
Under review as a conference paper at ICLR 2023

BITAT: NEURAL NETWORK BINARIZATION WITH
TASK-DEPENDENT AGGREGATED TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network quantization aims to transform high-precision weights and activa-
tions of a given neural network into low-precision weights/activations for reduced
memory usage and computation while preserving the performance of the original
model. However, 1-bit weight/1-bit activations of compactly-designed backbone
architectures often used for edge-device deployments result in severe performance
degeneration. This paper proposes a novel Quantization-Aware Training method
that can effectively alleviate performance degeneration even with extreme quanti-
zation by focusing on the inter-weight dependencies, between the weights within
each layer and across consecutive layers. To minimize the quantization impact of
each weight on others, we perform an orthonormal transformation of the weights
at each layer by training an input-dependent correlation matrix and importance
vector, such that each weight is disentangled from the others. Then, we quantize
the weights based on their importance to minimize the loss of the information
from the original weights/activations. We further perform progressive layer-wise
quantization from the bottom layer to the top, so that quantization at each layer
reflects the quantized distributions of weights and activations at previous layers.
We validate the effectiveness of our method on various benchmark datasets against
strong neural quantization baselines, demonstrating that it alleviates the perfor-
mance degeneration on ImageNet and successfully preserves the full-precision
model performance on CIFAR-100 with compact backbone networks.

1 INTRODUCTION

Over the past decade, deep Neural Networks (NN) have achieved tremendous success in solving
various real-world problems (Creswell et al., 2018; Gidaris et al., 2018; Chen et al., 2020; Karras
et al., 2021; Radford et al., 2021). Recently, network architectures are becoming increasingly larger
based on the empirical observations of their improved performance. However, it is increasingly
difficult to deploy them on edge devices with limited memory and computational power. Therefore,
many recent works focus on building resource-efficient networks to bridge the gap between their scale
and actual permissible computational complexity/memory bounds for on-device model deployments.
Several works consider designing computation- and memory-efficient architecture modules, while
others focus on compressing a given neural network by either pruning its weights (Yoon & Hwang,
2017; He et al., 2020b; Lin et al., 2020a) or reducing the bits used to represent the weights and
activations (Bulat et al., 2021; Dbouk et al., 2020; Li et al., 2021). The latter approach, neural network
quantization, is beneficial for building on-device AI systems since the edge devices oftentimes only
support low bitwidth-precision parameters and/or operations. However, it inevitably suffers from the
non-negligible forgetting of the encoded information from the full-precision models. Such loss of
information becomes worse with extreme quantization into binary neural networks with 1-bit weights
and 1-bit activations (Bulat et al., 2021; Zhuang et al., 2019; Qin et al., 2020b).

How can we then effectively preserve the original model performance even with extremely low-
precision networks? To address this question, we focus on the somewhat overlooked properties of
NN for quantization: the weights in a layer are highly correlated with each other and weights in
consecutive layers. Quantizing the weights will inevitably affect the weights within the same layer
since they together comprise a transformation represented by the layer. Thus, quantizing the weights
and activations at a specific layer will adjust the correlation and relative importance between them.
Moreover, it will also largely impact the next layer that directly uses the output of the layer, which
together comprise a function represented by the neural network.

1



Under review as a conference paper at ICLR 2023

Prediction

𝒙𝒙

𝒘𝒘(𝑙𝑙)

Orthonormal 
Weight 

Transformation

Finetune 
𝒘𝒘(𝑙𝑙+1:𝐿𝐿)

Quantized Training 
for 𝒘𝒘(𝑙𝑙) at layer 𝒍𝒍

& freeze obtained 𝒘𝒘𝒒𝒒
(𝑙𝑙)

𝒍𝒍 += 𝟏𝟏

𝒘𝒘(𝑙𝑙+1)

: weight element : Intra-layer dependency
: Cross-layer dependency

…
…

METHOD
BRECQ

Li et al. (2021)
DBQ

Dbouk et al. (2020)
ReActNet

Liu et al. (2020) Ours

BITw / BITa 2/4 4/8 1/1 1/1
CORRELATION block N/A N/A block
TASK-BASED Q ✓ × × ✓
STRUCTURED node × × dynamic
APPROACH PTQ1 QAT2 QAT QAT

T1@IMGNET 66.60% 70.5% 68.26% 68.51%
FLOPS ×107 3.31 3.60 1.2 1.2

1Post-training Quantization
2Quantization-aware Training

Figure 1: Left: An Illustration of our proposed method. Weight elements in a layer is highly correlated to
each other along with the weights in other layers. Our BiTAT sequentially obtains quantized weights of each
layer based on the importance of disentangled weights to others using a trainable orthonormal rotation matrix
and importance vector. Right: Categorization of relevant and strong quantization methods to ours.

Despite their impact on NN quantization, such inter-weight dependencies have been relatively
overlooked. As shown in Figure 1 Right, although BRECQ (Li et al., 2021) addresses the problem
by considering the dependency between filters in each block, it is limited to the Post-Training
Quantization (PTQ) problem, which suffers from inevitable information loss, resulting in inferior
performance. Most recent Quantization-Aware Training (QAT) methods (Dbouk et al., 2020; Liu
et al., 2020) are concerned with obtaining quantized weights by minimizing quantization losses with
parameterized activation functions, disregarding cross-layer weight dependencies. To the best of our
knowledge, no prior work explicitly considers dependencies among the weights for QAT.

To tackle this challenging problem, we propose a new QAT method, referred to as Neural Network
Binarization with Task-dependent Aggregated Transformation (BiTAT), as illustrated in Figure 1 Left.
Our method sequentially quantizes the weights at each layer of a pre-trained model based on chunk-
wise input-dependent weight importance by training orthonormal dependency matrices and scaling
vectors. After quantizing each layer, we fine-tune the subsequent full-precision layers, which utilize
the quantized layer as an input for a few epochs while keeping the quantized weights frozen. we
aggregate redundant input dimensions for transformation matrices and scaling vectors, significantly
reducing the computational cost of the quantization process. Such consideration of inter-weight
dependencies allows our BiTAT algorithm to better preserve the information from a given high-
precision network, allowing it to achieve comparable performance to the original full-precision
network even with extreme quantization, such as binarization of both weights and activations. The
main contributions of the paper can be summarized as follows:

• We demonstrate that weight dependencies within each layer and across layers play an
essential role in preserving the model performance during quantized training.

• We propose an input-dependent quantization-aware training method that binarizes neural
networks. We disentangle the correlation in the weights from across multiple layers by
training rotation matrices and importance vectors, which guides the quantization process to
consider the disentangled weights’ importance.

• We empirically validate our method on several benchmark datasets against state-of-the-art
NN quantization methods, showing that it significantly outperforms baselines with the
compact neural network architecture.

2 RELATED WORK

Minimizing the quantization error. Quantization methods for deep neural networks can be broadly
categorized into several strategies (Qin et al., 2020a). We first introduce the methods that aim to
minimize the weight/activation discrepancy between quantized models and their high-precision
counterparts. XNOR-Net (Rastegari et al., 2016) aims to minimize the least-squares error between
quantized and full-precision weights for each output channel in layers. DBQ (Dbouk et al., 2020)
and QIL (Jung et al., 2019) perform layerwise quantization with parametric scale or transformation
functions optimized to the task. Yet, they quantize full-precision weight elements regardless of
the correlation between other weights. While TSQ (Wang et al., 2018) and Real-to-Bin (Martinez
et al., 2020) propose to minimize the ℓ2 distance between the quantized activations and the real-
valued network’s activations by leveraging intra-layer weight dependency, they do not consider
cross-layer dependencies. ProxyBNN (He et al., 2020a) adopts the orthogonal matrix to preserve the

2



Under review as a conference paper at ICLR 2023

correlation between coordinates while minimizing the quantization error. Recently, BRECQ (Li et al.,
2021) and the work in a similar vein on post-training quantization (Nagel et al., 2020) consider the
interdependencies between the weights and the activations by using a Taylor series-based approach.
However, calculating the Hessian matrix for a large neural network is often intractable, and thus they
resort to strong assumptions such as small block-diagonality of the Hessian matrix to make them
feasible. BiTAT solves this problem by training the dependency matrices alongside the quantized
weights while grouping similar weights together to reduce the computational cost.

Modifying the task loss function. BNN-DL (Ding et al., 2019) adds a distributional loss en-
forcing the weight distributions to be quantization-friendly. Apprentice (Mishra & Marr, 2018)
uses knowledge distillation to preserve the knowledge of the full-precision teacher network in the
quantized network. However, such methods only put a constraint on the distributional properties of
the weights, not the dependencies and the values of the weight elements. CI-BCNN (Wang et al.,
2019) parameterizes bitcount operations by exploring the interaction between output channels using
reinforcement learning and quantizes the floating-point accumulation in convolution operations based
on them. However, reinforcement learning is expensive, and it still does not consider cross-layer
dependencies. RBNN (Lin et al., 2020b) achieves a significantly higher cosine similarity between the
full-precision weight and its binarization by constraining the model to preserve fewer angular biases.

Reducing the gradient error. Liu et al. (2018) devises a better gradient estimator for the sign func-
tion used to binarize the activations and a magnitude-aware gradient correction method. PCNN (Gu
et al., 2019) proposes a new discrete backpropagation method via projection, where the layerwise
trainable function effectively projects the weights at each layer to multiple quantized weights. Re-
ActNet (Liu et al., 2020) achieves state-of-the-art performance for binary neural networks by training
a generalized activation function for compact network architecture used in Liu et al. (2018). However,
their quantizer functions conduct element-wise unstructured compression without considering the
change in other correlated weights throughout quantization training. This makes the search process
converge to suboptimal solutions since task loss is the only guide for finding the optimal quantized
weights, which is often insufficient for high-dimensional and complex architectures. On the other
hand, we can obtain a better-informed guide that compels the training procedure to spend more time
searching in areas that are more likely to contain high-performing quantized weights.

3 WEIGHT IMPORTANCE FOR QUANTIZATION-AWARE TRAINING

We aim to quantize a full-precision neural network into a binary neural network (BNN), where the
obtained quantized network is composed of binarized 1-bit weights and activations, which preserves
the performance of the original full-precision model. Let f(·;W) be a L-layered neural network
parameterized by a set of pre-trained weights W = {w(1), . . . ,w(L)}, where w(l) ∈ Rdl−1×dl

is the weight at layer l and d0 is the dimensionality of the input. Given a training dataset X and
corresponding labels Y , existing QAT methods Rastegari et al. (2016); Dbouk et al. (2020); Jung et al.
(2019); Bethge et al. (2020); Yamamoto (2021); Park & Yoo (2020) search for optimal quantized
weights by solving for the optimization problem that can be generally described as follows:

minimize
W,ϕ

Ltask (f (X ;Q (W;ϕ)) ,Y) , (1)

where Ltask is a standard task loss function, such as cross-entropy loss, and Q(·;ϕ) is the weight
quantization function parameterized by ϕ which transforms a real-valued vector to a discrete, binary
vector. Existing works quantize typically by rounding each element of the weights or activation to the
nearest quantization value. This is equivalent to minimizing loss terms based on the Mean Squared
Error (MSE) between the full-precision weights and the quantized weights at each layer:

Q(w) := α∗b∗, where α∗, b∗ = argmin
α∈R,b∈{−1,1}m

∥w − αb∥22 , (2)

where m is the dimensionality of the target weight. For inference, wq = Q(w) is used. Us-
ing this quantizer, QAT methods iteratively search for the quantized weights based on the task
loss using stochastic gradient descent-based methods, and the model parameters converge into
the ball-like region around the full-precision weights w. However, the region around the op-
timal full-precision weights may contain suboptimal solutions with high errors. We demon-
strate such inefficiency of the existing quantizer formulation through a simple experiment in
Figure 2. Suppose we have three input points, x1,x2, and x3, and full-precision weights w.

3



Under review as a conference paper at ICLR 2023

-0.48
-0.02
+0.74

𝒘𝒘

-0.41
-0.41
+0.41

𝒘𝒘𝒒𝒒𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝒘𝒘)

-0.25
+0.25
+0.25

𝒘𝒘𝒒𝒒
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝒘𝒘; 𝒔𝒔,𝑽𝑽)

Weight Quantization

Prediction MSE = 1.16

Prediction MSE = 0.02

1
𝑁𝑁
�
𝑜𝑜=1

𝑁𝑁

𝒘𝒘𝑞𝑞
𝑇𝑇𝒙𝒙𝑜𝑜 − 𝑦𝑦𝑜𝑜

2

𝒙𝒙1 = [+1.19,−0.60, +0.08]
𝒙𝒙2 = [−4.19,−1.93,−3.43]
𝒙𝒙3 = [+0.63,−1.56,−0.91]

Weight MSE = 0.09

Weight MSE = 0.12

Figure 2: A simple experiment that cross-
layer weight correlation is critical to find well-
performing quantized weights during QAT.

Quantized training of the weight using Equation 2
successfully reduces MSE between the quantized
weight and the full-precision, but the task prediction
loss using wq is nonetheless very high.

The main source of error comes from the indepen-
dent application of the quantization process to each
weight element: Neural network weights are not in-
dependent, but highly correlated, so holding the loss
value constant, quantizing (perturbing) one weight
will affect the others. Moreover, after quantization,
the weight importances can also change significantly.
Both factors lead to high errors in the pre-activations. On the other hand, our proposed QAT method
BiTAT, described in Section 4, achieves a quantized model with smaller error. This results from the
consideration of the inter-weight dependencies, which we describe in the next subsection.

3.1 DISENTANGLING WEIGHT DEPENDENCIES VIA INPUT-DEPENDENT ORTHORNORMAL
TRANSFORMATION

0.02 0.04 0.1 0.2 0.40.6 1 2
Weight noise scale

0.0

0.2

0.4

0.6

C
IF

AR
-1

00
 te

st
 a

cc
ur

ac
y

Top 5 rows
Bottom 5 rows

Figure 3: Solid lines: Test accu-
racy of a MobileNetV2 model on
CIFAR-100 dataset, after adding
Gaussian noise to the top 5 rows
and the bottom 5 rows of w̃(l)

for all layers, considering the
dependency on the lower layers.
Dashed lines: Not considering
the dependency on the lower lay-
ers. The x axis is in log scale.

How can we, then, find the low-precision subspace, which contains
the best-performing quantized weights on the task, by exploiting
the inter-weight dependencies? The properties of the input distri-
bution give us some insights into this question. Let us consider a
task composed of N centered training samples {x1, . . . ,xN} =
X ∈ RN×d0 . We can obtain principal components of the train-
ing samples v1, . . . ,vd0

∈ Rd0 and the corresponding coefficients
λ1, . . . , λd0

≥ 0, in descending order. When we optimize a single-
layered neural network parameterized by w(1), neurons correspond-
ing to the columns of w(1) are oriented in a similar direction to the
principal components with higher variances (i.e., vi than vj , where
i < j) that is much more likely to get activated than the others. We
apply a change of basis to the column space of the weight matrix
w(1) with the bases (v1, . . . ,vd0

):

V (0)w̃(1) = w(1) (3)

w̃(1) = V (0)⊤w(1), (4)

where V (0) = [v1 | · · · | vd0
] ∈ Rd0×d0 is an orthonormal matrix. The top rows of the transformed

weight matrix w̃(1) will contain more important weights, whereas the bottom rows will contain less
important ones. Therefore, the accuracy of the model will be more affected by the perturbations
of the weights at top rows than ones at the bottom rows. Note that this transformation can also be
applied to the convolutional layer by “unfolding” the input image or feature map into a set of patches,
which enables us to convert the convolutional weights into a matrix (The detailed descriptions of the
orthonormal transformations for convolutional layers is provided in the supplementary file).

We can also easily generalize the method to multi-layer neural networks, by taking the inputs for the
l-th layer as the “training set”, assuming that all of the previous layer’s weights are fixed, as follows:{

x
(l)
i = δ

(
w(l)⊤x

(l−1)
i

)}N

i=1
, (5)

where δ(·) is the nonlinear transformation defined by both the non-linear activations and any layers
other than linear transformation with the weights, such as pooling or Batch Normalization. Then,
we obtain the change-of-basis matrix V (l) for layer l by using PCA on x

(l−1)
i . The impact of

transforming the weights is shown in Figure 3. We compute the principal components of each layer
in the initial pre-trained model and measure the test accuracy after adding the noise to the top-5
highest-variance (dashed red) or lowest-variance components (dashed blue) per layer. While a model
with perturbed high-variance components degrades the performance as the noise scale increases, a
model with perturbed low-variance components consistently obtains high performance even with
large perturbations. This shows that preserving the important weight components that respond to
high-variance input components is critically important for effective neural network quantization.

4



Under review as a conference paper at ICLR 2023

3.2 CROSS-LAYER WEIGHT CORRELATION IMPACTS MODEL PERFORMANCE

So far, we have only described dependencies among weights within a single layer. However,
dependencies between the weights across different layers also significantly impact the performance
as well. To validate that, we perform layerwise sequential training from the bottom layer to the top.
At the training of each layer, the model computes the principal components of the target layer and
adds noise to its top-5 high/low components. As shown in Figure 3, progressive training with the
low-variance components (solid blue) achieves significantly improved accuracy over the end-to-end
training counterpart (dashed blue) with a high noise scale, which demonstrates the beneficial effect of
modeling weight dependencies in earlier layers. We describe further details in the supplementary file.

4 TASK-DEPENDENT WEIGHT TRANSFORMATION FOR NN BINARIZATION

Our objective is to obtain binarized weights wq given pre-trained full-precision weights. We effec-
tively mitigate performance degeneration from the binarization process by focusing on the inter-weight
dependencies within each layer and across consecutive layers. Given a single-layered neural network
parameterized by w(1), We first reformulate the quantization function Q in Equation 2 with the
weight correlation matrix V (0) and the importance vector s(0) so that each weight is disentangled
from the others while allowing larger quantization errors on the unimportant disentangled weights
(Unless otherwise stated, we omit the superscript denoting layer index):

Q(w; s,V ) = argmin
wq∈Q

∥∥diag(s) (V ⊤w − V ⊤wq

)∥∥2
F
+ γ ∥wq∥1 , (6)

where V ∈ Rd0×d0 , and s ∈ Rd0 is a scaling term that assigns different importance scores to
each row of V ⊤w. We denote Q = {α ⊙ b : α ∈ Rd1 , b ∈ {−1, 1}d0×d1} as the set of possible
binarized values for w ∈ Rd0×d1 with a scalar scaling factor for each output channel, where ⊙ is an
element-wise multiplication operator, with dimensions broadcasted appropriately. We additionally
include ℓ1 norm adjusted by a hyperparameter γ. At the same time, we want our quantized model to
minimize the empirical task loss (e.g., cross-entropy loss) for a given dataset. Thus we formulate
the full objective in the form of a bilevel optimization problem to find the best quantized weights
which minimize the task loss by considering the cross-layer weight dependencies and the relative
importance among weights:

w∗, s∗,V ∗ =argmin
w,s,V

Ltask (f (X ;wq) ,Y) , where wq = Q(w; s,V ). (7)

After the quantized training, the quantized weights w∗
q at layer l are determined by w∗

q =
Q(w∗; s∗,V ∗). In practice, directly solving the above bilevel optimization problem is imprac-
tical due to its excessive computational cost. We therefore consider the following relaxed problem:

α∗,w∗, s∗,V ∗ = argmin
α,w,s,V

Ltask (f(X ;α·sgn(w)),Y)+λ
∥∥diag(s)V ⊤ (w − α·sgn(w))

∥∥2
F

+γ ∥α·sgn(w)∥1 ,
(8)

where λ is a hyperparameter to balance between the quantization objective and task loss. Since
it is impossible to compute the gradients for discrete values in quantized weights, we adopt the
straight-through estimator Bengio et al. (2013) that is broadly used across QAT methods: sgn(w)
indicates the sign function applied elementwise to w. We follow Liu et al. (2020) for the derivative of
sgn(·). Finally, we obtain the desired quantized weights by w∗

q = α·sgn(w∗). In order to obtain the
off-diagonal parts of the cross-layer dependency matrix V , we minimize Equation 8 with respect to s
and V to dynamically determine the values (we omit X and Y from this argument for readability):

Ltrain(α,w, s,V ) = Ltask (f (X ;α·sgn(w)) ,Y)+λ
∥∥diag(s)V ⊤ (w − α·sgn(w))

∥∥2
F

+γ ∥α·sgn(w)∥1 +Reg(s,V ),
(9)

where Reg(s,V ) := ∥V V ⊤ − I∥2 + |σ −
∑

i log(si)|2 is a regulariztion term which enforces V
to be orthogonal and keeps the scale of s constant. Here, σ is the constant initial value of

∑
i log(si),

which is a non-negative importance score.

5



Under review as a conference paper at ICLR 2023

𝒘(1)

𝒘(2)

𝒘(3)

𝒙 0

b
lo

ck

…while 
Finetuning 

𝒘(2:)

: Frozen parameters: Trainable parameters: Principal Component Analysis : Quantized Weights (Frozen)

… …

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑺𝑽𝑇||𝒘 − 𝒘∗||2
2

+𝑅 𝑺, 𝑽
𝑺, 𝑽,𝒘

Training to quantize 

weights 𝒘(1) by

𝑽(0)𝑺(0)

𝒘(2)

𝒘(3)

𝒙 0

b
lo

ck

…

Quantize weights 

𝒘(𝟐)

𝒘(3)

𝒙 0

…

𝒘𝑞
1

𝑽(0)

𝑽(1)

𝑺(0)

𝑺(1)

Block 
Correlation

Matrix

Importance
Vector

Quantize weights 

𝒘(𝟑)

𝑽(0)

𝑽(1)

𝑽(2)

𝑺(0)

𝑺(1)

𝑺(2)
𝒘𝑞

2

𝒘𝑞
1

𝑽(0,1)𝑺(:1)

𝑽(0,1,2)𝑺(:2)

Block 
Correlation

Matrix

Importance
Vector

Block 
Correlation

Matrix

Importance
Vector

…while 
Finetuning 

𝒘(3:)

Figure 4: Quantization-aware Training with BiTAT: We perform a sequential training process: quantization
training of a layer - rapid finetuning for upper layers. At each layerwise quantization, we also train the importance
vector and orthonormal correlation matrix, which are initialized by PCA components of the current and lower
layer inputs in the target block, and guide the quantization to consider the importance of disentangled weights.

4.1 LAYER-PROGRESSIVE QUANTIZATION WITH BLOCK-WISE WEIGHT DEPENDENCY

Now we extend our formulation for multi-layered neural networks considering cross-layer weight
dependency. While we obtain the objective function in Equation 9, it is inefficient to perform
quantization-aware training while considering the complete correlations of all weights in the given
neural network. Therefore, we only consider cross-layer dependencies between only few consecutive
layers (we denote it as a block), and initialize s and V using Principal Component Analysis (PCA)
on the inputs to those layers within each block.

Figure 5: Initialization of
the block correlation matrix.

Formally, we define a weight correlation matrix in a neural network block
V (block) ∈ R(

∑k
i=1 di)×(

∑k
i=1 di), where k is the number of layers in a

block, similarly to the block-diagonal formulation in Li et al. (2021)
to express the dependencies between weights across layers in the off-
diagonal parts. We initialize s(l) and in-diagonal parts V (l) by applying
PCA on the input covariance matrix:

s(l) ← (λ(l))
1
2 , V (l) ← U (l), where U (l)λ(l)(U (l))⊤ :=

1

N

N∑
i=1

o
(l−1)
i o

(l−1)
i

⊤
, (10)

where o(l) is a column vector and the output of l-th layer and o(0) = x. This allows the weights
at l-th layer to consider the dependencies on the weights from the earlier layers within the same
neural block, and we refer to this method as sequential quantization , so that the model alleviates the
quantization errors accumulated through propagating from the lower to higher consecutive layers
while preserving the performance of the quantized model. Then, instead of having one set of s and
V for each layer, we can keep the previous layer’s s and V and expand them. Specifically, when
quantizing layer l which is a part of the block that starts with the layer m, we first apply PCA on the
input covariance matrix to obtain λ(l) and U (l). We then expand the existing s(m:l−1) and V (m:l−1)

to obtain s ∈ RD+dl−1 and s ∈ RD+dl−1 as follows*:

[s(m:l)]i :=

{
[s(m:l−1)]i, i ≤ D,

[(λ(l))
1
2 ]i−D, D < i,

[V (m:l)]i,j :=


[V (m:l−1)]i,j , i, j ≤ D,

[U (l)]i−D,j−D, D < i, j,

0, otherwise,
(11)

where D =
∑l−2

i=m di, as illustrated in Figure 4. The weight dependencies between different layers
(i.e., off-diagonal areas) are trainable and zero-initialized. That is, at each layerwise quantization in
the target block, we train the importance vector and orthonormal correlation matrix, where expanded
areas are initialized by PCA components of the current layer inputs area. To enable the matrix
multiplication of the weights with the expanded s and V , we define the expanded block weights†:

w(m:l) =
[
PadCol(w(m:l−1), dl);w

(l)
]
, (12)

where PadCol(·, c) zero-pads the input matrix to the right by c columns. Then, our final objective
from Equation 9 with cross-layer dependencies is given as follows:

*[·]i indicates the i-th element of the object inside the brackets.
†[A;B] indicates vertical concatenation of the matrices A and B.

6



Under review as a conference paper at ICLR 2023

Algorithm 1 Neural Network Binarization with Task-dependent Aggregated Transformation

1: Input: Pre-trained weights w(1), . . . ,w(L) for L layers, task loss function L, Maximum size of input-
dimension group k, quantization epochs per layer Nep.

2: Output: Quantized weights w∗(1), . . . ,w∗(L).
3: B1, . . . ,Bn ←Divide the neural network into n blocks
4: for each block B do
5: s = [],V = []
6: for each layer l in B do
7: o(l−1) ← inputs for layer l
8: P ← if dl−1 > k then K-MEANS(X(l), k) else Idl−1

▷ Grouping permutation matrix

9: U diag(λ)U⊤ = PCA(Po(l−1))
▷ Initialization values
for the expanded part

10: s← [s;λ
1
2 ], V ←

[
V 0
0 U

]
▷ expand s and V

11: sα(l:L),w(l:L), s,V ← argminsα,w,s,V Ltrain(sα,w, s,V ) ▷ Iterate for Nep epochs

12: w
(l)
q ← sα(l)·sgn(w(l))

Ltrain(w
(l:L), s(m:l),V (m:l)) = Ltask

(
f
(
X ; {α·sgn(w(l)),w(l+1:L)}

)
,Y

)
+ λ

∥∥∥diag(s(m:l))V (m:l)⊤
(
w(m:l) − α·sgn(w(m:l))

)∥∥∥2
F

+ γ
∥∥∥α·sgn(w(m:l))

∥∥∥
1
+Reg(s(m:l),V (m:l)).

(13)

Given the backbone architecture with L layers, we minimize Ltrain(w
(l), s(l),V (l)) with respect to

w(l), s(l), and V (l) to find the desired binarized weights w∗(l)
q for layer l while keeping the other

layers frozen. Next, we finetune the following layers using the task loss function a few epochs before
performing QAT on following layers, as illustrated in Figure 4. This sequential quantization proceeds
from the bottom layer to the top and the obtained binarized weights are frozen during the training.

4.2 COST-EFFICIENT BITAT VIA AGGREGATED WEIGHT CORRELATION USING REDUCTION
MATRIX

We derived a QAT formulation which focues on the cross-layer weight dependency by learning
block-wise weight correlation matrices. Yet, as the number of inputs to higher layers is often large,
the model constructs higher-dimensional V (l) on upper blocks, which is costly. In order to reduce
the training memory footprint as well as the computational complexity, we aggregate the input
dimensions into several small groups based on functional similarity using k-means clustering.

First, we take feature vectors, the outputs of the l-th layer o(l)
1 , . . . ,o

(l)
N ∈ Rdl for each output

dimension, to obtain dl points p1,p2, . . . ,pdl
∈ RN , then aim to cluster the points to k groups using

k-means clustering, each containing N/k points. Let gi ∈ {1, 2, . . . , k} indicate the group index of
pi, for i = 1, . . . , dl. We construct the reduction matrix P ∈ Rk×dl , where Pij = 1

N/k if gj = i,

and 0 otherwise. Each group corresponds to a single row of the reduced V̂ (l+1) ∈ Rk×k instead of
the original dimension dl × dl. In practice, this significantly reduces the memory consumption of
the V (down to 0.07%). Now, we replace s and V ⊤ in Equation 13 to ŝ and V̂ ⊤P , respectively,
initializing ŝ and V̂ with the grouped input covariance 1

N

∑N
i=1(Po

(l)
i )(Po

(l)
i )⊤. We describe the

full training process of our proposed method in Algorithm 1. The total number of training epochs
taken in training is O(LNep), where L is the number of layers, and Nep is the number of epochs for
the quantizing step for each layer.

5 EXPERIMENTS

We validate a new quantization-aware training method, BiTAT, over multiple benchmark datasets;
CIFAR-10, CIFAR-100 Krizhevsky et al. (2009), and ILSVRC2012 ImageNet Deng et al. (2009)
datasets. We use MobileNet V1 (Howard et al., 2017) backbone network, which is a compact
neural architecture designed for mobile devices. We follow overall experimental setups from prior
works Yamamoto (2021); Liu et al. (2020).

7



Under review as a conference paper at ICLR 2023

Table 1: Performance comparison of BiTAT with baselines. We report the averaged test accuracy across three
independent runs. The best results are highlighted in bold, and results of cost-expensive models (108 ↑ ImgNet
FLOPs) are de-emphasized in gray. We refer to several results reported from their own papers, denoted as †.

METHODS ARCHITECTURE
BITWIDTH

WEIGHT / ACTIV.
IMGNET

FLOPS (×107)
IMGNET
ACC (%)

CIFAR-10
ACC (%)

CIFAR-100
ACC (%)

Full-precision
ResNet-18 32 / 32 200.0 69.8 93.02 75.61

MobileNet V1 32 / 32 56.90 70.6 - 66.68
MobileNet V2 32 / 32 31.40 71.9 94.43 68.08

BRECQ Li et al. (2021) MobileNet V2 4 / 4 3.31 66.57† - -
DBQ Dbouk et al. (2020) MobileNet V2 4 / 8 3.60 70.54† 93.77 73.20

LCQ Yamamoto (2021) ResNet-18 2 / 2 15.00 68.9† - -
MobileNet V2 4 / 4 3.31 70.8† - -

MeliusNet59 Bethge et al. (2020) N/A 1 / 1 24.50 70.7† - -
Bi-Real Net Liu et al. (2018) ResNet-18 1 / 1 15.00 56.4† - -
Real-to-Bin Martinez et al. (2020) ResNet-18 1 / 1 15.00 65.4† - 76.2†

EBConv Bulat et al. (2021) ResNet-18 1 / 1 11.00 71.2† - 76.5†

ReActNet-C Liu et al. (2020) MobileNet V1 1 / 1 14.00 71.4† 90.77 67.41
ReActNet-A Liu et al. (2020) MobileNet V1 1 / 1 1.20 68.26 89.73 65.51

BiTAT-C (Ours) MobileNet V1 1 / 1 14.00 - - 69.45
BiTAT-A (Ours) MobileNet V1 1 / 1 1.20 68.51 90.21 68.36

Baselines and training details. While our method aims to solve the QAT problem, we exten-
sively compare our BiTAT against various methods; Post-training Quantization (PTQ) method:
BRECQ Li et al. (2021), and Quantization-aware Training (QAT) methods: DBQ Dbouk et al. (2020),
EBConv Bulat et al. (2021), Bi-Real Net Liu et al. (2018), Real-to-Bin Martinez et al. (2020), LCQ Ya-
mamoto (2021), MeliusNet Bethge et al. (2020), ReActNet Liu et al. (2020). Note that DBQ, LCQ,
and MeliusNet, keep some crucial layers, such as 1×1 downsampling layers, in full-precision, leading
to inefficiency at evaluation time. Due to the page limit, we provide the details on baselines and the
training and inference phase during QAT including hyperparameter setups in the Supplementary file.

5.1 QUANTITATIVE ANALYSIS

We compare our BiTAT against various PTQ and QAT-based methods in Table 1 on multiple datasets.
BRECQ introduces an adaptive PTQ method by focusing on the weight dependency via hessian
matrix computations, resulting in significant performance deterioration and excessive training time.
DBQ and LCQ suggest QAT methods, but the degree of bitwidth compression for the weights and
activations is limited to 2- to 8-bits, which is insufficient to meet our interest in achieving neural
network binarization with 1-bits weights and activations. MeliusNet only suffers a small accuracy
drop, but it has a high OP count. DBQ and LCQ restrict the bit-width compression to be higher at
4 bits so that they cannot enjoy the XNOR-Bitcount optimization for speedup. Although Bi-Real
Net, Real-to-Bin, and EBConv successfully achieve neural network binarization, over-parameterized
ResNet is adopted as backbone networks, resulting in higher OP count. Moreover, except EBConv,
these works still suffer from a significant accuracy drop. ReActNet binarizes all of the weights
and activations (except the first and last layer) in compact network architectures while preventing
model convergence failure. Nevertheless, the method still suffers from considerable performance
degeneration of the binarized model. On the other hand, our BiTAT prevents information loss
during quantized training up to 1-bits, showing a superior performance than ReActNet, 0.37 %
↑ for ImageNet, 0.53% ↑ for CIFAR-10, and 2.31% ↑ for CIFAR-100. Note that BiTAT further
achieves on par performance of the MobileNet backbone for CIFAR-100. The results support our
claim on layer-wise quantization from the bottom layer to the top, reflecting the disentangled weight
importance and correlation with the quantized weights at earlier layers.

Ablation study We conduct ablation studies to analyze the effect of salient components in our
proposed method in Figure 7 Left. BiTAT based on layer-wise sequential quantization without weight
transformation already surpasses the performance of ReActNet, demonstrating that layer-wise progres-
sive QAT through an implicit reflection of adjusted importance plays a critical role in preserving the
pre-trained models during quantization. We adopt intra-layer weight transformation using the input-
dependent orthonormal matrix, but no significant benefits are observed. Thus, we expect that only
disentangling intra-layer weight dependency is insufficient to fully reflect the adjusted importance of
each weight due to a binarization of earlier weights/activations. This is evident that BiTAT considering
both intra-layer and cross-layer weight dependencies achieves improved performance than the case
with only intra-layer dependency. Yet, this requires considerable additional training time to compute

8



Under review as a conference paper at ICLR 2023

METHOD
INTRA-LAYER
TRANSFORM

CROSS-LAYER
TRANSFORM

Accuracy
(%)

Train Time
(hours)

REACTNET LIU ET AL. (2020) N/A N/A 65.51 ± 0.74 10.75

BITAT
(Ours)

× × 68.17 ± 0.07 3.49
✓ × 67.82 ± 0.22 3.66
✓ ✓ 68.21 ± 0.24 8.50

w/ Filter-wise Transform 67.86 ± 0.11 3.01
w/ Truncated SVD 67.55 ± 1.04 3.44

w/ Aggregated Transform 68.36 ± 0.45 3.11

Figure 7: Left: Ablation study for analyzing core components in our method. We report the averaged
performance and 95% confidence interval across 3 independent runs and the complete BiTAT result is highlighted
in gray background. Right: Visualization of the weight grouping during sequential quantization of BiTAT.
Each 3×3 square represents a convolutional filter of the topmost layer (26th, excluding the classifier) of our
model, and each unique color represents each group to which weight elements belong.

0 500

0

250

500

750

V

0 500

0

200

400

600

0 500

0

200

400

600

0 500
Block 1

0

250

500

750di
ag

(s
)V

T

0 500
Block 3

0

200

400

600

0 500
Block 5

0

200

400

600 0.004

0.002

0.000

0.002

0.004

Figure 6: Visualization of the learned V matrix and
the diag(s)V ⊤ of three blocks of the network, with
the CIFAR-100 dataset. Notice the off-diagonal
parts which represent cross-layer dependencies.

with a chunk-wise transformation matrix. In the end,
BiTAT with aggregated transformations, which is
our full method, outperforms our defective variants
in both terms of model performance and training
time by drastically removing redundant correlation
through reduction matrices. We note that using k-
means clustering for aggregated correlation is also
essential, as another variant, BiTAT with filter-wise
transformations, which filter-wisely aggregates the
weights instead, results in deteriorated performance.

5.2 QUALITATIVE ANALYSIS

Visualization of Reduction Matrix We visualize
the weight grouping for BiTAT in Figure 7 Right
to analyze the effect of the reduction matrix, which groups the weight dependencies in each layer
based on the similarity between the input dimensions. Each 3×3 square represents a convolutional
filter, and each unique color in weight elements represents which group each weight is assigned to,
determined by the k-means algorithm, as described in Section 4.2. We observe that weight elements
in the same filter do not share their dependencies; rather, on average, they often belong to four-five
different weight groups. Opposite to these observations, BRECQ regards the weights in each filter
as the same group for computing the dependencies in different layers, which is problematic since
weight elements in the same filter can behave differently from each other.

Visualization of Cross-layer Weight Dependency In Figure 6, we visualize learned transformation
matrices V (top row), which shows that many weight elements at each layer are also dependent on
other layer weights as highlighted in darker colors, verifying our initial claim. Further, we provide
visualizations for their multiplications with corresponding importance vectors diag(s)V ⊤ (bottom
row). Here, the row of V ⊤ is sorted by the relative importance in increasing order at each layer. We
observe that important weights in a layer affect other layers, demonstrating that cross-layer weight
dependency impacts the model performance during quantized training.

6 CONCLUSION

In this work, we explored long-overlooked factors that are crucial in preventing the performance
degeneration with extreme neural network quantization: the inter-weight dependencies. That is,
quantization of a set of weights affect the weights for other neurons within each layer, as well as
weights in consecutive layers. Grounded by the empirical analyses of the node interdependency, we
propose a Quantization-Aware Training (QAT) method for binarizing the weights and activations of
a given neural network with minimal loss of performance. Specifically, we proposed orthonormal
transformation of the weights at each layer to disentangle the correlation among the weights to
minimize the negative impact of quantization on other weights. Further, we learned scaling term
to allow varying degree of quantization error for each weight based on their measured importance,
for layer-wise quantization. Then we proposed an iterative algorithm to perform the layerwise
quantization in a progressive manner. We demonstrate the effectiveness of our method in neural
network binarization on multiple benchmark datasets with compact backbone networks, largely
outperforming state-of-the-art baselines.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. MeliusNet: Can
binary neural networks achieve MobileNet-level accuracy? Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Adrian Bulat, Georgios Tzimiropoulos, and Brais Martinez. High-capacity expert binary networks.
Proceedings of the International Conference on Learning Representations (ICLR), 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1 or
-1, 2016.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 2018.

Hassan Dbouk, Hetul Sanghvi, Mahesh Mehendale, and Naresh Shanbhag. DBQ: A differentiable
branch quantizer for lightweight deep neural networks. Proceedings of the European Conference
on Computer Vision (ECCV), 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution
for training binarized deep networks. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David Doer-
mann. Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In
Proceedings of the AAAI National Conference on Artificial Intelligence (AAAI), 2019.

Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong Wang, Qingshan Liu, and
Jian Cheng. Proxybnn: Learning binarized neural networks via proxy matrices. In Proceedings of
the European Conference on Computer Vision (ECCV), 2020a.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter
pruning criteria for deep convolutional neural networks acceleration. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2020b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Sangil Jung, Changyong Son, Seohyung Lee, JinWoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Alias-free generative adversarial networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2015.

10



Under review as a conference paper at ICLR 2023

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2020a.

Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang,
and Chia-Wen Lin. Rotated binary neural network. In Advances in Neural Information Processing
Systems (NeurIPS), 2020b.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit CNNs with improved representational capability and advanced
training algorithm. Proceedings of the European Conference on Computer Vision (ECCV), 2018.

Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. ReActNet: Towards pre-
cise binary neural network with generalized activation functions. Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve
low-precision network accuracy. Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2018.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or down? adaptive rounding for post-training quantization. Proceedings of the International
Conference on Machine Learning (ICML), 2020.

Eunhyeok Park and Sungjoo Yoo. PROFIT: A novel training method for sub-4-bit MobileNet models.
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Proceedings of the International Conference on Pattern Recognition (ICPR),
2020a.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 2020b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. Proceedings of the European Conference
on Computer Vision (ECCV), 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. Two-step
quantization for low-bit neural networks. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian. Learning channel-wise interactions
for binary convolutional neural networks. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

11



Under review as a conference paper at ICLR 2023

Kohei Yamamoto. Learnable companding quantization for accurate low-bit neural networks. Proceed-
ings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural networks.
In Proceedings of the International Conference on Machine Learning (ICML), 2017.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Structured binary neural
networks for accurate image classification and semantic segmentation. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

12


