classifier f0
1 .

According to the proof of Lemma 13, we obtain max{sign(g(0))g(g−1
0 (0)), sign(g(0))g(g−1

1 (0))} >
0 if and only if two local classifiers which achieves perfect local fairness is equal, i.e., f0

0 = f0
1 .

Therefore, Lemma 13 implies that, if the ERM is favoring the same group on different clients and the
two local classifiers which achieve perfect local fairness are unequal, then UFL performs strictly
worse than CFL when the required demographic disparity is smaller than a certain value.

So far we assume a ∼ Bern(q) for both client 0 and client 1. When both clients do not share the
same q, we can conclude that CFL outperforms UFL in the following lemma.
Lemma 14. Assume a ∼ Bern(qi) in client i, and q0 6= q1 ∈ (0, 1). Then
maxε0,ε1 UFL(ε0, ε1; ε) < CFL(ε) for all ε < |g(0)|.

Proof. We assemble the dataset from two clients to have x | a = a ∼ Pa = q0
q0+q1

P(0)
a + q1

q0+q1
P(1)
a ,

a = 0, 1. We let fCFL
ε be the solution to CFL(ε), with q = q0+q1

2 :

fCFL
ε = Js(x, a) > 0K,

where s(x, 0) = 2η(x)− 1 +
λCFL
ε

1− q , s(x, 1) = 2η(x)− 1− λCFL
ε

q
.

Given an UFL classifier fUFL
ε0,ε1 = (fε00 + fε11 )/2 such that DP Disp(fUFL

ε0,ε1) ≤ ε, the solution reads

fεii = Jsi(x, a) > 0K,

where si(x, 0) = 2η(x)− 1 +
λUFLi
εi

1− qi
, si(x, 1) = 2η(x)− 1− λUFLi

εi

qi
.

We prove the lemma by contradiction argument. If Acc(fUFL
ε0,ε1) = CFL(ε), then fUFL

ε0,ε1 is a solution
to CFL(ε) with q = q0+q1

2 . Since ε < |g(0)|, by Lemma 7 we have λCFL
ε 6= 0. Without any loss of

generality, assume λCFL
ε < 0. Below we discuss three cases.

Case 1. λUFL0
ε0 = λUFL1

ε1 = 0: the UFL classifier is ERM.

In this case, fε00 = fε11 . We have fUFL
ε0,ε1(x, 0) = 1 for η(x) > 1

2 , and fCFL
ε = 0 for η(x) <

(1− λCFL
ε /(1− q))/2. By Lemma 6, fUFL

ε0,ε1 is not a solution to CFL(ε).

Case 2. λUFL0
ε0 6= 0 or λUFL1

ε1 6= 0, and λUFL0
ε0 λUFL1

ε1 = 0: the UFL classifier is not ERM, but one of
the local classifier is ERM.

Without any loss of generality, let λUFL0
ε0 = 0, λUFL1

ε1 < 0. Then fε00 (x, 0) = 1 for η(x) > 1
2 , while

fε11 (x, 0) = 0 for η(x) < (1− λUFL0
ε0 (1− q1))/2. Thus we get

fUFL
ε0,ε1(x, 0) =

1

2
for

1

2
< η(x) < (1− λUFL1

ε1 (1− q1))/2.

By Lemma 6, fUFL
ε0,ε1 is not a solution to CFL(ε).

Case 3. λUFL0
ε0 λUFL1

ε1 6= 0: The local classifiers are not ERM.

When
λUFL0
ε0

1−q0 6=
λUFL1
ε1

1−q1 , without loss of generality, let
λUFL0
ε0

1−q0 >
λUFL1
ε1

1−q1 . Then by the same argument in
Case 2, we have

fUFL
ε0,ε1(x, 0) =

1

2
for

1− λUFL0
ε0

1−q0
2

< η(x) <
1− λUFL1

ε1

1−q1
2

.
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By Lemma 6, fUFL
ε0,ε1 is not a solution to CFL(ε).

When
λUFL0
ε0

q0
6= λUFL1

ε1

q1
, similarly, fUFL

ε0,ε1 is not a solution to CFL(ε).

When
λUFL0
ε0

q0
=

λUFL1
ε1

q1
and

λUFL0
ε0

1−q0 =
λUFL1
ε1

1−q1 , since λUFL0
ε0 λUFL1

ε1 6= 0, we have

q0

λUFL0
ε0

=
q1

λUFL1
ε1

,
1− q0

λUFL0
ε0

=
1− q1

λUFL1
ε1

,

which leads to 1

λ
UFL0
ε0

= 1

λ
UFL1
ε1

and thus q0 = q1. This contradicts with the assumption that q0 6= q1.

Combining all three cases yields desired conclusion.

A.3 FFL VIA FEDAVG ANALYSIS

In this section, we analyze FFL via FEDAVG for the case of two clients. For purpose of illustration,
with I = 2, we denote fFFL via FedAvg

ε0,ε1 = fFFL via FedAvg
ε to be the solution to FFL via FEDAVG(ε). In

Sec. A.3.1, we present a formal version of Thm. 3 and show that compared to UFL, FFL via FEDAVG
has strictly higher fairness. In Sec. A.3.2 we derive the solution to FFL via FEDAVG(ε), and show it
is equivalent to FFL via FEDAVG. In Sec. A.3.3, we analyze the limitation of FFL via FEDAVG and
present a formal version of Lemma 4.

A.3.1 IMPROVE FAIRNESS VIA FEDERATED LEARNING

Different to UFL, FFL via FEDAVG can reach any ε demographic disparity:
Theorem 15 (Formal version of Thm. 3 under two clients cases). Let q ∈ (0, 1). For all ε ∈ [0, 1],
there exists ε0, ε1 ∈ [0, 1] such that DP Disp(fFFL via FedAvg

ε0,ε1 ) ≤ ε. Thus under the condition in
Lemma 8, we have

min
ε0,ε1∈[0,1]

DP Disp(fUFL
ε0,ε1) > min

ε0,ε1∈[0,1]
DP Disp(fFFL via FedAvg

ε0,ε1 ) = 0.

Proof. For any ε ∈ [0, 1], let ε0 = ε1 = ε. Then the global DP disparity becomes

DP Disp(fFFL via FedAvg
ε0,ε1 ) = |Ex|a=0f(x, 0)− Ex|a=1f(x, 1)|

= |(
∫
X
f(x, 0) dP(0)

0 +

∫
X
f(x, 0) dP(1)

0 )/2

− (

∫
X
f(x, 1) dP(0)

1 +

∫
X
f(x, 1) dP(1)

1 )/2|

= |MD0(fFFL via FedAvg
ε0,ε1 )/2 + MD1(fFFL via FedAvg

ε0,ε1 )/2|
≤ DP Disp0(fFFL via FedAvg

ε0,ε1 )/2 + DP Disp1(fFFL via FedAvg
ε0,ε1 )/2

≤ (ε0 + ε1)/2 = ε.

A.3.2 THE BEST CLASSIFIER OF FFL VIA FEDAVG

For FFL via FEDAVG, we directly consider multi-client cases. To visualize the gap between UFL,
FFL via FEDAVG, and CFL, in our numerical experiments, we draw finite samples from Gaussian
distribution, and then we optimize the empirical risk with the fairness constraint to obtain the classifier
trained by FFL via FEDAVG. The following lemma provides the solution to FFL via FEDAVG(ε)
when X is finite.
Lemma 16. For finite X , the solution to FFL via FEDAVG(ε) is given by

f(x, a) = J
∑
i∈[I]

si(x, a)p(i)
a (x) > 0K,

where si(x, a) = 2η(x)− 1 + Iλi
Ja=0K
1−q − Iλi

Ja=1K
q , for certain λ0, . . . λI−1 ∈ R.
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Proof. This proof is based on Menon & Williamson (2018). The key idea of this proof is to use
the Lagrangian approach. Before we applying the Lagrangian approach, we will show that FFL via
FEDAVG(ε) is expressible as a linear program, and thus the strong duality holds.

Since X is finite, f is a vector of finite dimension. Based on the proof of Lemma 5, the error rate can
be written as

P(ŷ 6= y) =
∑

x∈X ,a∈A
f(x, a)(1− 2η(x))P(x = x, a = a) + P(y = 1),

and the fairness constraints can be written as

P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)

=
∑
x∈X

[
f(x, 0)

P(x = x | a = 0, i = i)

P(a = 0)
− f(x, 1)

P(x = x | a = 1, i = i)

P(a = 1)

]
,

for i ∈ [I]. Let u(x, a) = (1 − 2η(x))P(x = x, a = a), u′ = P(y = 1), and vi(x, a) = (Ja =
0K− Ja = 1K)P(x = x | a = a, i = i)/P(a = a), for x ∈ X , a ∈ A, i ∈ [I]. Note that u, v0, v1 are
vectors of the same dimension of f . For ease of notation, we allow ≤ to be applied to pairs of vectors
in an element-wise manner. Therefore, the optimization is

min
f

u>f + u′

s.t. v>i f ≤ εi
0 ≤ f ≤ 1,

which is a linear objective with linear constraint. Therefore, the strong duality holds for FFL via
FEDAVG(ε). Next, we apply Lagrangian approach to solve the FFL via FEDAVG(ε).

Recall that

P(ŷ 6= y) =
1

I
EaEx∼P(i)

a
f(x, a)(1− 2η(x)) + P(y = 1),

and
P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)

=EaEx∼P(i)
a

[
f(x, 0)

Ja = 0K
1− q − f(x, 1)

Ja = 1K
q

]
.

By strong duality, for λ′0, . . . , λ
′
2I−1 ≥ 0, the corresponding Lagrangian version of FFL via FE-

DAVG(ε) is

min
f∈F

P(ŷ 6= y)−
∑
i∈[I]

[
λ′2i[P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)− εi] (12)

+ λ′2i+1[εi − P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)]
]

Let λi = λ′2i − λ′2i+1, i ∈ [I], then we get

(12) = min
f∈F

EaEx∼P(i)
a

[
1

I
f(x, a)(1− 2η(x))−

∑
i∈[I]

(
λif(x, 0)

Ja = 0K
1− q − λif(x, 1)

Ja = 1K
q

)]

= min
f∈F

∫
X

∑
a∈A
−1

I
f(x, a)[

∑
i∈[I]

si(x, a)p(i)
a (x)]dx.

where si is defined in Lemma 16. Thus the above equation reaches its minimum at

f(x, a) = J
∑
i∈[I]

si(x, a)p(i)
a (x) > 0K.
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Remark 8. Based on the proof of Lemma 16, FFL via FEDAVG(ε) is equivalent to solving

min
f∈F

P(ŷ 6= y)−
I−1∑
i=0

λi(P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i)).

Under certain conditions (assumptions 1 to 4 in Li et al. (2020b)), we have solving FFL via
FEDAVG(ε) is equivalent to minimizing

P(ŷ 6= y | i = i)− λi(P(ŷ = 1 | a = 0, i = i)− P(ŷ = 1 | a = 1, i = i))

locally and applying FEDAVG (Theorem 1 in Li et al. (2020b)).

A.3.3 COMPARISON OF FFL VIA FEDAVG AND CFL

Lemma 17 (Formal version of Lemma 4 under two clients cases). When a | i = 0 ∼ Bern(0), a |
i = 1 ∼ Bern(1) and DP Disp(fCFL

1 ) > 0, we have

min
ε0,ε1

DP Disp(fFFL via FedAvg
ε0,ε1 ) = DP Disp(fCFL

1 ) > min
ε

DP Disp(fCFL
ε ) = 0.

Proof. Since a | i = 0 ∼ Bern(0), a | i = 1 ∼ Bern(1), the constraints in FFL via FEDAVG(ε)
vanish. When ε = 1, the constraint in CFL(ε) always holds and thus also vanishes. Thus in such
scenario the solution to FFL via FEDAVG(ε) becomes fCFL

1 . Then from the assumption we have

DP Disp(fFFL via FedAvg
ε0,ε1 ) = DP Disp(fCFL

1 ) > DP Disp(fCFL
0 ) = 0.

A.4 EXTENSION TO MULTI-CLIENT CASES

In this subsection, we perform the analysis of UFL and FFL via FEDAVG for the multi-client cases.
We present a more general version of Lemma 8, Thm. 15 and Lemma 17.

The following lemma shows the fundamental limitation of UFL:

Lemma 18 (Formal version of Lemma 1). Let q ∈ (0, 1). Consider a partition which divides I
clients into two subsets. Denote the mixture distribution of each subset as x | a = a, j = j ∼ P̃(j)

a ,
where j is the index of the subset, and P̃(j)

a is a distribution, for a, j = 0, 1. Similar to two clients
case, define g̃j(λ) =

∫
[η−1( 1

2−
λ

2(1−q) ),+∞)
dP̃(j)

0 −
∫

[η−1( 1
2 + λ

2q ),+∞)
dP̃(j)

1 . Consider the case that

qi = q for all i ∈ [I] and q ∈ (0, 1). Denote the proportion of the two subset as J0 and J1, where
J0, J1 > 0 and J0 + J1 = 1. Let c = min {|g̃0(0)|, |g̃1(0)|}. Define ψ̃ : [0, c]× [0, c]→ [−1, 1] as

ψ̃(ε̃0, ε̃1) = J0J1g̃0(g̃−1
1 (sign(g̃1(0))ε̃1)) + J0J1g̃1(g̃−1

0 (sign(g̃0(0))ε̃0))

+ J2
0 sign(g̃0(0))ε̃0 + J2

1 sign(g̃1(0))ε̃1.

If there exists a partition such that g̃0(0)g̃1(0) < 0 and ψ̃(ε̃0, ε̃1)(g̃0(0) + g̃1(0)) > 0 for all ε̃0, ε̃1 ∈
[0, c], then for all ε̃0, ε̃1 ∈ [0, 1], DP Disp(fUFL

ε ) ≥ δ̃ = min{|ψ̃(ε̃0, ε̃1)| : ε̃0, ε̃1 ∈ [0, c]} > 0.

Proof. By Lemma 8, we conclude the achievable fairness range of UFL is strictly smaller than that
of CFL. Therefore, pooling the datasets in one subset and perform fair learning can clearly achieve a
wider range of fairness than perform fair learning on each client individually. Thus, we can consider
the two subsets as two clients with uneven amounts of data, which is almost the same case Lemma 8
considers. Therefore, we follow the same proof idea as Lemma 8 to prove our claim.

Denote the assembled classifier trained from two pooled datasets as f̃UFL
ε̃0,ε̃1

. Note that the mean
difference can be expressed as

MD(f̃UFL
ε̃0,ε̃1) = J2

0 g̃0(λ̃UFL0

ε̃0
) + J0J1g̃0(λ̃UFL1

ε̃1
) + J0J1g̃1(λ̃UFL0

ε̃0
) + J2

1 g̃1(λ̃UFL1

ε̃1
). (13)

In the following proof, we will show, the mean difference cannot reach 0.
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Without any loss of generality, assume |g̃0(0)| < |g̃1(0)| and g̃1(0) > 0. By g̃0(0)g̃1(0) < 0 and
ψ̃(ε̃0, ε̃1)(g̃0(0) + g̃1(0)) > 0 for all ε̃0, ε̃1 ∈ [0, c], we have g̃0(0) < 0 and ψ̃(ε̃0, ε̃1) > 0 for all
ε̃0, ε̃1 ∈ [0, c]. Without any loss of generality, assume J0 ≤ J1.

First, we will prove that UFL achieves its lowest mean difference when ε̃0, ε̃1 ∈ [0, c]. In what
follows, we consider five different cases to derive the desired result.

Case 1. ε̃0 > |g̃0(0)|, ε̃1 > |g̃1(0)|: ERM is fair on both clients.

By (6), we have λ̃UFL0

ε̃0
= λ̃UFL1

ε̃1
= 0. Recall g̃i(·) is a monotone increasing function, combine

g̃1(0) > 0 and Lemma 7, and thus g̃0(g̃−1
1 (0)) < g̃0(0) < 0. Applying the above conclusion yields

(13) = J0g̃0(0) + J1g̃1(0) >
1

J1

(
J2

0 g̃0(0) + J2
1 g̃1(0) + J0J1g̃0(g̃−1

1 (0))
)

=
1

J1
ψ̃(g̃0(0), 0) ≥ δ̃.

Case 2. ε̃0 ≤ |g̃0(0)|, ε̃1 > |g̃1(0)|: ERM is unfair on client 0, but fair on client 1.

Applying (6) results in λUFL1
ε1 = 0. By the fact that g̃i(·) is a strictly monotone increasing function,

we have λ̃UFL0

ε̃0
= g̃−1

0 (−ε̃0) > g̃−1
0 (g̃0(0)) = 0. Applying the above conclusion yields

(13) =− J2
0 ε̃0 + J2

1 g̃1(0) + J0J1g̃0(0) + J0J1g̃1(λ̃UFL0

ε̃0
)

>J0g̃0(0) + J1g̃1(0) >
1

J1
ψ̃(g̃0(0), 0) ≥ δ̃.

In the first equality we used λ̃UFL0

ε̃0
> 0, g̃1(λ̃UFL0

ε̃0
) > g̃1(0), g̃0(0) < −ε̃0.

Case 3. ε̃0 ≤ |g̃0(0)|, ε̃1 ≤ |g̃1(0)|: ERM is unfair on both client 0 and client 1.

Applying (6) we have λ̃UFL0

ε̃0
= g̃−1

0 (−ε̃0), λ̃UFL1

ε̃1
= g̃−1

1 (ε̃1). Then we have

(13) = −J2
0 ε̃0 + J2

1 ε̃1 + J0J1g̃0(g̃−1
1 (ε̃1)) + J0J1g̃1(g̃−1

0 (−ε̃0))

≥ −J2
0 ε̃0 + J2

1 ε̃0 + J0J1g̃0(g̃−1
1 (ε̃0)) + J0J1g̃1(g̃−1

0 (−ε̃0)) = ψ̃(ε̃0, ε̃0) ≥ δ̃.
Case 4. ε̃0 > |g̃0(0)|, ε̃1 ≤ |g̃0(0)|: ERM is fair on client 0 and very unfair on client 1.

By (6), we have λ̃UFL0

ε̃0
= 0, λ̃UFL1

ε̃1
= g̃−1

1 (ε̃1) > g̃−1
1 (0). Then we obtain

(13) = J2
0 g̃0(0) + J0J1g̃0(λ̃UFL1

ε̃1
) + J0J1g̃1(0) + J2

1 ε̃1

> J2
0 g̃0(0) + J0J1g̃0(g̃−1

1 (0)) + J2
1 g̃1(0) = ψ̃(g̃0(0), 0) ≥ δ̃.

Case 5. ε̃0 > |g̃0(0)|, |g̃0(0)| ≤ ε̃1 < |g̃1(0)|: ERM is fair on client 0 and unfair on client 1.

Applying (6) implies λ̃UFL1

ε̃1
= g̃−1

1 (ε̃1) > g̃−1
1 (0). Therefore,

(13) =J2
0 g̃0(0) + J0J1g̃0(g̃−1

1 (ε̃1)) + J2
1 ε̃1 + J0J1g̃1(0)

> J2
0 g̃0(0) + J0J1g̃1(0) + J0J1g̃0(g̃−1

1 (0)) + J2
1 ε̃1 > ψ̃(g̃0(0), 0) ≥ δ̃.

Combining all the cases above, we conclude that when g̃1(0) > 0, DP Disp(f̃UFL
ε̃0,ε̃1

) ≥ δ̃ =

min{|ψ̃(ε̃0, ε̃1)| : ε̃0, ε̃1 ∈ [0, c]} > 0 for all ε̃0, ε̃1 ∈ [0, 1].

Remark 9. Based on the proof above, we can conclude, for the cases with multiple clients, the
fundamental limitation of UFL still exists.

The following theorem shows that FFL via FEDAVG can reach any ε DP disparity:
Theorem 19 (Generalized version of Thm. 15). Let qi = q ∈ (0, 1) for all i ∈ [I]. For all ε ∈ [0, 1],
let εi ≤ ε for all i ∈ [I], then DP Disp(fFFL via FedAvg

ε ) ≤ ε. Thus under the condition in Lemma 18,
we have

min
ε∈[0,1]I

DP Disp(fUFL
ε ) > min

ε∈[0,1]I
DP Disp(fFFL via FedAvg

ε ) = 0.
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Proof. When εi ≤ ε the global DP disparity becomes

DP Disp(fFFL via FedAvg
ε ) = |Ex|a=0f(x, 0)− Ex|a=1f(x, 1)|

= |(
I−1∑
i=0

∫
X
f(x, 0) dP(i)

0 )/I − (

I−1∑
i=0

∫
X
f(x, 1) dP(i)

1 )/I|

= |
I−1∑
i=0

MDi(fFFL via FedAvg
ε )/I| ≤

I−1∑
i=0

DP Dispi(f
FFL via FedAvg
ε )/I ≤

I−1∑
i=0

εi/I = ε.

The following theorem shows the limitation of FFL via FEDAVG:
Lemma 20 (Generalized version of Lemma 17). Let a | i = i ∼ Bern(0) or a | i = i ∼ Bern(1) for
all i ∈ [I]. When DP Disp(fCFL

1 ) > 0, we have

min
ε∈[0,1]I

DP Disp(fFFL via FedAvg
ε ) = DP Disp(fCFL

1 ) > min
ε

DP Disp(fCFL
ε ) = 0.

Proof. Since a | i = i ∼ Bern(0) or a | i = i ∼ Bern(1), the constraints in (FFL via FEDAVG(ε))
vanish. When ε = 1, the constraint in CFL(ε) always holds and thus also vanishes. Thus in such
scenario the solution to (FFL via FEDAVG(ε)) becomes fCFL

1 . Then from the assumption we have

DP Disp(fFFL via FedAvg
ε ) = DP Disp(fCFL

1 ) > DP Disp(fCFL
0 ) = 0.

B APPENDIX - FEDFB ANALYSIS AND ALGORITHM DESCRIPTION

In this section, we provide our bi-level optimization formulation for FEDFB for four fairness notions:
demographic parity, equal opportunity, equalized odds and client parity, and design the corresponding
update rule. This development can also be applied to centralized case. Then, we provides more
details of how we incorporate FB with federated learning.

To explain how to optimize the weights of different groups, we introduce some necessary notations
first. Denote the kth sample as (xk, yk, ak, ik), k = 1, . . . , n. Here xk ∈ X is the input feature,
yk ∈ {0, 1} is the label, ak ∈ A = [A] is the sensitive attribute and ik ∈ [I] is the index of the
client that the sample belongs to. A represents the total amount of sensitive attribute and I represents
the total amount of clients. Denote the number of samples in group a as n?,a := |{k : ak =
a}|. Let ny,a := |{k : yk = y, ak = a}| be the number of samples in group a of label y, and
n

(i)
y,a := |{k : yk = y, ak = a, ik = i}| be the number of samples belong to client i of label y

and sensitive attribute a. Define the loss function as `(y, ŷ). Let Ly,a(w) be the empirical risk
aggregated over samples subject to y = y, a = a, i.e., Ly,a(w) :=

∑
k:yk=y,ak=a `(yk, ŷk)/ny,a,

where ny,a := |{k : yk = y, ak = a}|. We then define the local version of Ly,a as L(i)
y,a(w) :=∑

k:yk=y,ak=a,ik=i `(yk, ŷk)/n
(i)
y,a.

B.1 FEDFB w.r.t DEMOGRAPHIC PARITY

To extend Roh et al. (2021) to multiple groups cases, we propose a different bi-level optimization
problem w.r.t demographic parity. This development can also be applied to the centralized setting.
The following proposition gives a necessary sufficient condition for demographic parity, which can
be directly obtained from Roh et al. (2021). For completeness, we also include the proof here.
Proposition 21 (Necessary sufficient condition for demographic parity, Proposition 2 in Roh et al.
(2021)). Consider 0-1 loss: `(y, ŷ) = Jy 6= ŷK. Let L′y,a(w) :=

ny,a
n?,a

Ly,a(w), then

− L′0,0(w) + L′1,0(w) + L′0,a(w)− L′1,a(w) +
n0,0

n?,0
− n0,a

n?,a
= 0 (14)

for all a ∈ [A] is a necessary sufficient condition for demographic parity.
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Proof. We denote by P the empirical probability. The demographic parity is satisfied when P(ŷ =
1 | a = 0) = P(ŷ = 1 | a = a) holds for all a ∈ [A]. Thus,

P(ŷ = 1, y = 0 | a = 0) + P(ŷ = 1, y = 1 | a = 0)

=P(ŷ = 1, y = 0 | a = a) + P(ŷ = 1, y = 1 | a = a)

For 0-1 loss, we have `(|1− y|, ·) = 1− `(y, ·), thus
1

n?,0

∑
k:yk=0,ak=0

(1− ` (yk, ŷk)) +
1

n?,0

∑
k:yk=1,ak=0

` (yk, ŷk)

=
1

n?,a

∑
k:yk=0,ak=a

(1− ` (yk, ŷk)) +
1

n?,a

∑
k:yk=1,ak=a

` (yk, ŷk) .

By replacing
∑
k:yk=y,ak=a ` (yk, ŷk) = ny,aLy,a(w), we have

n0,0

n?,0
(1− L0,0(w)) +

n1,0

n?,0
L1,0(w)

=
n0,a

n?,a
(1− L0,a(w)) +

n1,a

n?,a
L1,a(w).

Remark 10. Proposition 21 provides us a way to measure demographic disparity using group-specific
losses. However, since 0-1 loss is noncontinuous, in practice, we use the “continuous surrogate” of it,
which is cross entropy.

The necessary sufficient condition for demographic parity (14) inspires us to achieve demographic
parity by connecting one group with all the other groups for non-binary sensitive attribute settings.
To achieve demographic parity, we introduce another parameter: λ = (λ0, . . . , λA−1), the weights
attached to samples. We formalize the reweighting task into the following bi-level optimization
problem, where the outer objective function captures the demographic parity criterion:

min
λ∈Λ

Fdp(λ) := min
λ∈Λ

A−1∑
a=1

(
−L′0,0(wλ) + L′1,0(wλ) + L′0,a(wλ)− L′1,a(wλ) +

n0,0

n?,0
− n0,a

n?,a

)2

︸ ︷︷ ︸
(15)outer

wλ := arg min
w

L(w,λ) = arg min
w

A−1∑
a=0

[
λaL

′
0,a(w) + (2

n?,a
n
− λa)L′1,a(w)

]
︸ ︷︷ ︸

(15)inner

, (15)

where Λ = [0, 2
n?,0
n ]× · · · × [0, 2

n?,A−1

n ].

We make the following assumption to our loss function to have the decreasing direction in Lemma 22.
Assumption 1. L′y,a(·) is twice differentiable for all y ∈ {0, 1}, a ∈ [A], and

A−1∑
a=0

[
λa∇2L′0,a(w) + (2

n?,a
n
− λa)∇2L′1,a(w)

]
� 0 for all λ ∈ Λ. (16)

If L′y,a(wλ) is convex for all y ∈ {0, 1}, a ∈ [A], the condition (16) holds unless for all a,
L′0,a(·), L′1,a(·) share their stationary points, which is very unlikely (see Remark 1 in Roh et al.
(2021)).

The following lemma provides a decreasing direction of the outer objective function Fdp, which
inspired us to design the update rule of λ.
Lemma 22 (Decreasing direction of Fdp). If Assumption 1 holds, then on the direction µ(λ) =
(µ0(λ), . . . , µA−1(λ)) where

µ0(λ) = −
A−1∑
a=1

(
−L′0,0(wλ) + L′1,0(wλ) + L′0,a(wλ)− L′1,a(wλ) +

n0,0

n?,0
− n0,a

n?,a

)
,

µa(λ) = −L′0,0(wλ) + L′1,0(wλ) + L′0,a(wλ)− L′1,a(wλ) +
n0,0

n?,0
− n0,a

n?,a

(17)
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for all a ∈ {1, . . . , A− 1}, we have µ(λ) ·∇Fdp(λ) ≤ 0, and the equality holds if only if µ(λ) = 0.

Proof. We compute the derivative as

∂Fdp(λ)

∂λj
= 2

A−1∑
a=1

[(
− L′0,0(wλ) + L′1,0(wλ) + L′0,a(wλ)− L′1,a(wλ) +

n0,0

n?,0
− n0,a

n?,a

)
(
−∇L′0,0(wλ) +∇L′1,0(wλ) +∇L′0,a(wλ)−∇L′1,a(wλ)

)]∂wλ
∂λj

.

(18)

Note that wλ is the minimizer to (15)inner, we have

A−1∑
a=0

[
λa∇L′0,a(wλ) + (2

n?,a
n
− λa)∇L′1,a(wλ)

]
= 0.

We take the λj derivative to the above equation and have

∇L′0,j(wλ)−∇L′1,j(wλ) +

A−1∑
a=0

[
λa∇2L′0,a(wλ) + (2

n?,a
n
− λa)∇2L′1,a(wλ)

]∂wλ
∂λj

= 0.

Thus we get

∂wλ
∂λj

=
(A−1∑
a=0

[
λa∇2L′0,a(wλ) + (2

n?,a
n
− λa)∇2L′1,a(wλ)

])−1

[∇L′1,j(wλ)−∇L′0,j(wλ)].

(19)

Then on the direction µ(λ) given by (17), we combine (18) and (19) to have

µ(λ) · ∇Fdp(λ)

= 2

(A−1∑
a=1

[(
− L′0,0(wλ) + L′1,0(wλ) + L′0,a(wλ)− L′1,a(wλ) +

n0,0

n?,0
− n0,a

n?,a

)
(
−∇L′0,0(wλ) +∇L′1,0(wλ) +∇L′0,a(wλ)−∇L′1,a(wλ)

)])
(A−1∑
a=0

[
λa∇2L′0,a(wλ) + (2

n?,a
n
− λa)∇2L′1,a(wλ)

])−1

(
−
A−1∑
a=1

[(
− L′0,0(wλ) + L′1,0(wλ) + L′0,a(wλ)− L′1,a(wλ) +

n0,0

n?,0
− n0,a

n?,a

)
(
−∇L′0,0(wλ) +∇L′1,0(wλ) +∇L′0,a(wλ)−∇L′1,a(wλ)

)])
≤ 0

where we have used Assumption 1, and the equality holds only when µ(λ) = 0.

Inspired by Lemma 22, in each communication round t = 0, 1, . . . , we design update rule for λ as:

λ(t+1)
a = λ(t)

a +
αt

‖µ(λ(t))‖2
µa(λ(t)), for a ∈ [A], (20)

where αt is the step size.

Now we introduce how clients collaborate to solve the bi-level optimization problem (15).

First, we focus on the outer objective function (15)outer and introduce how clients collaborate to
update the weight λ. Note that the central server can compute L′y,a(wλ(t)) by weight-averaging the

local group loss L(i)
y,a(wλ(t)) sent from clients at communication rounds as

L′y,a(wλ(t)) =
∑
i∈[I]

n
(i)
y,a

n?,a
L(i)
y,a(wλ(t)),
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thereby obtain µ(λ(t)) and update λ(t) by (20).

Next, we focus on the inner objective function (15)inner and introduce how clients collaborate to update
the model parameterswλ using FEDAVG. Note that we can decompose the objective functionL(w,λ)

into L(w,λ) =
∑
i∈[I] L

(i)(w,λ), where L(i)(w,λ) :=
∑A−1
a=0 [λan

(i)
0,aL

(i)
0,a/n?,a + (2

n?,a
n −

λa)n
(i)
1,aL

(i)
1,a/n?,a] is the client objective function of client i. The global objective can be seen as a

weighted sum of the client objective function. Therefore, we can use FEDAVG to solve the inner
optimization problem.

We present the pseudocode of FEDFB w.r.t demographic parity in Algorithm 2.

Algorithm 2: FEDFB w.r.t Demographic Parity
Server executes:

input :Learning rate {αt}t∈N;
Initialize λa as n?,a

n for all a ∈ [A]\ {0};
for each iteration t = 1, 2, . . . do

Clients perform updates;
wλ ← SecAgg

{
w(i)

}
for all i;

Ly,a ← SecAgg
{
L

(i)
y,a

}
for all (y, a);

L′y,a ← ny,a
n?,a

Ly,a for all y ∈ {0, 1}, a ∈ [A];

µ0 ← −
∑A−1
a=1

(
−L′0,0 + L′1,0 + L′0,a − L′1,a +

n0,0

n?,0
− n0,a

n?,a

)
;

µa ← −L′0,0 + L′1,0 + L′0,a − L′1,a +
n0,0

n?,0
− n0,a

n?,a
, a ∈ [A]\{0};

λa ← λa + αt
‖µ‖2µa, for all a ∈ [A];

Broadcast wλ and λ to clients;
end
output :wλ

ClientUpdate(i,w,λ):
w(i) ← Gradient descent w.r.t objective function∑A−1

a=0

[
λaL

′(i)
0,a (w) + (2

n?,a
n − λa)L

′(i)
1,a (w)

]
;

Send w(i), L
(i)
0,a(w), L

(i)
1,a(w) for all a ∈ [A] to server via a SecAgg protocol;

Next, we analyze the convergence performance of FEDFB. We need to make the following assump-
tions on the objective function L(i)(w,λ), i ∈ [I]. For simplicity, we drop the λ here and use the
notations L(i)(w) and L(w) instead. We use w(i)

t to denote the model parameters at t-th iteration in
i-th client. The assumptions below are proposed by work Li et al. (2020b):

Assumption 2 (Strong convexity, Assumption 1 in Li et al. (2020b)). L(i)(w) is µ-strongly convex
for i ∈ [I], i.e., for all v and w, w, L(i)(v) ≥ L(i)(w) + (v −w)>∇L(i)(w) + µ

2 ‖v −w‖
2
2.

Assumption 3 (Smoothness, Assumption 2 in Li et al. (2020b)). L(i)(w) is L-smooth for i ∈ [I],
i.e., for all v and w, L(i)(v) ≤ L(i)(w) + (v −w)>∇L(i)(w) + L

2 ‖v −w‖
2
2.

Assumption 4 (Bounded variance, Assumption 3 in Li et al. (2020b)). Let ξ(i)
t be sampled

from i-th device’s local data uniformly at random, where t ∈ [T ], and T is the total num-
ber of every client’s SGDs. The variance of stochastic gradients in each device is bounded:

E
∥∥∥∇L(i)(w

(i)
t , ξ

(i)
t )−∇L(i)(w

(i)
t )
∥∥∥2

<∞ for i ∈ [I].

Assumption 5 (Bounded gradients, Assumption 4 in Li et al. (2020b)). The expected squared norm
of stochastic gradients is uniformly bounded, i.e., E

∥∥∥∇L(i)(w
(i)
t , ξ

(i)
t )
∥∥∥ <∞ for all i ∈ [I], t ∈ [T ].

In FEDAVG, first, the central server broadcasts the lastest model to all clients, then, every client
performs local updates for a number of iterations, last, the central server aggregates the local models
to produce the new global model(see Algorithm Description in Li et al. (2020b) for more detailed
explanation).
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We denote E as the number local iterations performed in a client between two communications, and
R be the total number of every client’s iteration. Thus R

E is the number of communications.

With the above assumptions, the following theorem shows the convergence of FedFB in the case of
two clients.

Theorem 23. Consider the case of A = 2. Let Assumption 2, 3, 4, 5 on {L(i)(·,λ)}i∈[I] and
Assumption 1 on {L′y,a(·)}y,a∈{0,1} hold. Choose {αt}∞t=1 such that limt→∞ αt = 0,

∑∞
t=1 αt =∞.

Suppose we use FEDAVG with R and E satisfying E2

R → 0 to solve (15)inner between two λ update
rounds. We can find sufficiently large T such that with high probability, applying update rule (20)
leads to |λ(T )

a − λ?a| ≤ max
{
|λ(0)
a − λ?a| −

∑T
t=1 αt, αT

}
→ 0, where λ? is the local minimizer on

direction µ(λ).

Proof. We first derive the update rule in the case of A = 2. From (20), we have µ0 = −µ1. Denote

f(λ(t)) = −L′0,0(wλ(t)) + L′1,0(w
(t)
λ ) + L′0,1(w

(t)
λ )− L′1,1(w

(t)
λ ) +

n0,0

n?,0
− n0,1

n?,1
.

Then the update rule becomes

λ
(t+1)
0 = λ

(t)
0 −

√
2

2
αtsign(f(λ(t)))

λ
(t+1)
1 = λ

(t)
1 +

√
2

2
αtsign(f(λ(t))).

(21)

Then we apply FEDAVG with R number of total iterations to solve minw L(w;λ(t)), and obtain
w

(t)
R . Then in the update round from λ(t) to λ(t+1), by Thm. 1 in Li et al. (2020b), we have

E[L(w
(t)
R ;λ(t))]− L(wλ(t) ;λ(t)) = O

(E2

R

)
,

E
∥∥∥w(t)

R −wλ(t)

∥∥∥2

= O
(E2

R

)
,

where wλ(t) = arg min
w

L(w;λ(t)). By Markov’s inequality, with probability 1− δ,

L(w
(t)
R ;λ(t))− L(wλ(t) ;λ(t)) = O

(E2

δR

)
,∥∥∥w(t)

R −wλ(t)

∥∥∥2

= O
(E2

δR

)
.

Then taking the union bound over T updating iterations of λ(t), the conclusions above hold with
probability at least 1 − Tδ for all λ(t), t = 1, 2, · · · , T . Therefore, with sufficiently large R =

R(δ) such that E2

δR → 0, for all λ(t) in the T iteration, |L(w
(t)
R ;λ(t)) − L(wλ(t) ;λ(t))| � 1,

‖w(t)
R −wλ(t)‖ � 1.

By Lemma 22, Fdp(λ) has a local minimizer λ? on direction µ(λ). By update rule (21), we can find
large T > 0 to have

|λ(T )
a − λ?a| ≤ max

{
|λ(0)
a − λ?a| −

T∑
t=1

αt, αT

}
→ 0,

where a ∈ {0, 1}.

Remark 11. Note that Thm. 23 assumes FEDFB does not update λ in each communication round and
there are infinite rounds of aggregations between two λ updating round. However, for computation
efficiency, we update λ at every communication round in practice.
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B.2 FEDFB w.r.t EQUAL OPPORTUNITY

Similar to Proposition 21, we design the following bi-level optimization problems to capture equal
opportunity:

min
λ∈Λ

Feo(λ) = min
λ∈Λ

A−1∑
a=1

(L1,a(wλ)− L1,0(wλ))
2

wλ = arg min
w

A−1∑
a=1

λaL1,a(w) + (
n1,?

n
−
A−1∑
a=1

λa)L1,0(w) +
n0,?

n
L0,?(w). (22)

Here Λ = {(λ1, . . . , λA−1) : λ1 + · · ·+ λA−1 ≤ n1,?

n , λa ≥ 0 for all a = 1, . . . , A− 1}.
For equal opportunity, we make the following assumption:

Assumption 6. Ly,a(·) is twice differentiable for all y ∈ {0, 1}, a ∈ [A], and

A−1∑
a=1

λa∇2L1,a(wλ) + (
n1,?

n
−
A−1∑
a=1

λa)∇2L1,0(wλ) +
n0,?

n
∇2L0,?(wλ) � 0

for all λ ∈ Λ.

With the above assumption, the following lemma provides the update rule:

Lemma 24. If Assumption 6 holds, then on the direction

µ(λ) = (L1,1(wλ)− L1,0(wλ), . . . , L1,A−1(wλ)− L1,0(wλ)), (23)

we have µ(λ) · ∇Feo(λ) ≤ 0, and the equality holds if only if µ(λ) = 0.

Update rule for equal opportunity:

λ(t+1)
a = λ(t)

a +
αt

‖µ(λ(t))‖2
(L1,a(wλ(t))− L1,0(wλ(t))).

Proof of Lemma 24. We compute the derivative as

∂Feo(λ)

∂λj
= 2

A−1∑
a=1

(L1,a(wλ)− L1,0(wλ))(∇L1,a(wλ)−∇L1,0(wλ))
∂wλ
∂λj

. (24)

Note that wλ is the minimizer to (22), we have

A−1∑
a=1

λa∇L1,a(wλ) + (
n1,?

n
−
A−1∑
a=1

λa)∇L1,0(wλ) +
n0,?

n
∇L0,?(wλ) = 0.

We take the λj derivative to the above equation and have

[A−1∑
a=1

λa∇2L1,a(wλ) + (
n1,?

n
−
A−1∑
a=1

λa)∇2L1,0(wλ) +
n0,?

n
∇2L0,?(wλ)

]
∇L1,j(wλ)−∇L1,0(wλ) +

∂wλ
∂λj

= 0.

Thus we get

∂wλ
∂λj

=
[A−1∑
a=1

λa∇2L1,a(wλ) + (
n1,?

n
−
A−1∑
a=1

λa)∇2L1,0(wλ) +
n0,?

n
∇2L0,?(wλ)

]−1

[∇L1,0(wλ)−∇L1,j(wλ)].

(25)
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Then on the direction µ(λ) given by (23), we combine (24) and (25) to have

µ(λ) · ∇Feo(λ)

= 2
[A−1∑
a=1

(L1,a(wλ)− L1,0(wλ))(∇L1,a(wλ)−∇L1,0(wλ))
]

[A−1∑
a=1

λa∇2L1,a(wλ) + (
n1,?

n
−
A−1∑
a=1

λa)∇2L1,0(wλ) +
n0,?

n
∇2L0,?(wλ)

]−1

[A−1∑
a=1

(L1,a(wλ)− L1,0(wλ))(∇L1,0(wλ)−∇L1,a(wλ))
]
≤ 0,

where we have used Assumption 6, the equality holds only when µ(λ) = 0.

We present the FEDFB algorithm w.r.t equal opportunity in Algorithm 3.

Algorithm 3: FEDFB w.r.t Equal Opportunity
Server executes:

input :Learning rate {αt}t∈N;
Initialize λa as n1,a

n for all a ∈ [A]\ {0};
for each iteration t = 1, 2, . . . do

Clients perform updates;
wλ ← SecAgg

{
w(i)

}
for all i;

Ly,a ← SecAgg
{
L

(i)
y,a

}
for all y ∈ {0, 1}, a ∈ [A]\ {0};

µa ← L1,a − L1,0, a ∈ [A]\ {0};
λa ← λa + αt

‖µ‖2µa, for all a ∈ [A]\ {0};
Broadcast wλ and λ to clients;

end
output :wλ

ClientUpdate(i,w,λ):
w(i) ← Gradient descent w.r.t objective function∑A−1

a=1 λaL
(i)
1,a(w) + (

n1,?

n −
∑A−1
a=1 λa)L

(i)
1,0(w) +

n0,?

n L
(i)
0,?(w);

Send w(i), L
(i)
0,a(w), L

(i)
1,a(w) for all a ∈ [A] to server via a SecAgg protocol;

B.3 FEDFB w.r.t EQUALIZED ODDS

For equalized odd, we design the following bi-level optimization problem:

min
λ∈Λ

Feod(λ) = min
λ∈Λ

A−1∑
a=1

[
(L1,a(wλ)− L1,0(wλ))2 + (L0,a(wλ)− L0,0(wλ))2

]
wλ = arg min

w

A−1∑
a=1

(λ0,aL0,a(w) + λ1,aL1,a(w))

+ (
n0,?

n
−
A−1∑
a=1

λ0,a)L0,0(w) + (
n1,?

n
−
A−1∑
a=1

λ1,a)L1,0(w). (26)

Here

Λ = {(λ0,1, . . . , λ0,A−1, λ1,1, . . . , λ1,A−1) :

A−1∑
a=1

λ0,a ≤
n0,?

n
,

A−1∑
a=1

λ1,a ≤
n1,?

n
,

λ0,a, λ1,a ≥ 0, for all a = 1, . . . , A− 1}.
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For equalized odds, we make the following assumption:

Assumption 7. Ly,a(·) is twice differentiable for all y ∈ {0, 1}, a ∈ [A], and

A−1∑
a=1

[
(λ1,a∇2L1,a(wλ) + λ0,a∇2L0,a(wλ) + (

n0,?

n
−
A−1∑
a=1

λ0,a)∇2L0,0(wλ)

+ (
n1,?

n
−
A−1∑
a=1

λ1,a)∇2L1,0(wλ))
]
� 0

for all λ ∈ Λ.

With the above assumption, the following lemma provides the update rule:

Lemma 25. If Assumption 7 holds, then on the direction

µ(λ) = (µ0,1(λ), . . . , µ0,A−1(λ), µ1,1(λ), . . . , µ1,A−1(λ)), with

µy,a(λ) = Ly,a(wλ)− Ly,0(wλ), y ∈ {0, 1}, a ∈ [A], (27)

we have µ(λ) · ∇Feod(λ) ≤ 0, and the equality holds if only if µ(λ) = 0.

Update rule for equalized odd:

λ(t+1)
y,a = λ(t)

y,a +
αt

‖µ(λ(t))‖2
(Ly,a(wλ(t))− Ly,0(wλ(t))) for y ∈ {0, 1}, a ∈ [A].

Proof of Lemma 25. We compute the derivative as

∂Feod(λ)

∂λy,j
= 2

A−1∑
a=1

[
(L1,a(wλ)− L1,0(wλ))(∇L1,a(wλ)−∇L1,0(wλ))

+ (L0,a(wλ)− L0,0(wλ))(∇L0,a(wλ)−∇L0,0(wλ))
] ∂wλ
∂λy,j

.

(28)

Note that wλ is the minimizer to (26), we have

A−1∑
a=1

(λ0,a∇L0,a(wλ) + λ1,a∇L1,a(wλ))

+ (
n0,?

n
−
A−1∑
a=1

λ0,a)∇L0,0(wλ) + (
n1,?

n
−
A−1∑
a=1

λ1,a)∇L1,0(wλ) = 0.

We take the λy,j derivative to the above equation and have

∇Ly,j(wλ)−∇Ly,0(wλ) +
[A−1∑
a=1

(λ0,a∇2L0,a(wλ) + λ1,a∇2L1,a(wλ))

+ (
n0,?

n
−
A−1∑
a=1

λ0,a)∇2L0,0(wλ) + (
n1,?

n
−
A−1∑
a=1

λ1,a)∇2L1,0(wλ)
] ∂wλ
∂λy,j

= 0.

Thus we get

∂wλ
∂λy,j

=
[A−1∑
a=1

(λ0,a∇2L0,a(wλ) + λ1,a∇2L1,a(wλ))

+ (
n0,?

n
−
A−1∑
a=1

λ0,a)∇2L0,0(wλ) + (
n1,?

n
−
A−1∑
a=1

λ1,a)∇2L1,0(wλ)
]−1

[∇Ly,0(wλ)−∇Ly,j(wλ)]. (29)
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Then on the direction µ(λ) given by (27), we combine (28) and (29) to have
µ(λ) · ∇Feod(λ)

= 2
[A−1∑
a=1

[(L1,a(wλ)− L1,0(wλ))(∇L1,a(wλ)−∇L1,0(wλ))

+ (L0,a(wλ)− L0,0(wλ))(∇L0,a(wλ)−∇L0,0(wλ))]
]

[A−1∑
a=1

(λ0,a∇2L0,a(wλ) + λ1,a∇2L1,a(wλ))

+ (
n0,?

n
−
A−1∑
a=1

λ0,a)∇2L0,0(wλ) + (
n1,?

n
−
A−1∑
a=1

λ1,a)∇2L1,0(wλ)
]−1

[A−1∑
a=1

[(L1,a(wλ)− L1,0(wλ))(∇L1,0(wλ)−∇L1,a(wλ))

+ (L0,a(wλ)− L0,0(wλ))(∇L0,0(wλ)−∇L0,a(wλ))]
]
≤ 0

where we have used Assumption 7, and the equality holds only when µ(λ) = 0.

The full procedure is described in Algorithm 4.

Algorithm 4: FEDFB w.r.t Equalized Odds
Server executes:

input :Learning rate {αt}t∈N;
Initialize λy,a as ny,a

n for all y ∈ {0, 1} , a ∈ [A]\ {0};
for each iteration t = 1, 2, . . . do

Clients perform updates;
wλ ← SecAgg

{
w(i)

}
for all i;

Ly,a ← SecAgg
{
L

(i)
y,a

}
for all y ∈ {0, 1}, a ∈ [A]\ {0};

µy,a ← Ly,a − Ly,0 for all y ∈ {0, 1} , a ∈ [A]\{0};
λy,a ← λy,a + αt

‖µ‖2µy,a, for all a ∈ [A]\ {0};
Broadcast wλ and λ to clients;

end
output :wλ

ClientUpdate(i,w,λ):
w(i) ← Gradient descent w.r.t objective function

∑A−1
a=1

(
λ0,aL

(i)
0,a(w) + λ1,aL

(i)
1,a(w)

)
+

(
n0,?

n −
∑A−1
a=1 λ0,a)L

(i)
0,0(w) + (

n1,?

n −
∑A−1
a=1 λ1,a)L

(i)
1,0(w);

Send w(i), L
(i)
0,a(w), L

(i)
1,a(w) for all a ∈ [A] to server via a SecAgg protocol;

B.4 FEDFB w.r.t CLIENT PARITY

For client parity, we slightly abuse the notation and define the loss over client i as L(i)(w) :=∑
ik=i `(yk, ŷk)/n(i), with n(i) = |{k : ik = i}|. Note that the L(i)(w) here is different from the

one in Sec. B.1. We design the following bi-level optimization problem:

min
λ∈Λ

Fcp(λ) = min
λ∈Λ

I−1∑
i=1

(
L(i) (wλ)− L(0) (wλ)

)2

,

wλ = arg min
w

I−1∑
i=1

λ(i)L(i)(w) + (1−
I−1∑
i=1

λ(i))L(0)(w). (30)
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Here

Λ = {(λ(1), . . . , λ(I−1)) : 0 ≤ λ(i) ≤ 1,

I−1∑
i=1

λ(i) ≤ 1}.

For client parity, we make the following assumption:
Assumption 8. L(i)(·) is twice differentiable for all i = 1, . . . , I − 1, and

I−1∑
i=1

λ(i)∇2L(i)(wλ) + (1−
I−1∑
i=1

λ(i))∇2L(0)(wλ) � 0.

With the above assumption, the following lemma provides the update rule:
Lemma 26. If Assumption 8 holds, then on the direction

µ(λ) = (L(1)(wλ)− L(0)(wλ), . . . , L(I−1)(wλ)− L(0)(wλ)), (31)
we have µ(λ) · ∇Fcp(λ) ≤ 0, and the equality holds if and only if µ(λ) = 0.

Then we update λ(t) = (λ(1)(t) , . . . , λ(I−1)(t)) as follows:

Update rule for client parity:

λ(i)(t+1)

= λ(i)(t) +
αt

‖µ(λ(t))‖2
(L(i)(wλ(t))− L(0)(wλ(t))) for i = 1, . . . , I − 1.

Proof of Lemma 26. We compute the derivative as

∂Fcp(λ)

∂λ(j)
=
(

2

I−1∑
i=1

[L(i)(wλ)− L(0)(wλ)][∇L(i)(wλ)−∇L(0)(wλ)]
) ∂wλ
∂λ(j)

. (32)

Note that wλ is the minimizer to (30), we have
I−1∑
i=1

λ(i)∇L(i)(wλ) + (1−
I−1∑
i=1

λ(i))∇L(0)(wλ) = 0.

We take the λ(j) derivative to the above equation and have

∇L(j)(wλ) +

I−1∑
i=1

λ(i)∇2L(i)(wλ)
∂wλ
∂λj

−∇L(0)(wλ) + (1−
I−1∑
i=1

λ(i))∇2L(0)(wλ)
∂wλ
∂λj

= 0.

Thus we get

∂wλ
∂λ(j)

=
[ I−1∑
i=1

λ(i)∇2L(i)(wλ)+(1−
I−1∑
i=1

λ(i))∇2L(0)(wλ)
]−1

[∇L(0)(wλ)−∇L(j)(wλ)]. (33)

Then on the direction given by (31), we combine (32) and (33) to have
µ(λ) · ∇Fcp(λ)

= 2
( I−1∑
i=1

[L(i)(wλ)− L(0)(wλ)][∇L(i)(wλ)−∇L(0)(wλ)]
)

[ I−1∑
i=1

λ(i)∇2L(i)(wλ) + (1−
I−1∑
i=1

λ(i))∇2L(0)(wλ)
]−1

I−1∑
i=1

(
[L(i)(wλ)− L(0)(wλ)][∇L(0)(wλ)−∇L(i)(wλ)]

)
≤ 0,

where we have used Assumption 8, and the equality holds only when µ(λ) = 0.

The Algorithm 5 gives the full description.
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Algorithm 5: FEDFB w.r.t Client Parity
Server executes:

input :Learning rate {αt}t∈N;
Initialize λ(i) as n(i)

n for all i ∈ [I]\ {0};
for each iteration t = 1, 2, . . . do

Clients perform updates;
wλ ← SecAgg

{
w(i)

}
for all i;

µ(i) ← L(i) − L(0), i ∈ [I]\{0};
λ(i) ← λ(i) + αt

‖µ‖2µ
(i), for all i ∈ [I]\ {0};

Broadcast wλ and λ to clients;
end
output :wλ

ClientUpdate(i,w,λ):
w(i) ← Gradient descent w.r.t objective function
Ji 6= 0Kλ(i)L(i)(w) + Ji = 0K(1−∑I−1

j=1 λ
(ij)L(0)(w);

Send w(i) to server via a SecAgg protocol; Send L(i)(w) to server;

C APPENDIX - EXPERIMENTS

We continue from Sec. 5 and provide more details on experimental settings, and other supplementary
experiment results.

C.1 EXPERIMENT SETTING

The reported statistics are computed on the test set, and we set 10 communication rounds and 30 local
epochs for all federated learning algorithms except AGNOSTICFAIR. We run 300 epochs for other
methods. For all tasks, we randomly split data into a training set and a testing set at a ratio of 7:3. The
batch size is set to be 128. For all methods, we choose learning rate froom {0.001, 0.005, 0.01}. We
solve FEDFB with sample weight learning rates α ∈ {0.001, 0.05, 0.08, 0.1, 0.2, 0.5, 1, 2} in parallel
and select the α which achieves the highest fairness. All benchmark models are tuned according to
the hyperparameter configuration suggested in their original works. We perform cross-validation on
the training sets to find the best hyperparameter for all algorithms.

C.2 SYNTHETIC DATASET GENERATION

We generate a synthetic dataset of 5,000 examples with two non-sensitive attributes (x1, x2), a binary
sensitive a, and a binary label y. A tuple (x1, x2, y) is randomly generated based on the two Gaussian
distributions: (x1, x2) | y ∼ N ([−2;−2], [10, 1; 1, 3]) and (x1, x2) | y = 1 ∼ N ([2; 2], [5, 1]),
where y ∼ Bern(0.6). For the sensitive attribute a, we generate biased data using an unfair scenario
px1,x2

((x′1, x
′
2) | y = 1)/[px1,x2

((x′1, x
′
2) | y = 0) + px1,x2

((x′1, x
′
2) | y = 1)], where px1,x2

is
the pdf of (x1, x2). We split the data into three clients in a non-iid way. We randomly assign
50%, 30%, 20% of the samples from group 0 and 20%, 40%, 40% of the samples from group 1 to
1st, 2nd, and 3rd client, respectively. To study the empirical relationship between the performance
of FEDFB and data heterogeneity, we split the dataset into other ratios to obtain the desired level
of data heterogeneity. To get the dataset with low data heterogeneity, we draw samples from each
group into three clients in a ratio of 33%, 33%, 34% and 33%, 33%, 34%. For dataset with high data
heterogeneity, the ratio we choose is 70%, 10%, 20% and 10%, 80%, 10%.

C.3 SUPPLEMENTARY EXPERIMENT RESULTS

Fig. 8 shows the accuracy versus fairness violation for the 3 clients’ cases. We see a clear advantage
of FFL via FEDAVG over the UFL in both 2 clients’ cases and 3 clients’ cases. The achievable
fairness range of FFL via FEDAVG is much wider than that of UFL, though the accuracy of FEDAVG
is not guaranteed when the data heterogeneity increases.
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higher data heterogeneity

Figure 8: Accuracy-Fairness tradeoff curves of CFL, FFL via FEDAVG, and UFL for three clients cases.
The data heterogeneity is increasing from left to right. The green dotted vertical line describes the lower bound
of unfairness FFL via FEDAVG can achieve, and and the orange dotted vertical line describes the lower bound
of unfairness UFL can achieve. Here the distribution setting is x | a = 0, i = 0 ∼ N (3, 1), x | a = 1, i =
0 ∼ N (5, 1), x | a = 0, i = 1 ∼ N (1, 1), x | a = 1, i = 1 ∼ N (−1, 1), x | a = 0, i = 2 ∼ N (1, 1), x |
a = 1, i = 2 ∼ N (2, 1), a | i = i ∼ Bern(qi) for i = 0, 1, 2. The data heterogeneity here is captured by
|q2 − q0|. (a) q0 = q1 = q2 = 0.5. (b) q0 = 0.4, q1 = 0.5, q2 = 0.6. (c): q0 = 0.3, q1 = 0.5, q2 = 0.7. (d):
q0 = 0.2, q1 = 0.5, q2 = 0.8.

Table 4: Comparison of accuracy and fairness in the synthetic, Adult, COMPAS, and Bank datasets w.r.t
demographic parity (DP) on logistic regression. The implementation of UFL, FFL via FEDAVG, and CFL are
all based on FB.

SYNTHETIC ADULT COMPAS BANK
METHOD ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)

FEDAVG .884±.001 .419±.006 .837±.007 .144±.015 .658±.006 .149±.022 .900±.000 .026±.001

UFL .712±.198 .266±.175 .819±006. .032±.031 .606±.018 .089±.058 .888±.005 .008±.007
FFL VIA FEDAVG .789±.138 .301±.192 .828±.002 .098±.008 .560±.000 .030±.002 .892±.000 .013±.000
FEDFB .756±.001 .085±.001 .820±.000 .002±.001 .550±.000 .009±.000 .890±.001 .011±.002

AGNOSTICFAIR .622±.051 .028±.008 .768±.000 .003±.000 .568±.018 .034±.023 .883±.000 .000±.000
CFL .662±.039 .077±.020 .810±.009 .054±.027 .587±.003 .032±.002 .883±.000 .000±.000

We also compare FEDAVG, UFL, FFL via FEDAVG, FEDFB, AGNOSTICFAIR and CFL on logistic
regression. Table 4 shows that our method outperforms UFL and FFL via FEDAVG, while achieving
similar performance as AGNOSTICFAIR and CFL but ensuring higher privacy.

C.4 EVALUATION OF DIFFERENTIALLY PRIVATE FEDFB

Since FEDFB exchanges more information than FFL via FEDAVG, we employ differential privacy to
decrease information leakage. We apply the Laplace mechanism to make the information exchanged
in each communication round ε-differentially private. We report the test accuracy and DP disparity
of FFL via FEDAVG and FEDFB with different differential privacy levels in Table 5. Interestingly,
we observe that a higher level of differential privacy even helps to improve fairness (see FFL via
FEDAVG column), though the accuracy is decreased. This phenomenon is to be expected since larger
noise helps to protect sensitive information, thereby improving fairness and lower accuracy. Still,
Table 5 implies that FEDFB still outperforms FFL via FEDAVG with restrictions on the information
exchange.

C.5 EMPIRICAL RELATIONSHIP BETWEEN ACCURACY, FAIRNESS, AND THE NUMBER OF
CLIENTS

We investigate the empirical relationship between accuracy, fairness, and the number of clients. We
generate three synthetic datasets of 3,333, 5,000, and 6,667 samples, and split them into two, three,
and four clients, respectively. Table 6 shows that our method outperforms under the three cases.
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Table 5: Performance comparison under ε-differential private information exchange in each communication
round on synthetic dataset.

FFL VIA FEDAVG FEDFB
ε ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)
0.1 .583±.258 .185±.254 .517±.180 .086±.192
1 .582±.261 .189±.249 .508±.191 .103±.188
10 .645±.315 .373±.217 .616±.169 .091±.204

Table 6: Comparison of accuracy and fairness in the synthetic datasets with different numbers of clients
w.r.t demographic parity (DP). The implementation of UFL, FFL via FEDAVG, and CFL are all based on FB.

I TWO CLIENTS THREE CLIENTS FOUR CLIENTS
METHOD ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)
FEDAVG .879±.004 .360±.013 .883±.003 .402±.018 .879±.003 .382±.005

UFL .780±.090 .161±.157 .729±.195 .256±.193 .720±.192 .246±.180
FFL VIA FEDAVG .866±.002 .429±.017 .746±.307 .478±.079 .608±.367 .491±.102
FEDFB .679±.007 .047±.012 .613±.007 .011±.009 .705±.004 .005±.003

CFL .668±.028 .063±.035 .693±.030 .051±.020 .670±.035 .064±.020

C.6 COMPARISON WITH FAIRFED

Table 7: Comparison of accuracy and fairness in the synthetic and Adult dataset w.r.t demographic parity (DP)
on logistic regression.

SYNTHETIC ADULT
METHOD ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)

FAIRFED .509±.092 .092±.127 .757±.003 .105±.009
FEDFB (OURS) .756±.001 .085±.001 .820±.000 .002±.001

As suggested in Ezzeldin et al. (2021), we use logistic regression to compare our approach with
FAIRFED. Since FAIRFED is only applicable to single binary sensitive attribute cases, we report the
performance of FAIRFED on synthetic and Adult datasets in Table 7. We observe that our FEDFB
outperforms FAIRFED in terms of both accuracy and fairness, while FAIRFED also outperforms FFL
via FEDAVG thanks to the additional client reweighting step.

Table 8: Comparison of accuracy and fairness under the same setting as Ezzeldin et al. (2021). The
statistics of FAIRFED are from Ezzeldin et al. (2021).

METHOD
ADULT COMPAS

HETEROGENEITY LEVEL α HETEROGENEITY LEVEL α
0.1 0.2 0.5 10 5000 0.1 0.2 0.5 10 5000

ACC.(↑) FAIRFED .775 .794 .819 .824 .824 .594 .586 .608 .636 .640
FEDFB (OURS) .764 .761 .762 .764 .759 .668 .655 .541 .666 .666

|SPD|(↓) FAIRFED .021 .037 .061 .065 .065 .048 .040 .072 .108 .115
FEDFB (OURS) .003 .003 .003 .000 .009 .009 .017 .000 .050 .006

To make fairer comparison, we follow the exact same setting as Ezzeldin et al. (2021) to re-split Adult
and COMPAS dataset, employ |SPD| = |P(ŷ = 1 | a = 0)−P(ŷ = 1 | a = 1)| as unfairness metric
and present the results in Table 8. We observe that FEDFB achieves higher fairness than FAIRFED
while being robust to data heterogeneity.

C.7 COMPARISON WITH AGNOSTICFAIR

Lastly, we compare our method with AGNOSTICFAIR (Du et al., 2021), which exchanges the model
parameters and the other information after every gradient update to mimic the performance of CFL
with FAIRNESSCONSTRAINT implementation (Zafar et al., 2017c). Table 9 shows that our FEDFB
achieves similar performance as AGNOSTICFAIR, at much lower cost of privacy.
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Table 9: Comparison of accuracy and fairness in the synthetic, Adult, COMPAS and Bank datasets w.r.t
demographic parity (DP) on multilayer perceptron.

SYNTHETIC ADULT COMPAS BANK
METHOD ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓) ACC.(↑) DP DISP.(↓)

FEDFB (OURS) .613±.007 .011±.009 .765±.001 .001±.001 .542±.001 .001±.001 .883±.000 .000±.000
AGNOSTICFAIR .657±.029 .032±.044 .767±.004 .003±.005 .541±.000 .000±.000 .883±.000 .000±.000
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