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I. INTRODUCTION

Accurate perception of object physical properties is fun-
damental for robots to perform reliable manipulation in
unstructured environments. However, current robotic tactile
capabilities are still far from matching human touch from
different aspects including sensing physical properties [1],
response speed and more. Compared to other modalities
such as vision, leveraging tactile sensing to improve robotic
dexterity are still under exploration. Whereas vision captures
geometric structure, it lacks access to underlying mechani-
cal attributes (hardness, elasticity, roughness); by contrast,
tactile perception offers this information but necessitates
physical interaction, a drawback for delicate or uncertain
cases. Recent advances in multimodal learning have shown
significant potential for integrating tactile perception with
language models to enhance physical reasoning capabilities
[2], yet progress is limited by (i) Sensory constraints in
tactile systems: limited sensory resolution hinders com-
prehensive characterization of complex materials, and (ii)
Underutilized language model potential: underexploited
language-model reasoning due to suboptimal prompting and
fusion. To address these challenges, we propose an enhanced
multimodal framework that enable physical property infer-
ence for robotic grasping tasks. Our contributions include: (i)
Proactive Perception Architecture: By fusing visual cues
with historical tactile information, our model is capable of
predicting important physical attributes. (ii) Structured Rea-
soning Prompts: A staged reasoning protocol that guides
multimodal language models through object recognition and
property quantification to enhance inference accuracy. (iii)
Instrumented Ground Truth: Rather than previous work
relying on subjective ratings, we use calibrated instruments
measuring hardness, elasticity, and roughness for supervision
and evaluation. (iv) Zero-Shot Generalization: Evaluated
on 35 diverse objects, our approach outperforms existing
baselines and demonstrates strong zero-shot generalization.

II. METHODOLOGY

In our method, we introduce a multimodal model integrat-
ing textual, visual, and tactile data for comprehensive object
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Fig. 1. The architecture of a multimodal large model. After embedding
and tokenizing the object image and tactile image alongside the text, the
resulting vectors are concatenated and input into the large language model.

analysis. As depicted in Fig. 1, the input query is parsed
into dedicated modality-specific pathways. Text is tokenized
and embedded via a language tokenizer, while visual and
tactile images are encoded using ViT-L/14 [3] and pro-
jected into a shared embedding space using modality-specific
MLP layers. Special markers (<img start>, <img end>,
<tact start>, <tact end>) clearly delineate embed-
ding boundaries. These embeddings are concatenated with
textual features and fed into Vicuna-7B [4] , allowing joint
multimodal attention to generate detailed object property
descriptions, such as hardness, elasticity, and roughness.
Implementation details are provided in the long version
(CLAWAR).

a) Multimodal Fusion through Feature Concatenation:
After we obtain the projected object image feature vector
(Fo), the projected tactile image feature vector (Ft), and the
linguistic feature vector (Fl) from the LLM’s embedding
space, we concatenate them channel-wise into a unified
representation:

Fconcat = [Fo ; Ft ; Fl ].

This fused vector Fconcat retains distinguishing features from
each modality while enabling cross-modal interaction. It then
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serves as the input to downstream modules for tasks such as
multimodal reasoning, classification, or object recognition,
thereby capturing both the physical and semantic attributes
of the target object.

b) Refined Prompting Strategy for Physical Property
Scoring: We designed a structured prompt to enable compre-
hensive physical property analysis using multimodal (visual
and tactile) data. The prompt clearly defines the analysis
goal, emphasizing material-aware reasoning and avoiding
generic responses. It guides the model through two phases:
visual-based object identification (color, shape, texture) and
combined material-tactile property evaluation. A 10-point
Likert scale quantifies three essential properties, enhancing
nuanced differentiation. Outputs include justified object iden-
tification and property scores with material rationales. Con-
straints ensure balanced score usage and material-focused
reasoning.

III. RESULTS

To evaluate our cross-modal perception framework, we
conducted comprehensive experiments using a robotic sys-
tem equipped with a GelSight Mini tactile sensor for high-
resolution contact data acquisition and a RealSense D410
camera for visual perception. We selected 35 common
household objects spanning diverse materials (plastic, metal,
wood, rubber, etc.) and geometric properties. Each object
was annotated with ground truth physical properties mea-
sured by professional instruments: hardness (Shore scale)
with PosiTector SHD, elastic modulus with C610H Auto
Tensile Tester, and surface roughness (Ra) with RUGOSURF
20 roughness tester. In additional, we employed designed
prompts to assess the physical properties of 35 objects
through both our method and the Octopi framework. As
can be seen from the Table I, the correlation coefficients
between the models and ground truth measurements reveal
significant differences in the performance of our model
compared to Octopi across the three physical attributes:
hardness, elasticity, and roughness (Octopi is the tactile-only
model; Octopi-ViTaL is our model).

TABLE I
ZERO-SHOT EVALUATION: COMPARISON OF SPEARMAN’S RANK

CORRELATION BETWEEN MODELS AND GROUND TRUTH

Attribute Method Correlation
Coefficient P-value

Hardness

Octopi-ViTaL 0.501 0.005
Octopi-ViTaL (vision only) 0.307 0.099

Octopi (fine-grained) 0.307 0.099
Octopi (original) 0.015 0.935

Elasticity

Octopi-ViTaL 0.530 0.003
Octopi-ViTaL (vision only) 0.452 0.012

Octopi (fine-grained) 0.053 0.781
Octopi (original) -0.060 0.753

Roughness

Octopi-ViTaL 0.643 0.0001
Octopi-ViTaL (vision only) 0.413 0.023

Octopi (fine-grained) -0.010 0.959
Octopi (original) 0.118 0.534

Hardness. Our model shows a moderate, significant cor-
relation with ground truth (ρ = 0.501, p = 0.005), out-

performing vision-only (ρ = 0.307, p = 0.099) and both
Octopi variants (fine-grained ≈ vision-only; original near
zero, ρ = 0.015, p = 0.935).
Elasticity. Reporting |ρ| due to the inverse relation to modu-
lus, our approach attains |ρ| = 0.530 (p = 0.003) vs. vision-
only 0.452 (p = 0.012); tactile-only baselines contribute
negligible signal (fine-grained 0.053, p = 0.781; original
0.060, p = 0.753).
Roughness. Performance separates most clearly: our model
reaches ρ = 0.643 (p = 0.0001) vs. vision-only 0.413 (p =
0.023), while Octopi variants are non-predictive (fine-grained
ρ = −0.010, p = 0.959; original ρ = 0.118, p = 0.534).

When applied in a zero-shot fashion to our new setup,
the pretrained Octopi model failed to produce meaningful
predictions (e.g., Spearman’s ρ < 0.1; see Table I). This
failure arises from multiple domain shifts: we use a GelSight
Mini with different resolution and calibration compared to
Octopi’s original high-resolution GelSight; lighting and cam-
era angles differ. These combined shifts in sensor modality,
resolution, and lighting prevent Octopi from succeeding zero-
shot on our data.

Overall, these results highlight the clear advantage of
our multimodal approach. By fusing vision and touch,
our model consistently achieves statistically significant and
higher correlations with ground truth across all three physical
attributes. In contrast, both the vision-only and tactile-only
methods—particularly the Octopi framework in its original
and adapted forms—fall short, reinforcing the value of cross-
modal integration in physical property understanding.

IV. CONCLUSION

We proposed a novel approach to enhance tactile percep-
tion through visual compensation and optimized prompt en-
gineering, leveraging VLM for cross-modal robotic percep-
tion. By effectively integrating visual priors and structuring
language model interactions, our method overcomes tactile-
only limitations and significantly improves physical property
inference, especially in roughness estimation. The success
of our framework underscores the value of multimodal
reasoning with VLMs for robotic applications. Future work
will explore applying this multimodal tactile-visual approach
to robotic grasping tasks involving adaptive manipulation of
objects with different material properties.
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