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Figure 1. BodyContact4D Overview. (a) We capture synchronized multi-view videos in diverse in-the-wild environments. (b, c) We track
human motion using dense surface keypoints and measure environmental contact through a customized force-sensing system. (d) As a result,
accurate 3D human meshes with contact labels, highlighted in red, are obtained.

Abstract

To improve vision-based methods for understanding how
people interact with their physical environment, we intro-
duce a multi-view video and body-contact sensing dataset de-
signed to capture dynamic human activities that involve inter-
actions with the physical environment. The dataset includes
activities such as parkour, physical training, and gym exer-
cises, characterized by frequent body-environment contact.
The proposed dataset includes 780K images across 120K
pose sequences from 7 subjects. Each subject is captured
by 6 synchronized third-person cameras, a single egocen-
tric camera, and multiple contact sensors worn on the body.
Using our proposed dataset, we benchmark state-of-the-art
vision-based body contact models and show significant lim-
itations in existing methods. Furthermore, we benchmark
existing human pose estimation methods on our dataset and

show that they fail under significant occlusion caused by
close interactions with the environment, which indicates that
our dataset can also be used to further develop pose esti-
mation models to be more robust during interaction with
the environment. To facilitate better human pose estimation
from video, we introduce and evaluate a video-based human
contact detection model that outperforms existing image-
based methods, underscoring the potential improvements
from integrating contact information into pose estimation
models. See the project page at: https://yohanshin.
github.io/bodycontact4d.github.io/

1. Introduction

Consider observing a person climbing a set of stairs. In order
to fully understand the person’s pose/motion (kinematics)
and torques/forces (dynamics) being applied to the body,

https://yohanshin.github.io/bodycontact4d.github.io/
https://yohanshin.github.io/bodycontact4d.github.io/


Dataset Type # Scene # Subject # Images # Cameras 3D Mesh Contact Source

PROX [11] Video 12 20 100K 1 Yes Distance
RICH [12] Video 5 22 577K 6-8 Yes Distance
DAMON [33] Image – – 5K – No Human Annotation
3DIR [41] Image – – 5K – No Human Annotation
BodyContact4D (Ours) Video 24 7 780K 6-7 Yes Force Sensor

Table 1. Comparison of BodyContact4D with existing human-scene interaction datasets. Our dataset provides the largest number of
image frames and scenes among video-based datasets, and uniquely offers accurate, scalable contact annotations through a customized
force-sensing system rather than relying on distance-based heuristics or human annotations.

we must understand how the body interacts with the phys-
ical environment. When we consider the development of
computer vision algorithms that can truly understand human
motion, it is essential that those methods have the ability to
detect physical contact between a person’s body and their
environment.

To enable better reasoning about human-environment in-
teraction, recent methods for human pose estimation have
incorporated human contact reasoning by providing datasets
with contact annotations (e.g., foot is in contact with the
ground). Some datasets use human annotators to provide
contact labels by analyzing static images [33, 41]. This pro-
cess can be error-prone as physical contact is not always easy
to observe visually. For example, hands can be very close
to an object without making any contact immediately prior
to grasping the object. Additionally, occlusion can make
it difficult to visually detect when contact actually occurs.
Other methods attempt to automate contact annotations by
pre-scanning static scenes and computing distances between
a reconstructed 3D human mesh and scene geometry [11, 12].
Pre-scanning an environment can be restrictive as it may be
difficult to capture a diverse set of natural environments,
and it can be especially challenging if the environment has
articulated objects that move (e.g., gym equipment).

To overcome these limitations, we introduce BodyCon-
tact4D, a multi-modal dataset designed to capture dynamic
human-environment interactions. BodyContact4D combines
multi-view video recordings with full-body contact sensing
to provide accurate annotations of human-scene interactions.
The overview of our data collection setup and the processing
framework are shown in Figure 1. The dataset features hu-
mans naturally interacting with surrounding structures across
diverse and realistic environments. Inspired by previous
datasets [16, 17, 19], we capture synchronized multi-view
video data using multiple third-person cameras combined
with an egocentric view obtained using Aria glasses [2].
To enable data collection in diverse real-world locations,
we use a compact setup consisting of six third-person cam-
eras, maintaining comprehensive multi-perspective coverage
while enhancing portability and versatility. In addition to

the full-body contact annotations obtained through force sen-
sors, BodyContact4D provides 3D mesh reconstructions of
subjects performing dynamic interactive motions in challeng-
ing settings. Overall, BodyContact4D includes over 780K
synchronized multi-view images of 7 subjects performing
diverse movements across 24 different real-world locations.
As summarized in Table 1, BodyContact4D significantly
expands dataset scale and uniquely supports dynamic scenes
through customized contact sensing.

To ensure accurate 3D human body mesh recovery un-
der challenging scenarios involving severe occlusions from
human-environment contacts, we implement a multi-stage
optimization pipeline utilizing a dense human landmark de-
tection network trained on synthetic data [3, 25]. To obtain
ground-truth human-scene contacts, we design a customized
full-body contact sensing system. This system employs mul-
tiple force sensing resistors (FSR) [42] integrated into an
inner suit, allowing subjects to wear their regular daily out-
fits over it, thus minimizing visual intrusiveness. Given the
numerous potential contact points on the human body, our
system is specifically engineered for easy attachment and
detachment of sensors. For each data collection session, we
pre-assess which body regions are most likely to contact the
environment and accordingly adjust the sensor configura-
tion. We measure full-body contact and label the contacts
according to 24 distinct body segments, ensuring detailed
and structured annotations of human-scene interactions.

We benchmark existing 3D human pose and shape estima-
tion models on the BodyContact4D test set. Due to the pres-
ence of challenging poses resulting from dynamic interac-
tions with the environment and frequent occlusions, existing
models exhibit limited accuracy compared to widely-used
3D human benchmark datasets [13, 15, 36]. Additionally, to
test the utility of our dataset, we train a video-based human
contact detection network built upon DECO [33], the state-
of-the-art per-frame contact detection model. Experimental
results demonstrate that our proposed approach achieves
superior accuracy in human-scene contact detection.

Our contributions are summarized as follows. (1) We
introduce BodyContact4D, a multi-modal dataset capturing



dynamic human-environment interactions. Our integration
of a novel full-body contact sensing system with robust
multi-view body fitting provides comprehensive 3D motion
data and detailed contact annotations in diverse real-world
environments. (2) We collected human motion data involv-
ing rich interactions with structural environments, which
naturally produce challenging poses and severe occlusions
rarely represented in existing datasets. Our evaluation of
existing 3D human pose estimation models on our data pro-
vides clear evidence of these challenges and highlights the
dataset’s value as a benchmark. (3) We provide a baseline
for video-based human contact detection by fine-tuning an
existing image-based model on our dataset, demonstrating
that it outperforms the existing image-based approaches.

2. Related Work
2.1. 3D Human Pose Datasets

Early research in human pose estimation primarily utilized
large-scale 2D datasets such as MPII [1] and COCO [20],
advancing our understanding of human pose representa-
tions. The initial 3D datasets relied on marker-based
motion capture systems to obtain accurate ground-truth
poses [13, 32, 34], but these methods were limited by vi-
sually intrusive markers and constrained laboratory settings.
Later methods employed multi-view camera setups to tri-
angulate 3D joint positions from 2D keypoints detected by
neural networks pretrained on 2D datasets [4], thereby avoid-
ing visual intrusion but still remaining restricted to controlled
studio environments [14, 23]. Recent approaches have tar-
geted capturing poses in more natural settings by minimal
sensors such as handheld cameras combined with wearable
sensors [15, 36]. However, accurately obtaining 3D poses
from sparse setups remains challenging, these datasets cap-
tured human motion without severe occlusions. To address
these limitations, BodyContact4D employs a portable multi-
view camera system, enabling diverse indoor and outdoor
data collection. We specifically capture sequences involv-
ing significant human-environment interactions, providing
accurate 3D human motions paired with videos featuring
substantial occlusions and challenging poses.

2.2. Human Interaction Datasets

While the aforementioned datasets primarily focus on cap-
turing human poses, recent efforts have increasingly aimed
to capture explicit interaction signals. For example, a body
of work [8, 14, 17, 24, 38, 43] has focused on capturing hu-
man–human social interactions, emphasizing scenarios with
close proximity, dynamic motions, and complex inter-person
occlusions. Beyond human–human interactions, another
significant research direction explores interactions between
humans and surrounding objects. One active subset within
this area emphasizes fine-grained hand-object interactions

and dexterous manipulations [5, 7, 10]. In parallel, another
line of research broadly focuses on interactions between hu-
mans and structural environments, capturing explicit contact
signals beyond fine-grained hand-object manipulations. Re-
cent datasets such as DAMON [33] and 3DIR [41] provide
detailed annotations of human contact points, including in-
teractions with handheld objects as well as structural scenes,
relying primarily on human annotations and thus resulting
in limited dataset sizes. Other datasets like PROX [11]
and RICH [12] instead automate contact annotation by pre-
scanning static scenes and computing human-scene inter-
actions using distance-based heuristics between the human
mesh and the scanned environment geometry. However, such
an approach inherently limits the diversity of captured scenes
due to the extensive time required for scene scanning. It also
restricts applicability to static environments, potentially di-
minishing the realism of captured interactions. MMVP [44]
partly addresses this by incorporating pressure insoles with
videos, but the dataset is limited to annotation of only foot
contact. In contrast, we measure full-body human-scene con-
tact using the customized wearable force sensors rather than
relying on heuristic distance computations. This allows us
to capture true physical interactions—contact events charac-
terized by actual pressure exerted between humans and their
environments, in diverse and dynamic real-world scenarios.

3. Method

3.1. BodyContact4D Dataset

Data Collection. Our objective is to capture dynamic hu-
man–scene interactions naturally occurring in diverse real-
world environments. Following recent multimodal human
motion datasets such as Harmony4D [17], EgoHumans [16],
and EgoExo [19], we employ synchronized multi-view Go-
Pro cameras with 4K resolution (3840 × 2160) and 30
frames per second (fps) to comprehensively record these
activities from multiple third-person perspectives. How-
ever, instead of using a large-scale setup (e.g., 20 cameras
in Harmony4D), we simplify our system to include only 6
cameras. This streamlined arrangement enhances portability,
enabling efficient data collection across varied in-the-wild
locations. Additionally, similar to EgoHumans and EgoExo,
we incorporate egocentric views captured with Meta’s Aria
glasses [2], offering complementary first-person perspec-
tives. Figure 2 illustrates the dynamic human–environment
interactions in the diverse in-the-wild environments. In total,
our dataset currently consists of approximately 800K syn-
chronized images from 7 subjects, captured across 24 unique
and diverse real-world scenes involving a broad range of
interactive human motions.
Multi-view Camera Calibration. For each data collection
session, we first pre-scan the environment using one external
camera and Meta’s Aria glasses [2]. Using these recorded



Figure 2. BodyContact4D Dataset Samples. The dataset includes
a wide range of indoor and outdoor scenes, diverse dynamic inter-
actions, and their corresponding reconstructed 3D human meshes
with contact labels.

video streams, we employ COLMAP [29], a widely-used
Structure-from-Motion (SfM) framework, to estimate intrin-
sic parameters, extrinsic parameters, and lens distortion co-
efficients for all cameras. However, since COLMAP’s recon-
struction is scale-ambiguous, we leverage the metric-scale
trajectory provided by the Aria glasses’ onboard tracking
system. Specifically, we perform Procrustes analysis [22]
between the scale-ambiguous Aria camera trajectory from
COLMAP and the metric-aware trajectory from the Aria
tracking system, thereby transforming our calibrated camera
system into a consistent metric-scale and gravity-aligned
coordinate system.

3.1.1 3D Human Motion Reconstruction

In our dataset, accurately reconstructing 3D human motion
is challenging due to the relatively sparse camera setup and
significant occlusions arising from human-environment in-
teractions. To begin addressing these challenges, we first
track human bounding boxes across video sequences, even

under partial or complete occlusions, using the recently pro-
posed SAMURAI [40]. Subsequently, we integrate dense
human keypoint detection with an optimization-based fitting
algorithm, enabling the recovery of accurate 3D human body
meshes with minimal manual intervention.
Dense Keypoints Detection. Accurately reconstructing de-
tailed 3D human pose and shape benefits significantly from
densely distributed surface keypoints, rather than sparse key-
points defined at joint centers. Following prior work [25],
which introduced dense keypoint detection models trained
on synthetic data [3], we adopt a similar approach with sev-
eral notable differences. Specifically, we employ an even
denser keypoint configuration to enhance fine-grained pose
estimation. Additionally, unlike the Transformer decoder
and uncertainty-based regression used in CameraHMR, we
utilize a conventional heatmap-based keypoint detection
method. Empirically, we observe that the heatmap-based
method yields more accurate pose estimation on our col-
lected data. While dense surface keypoints provide detailed
visual cues for pose estimation, the model relies exclusively
on synthetic training data due to the lack of densely anno-
tated real-world datasets, occasionally limiting its perfor-
mance in challenging scenarios involving occlusions or com-
plex interactions. To address this limitation, we additionally
incorporate ViTPose [39], which is trained extensively on
large-scale real-world datasets, to estimate 17 conventional
sparse keypoints. As a result, at each camera c ∈ (1, ..., C)
and time frame t ∈ (1, ..., T ), we obtain the set of 2D body
keypoints and confidence x2D

c,t ∈ RK×3 where K is the
number of keypoints (K = 454).
3D mesh optimization. Given the detected 2D keypoints
x2D = {x2D

c,t } and triangulated 3D keypoints x3D = {x3D
t },

we employ a parametric body model to reconstruct 3D
human body meshes. The goal of this stage is to find
the optimal set of parameters Θt at each time t, where
Θt = {θt, τt, β}. The pose parameter θt ∈ R21×3 rep-
resents the 3D joint rotations of 21 body joints, and τt ∈ R6

denotes the global orientation and translation of the body
with respect to the global coordinate system. The shape
parameter β ∈ R11 captures the 11 principal directions of
human shape variability derived from PCA. Although we
do not fit hand poses or facial expressions, we utilize the
SMPL-X model [27] to leverage the learned body pose prior,
VPoser, defined within the SMPL-X body pose parameter
space. Using VPoser, the pose parameter can be expressed
as θt = V (zt), where V is the decoder and zt ∈ R32 is the
latent vector of human body poses.

Our optimization framework consists of multiple sequen-
tial stages. First, we initialize the global translation and
orientation parameter τt by computing the transformation
between unposed template keypoints and the triangulated
3D target keypoints, specifically using shoulder and hip key-
points. Next, we jointly optimize pose, shape, and global
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Figure 3. Contact Sensing System and Data Distribution. (a) Visualization of the contact sensing setup, illustrating subjects wearing the
sensor-integrated inner suit and regular outfits, highlighting its minimal visual intrusiveness. (b) Distribution of contact annotations, showing
the number of frames in which contact occurs for each body segment.

parameters using a short initial segment from each sequence,
where subjects maintain relatively simple poses (e.g., T or A
poses). After obtaining robust shape estimates from this ini-
tial stage, we fix the β parameters and continue optimizing
only zt and τt. Our objective function is defined as

L = λ3DL3D+λ2DL2D+λzLz+λβLβ+λsmoothLsmooth,

where λ denotes the weights on each loss term. Here,
L2D and L3D are 2D keypoints reprojection and 3D key-
points losses, respectively, Lz and Lβ denote the L2 regu-
larization of the latent pose vector and shape parameter, and
Lsmooth represents the temporal smoothness term. For a
more detailed description of each loss term, please refer to
the supplementary materials.

3.1.2 Full-body Contact Sensing

To accurately measure full-body contact between humans
and their surrounding environments, we developed a wear-
able sensing system based on FSRs. An FSR is a thin and
flexible sensor that measures pressure based on a decrease in
electrical resistance as force is applied perpendicularly to its
surface [42]. Our system is specifically designed to be visu-
ally non-intrusive, by placing the sensors to an inner suit over
which subjects wear their regular clothing, thus avoiding the
introduction of distinct sensor-related visual cues into the
dataset (see Figure 3 for illustration). Given the numerous
potential contact points on the human body, we rehearsed
each sequence to identify and mark the points anticipated to
experience contact. The sensors were then precisely posi-
tioned at these locations. To facilitate convenient and quick
repositioning, velcro strips were used to attach the sensors.

Continuous pressure measurements were recorded at each
sensor and converted into binary contact masks by applying
a heuristic threshold. This approach reduces false-positive
detections arising from pressure exerted by the subject’s
clothing. For hand locations, we used elastic bandages to
securely position and insulate the sensors, ensuring accurate
and stable contact measurements. At the beginning and end
of each sequence, the subjects performed hand clapping to
temporally synchronize the FSR and camera data. While our
sensing system is capable of measuring force over 80 fps,
we downsampled the data to 30 fps to align it with the video
frames.

3.2. Video-based Contact Estimation

To demonstrate the utility of our dataset, we introduce
and train the first video-based human contact detection
model named DECO-VID, which builds upon DECO [33],
the current state-of-the-art image-based contact estimation
method. Figure 4 illustrates the architecture of our pro-
posed video-based human contact detection model. Given
a sequence of images within a temporal window of size W ,
I = {I1, ..., IW }, we first extract context tokens fDECO

t

from each frame using DECO:

fDECO
t = E(It), t = 1, ...,W

where E is the pretrained DECO feature extractor. We
then expand these tokens to a combined representation
ft = {fDECO

t ; θ̂t} by incorporating 3D human pose estima-
tion, where θ̂t denotes the SMPL pose parameters predicted
by CameraHMR [25]. The combined features are tempo-
rally encoded using Transformer encoders [35] to effectively
model temporal dependencies across frames. Subsequently,



Figure 4. Network Architecture of DECO-VID. Context tokens extracted by DECO and 3D pose predictions from CameraHMR are
temporally encoded by Transformer encoders and subsequently decoded by Transformer decoders using segment-specific queries to estimate
human–scene contact probabilities.

temporally encoded features F̃ are processed by Transformer
decoders, where each targeted body segment acts as a learn-
able query. This decoding step produces segment-specific
contact probabilities for the middle frame in the sequence:

P = TransformerDecoder(Q, F̃)

P = {p1, ..., pS}, Q = {q1, ..., qS}

where S is the number of the candidate body segments.
Throughout training, we freeze the weights of both the
DECO feature extractor and CameraHMR to prevent overfit-
ting to visual patterns specific to our dataset. This ensures
the generalizability of learned representations. We train the
model on BodyContact4D train set and evaluate on test set.

4. Experiments
4.1. 3D Human Mesh Recovery Benchmark

We evaluate several state-of-the-art 3D human pose
and shape estimation models on the BodyContact4D
test set. Specifically, we include per-frame methods
such as BEDLAM-CLIFF [3], HMR2.0 [9], TokenHMR [6],
NLF [28], and CameraHMR [25], as well as video-based
approaches including WHAM [31] and TRAM [37]. During
evaluation, we provide ground-truth bounding boxes for all
methods. For models conditioned on camera intrinsics, we
additionally test them by providing the ground-truth intrin-
sic parameters to evaluate performance when exact camera
calibration is available.
Evaluation metrics. We follow conventional evaluation
protocols from existing benchmarks [3, 12, 13, 15, 26,
36]. Specifically, we report mean-per-joint-position-error

(MPJPE) and per-vertex error (PVE), measuring Euclidean
distances between predicted and ground-truth 3D joints and
mesh vertices, respectively. We also provide these metrics
after rigid alignment (PA-MPJPE, PA-PVE) via Procrustes
Analysis (PA). Additionally, temporal coherence is evaluated
using Acceleration Error (Accel), computed as the difference
in joint accelerations from ground truth, and Jitter, computed
as the norm of the third-order temporal derivatives of pre-
dicted joint positions. Since lower jitter indicates smoother
motion but does not necessarily imply higher accuray, we
also report the ground truth jitter α as Jitterα. Predictions
closer to the ground truth indicate better motion estimation
quality. Lastly, we report 3D Percentage of Correct Key-
points (3DPCK) and Area Under Curve (AUC) [17, 26]. We
use 24 body joints and 6,890 vertices configurations from
SMPL [21] for body-joints and vertex metrics, respectively.

Evaluation results. Table 2 summarizes our extensive eval-
uation of state-of-the-art models on the BodyContact4D test
set. Notably, existing models significantly underperform
on our dataset compared to their previously reported re-
sults on widely-used benchmarks. This demonstrates the
expensive nature of our dataset, which includes dynamic
human–scene interactions that inherently induce frequent
occlusions—conditions less prominently represented in ex-
isting datasets. For instance, CameraHMR [25] achieved an
average MPJPE of 62.7 mm and a PVE of 73.5 mm across
3DPW [36], EMDB [15], and SPEC-SYN [18]. In contrast,
on our dataset, CameraHMR obtained MPJPE and PVE val-
ues of 79.5 mm and 91.0 mm, respectively, representing
increases of 26% and 24%. Similar trends were consistently
observed across all evaluated methods. NLF [28] consis-
tently shows the best geometric accuracy (MPJPE, PVE,



Models MPJPE ↓ PA-MPJPE ↓ PVE ↓ PA-PVE ↓ Accel ↓ Jitter0.9 → 3DPCK ↑ AUC ↑

BEDLAM-CLIFF [3] 133.8 76.8 150.9 86.2 50.6 27.0 65.2 41.6
BEDLAM-CLIFF† [3] 125.7 77.1 139.2 86.8 50.7 27.3 69.2 45.1
HMR2.0 [9] 129.3 59.3 148.9 67.3 22.0 11.6 66.5 42.7
TokenHMR [6] 129.5 57.7 149.2 65.5 17.1 8.9 66.0 42.8
WHAM‡ [31] 122.6 68.7 138.7 77.4 5.4 2.0 70.6 46.4
TRAM‡ [37] 104.5 55.8 116.0 64.8 5.7 3.5 75.8 53.2
NLF [28] 94.8 53.8 106.8 59.7 27.9 14.9 82.1 55.7
NLF† [28] 82.6 55.4 92.0 61.5 28.4 15.1 87.0 61.5
CameraHMR [25] 88.6 56.4 99.8 62.5 20.3 10.6 85.3 58.5
CameraHMR† [25] 86.8 56.5 97.0 62.7 19.8 10.3 86.0 59.2

Table 2. Evaluations of state-of-the-art methods on the BodyContact4D test set for 3D human pose and shape estimation. Best results
are in bold. † denotes when the ground truth camera intrinsic was used during the evaluation and ‡ indicates the temporal models.

Full body Hand Foot

Models Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

WHAM [31] – – – – – – 0.54 0.72 0.67
GVHMR [30] – – – 0.38 0.80 0.52 0.52 0.94 0.67
BSTRO [12] 0.51 0.64 0.57 0.52 0.48 0.50 0.54 0.86 0.66
DECO [33] 0.48 0.70 0.57 0.44 0.28 0.34 0.50 0.99 0.66
DECO-VID 0.64 0.74 0.69 0.64 0.83 0.73 0.66 0.80 0.72

Table 3. Evaluations of state-of-the-art methods on the BodyContact4D test set for human contact estimation. Best results are in bold.

3DPCK). In general image-based models [25, 28] provide
higher geometric accuracy, while temporal models [31, 37]
tend to yield smoother reconstructions as reflected by lower
Accel and Jitter metrics.

4.2. Human–Scene Contact Estimation Benchmark

We benchmark state-of-the-art methods on the human-scene
contact estimation task using our BodyContact4D test set, as
summarized in Table 3. Specifically, we evaluate two recent
image-based human contact detection models, DECO [33]
and BSTRO [12], alongside two video-based methods,
WHAM [31] and GVHMR [30], which leverage detected
hand and foot contacts to refine global human trajectories.
Training setup. To rigorously assess how existing state-
of-the-art models generalize to the challenging, dynamic
interactions in BodyContact4D , we evaluate all baseline
methods (DECO, BSTRO, WHAM, GVHMR) in a zero-
shot setting using their official public weights. In contrast,
our proposed DECO-VID serves as a reference for the per-
formance achievable when leveraging the BodyContact4D
training set. Specifically, DECO-VID utilizes the pre-trained
DECO feature extractor (which remains frozen to prevent
overfitting to visual patterns) and trains only the newly added

temporal encoder and regressor modules on the BodyCon-
tact4D training split.

Evaluation metrics. We evaluate human–scene contact es-
timation performance using standard classification metrics:
precision, recall, and F1 score. In order to encompass mod-
els only detect part of the body contact, we report results
separately for three categories; full-body, hand, and foot.
While BodyContact4D provides contact labels based on pre-
defined 24 body segments, image-based models (DECO [33],
BSTRO [12]) predict per-vertex contacts. To address this
discrepancy, we convert their predictions to our segment-
based format. Specifically, if a model predicts contact for
more than 30% of the vertices corresponding to a particular
body segment, we classify that segment as "in contact."

Evaluation results. Table 3 demonstrates that our proposed
DECO-VID model consistently outperforms baseline meth-
ods, achieving over 10% improvement across all 24 body seg-
ments. Notably, DECO-VID shows particularly strong per-
formance in detecting hand contacts, significantly surpassing
existing approaches, while also matching their performance
on foot contacts. Figure 5 qualitatively compares DECO-
VID with DECO and BSTRO, highlighting our method’s
effectiveness in challenging scenarios.
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Figure 5. Qualitative Comparison of Contact Detection. We compare our DECO-VID against baseline methods, DECO [33] and BSTRO [12].
Since DECO and BSTRO predict per-vertex contacts, we provide additional close-up views for hands and feet to clarify their predictions.

5. Conclusion
We introduce BodyContact4D, a large-scale multi-view
video dataset specifically designed to capture dynamic hu-
man–environment interactions in diverse real-world set-
tings. Integrating synchronized multi-view video with a cus-
tomized full-body force-sensing system, our dataset provides
comprehensive and accurate annotations of human-scene
contacts alongside accurate 3D human motion reconstruc-
tions. Benchmark evaluations on 3D human pose and shape
estimation models demonstrated that our dataset significantly
challenges existing methods due to frequent occlusions and
the dynamic nature of human–scene interactions. We fur-
ther presented DECO-VID, the first baseline video-based
human contact detection model, which outperforms existing
approaches by leveraging temporal context.

Limitations. Our point-based sensors may yield false neg-
atives in uninstrumented areas due to specific setup con-
straints, or false positives resulting from clothing pressure
and body bracing. Additionally, we abstract absolute force
measurements into binary labels, prioritizing vision-based
classification over continuous dynamics. Finally, the current
lack of 3D scene reconstructions necessitates scene-agnostic
mesh recovery, which can occasionally result in mesh-scene
penetrations. Future work could integrate physics-based
simulations with joint human-scene reconstruction to bet-
ter address these challenges and advance the robustness of
interaction modeling.
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