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Abstract

We examine multi-task benchmarks in machine
learning through the lens of social choice theory.
We draw an analogy between benchmarks and
electoral systems, where models are candidates
and tasks are voters. This suggests a distinction
between cardinal and ordinal benchmark systems.
The former aggregate numerical scores into one
model ranking; the latter aggregate rankings
for each task. We apply Arrow’s impossibility
theorem to ordinal benchmarks to highlight
the inherent limitations of ordinal systems,
particularly their sensitivity to the inclusion of
irrelevant models. Inspired by Arrow’s theorem,
we empirically demonstrate a strong trade-off
between diversity and sensitivity to irrelevant
changes in existing multi-task benchmarks. Our
result is based on new quantitative measures
of diversity and sensitivity that we introduce.
Sensitivity quantifies the impact that irrelevant
changes to tasks have on a benchmark. Diversity
captures the degree of disagreement in model
rankings across tasks. We develop efficient
approximation algorithms for both measures,
as exact computation is computationally chal-
lenging. Through extensive experiments on
seven cardinal benchmarks and eleven ordinal
benchmarks, we demonstrate a clear trade-off
between diversity and stability: The more
diverse a multi-task benchmark, the more
sensitive to trivial changes it is. Additionally, we
show that the aggregated rankings of existing
benchmarks are highly unstable under irrelevant
changes. The codes and data are available at
https://socialfoundations.github.
io/benchbench/.
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Figure 1. Ranking changes after irrelevant changes on tasks. For
cardinal benchmark OpenLLM (left), Before refers to the original
ranking, and After is the new ranking after injecting label noises
into different tasks. For ordinal benchmark HELM-accuracy
(right), Before refers to the ranking based on only the original top-
20% models, while After is the new relative ranking after adding
irrelevant models from the rest 80%. y-axis refers to the ranking.

1. Introduction
At this point, there is little agreement about what the right
benchmark is for different tasks in machine learning (Etha-
yarajh & Jurafsky, 2020; Bowman & Dahl, 2021; Kiela
et al., 2021). Natural language understanding, for exam-
ple, has hundreds of different benchmarks, each measuring
different qualities of a model (Storks et al., 2019). On the
one hand, multiple benchmarks are desirable when it comes
to creating a diverse canvas of evaluation results. On the
other hand, the plurality of different benchmarks makes it
challenging to consistently measure progress, as different
benchmarks suggest different model rankings.

The de facto solution to the problem are multi-task bench-
marks (Wang et al., 2018; 2019; Hendrycks et al., 2020).
Major recent developments, such as BigBench (Srivastava
et al., 2022) and HELM (Liang et al., 2023), combine hun-
dreds of evaluation tasks into a single benchmark. The hope
is that by aggregating many tasks into one, a reliable and
representative picture of model performance will emerge.

In this work, we scrutinize multi-task benchmarks through
the lens of social choice theory. In doing so, we analogize
multi-task benchmarks with electoral systems. Models stand
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Figure 2. Trade-off between benchmark diversity and sensitivity to irrelevant changes. Left: Cardinal benchmarks. Right: Ordinal
benchmarks. Sensitivity is measured by the maximum normalized rank change (MRC) possible via irrelevant task changes. Diversity is
measured by Kendall’s coefficient of concordance (W ). The green curve is a linear regression on all points without intercept.

in analogy with candidates in the electoral system, and
tasks with voters. Each task in a multi-task benchmark may
rank candidate models differently. The benchmark must
determine a ranking of candidates given the different votes.

A robust lesson from social choice theory is that there is no
perfect voting system. Celebrated results, such as Arrow’s
impossibility theorem (Arrow, 1950; 1951), point at inher-
ent limitations in the design of desirable voting rules (Tay-
lor, 2005). Inspired by social choice theory, we surface
an important trade-off in multi-task benchmarks between a
measure of diversity and a measure of robustness to irrel-
evant changes. In a nutshell, we demonstrate empirically
that current multi-task benchmarks fail to be both robust
and diverse. Instead, one comes at the expense of the other.

1.1. Our contributions

We propose a distinction between cardinal benchmark sys-
tems and ordinal benchmark systems. Cardinal benchmark
systems aggregate multiple rankings into one on the basis
of numerical scores, such as accuracy numbers. Ordinal
benchmark systems instead aggregate rankings into a single
ranking. BigBench is an example of a cardinal benchmark,
ranking by average accuracy over the tasks. HELM is an
example of an ordinal system, comparing any two models
by how often one ranks higher than the other.

To start, we point out that Arrow’s impossibility result di-
rectly applies to ordinal systems, such as HELM. We ob-
serve that in the case of ordinal benchmarks, the desirable
property that fails in Arrow’s language is independence of
irrelevant alternatives. What this means is that adding ir-
relevant models to a benchmark can perturb the order of
top contenders. We demonstrate that this is indeed possible
with HELM and similar benchmarks.

Arrow’s result is neither quantitative, nor does it apply to car-
dinal systems. Inspired by Arrow’s theorem, we introduce
a quantitative measure of sensitivity to irrelevant changes.
Sensitivity measures how responsive a benchmark is to triv-
ial transformations of tasks. For example, adding a fraction
of random labels to a task does not change the relative per-
formance of models, thus resulting in an equivalent task.

It is easy to design benchmarks that are robust to such irrele-
vant changes. Simply take a single-task benchmark. Or take
the single task and copy it many times to obtain a multi-task
benchmark. We therefore contrast our measure of sensitivity
with a measure of diversity. Diversity measures the degree
to which different tasks disagree in their model rankings.
Multi-task benchmarks lacking in diversity are essentially
single-task benchmarks.

Our measures of diversity and sensitivity are computation-
ally hard to compute exactly. We therefore developed effi-
cient approximation algorithms for both.

Through comprehensive experiments, we demonstrate that
there is a strong trade-off between diversity and sensitiv-
ity in current multi-task benchmarks. The more diverse a
multi-task benchmark, the more sensitive to trivial changes
it is. In other words, the pursuit of diversity compromises
sensitivity, and striving for robustness necessitates sacrific-
ing diversity. We confirm this trade-off in seven cardinal
benchmarks and eleven ordinal benchmarks from natural
language understanding and computer vision.

The most stable benchmark, by our measure, is a constant
benchmark. The most diverse benchmark is a random bench-
mark. We show that all existing multi-task benchmarks
strike a trade-off no better than a linear interpolation be-
tween random and constant. In particular, our empirical
analysis reveals that current benchmarks are highly unsta-
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ble to irrelevant changes. For illustration, Figure 1 gives
an example where both a cardinal benchmark (OpenLLM)
and an ordinal benchmark (HELM-accuracy) suffer from
significant ranking changes after trivial task transformations.
Figure 2 summarizes the trade-off between diversity and
sensitivity for both cardinal and ordinal benchmarks.

2. Related Works
Benchmarks are at the foundation of applied machine learn-
ing research, underpinning many of its successes (Donoho,
2023; Koch et al., 2021; Zhang et al., 2019; Ott et al., 2022).
Although many benchmarks have been proposed, far fewer
works have studied benchmarks as a scientific subject it-
self; see (Hardt & Recht, 2022) for an overview. With
recent machine learning models achieving impressive abili-
ties across many different evaluation settings (Ramesh et al.,
2021; Team, 2023; OpenAI, 2023; Touvron et al., 2023a;b),
the spotlight has increasingly turned to multi-task bench-
marks. Multi-task benchmarks aim to provide a diverse and
holistic evaluation of machine learning models by covering
many different tasks and metrics (Liang et al., 2023; Lee
et al., 2023; Srivastava et al., 2022; Wang et al., 2018; 2019).
Concurrently, various concerns regarding benchmarks have
surfaced, highlighting their limitations, see, e.g., (Liao et al.,
2021; Bowman & Dahl, 2021; Zhang et al., 2023; Boubdir
et al., 2023), in particular, susceptibility to chosen tasks (De-
hghani et al., 2021; Alzahrani et al., 2024), non-smooth
utility functions (Ethayarajh & Jurafsky, 2020), data contam-
ination (Roberts et al., 2023; Magar & Schwartz, 2022), pos-
sibility for overfitting due to repeated use of test sets (Dwork
et al., 2014; Blum & Hardt, 2015; Feldman et al., 2019; Ma-
nia et al., 2019; Arora & Zhang, 2021). Shirali et al. (2023)
demonstrated inherent limitations of dynamic benchmarks,
another recent benchmark design paradigm that aims to
mitigate shortcomings of static single-task benchmarks.

In our research, we focus on the challenge of aggregat-
ing performance measures within multi-task benchmarks.
While existing studies have raised concerns about the aggre-
gation problem in benchmarks, they have primarily focused
on cardinal aggregation by mean scores (Mania et al., 2019;
Colombo et al., 2021; Peyrard et al., 2017; Mishra & Arunk-
umar, 2021). As a result, there is a shift towards ordinal
benchmarks where only relative performances in each task
are used for aggregation (Liang et al., 2023; Lee et al.,
2023). Himmi et al. (2023) adopt a compatible partial rank-
ing approach to address missing scores in benchmarks and
introduce a Borda count-based aggregation method (Kelly,
1988). Colombo et al. (2022) propose a new aggregation
process to fix the scale difference problem of cardinal based
on Kemeny consensus (Shapiro & Hellman, 1993). Rofin
et al. (2022) propose VOTE’N’RANK, which comprises
eight procedures that depend on rankings for each task. In

our study, we highlight the fundamental compromise one
must navigate between diversity and stability for both cardi-
nal and ordinal benchmarks.

3. A Social Choice Perspective for Benchmarks
Social choice theory addresses the problem of aggregating
individual preferences to select the best option or candi-
date (Kelly, 1988). In the context of multi-task machine
learning benchmarks, we adopt this framework by consid-
ering each task as an individual voter. The tasks, as voters,
provide preference scores to different candidate models,
akin to how individuals might vote for political candidates.
The problem of aggregating these task-based votes into a
cohesive ranking of models parallels the challenge in so-
cial choice of electing a candidate that best represents the
preferences of the electorate.

From this perspective, we divide multi-task benchmarks into
two classes: cardinal benchmarks and ordinal benchmarks.
Cardinal benchmarks collect model scores from tasks, trans-
late quantitative performance into a single average score per
model, and rank all candidate models based on it. Ordinal
benchmarks, on the other hand, only utilize relative rankings
rather than absolute scores. Every task ranks the models
based on performance, and the final model rankings emerge
from an aggregation of these ordinal positions.

Notation. We present notation to formalize the problem:

• T = (T1, T2, . . . , Tn) represents the list of all n tasks
in the benchmark, analogous to voters.

• M refers to the set of all potential candidate models
that could be evaluated by the benchmark.

• Let L = (L1, L2, . . . , Lm) be any non-empty list of
candidate models with m models, where Li ∈ M for
any i.

• For any L, we define sij as the score for the i-th model
in L in task Tj . For simplicity, we abuse the notations
and use sj = (s1j , s2j , . . . , smj) as scores in any task
Tj , and S = (s1, s2, . . . , sn) as scores over all tasks.

• For any L, we define rij as the rank for the i-th model
L in task Tj w.r.t. L. For simplicity, we abuse the
notations and use rj = (r1j , r2j , . . . , rmj) as ranks in
any task Tj , and R = (r1, r2, . . . , rn) as ranks over
all tasks.

• A cardinal benchmark is defined as a function f c =
hc ◦ gc, which is composed of the scoring function gc

and the aggregation function hc. Specifically, gc takes a
list of models L as input and outputs the corresponding
scores for each index over all tasks, i.e., S = gc(L).
The scores S are fed into hc, which outputs the final
ranking rc = (rc

1, r
c
2, . . . , r

c
m), i.e., rc = hc(S).
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• An ordinal benchmark is defined as a function f o =
ho ◦ go, which is composed of the scoring function
go and the aggregation function ho. Specifically, go

takes a list of models L as input and outputs the cor-
responding rankings for each index over all tasks, i.e.,
R = go(L). The rankings R are fed into ho, which
outputs the final ranking ro = (ro

1, r
o
2, . . . , r

o
m), i.e.,

ro = ho(R).

• We use RANKDATA(·) as the operator of getting rank.

More specifically, in cardinal benchmarks, an aggregated
score is first calculated for each model, in most cases, by
averaging the scores (Wang et al., 2018; 2019). For any
candidate model list L, the final ranking is then calculated
by sorting the average scores as follows,

rc = hc(S) = RANKDATA
(
(s̄1, . . . , s̄m)

)
,

where s̄i =
1

n

n∑
j=1

sij .
(1)

In contrast, most existing popular ordinal benchmarks
in machine learning calculate the winning rate for each
model (Liang et al., 2023; Lee et al., 2023; Ben Allal et al.,
2022). For any candidate model list L, the winning rate for
model Li represents the probability that its rank rik is lower
than rjk for a randomly selected opponent model Lj and
task Tk. By referring to I(·) as the indicator function, the
final ranking is calculated as follows,

ro = ho(R) = RANKDATA
(
(w̄1, . . . , w̄m)

)
,

where w̄i =
1

m

m∑
j=1

wij , wij =
1

n

n∑
k=1

I(rik < rjk) .
(2)

Arrow’s Impossibility Theorem for Benchmarks Ar-
row’s Impossibility Theorem, a cornerstone in social choice
theory, posits that no system can flawlessly translate individ-
ual preferences into a group ranking (Arrow, 1950; 1951).
Adapted to the case of multi-task benchmarks, the theorem
says the following (proof in Appendix A).

Theorem 3.1 (Arrow’s Impossibility Theorem for Bench-
marks). No ordinal benchmark f o can fulfill the following
conditions simultaneously:

1. Non-Dictatorship: There is no task Ti such that, for
any L and any index pair (x, y) , when rxi < ryi, then
ro
x < ro

y .

2. Pareto Efficiency: For any L and any index pair (x, y),
if rxi < ryi for every task Ti ∈ T , then ro

x < ro
y .

3. Independence of Irrelevant Alternatives (IIA): Let L
and L′ be any two lists of models. For any index pair
(x, y), if x and y have the same relative order in go(L)
and go(L′) for all tasks, then x and y have the same
relative order in f o(L) and f o(L′).

4. Universality: The benchmark has at least three tasks.
The benchmark has as domain all finite lists with at
least three models. The scoring function go has full
range over all logically possible values for R. The ag-
gregation function ho has full domain over all logically
possible values for R.

For the ordinal benchmarks introduced in equation 2, the IIA
condition is especially problematic since introducing a new
model can perturb the winning rate of existing models, and
as a result, change the aggregated ranking of existing models.
For example, assume there are three candidate models L =
(L1, L2, L3) and nine tasks T = (T1, T2, . . . , T9), and the
rankings R are as follows,

• for any task in {Ti}4i=1, r1i < r2i < r3i,

• for any task in {Ti}7i=5, r2i < r3i < r1i,

• for any task in {Ti}9i=8, r3i < r1i < r2i.

The winning rates are w̄1 = 10/27, w̄2 = 10/27, w̄3 =
7/27, so we have ro

1 = ro
2 < ro

3. Now we add one ex-
tra candidate model and get L′ = (L1, L2, L3, L4). The
rankings R′ are as follows,

• for any task in {Ti}4i=1, r′1i < r′2i < r′4i < r′3i,

• for any task in {Ti}7i=5, r′2i < r′4i < r′3i < r′1i,

• for any task in {Ti}9i=8, r′3i < r′1i < r′2i < r′4i.

Then the winning rates are w̄′
1 = 17/36, w̄′

2 = 19/36, ,
w̄′

3 = 9/36 , so we have ro′
2 < ro′

1 < ro′
3 . Note that the

relative ranking among {L1, L2, L3} does not change over
the nine tasks, but the final ranking has been different.

While Arrow’s Impossibility Theorem is mainly concerned
with ordinal voting systems, criticisms extend to cardinal
systems as well. The main concern lies in the interpersonal
comparability between voters (Drakopoulos, 1989). The
validity of interpersonal comparison has been challenged as
transforming any particular scale for individual preferences
has been widely recognized as arbitrary (Sen, 2017; Arrow,
1951). In the context of cardinal benchmarks, the scale
discrepancies among tasks could result in a situation where
the aggregate performance disproportionately reflects the
score of a single task, thereby distorting the benchmark’s
intent to represent all tasks effectively (Colombo et al., 2022;
Himmi et al., 2023) and thus violating Non-Dictatorship.
As a result, outliers or skewed distributions can significantly
influence the final ranking, undermining the reliability of
the cardinal benchmark assessments. Even if the scores
are similar in scale across tasks, the underlying difficulty
of each task may differ, i.e., improvements in one task are
easier to come by than in another. Consequently, a cardinal
benchmark would then reward improvements in the easier
task more than in the harder task, leading to discrepancies
in how improvements are valued.
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Although this discussion suggests potential issues in multi-
task benchmarks that are informed by Arrow’s theorem, we
have yet to establish quantitative metrics that can gauge the
severity of these issues within existing benchmarks. The
next section will provide such quantitative metrics.

4. Diversity and Sensitivity in Multi-Task
Benchmarks

Inspired by Arrow’s impossibility theorem, in this section,
we propose two quantitative measurements for multi-task
benchmarks, diversity and sensitivity. Diversity is used to
measure the ranking disagreement among all tasks, while
sensitivity measures how vulnerable the final ranking of the
benchmarks is toward irrelevant changes that do not change
the relative performance of models.

4.1. Diversity in Multi-Task Benchmarks.

Let L = (L1, L2, . . . , Lm) contain all models in M without
duplicates, i.e., m = |M|, we define the diversity with
reversed Kendall’s coefficient of concordance W , which is
to assess the disagreement among model rankings on each
task as follows,

W = 1− 12Σ/(n2(m3 −m)) ,

where Σ =

m∑
i=1

(r̄i − r̃)2, r̃ =

m∑
i=1

ri, r̄i =

n∑
j=1

rij .
(3)

W = 0 means all model rankings are the same across
all tasks, while W = 1 means random or highly varied
rankings. For example, if the benchmark is composed of
only one task, repeating multiple times, then the diversity
would be zero.

The definition of diversity is inspired by the Universality
condition in Theorem 3.1, which indicates that a benchmark
should accommodate all possible values for the rank matrix
R, meaning that any configuration of model ranks across the
tasks in T should be feasible. This condition can be trivially
satisfied when there is only one task in T by rearranging the
models in L. However, it becomes challenging in a multi-
task scenario, particularly if the tasks share high correlations
in their evaluations of models. For instance, if all tasks in
T are merely replicas of a single task, the situation will
never arise where the ranking vectors ri and rj differ, as
such, not all values of R are possible—thereby violating
the Universality condition.

As directly verifying Universality is intractable, we use di-
versity as an approximate. Diversity quantifies the degree
of alignment or discordance between rankings of different
tasks over M. A lower diversity score indicates a strong
inter-task correlation with similar rankings being produced
across tasks, which could potentially impair Universality, as

it restricts the possible values that R can take. For example,
diversity being zero means that all tasks are the same, and
Universality will be violated. Conversely, a higher diversity
represents a stronger disagreement between tasks regard-
ing model rankings, paving the way for more possible R
scenarios and thus aligning more closely with the tenet of
Universality. For example, diversity being one means that
the rankings of all tasks are random, and thus Universality
will hold.

4.2. Sensitivity in Multi-Task Benchmarks

Sensitivity is based on the desideratum from Arrow’s theo-
rem about the independence of irrelevant changes, restated
below.
Property 4.1 (Independence of Irrelevant Changes). The
aggregated final ranking should not be altered by irrelevant
changes on tasks that do not modify the relative performance
of models.

Intuitively speaking, our measure of sensitivity captures the
degree to which a benchmark responds to irrelevant changes.
In particular, high sensitivity implies that the desideratum
of independence of irrelevant changes is strongly violated.

The definition of sensitivity is different in the case of ordinal
and cardinal benchmarks. Both definitions make use of
Kendall’s τ coefficient that we define next. For any model
list L, Kendall’s τ coefficient measures the distance between
any two model rankings r and r′, as follows,

τ =
number of disconcordant pairs(

m
2

) , (4)

where a pair of models Li and Lj is said to be concordant
in r and r′ if both ri > rj and r′i > r′j hold or both ri < rj
and r′i < r′j hold; otherwise, this pair is considered as
disconcordant. One intuitive explanation for the number of
disconcordant pairs is to count the number of times one has
to cross lines when connecting matching data points from
one ranking to another. Here we have normalized τ into
[0, 1], so that τ = 0 means that the two ranks are exactly
the same, while τ = 1 means they are opposite to each
other. We primarily use τ as the measurement for ranking
distance in our formulation, but we also report max rank
change (MRC) to provide a more intuitive measurement for
the ranking distance in our experiments. For any two model
rankings r and r′, MRC is defined as follows,

MRC = max
i∈{1,2,...,m}

|ri − r′i|
m− 1

. (5)

MRC = 0 means there is no ranking change, while MRC =
1 indicates the maximum possible fluctuation in rankings.
Next, we will define two kinds of irrelevant changes for
cardinal and ordinal benchmarks, respectively.
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Sensitivity in cardinal benchmarks. For cardinal bench-
marks, the sensitivity is defined based on label noise in-
jection on tasks as the irrelevant change. Specifically, the
injection of label noise to a task could well preserve the rela-
tive performances of models and should not change a task’s
intrinsic nature. Therefore, sensitivity aims to quantify the
robustness of benchmark rankings to these task-equivalent
manipulations in scores. This concept is also loosely anal-
ogous to the Non-dictatorship principle, which prohibits
any single voter (in this case, a task and its scoring) from
imposing an undue influence on the outcome. In the most
extreme scenario, randomizing all labels for a particular
task is equivalent to excluding that task from the benchmark.
Changes in the aggregated ranking brought by such manipu-
lation can thus reveal the level of influence that the task has.
More significant fluctuations imply a greater impact of the
task on overall rankings, suggesting that it plays a vital role
in the benchmark, while minimal changes suggest that the
task’s influence is negligible.

Specifically, let L = (L1, L2, . . . , Lm) contain all models
in M without duplicates, i.e., m = |M|, we define sensitiv-
ity by injecting different portions of label noise in each task,
and calculating the largest ranking distance after injection,
as follows,

max
α∈[ϵ,1]n

τ(rc, r′) (6)

s.t. r′ = RANKDATA
(
(s̄′1, s̄

′
2, . . . , s̄

′
m)

)
, (7)

s̄′i =

n∑
j=1

(
αjsij + (1− αj)pj

)
, (8)

where the original ranking rc and scores sij are defined in
Section 3. α = (α1, α2, . . . , αn) defines the proportions of
preserved examples whose labels are unchanged for each
task. The label noise are injected by randomly substituting
(1− αj) portion of examples’ labels into a random one. As
a result, the corresponding score for these examples would
be pj , which refers to the performance under random label
substitution. For example, if the task Tj is binary classifica-
tion and its score refers to accuracy, the pj refers to 1/2. In
practice, the specific value of pj does not have any impact
on the ranking r′ as the sum

∑n
j=1(1− αj)pj does not de-

pend on models. ϵ ∈ (0, 1) is a hyper-parameter that defines
the minimal preserving proportion of unchanged examples
for each task. It is worth noting that r′ will not change if
we multiply a positive constant with α, so we could always
keep the maximum value in α as one by multiplying α with
1/max({αi}ni=1), which means that there is always at least
one task with no noise.

Sensitivity in ordinal benchmarks. For ordinal bench-
marks, the definition for sensitivity is built upon irrelevant
model addition as the irrelevant change. This is inspired by
the IIA condition in Arrow’s Impossibility Theorem, which

demands that the addition of a new model (an “irrelevant
alternative” with respect to existing comparisons) should
not change the relative ranking order of the models already
being considered. If a benchmark’s model rankings are dra-
matically affected every time a new model is introduced
into the competition, it indicates a high sensitivity. A low
sensitivity in ordinal benchmarks assures us that the relative
rankings are stable and that the benchmark can handle the
introduction of new models without disrupting the existing
rankings, consistent with the IIA condition. This resilience
is essential, as it means that the benchmark’s evaluations
are reliable and reflective of each model’s true performance
relative to its peers.

Specifically, let L = (L1, L2, . . . , Lm) be a list of models,
and LC = (Lm+1, Lm+2, . . . , Lm+l) represent the comple-
ment model list, i.e., m + l = |M|. Then the sensitivity
for ordinal benchmarks is defined as the largest ranking dis-
tance after adding a subset of these extra candidate models
into comparison.

max
β∈{0,1}l

τ(ro, r′) (9)

s.t. r′ = RANKDATA
(
(w̄′

1, w̄
′
2, . . . , w̄

′
m)

)
, (10)

w̄′
i =

1

m+ ||β||1

m∑
j=1

wij +

l∑
j=1

βjwi(m+j) , (11)

where we use β ∈ {0, 1}l as the indicator irrelevant model
selection, where βj = 1 means Mm+j is selected and βj =
0 means not-selected. As a result, ||β||1 refers to the number
of selected models from LC as irrelevant models.

Assuming IIA in Theorem 3.1 holds, for any model list L, af-
ter appending a list of irrelevant models (as indicated by β),
the relative ranking among models in L should not change.
In practice, we simply calculate sensitivity by selecting the
top-20% models in the existing benchmark as L and the rest
80% models as LC. If IIA holds, then sensitivity should be
zero. On the other hand, we note that our sensitivity is a
lower bound for IIA, which says that IIA could still not hold
even if sensitivity is zero. This limit mainly comes from the
setting where we only consider the top-20% models, which
is inspired by real-world scenarios where most people only
care about top models. Note that, in our paper, we only
focus on ordinal benchmarks that aggregate the final rank-
ing by calculating the winning rate as in equation 2, which
satisfies Non-Dictatorship and Pareto Efficiency by design.
For ordinal benchmarks with other aggregation methods,
one should take all Non-Dictatorship, Pareto Efficiency, and
IIA into consideration for sensitivity.

Relaxation of sensitivity. The main challenge for solv-
ing equation 6 and equation 9 lies in the non-differentiable
nature of the operator RANKDATA(·) and τ(·, ·). Thus we
propose to relax the ranking distance to a continuous objec-
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Algorithm 1 Sensitivity for Cardinal Benchmarks
1: Input: scores {sij}i∈[1,m],j∈[1,n] for models in L, ϵ, λ,

number of optimization T
2: Calculate rc based on equation 1
3: Initialize the parameter θ ∈ Rn randomly
4: for t = 1 to T do
5: α = Sigmoid(θ) + ϵ/(1− ϵ)
6: α = α/||α||1
7: Calculate updated score {s̄′i}mi=1 as equation 8
8: Calculate relaxed loss ℓc based on equation 12
9: Gradient descent on θ based on ℓc

10: end for
11: α = Sigmoid(θ) + ϵ/(1− ϵ)
12: α = α/max(α)
13: Calculate r′ based on equation 7
14: Output: τ(rc, r′)

Algorithm 2 Sensitivity for Ordinal Benchmarks
1: Input: winning rates {wij}i∈[1,m+l],j∈[1,m+l] for L

and LC, λ, number of optimization T
2: Calculate ro based on equation 2
3: Initialize the parameter θ ∈ Rn randomly
4: for t = 1 to T do
5: qβ = Sigmoid(θ)
6: β ∼ Bernoulli(qβ)
7: β = β + qβ − qβ.detach()
8: Calculate updated win rate {w̄′

i}mi=1 as equation 11
9: Calculate relaxed loss ℓo based on equation 13

10: Gradient descent on θ based on ℓc

11: end for
12: β = (Sigmoid(θ) > 0.5).int()
13: Calculate r′ based on equation 10
14: Output: τ(ro, r′)

tive as follows,

ℓc =

m∑
i=1

m∑
j=1

(
I(rc

i < rc
j)max(s̄′i − s̄′j ,−λ)

)
(12)

ℓo =

m∑
i=1

m∑
j=1

(
I(ro

i < ro
j)max(w̄′

i − w̄′
j ,−λ)

)
(13)

where I(·) is the indicator function, and λ ≥ 0 is a hy-
perparameter. If the optimal point of equation 12 could be
achieved, for any rc

i < rc
j , we have r′i > r′j because s′i < s′j .

As a result, the original objectives in equation 6 would also
achieve the optimal solution as τ(rc, r′) = 1 based on
equation 4. The same applies to ordinal benchmarks with
equation 9 and 13.

The algorithms for calculating sensitivity for cardinal and
ordinal benchmarks could be seen in Algorithm 1 and 2. For
cardinal sensitivity calculation in Algorithm 1, we normalize
the sum of α as one in line 5-6 during optimization, or
otherwise the loss could be minimized by setting α = 0.
For ordinal sensitivity calculation in the algorithm 2, in order
to handle the optimization challenge brought by the discrete
nature of β, we sample it from a Bernoulli distribution
with probability qβ modeled by θ as shown in line 6. The
straight through technique (Jang et al., 2016; Bengio et al.,
2013) is used to handle the gradients on θ. Due to the
potential approximation errors and optimization challenges,
the calculated ranking distances by both algorithms are the
lower bound of the true values.

5. Experiments on Cardinal Benchmarks
Experiment setup For our experiment, we have col-
lected seven widely-used benchmarks for our experiments,
GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019),

MTEB (Muennighoff et al., 2022), BigBenchHard (Suz-
gun et al., 2022), MMLU (Hendrycks et al., 2020),
OpenLLM (Beeching et al., 2023; Gao et al., 2021) and
VTAB (Zhai et al., 2019). To provide a better understanding
of the diversity and sensitivity spectrums, we further intro-
duce three additional “baseline” benchmarks, Constant,
Random and ImageNet. The Constant benchmark fea-
tures a single task where the scores for 100 different models
are randomly determined, and the task has been duplicated
100 times. The Random benchmark assigns random scores
to all 100 models across all 100 tasks. The ImageNet
benchmark is based on the validation set of the ILSVRC-
2012 challenge (Deng et al., 2009). We divide its 1,000
classes into 20 equally-sized subsets at random, with each
subset functioning as a distinct task. We conducted evalua-
tions on 112 models that had been pretrained on ImageNet
and were sourced from the TorchVision (maintainers & con-
tributors, 2016). The average performance across these 20
tasks corresponds to the original accuracy metric, thus ensur-
ing that the final rankings are consistent with those derived
from the original accuracy measures. More details of all
benchmarks are in Table 1 and Appendix B.

Diversity and sensitivity scores are computed for each bench-
mark based on equation 3 and Algorithm 1. For both
measures, all models are used for calculation, i.e., L con-
tains all models in the leaderboard. The only exceptions
are OpenLLM and MTEB, where we focus on the top-100
models out of thousands of candidates to mitigate the in-
fluence of less reliable ones. For the sensitivity calcula-
tion in each benchmark, we set minimal preserving portion
ϵ = min{0.01, stdmin/stdmax}, where stdmin and stdmax

refer to the smallest and largest standard deviations across
all tasks in the benchmark respectively. If all tasks have the
same standard deviation, this will ensure that at least 1%
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Figure 3. The x-axis indicates the diversity of model rankings across tasks, evaluated by the Kendall’s W coefficient. The y-axis
represents the sensitivity of the final model ranking to different portions of label noise across tasks. The ranking change is measured by
both Kendall’s τ (top) and MRC (bottom). The green curve is by linear regression on all points without fitting intercept.

of the data remains unaltered by label noise in each task.
However, if there is variability in the standard deviations
across tasks, ϵ will be adjusted based on the standard devia-
tion. This adjustment prevents scenarios where a single task
with a significantly larger standard deviation disproportion-
ately influences the sensitivity calculation. λ is set as 0.0
and the number of gradient descent T is 1000. Results for
Constant, Random and ImageNet are averaged over
five random trials.

Experiment results The results are presented in Figure 3.
A strong positive correlation between diversity and sensi-
tivity can be observed, with Pearson correlation of 0.96
and 0.77 for top and bottom figures, respectively. A larger
diversity always comes at the cost of high sensitivity to
label noise injection. Constant is the most stable bench-
mark, while Random achieves the highest diversity. All
real-world multi-task benchmarks roughly strike a trade-off
comparable with the linear interpolation between Random
and Constant.

Both diversity and sensitivity vary a lot across different
benchmarks. For example, OpenLLM achieves the sec-
ond largest diversity (W = 0.82) and suffers from a high
sensitivity (τ = 0.54,MRC = 0.86). In contrast, bench-
marks like GLUE (W = 0.16, τ = 0.11,MRC = 0.72) and
SuperGLUE (W = 0.13, τ = 0.12,MRC = 0.33) demon-
strate far lower diversity and sensitivity. The underlying
reason can be two-fold. First, the tasks within GLUE and
SuperGLUE are more similar to each other by definition.
For example, GLUE primarily consists of NLI and text clas-
sification tasks. In contrast, tasks within OpenLLM are
more messy, including commonsense inference and reason-
ing, math problems, science questions, etc. Second, the
candidate models in OpenLLM are also more noisy due to

the relatively lower entry barrier. In contrast, there are a
lot of restrictions for participant models to get presented in
the leaderboard in GLUE and SuperGLUE, thus enjoying a
lower chance of having outlier candidate models.

The results of ImageNet serve as a sanity check of our
choice for the minimal preserving portion, denoted by ϵ.
ImageNet has been one of the most influential single-task
benchmarks in the field of machine learning, and its evalua-
tion results have been widely regarded as a solid measure of
progress in model development (Dwork et al., 2015; Tsipras
et al., 2020; Koch et al., 2021). Despite being split into
20 tasks, our ImageNet essentially parallels the original
single-task benchmark in terms of model rankings. The
experiment results show that ImageNet achieves the sec-
ond lowest sensitivity, only slightly higher than Constant.
It demonstrates that rankings of a high-quality benchmark
remain stable even when subjected to significant label noise.
Such robustness emphasizes the importance of resisting
noise interference and validates our choice for ϵ. Further
study on the effects of ϵ can be seen in Appendix C.

6. Experiments on Ordinal Benchmarks
Experiment setup Our selected benchmarks for experi-
ments consist of BigCode (Ben Allal et al., 2022), three
benchmarks from HELM (Liang et al., 2023), and seven
benchmarks from HEIM (Lee et al., 2023). The original
rankings for all these benchmarks are based on the winning
rate, as defined in equation 2. We excluded any benchmarks
that suffered from a lot of missing values or that showcased
an undifferentiated scoring pattern among different models
as these complicate the calculation of the winning rate. The
statistics can be seen in Table 1, and more details are in
Appendix B. Similar to cardinal benchmarks, we also add
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Figure 4. The x-axis indicates the diversity of model rankings across tasks, evaluated by the reversed Kendall’s W coefficient, where
W = 0 denotes uniformity in rankings, while W = 1 means random or highly varied rankings across tasks. The y-axis represents the
sensitivity to irrelevant candidate models addition, measured by the Kendall’s τ (top) and MRC (bottom). The green curve is by linear
regression on all points without fitting intercept.

Constant and Random benchmarks, with 100 tasks and
1000 models for each.

For both diversity, all models in each benchmark are used
for calculation, i.e., L contains all models in the leaderboard.
To calculate sensitivity, we use the original top-20% models
in the leaderboard as L, and the ranking calculated only
based on them is referred to as ro. Then we use the rest
models as LC, use Algorithm 2 to select a subset from LC

as irrelevant models to alter the rankings of ro. The only
exception is Random, where we use the top-10 models as L
and use the rest as LC, in order to simulate the scenario with
infinite potential irrelevant models. λ is set as 0.01 and the
number of gradient descent T is 100. For the calculation of
diversity, we impute the missing scores with a KNN imputer
as the rankings for each task must be of the same dimension
for calculating Kendall’s W .

Experiment results The results are shown in Figure 4,
where we plot the diversity and sensitivity towards additional
irrelevant alternative models. The green curve acquired
by fitting all points, demonstrates that there is a strong
correlation between diversity and sensitivity. The Pearson
correlation is 0.61 and 0.50 for both figures. The lower
Pearson correlation (compared to cardinal benchmarks) and
the observed deviation from the regression curve could be
attributed to the missing values in HEIM and HELM-based
benchmarks. The KNN imputation method is used to impute
values so that diversity could be calculated, but this also
might lead to inaccuracies in the diversity estimation.

Several benchmarks exhibit significant sensitivity. For in-
stance, a notable change in ranking is observed with the
HEIM-aesthetic-auto benchmark, where the MRC

reaches as high as 0.5 and τ reaches 0.4. Moreover, over
half of these benchmarks exhibit an MRC of at least 0.5,
which highlights their vulnerability to the inclusion of irrel-
evant models. The dependency of rankings on the selection
of candidate models casts doubts on the reliability of the
evaluation outcomes of these benchmarks.

One outlier in both plots is the Random benchmark, which
is relatively far away from the regression curve. This
anomaly can be attributed to the assumption that the
Random benchmark contemplates a nearly infinite array
of irrelevant models for selection. Consequently, it allows
for greater flexibility in altering the rankings of the existing
models. This also suggests that, as the number of candidate
models increases over time, the aggregated final rankings
could be more unstable.

7. Conclusion
In this work, we examine multi-task benchmarks through the
lens of social choice theory. Our exploration starts by apply-
ing Arrow’s impossibility theorem on ordinal benchmarks,
suggesting that there may be intrinsic limitations for multi-
task benchmarks. But Arrow’s theorem is neither quantita-
tive, nor does it apply to cardinal benchmarks. We therefore
develop two key measures of multi-task benchmarks—task
diversity and stability to irrelevant changes—that we argue
stand in tension with one another. Our empirical investi-
gations on seven cardinal benchmarks and eleven ordinal
benchmarks yield insights about the inherent trade-off be-
tween the two proposed measures. Furthermore, our anal-
ysis reveals significant sensitivity issues in several popular
benchmarks, calling into question the validity of evaluation
outcomes derived from these benchmarks.
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A. Proof of Arrow’s Impossibility Theorem for Benchmarks
We include a proof of Arrow’s result in our notation for the sake of completeness.

Notation. We first restate the notation, as follows:

• T = (T1, T2, . . . , Tn) represents the list of all n tasks in the benchmark, analogous to voters.

• M refers to the set of all potential candidate models that could be evaluated by the benchmark.

• Let L = (L1, L2, . . . , Lm) be any non-empty list of candidate models with m models, where Li ∈ M for any i.

• For any L, we define sij as the score for the i-th model in L in task Tj . For simplicity, we abuse the notations and use
sj = (s1j , s2j , . . . , smj) as scores in any task Tj , and S = (s1, s2, . . . , sn) as scores over all tasks.

• For any L, we define rij as the rank for the i-th model L in task Tj w.r.t. L. For simplicity, we abuse the notations and
use rj = (r1j , r2j , . . . , rmj) as ranks in any task Tj , and R = (r1, r2, . . . , rn) as ranks over all tasks.

• A cardinal benchmark is defined as a function f c = hc ◦ gc, which is composed of the scoring function gc and the
aggregation function hc. Specifically, gc takes a list of models L as input and outputs the corresponding scores for each
index over all tasks, i.e., S = gc(L). The scores S are fed into hc, which outputs the final ranking rc = (rc

1, r
c
2, . . . , r

c
m),

i.e., rc = hc(S).

• An ordinal benchmark is defined as a function f o = ho ◦ go, which is composed of the scoring function go and the
aggregation function ho. Specifically, go takes a list of models L as input and outputs the corresponding rankings
for each index over all tasks, i.e., R = go(L). The rankings R are fed into ho, which outputs the final ranking
ro = (ro

1, r
o
2, . . . , r

o
m), i.e., ro = ho(R).

• We use RANKDATA(·) as the operator of getting rank.

Arrow’s Impossibility Theorem for Benchmarks We present Arrow’s Impossibility Theorem for benchmarks as follows,

Theorem A.1 (Arrow’s Impossibility Theorem for Benchmarks). No ordinal benchmark f o can fulfill the following
conditions simultaneously:

1. Non-Dictatorship: There is no task Ti such that, for any L and any index pair (x, y) , when rxi < ryi, then ro
x < ro

y .

2. Pareto Efficiency: For any L and any index pair (x, y), if rxi < ryi for every task Ti ∈ T , then ro
x < ro

y .

3. Independence of Irrelevant Alternatives (IIA): Let L and L′ be any two lists of models. For any index pair (x, y), if
x and y have the same relative order in go(L) and go(L′) for all tasks, then x and y have the same relative order in
f o(L) and f o(L′).

4. Universality: The benchmark has at least three tasks. The benchmark has as domain all finite lists with at least three
models. The scoring function go has full range over all logically possible values for R. The aggregation function ho

has full domain over all logically possible values for R.

Supporting Lemmas To prove the Theorem A.11, we first define decisive coalitions and present two supporting lemmas:

• A subset of tasks G ⊂ T is a coalition.

• A coalition G is decisive over an index pair (x, y) if and only if, for any L, when rxi < ryi for every Ti ∈ G, then
ro
x < ro

y .

• A coalition G is decisive if and only if it is decisive over all ordered pairs.

• A coalition G is decisive over an index pair (x, y) if and only if, for any L, when rxi < ryi for every Ti ∈ G and
rxj > ryj for every Tj ∈ (T − G), then ro

x < ro
y .

Lemma A.2 (Field Expansion Lemma). For a benchmark that satisfies Pareto Efficiency, IIA and Universality, if a coalition
G is weakly decisive over index pair (x, y) for some x ̸= y, then it is decisive.

Proof. Assume G is weakly decisive over (x, y). Let z be any index distinct from x and y. Find a L such that rxi < ryi < rzi
for every task Ti ∈ G, and ryj < rxj and ryj < rzj for every task Tj ∈ (T − G). Note that there is no need to specify the

1The proof is largely the same as the original Arrow’s Theorem in https://shorturl.at/bdlI0.
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relationship between rxj and rzj for Tj ∈ (T − G). By Pareto Efficiency, we have ro(y) < ro(z). By weak decisiveness
of G over (x, y), we have ro(x) < ro(y). Thus we have ro(z) < ro(y) for L. By IIA, every L′ which shares the same
relative order for (x, z), i.e., rxi < rzi for every task Ti ∈ G, should have ro(z) < ro(y). Therefore, G is decisive over
(x, z). Similarly, we could show G is also decisive over (y, z). Therefore, we prove that G is decisive for all index pairs in
{x, y, z}. Iterating the above process, we could prove that G is decisive for all index pairs in {1, 2, . . . ,m}, and thus the
proof is complete.

Lemma A.3 (Group Contraction Lemma). For a benchmark that satisfies Pareto Efficiency, IIA and Universality, if a
coalition G is decisive, and has at least two tasks, then it has a proper subset that is also decisive.

Proof. Assume G is decisive and has at least two tasks. Partition G into G1 and G2. Fix distinct indices x, y, z. Find a L
such that

rxi < ryi < rzi if Ti ∈ G1 (14)
rzi < rxj < ryj if Tj ∈ G2 (15)
ryk < rzk < rxk if Tk ∈ (T − G) (16)

Since G is decisive, we have ro
x < ro

y. So at least one is true between ro
x < ro

z and ro
z < ro

y. If ro
x < ro

z , then G1 is weakly
decisive over (x, z). If ro

z < ro
y , then G2 is weakly decisive over (z, y). Now apply the Field Expansion Lemma. By iterating

the process, the lemma is proved.

Proof of Arrow’s Impossibility Theorem for Benchmarks

Proof. By Pareto Efficiency, the entire set of tasks T is decisive, thus by Group Contraction Lemma, there is a size-one
decisive coalition — a dictator. In other words, any benchmark that satisfies Pareto Efficiency, IIA and Universality will
violate Non-Dictatorship. Hence, the proof is complete.
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Table 1. Summary of Benchmarks

Type Benchmark No. of Tasks No. of Models

Cardinal

GLUE 9 87
SuperGLUE 8 28

BIG-Bench-Hard 27 107
MTEB 56 83

OpenLLM 6 100
MMLU 57 100
VTAB 19 16

ImageNet 20 112
Random 100 100

Constant 100 100

Ordinal

BigCode 3 41
HELM-accuracy 16 67
HELM-fairness 14 67
HELM-robustness 14 67

HEIM-alignment-auto 40 26
HEIM-quality-auto 12 26

HEIM-aesthetics-auto 60 26
HEIM-alignment-human 23 26

HEIM-nudity 20 26
HEIM-quality-human 7 26

HEIM-aesthetics-human 18 26
Random 100 1000

Constant 100 1000

B. Benchmark Details
We use the following benchmarks for our experiment. The cardinal benchmarks are as follows,

• The GLUE benchmark is designed to evaluate natural language understanding models using 9 tasks that cover funda-
mental linguistic abilities such as sentiment analysis, entailment, and similarity prediction. There are 87 candidate
models. The leaderboard can be found in https://gluebenchmark.com/leaderboard.

• SuperGLUE, as an extension of GLUE, consists of more demanding tasks aimed at assessing deeper linguistic
comprehension and commonsense reasoning, spanning 8 tasks. There are 28 candidate models. The leaderboard can be
found in https://super.gluebenchmark.com/leaderboard.

• BIG-Bench-Hard, a subset of the larger BIG-Bench, zeroes in on 27 specifically challenging tasks to test models
on complex reasoning and understanding nuanced language. There are 107 candidate models. The leaderboard is found
in https://opencompass.org.cn/dataset-detail/BBH.

• MTEB is designed to extensively evaluate text embeddings, including 56 datasets across 7 different tasks and covering
112 languages to seek a universal text embedding method. There are 83 candidate models. The leaderboard is
found in https://huggingface.co/spaces/mteb/leaderboard. As the original leaderboard reports the
weighted average based on the number of datasets within each task, we simply repeat each task correspondingly in our
experiment and use direct averaging.

• OpenLLM leaderboard evaluates open language models with 6 key benchmarks applied in the EleutherAI Language
Model Evaluation Harness, involving various tasks related to reasoning, general knowledge, and truthfulness in both
zero-shot and few-shot frameworks. Only the top 100 candidate models are used for our experiment. The leaderboard
can be found in https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.

• The MMLU benchmark offers a large-scale, multidisciplinary evaluation with a focus on academic knowledge, including
57 different subjects. Only the top 100 candidate models are used for our experiment. The leaderboard can be found in
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.

• VTAB, short for Visual Task Adaptation Benchmark, is a suite designed to evaluate the versatility and general-
izability of visual representations by measuring performance across 19 diverse classification tasks without us-
ing evaluation datasets during pre-training. There are 16 candidate models. The leaderboard can be found in
https://google-research.github.io/task_adaptation/benchmark.

The ordinal benchmarks are as follows,
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• BigCode is designed to test the abilities of code generation models by posing complex coding challenges in 3
programming languages. There are 41 models in the benchmark. The leaderboard can be found in https://
huggingface.co/spaces/bigcode/bigcode-models-leaderboard.

• HELM evaluates language models across 8 scenarios, where each scenario corresponds to a benchmark with multiple
tasks. We excluded any benchmarks that suffered from a lot of missing values or that showcased an undifferentiated
scoring pattern among different models, as these would result in tied results frequently, which subsequently complicates
the calculation of winning rates. Three benchmarks have remained: HELM-accuracy (16 tasks), HELM-fairness
(14 tasks), and HELM-robustness (14 tasks). There are 67 candidate models in each benchmark. The leaderboard
can be found in https://crfm.stanford.edu/helm/lite/latest/#/leaderboard.

• HEIM is tailored to scrutinize the performance of text-to-image models across ten dimensions such as creativity,
equity, and language coverage, each of which forms a benchmark with multiple tasks. We excluded any benchmarks
that suffered from a lot of missing values or that showcased an undifferentiated scoring pattern among different
models, as these would result in tied results frequently, which subsequently complicates the calculation of win-
ning rates. Seven benchmarks have remained: HEIM-alignment-auto (40 tasks), HEIM-quality-auto (12
tasks), HEIM-aesthetics-auto (60 tasks), HEIM-alignment-human (23 tasks), HEIM-nudity (20 tasks),
HEIM-quality-human (7 tasks), HEIM-aesthetics-human (18 tasks). There are 26 candidate models in
each benchmark. The leaderboard can be found in https://crfm.stanford.edu/heim/latest/?group=
core_scenarios.

Each of these benchmarks collectively aims to provide a comprehensive platform to test the limits and versatility of machine
learning models from multiple aspects. The statistics could be seen in Table 1.
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Figure 5. Sensitivity of cardinal benchmarks as a function of the minimal preserving ratio ϵ. x-axis refers to the minimal preserving
portion of unchanged examples, ϵ, as stated in equation 6. The y-axis refers to sensitivity measured by τ (top) and MRC (bottom).

C. Effect Study on Minimal Preserving Portion ϵ

To delve deeper into benchmark sensitivity concerning the minimal preserving portion ϵ, Figure 5 plots the sensitivity across
varying ϵ values. When preserving 10% of the data (ϵ = 0.1), the MRC for all non-baseline benchmarks ranges from 0.18 to
0.71, indicating a non-trivial ranking change. Notably, OpenLLM maintains a τ of 0.13 and MRC of 0.45 even at ϵ = 0.5,
underscoring its pronounced volatility.
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Figure 6. Smallest rank change by re-calculating the average score based on a subset of tasks. x-axis refers to how many tasks are selected
in the subset. By randomly sampling 1000 random subsets of the specific size, we report the smallest ranking distance from the original
ranking in y-axis, in cardinal benchmarks (top) and ordinal benchmarks (bottom), measured by Kendall’s τ (left) and MRC (right).

D. Additional Experimental Results on Diversity
We further conduct an experiment, seeking to determine the minimum number of tasks necessary to obtain an approximation
of the overall final ranking. We examined subsets of tasks ranging from sizes one to six, randomly sampling these subsets
for 1000 times and identifying which offered a ranking closest to the overall ranking. We exclude BigCode for this
experiment as it only contains three tasks. The outcomes are illustrated in Figure 6. Intriguingly, our findings align with the
diversity present within the benchmarks. For instance, OpenLLM and HEIM-quality-auto, which display the greatest
diversity (except for Random) in Figure 3 and 4, also requires the largest number of tasks to arrive at a ranking proximate
to the overall ranking. Conversely, benchmarks exhibiting less diversity, such as VTAB and HEIM-quality-human,
require fewer tasks to replicate the overall ranking. This suggests that benchmarks with lower diversity might contain more
redundant tasks that do not significantly contribute to the overall ranking.

While this experiment offers valuable insights into the connection between diversity and the minimum number of tasks
needed to approximate the overall ranking, it is important to acknowledge its limitations. The results can be influenced by
the number of tasks in the benchmarks, potentially skewing the findings. For example, for a benchmark with three tasks,
the maximum number of tasks to approximate the overall ranking is always three, no matter how large diversity of the
benchmark is. To mitigate this issue, one potential approach could be to consider the ratio of tasks rather than absolute
numbers. However, this will introduce another challenge where tasks could be duplicated within a benchmark to artificially
reduce the minimal subset ratio required to replicate the full ranking. Despite these limitations, the experiment provides
an intuitive understanding of how diversity correlates with the minimum subset size necessary for ranking recovery. We
recognize the need for further exploration in future research endeavors.
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