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ABSTRACT

The recent use of diffusion prior, enhanced by pre-trained text-image models, has
markedly elevated the performance of image super-resolution (SR). To alleviate
the huge computational cost required by pixel-based diffusion SR, latent-based
methods utilize a feature encoder to transform the image and then implement the
SR image generation in a compact latent space. Nevertheless, there are two major
issues that limit the performance of latent-based diffusion. First, the compression
of latent space usually causes reconstruction distortion. Second, huge computa-
tional cost constrains the parameter scale of the diffusion model. To counteract
these issues, we first propose a frequency compensation module that enhances
the frequency components from latent space to pixel space. The reconstruction
distortion (especially for high-frequency information) can be significantly de-
creased. Then, we propose to use Sample-Space Mixture of Experts (SS-MoE)
to achieve more powerful latent-based SR, which steadily improves the capacity
of the model without a significant increase in inference costs. These carefully
crafted designs contribute to performance improvements in largely explored 4×
blind super-resolution benchmarks and extend to large magnification factors, i.e.,
8× image SR benchmarks.

1 INTRODUCTION

Diffusion models have quickly emerged as a powerful class of generative models, pushing the
boundary of text-to-image generation, image editing, text-to-video generation, and more visual
tasks (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020). In
this paper, we explore the potential of diffusion models to tackle the long-standing and challenging
image super-resolution (SR) task.

Let us revisit the diffusion model in the context of generation space. Early diffusion models, op-
erating in the high-dimensional pixel space of RGB images, demand substantial computational re-
sources. To mitigate this, the Latent Diffusion Model (LDM) (Rombach et al., 2021) uses VQGAN
to shift the diffusion process to a lower-dimensional latent space, maintaining generation quality
while reducing training and sampling costs. Stable Diffusion further enhances LDM (Rombach
et al., 2021) by scaling up the model and data, creating a potent text-to-image generator that has
garnered significant attention in the generative AI field since its release.

However, a significant challenge arises when dealing with higher compression rates, drastically
affecting detail consistency. As noted in studies (Kim et al., 2020; Rahaman et al., 2018), the convo-
lutional nature of autoencoders tends to favor learning low-frequency features due to spectral bias.
So the escalation in compression rate leads to loss of visual signals in the high-frequency spectrum,
which embodies the details in pixel space. While some image synthesis researches (Lin et al., 2023b;
Zhu et al., 2023) have recognized and addressed these issues, they have received little attention in the
field of super-resolution(Wang et al., 2022a; Chung et al., 2022b; Lin et al., 2023a). StableSR(Wang
et al., 2023) is one of the few models that fine-tune the autoencoder decoder with the CFW module,
offering a potential solution to this problem in the spatial domain.

Regarding the training of the diffusion-based SR model, one approach(Wang et al., 2022b; Chung
et al., 2022a; Kawar et al., 2022) involves using the pre-trained Stable Diffusion model, incorporat-
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ing certain constraints to ensure fidelity and authenticity. However, the design of these constraints
presupposes knowledge of the image degradations, which are typically unknown and complex. As
a result, these methods often demonstrate limited generalizability. Another approach to address the
above challenge involves training a super-resolution (SR) model from scratch, as seen in studies
(Saharia et al., 2021; Li et al., 2021; Rombach et al., 2021; Sahak et al., 2023). To maintain fidelity,
these methods use the low-resolution (LR) image as an additional input to limit the output space.
Although these approaches have achieved significant success, they often require substantial compu-
tational resources to train the diffusion model, especially when the dimension exceeds 512 × 512
or 1024 × 1024. In this context, the super-resolution models are relatively small, possessing fewer
parameters than the image generation model.

To this end, we aim to enhance the diffusion model for SR by fixing the decoding distortion and
enlarging the diffusion model capacity without significantly increasing computational cost. We first
propose a frequency compensation module that enhances the frequency components from latent
to pixel space. The reconstruction distortion can be significantly decreased by better aligning the
frequency spectrums of the high-resolution and reconstructed images. Then, we propose to use the
Sample-Space Mixture of Experts (SS-MoE) to achieve stronger latent-based SR, which steadily
improves the capacity of the model in an efficient way. Our approach allows for enlarging the model
size without incurring significant computational costs during training and inference.

In summary, we highlight our contributions in three aspects:

• We identify the issue of information loss within the latent diffusion model used for image SR.
In response, we propose a frequency-compensated decoder complemented by a refinement net-
work. This innovative approach is designed to infuse more high-frequency details into the re-
constructed images, thereby enhancing the overall image quality.

• We design sampling-space MoE to enlarge the diffusion model for image SR. This allows for en-
hanced high-resolution image processing without necessitating a substantial increase in training
and inference resources, resulting in optimized efficiency.

• We evaluate the model on 4× Blind SR and 8× Non-Blind SR benchmarks, employing both
quantitative and qualitative assessment methods. Additionally, we conduct essential ablation
studies to validate the design choices of the models. Experiment results show that we achieved
solid improvement in terms of perceptual quality, especially in 8× SR.

2 RELATED WORK

Image SR. Image SR aims to restore an HR image from its degraded LR observation. Recent
advancements (Liu et al., 2022) in Blind Super-Resolution (BSR) have delved into more intricate
degradation models to mimic real-world deterioration. Specifically, BSRGAN (Zhang et al., 2021b)
is designed to emulate more realistic degradations using a random shuffling approach, while Real-
ESRGAN (Wang et al., 2021) leverages ”high-order” degradation modeling. Both methodologies
employ Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Miyato et al., 2018) to
understand the image reconstruction process amidst complex degradations. FeMaSR (Chen et al.,
2022b) interprets SR as a feature-matching issue, utilizing the pre-trained VQ-GAN (Esser et al.,
2020). Despite the utility of BSR techniques in mitigating real-world degradations, they fall short
of generating realistic details.

Diffusion Model for Image SR. Using diffusion models in image SR signifies a burgeoning trend.
The primary driving force behind this methodology is the exceptional generative capacity of diffu-
sion models. Numerous research efforts have explored their use in image restoration tasks, specifi-
cally enhancing texture recovery (Ramesh et al., 2022; Rombach et al., 2021; Nichol et al., 2021).
The remarkable generative prowess of these pre-trained diffusion models has been showcased, un-
derscoring the critical need for high-fidelity inherent in SR. Based on the training strategy, these
studies can be broadly classified into two categories: supervised training and zero-shot methods.
The first category (Saharia et al., 2021; Li et al., 2021; Niu et al., 2023; Sahak et al., 2023) is com-
mitted to optimizing the diffusion model for SR from the ground up through supervised learning.
The zero-shot approach (Choi et al., 2021; Wang et al., 2022a; Chung et al., 2022b; Fei et al., 2023)
aims to leverage the generative priors in the pre-trained diffusion models for SR, by imposing cer-
tain constraints to ensure image fidelity. Those zeros-shot approaches usually show limited ability
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Figure 1: Latent diffusion model for image SR with SS-MoE and frequency augmented decoder.

to super-resolve and the supervised methods are constrained to limited model scale due to huge
computation costs.

Autoencoder in Diffusion Model. To reduce the training and sampling costs linked to the diffusion
model, StableDiffusion (Rombach et al., 2021) spearheads the use of DM-based generation in the
latent space. This is achieved specifically through a pre-training phase for an autoencoder model
(Esser et al., 2020), defined by an encoder-decoder architecture, to navigate the perceptual space
proficiently. However, the high compression rate in the latent space often results in image distortion
during the reconstruction of images from the low-dimensional latent space Lin et al. (2023b); Zhu
et al. (2023). The lossy latent necessitates a more robust decoder to offset the information loss.

3 METHODOLOGY

3.1 PRELIMINARIES

Given a dataset of low-resolution and target image pairs, denoted asD = {xi,yi}Ni=1 drawn from an
unknown distribution p(x,y). Image SR is a process of conditional distribution modeling p(y|x),
and it is a one-to-many mapping in which many target images may be consistent with a single
low-resolution image. Our objective is to learn a parametric approximation to p(y|x) through a
stochastic iterative refinement process that transforms a source image x into a target image y. We
tackle this problem by adapting the diffusion probabilistic (DDPM) model(Ho et al., 2020; Sohl-
Dickstein et al., 2015) to conditional image SR.

DDPM is the first diffusion-based method introduced in (Sohl-Dickstein et al., 2015), which consists
of a diffusion process and a denoising process. In the diffusion process, it gradually adds random
noises to the data x via a T-step Markov chain (Kong & Ping, 2021). The noised latent variable at
step t can be expressed as:

zt =
√

α̂ty +
√

1− α̂tϵt,with α̂t =

t∏
k=1

αk ϵt ∼ N (0,1), (1)

where αt ∈ (0, 1) is the corresponding coefficient. For a T that is large enough, e.g., T = 1000,
we have

√
α̂T ≈ 0 and

√
1− α̂T ≈ 1. And zT approximates a random Gaussian noise. Then, the

generation of x can be modeled as iterative denoising.

Ho et al. (2020) connect DDPM with denoising score matching and propose a ϵ−prediction form
for the denoising process:

Lt = ∥ϵt − fθ (zt,x, t)∥2 , (2)

where fθ is a denoising neural network parameterized by θ, and Lt is the training loss function. The
cornerstone of this design is the denoising neural network, which is typically a UNet.

During inference, we reverse the diffusion process through iterative refinement, taking the form of:

yt−1 ←
1
√
αt

(
yt −

1− αt√
1− γt

fθ (x,yt, γt)

)
+
√
1− αtϵt, yT ∼ N (0, I). (3)

The proposed latent diffusion model for image SR is illustrated in Fig. 1. It consists of multiple
SS-MoE UNet and a frequency-compensated autoencoder that will be illustrated in 3.2 and 3.3.
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Figure 2: Sampling-Space MoE of the denoising UNet for image SR. ”FFN Avg.” means averaging
the weights of all experts into one FFN for inference after training.

3.2 DENOISING UNET WITH SS-MOES

The denoising UNet structure, denoted as fθ, is inspired by the Latent Diffusion Model (LDM)
(Rombach et al., 2021), and it incorporates residual and self-attention blocks as its core building
elements. To make the model conditional on the input x, we employ bicubic interpolation (Saharia
et al., 2021) to up-sample the low-resolution image to match the target resolution. The up-sampled
result is concatenated with zt along the channel dimension, see Fig. 2.

Sampling MoE. The quality of the image can be significantly improved by utilizing a time-mixture-
of-experts (time-MoE) method, a concept derived from earlier studies (Xue et al., 2023; Feng et al.,
2022; Balaji et al., 2022). Similarly, diffusion-based SR is also a diffusion process that progressively
introduces Gaussian noise to an image over a sequence of timesteps, t = 1, ..., T . The image
generator is trained to reverse this process given an upsampled low-resolution image as the condition,
denoising the images from t = T to t = 1. Each timestep is designed to denoise a noisy image,
gradually converting it into a clear high-resolution image. It is important to note that the complexity
of these denoising steps fluctuates based on the level of noise present in the image. For instance,
when t = T , the input image xt for the denoising network is heavily noisy. However, when t =
1, the image xt is much closer to the original, aka less noisy image. So we divide all timesteps
uniformly into N stages consisting of consecutive timesteps and assign a single Sampling Expert to
one stage. Since only a single expert network is activated at each step, the scale and capacity of our
model can expand with computational overhead remaining the same during inference, regardless of
an increase in the number of experts. We use N = 4 to assure that all experts can be loaded on a
GPU when inference.

Space MoE. We create MoE layers with N spatial experts (i.e., N FFNs) {E1, E2, ...EN} after
existing multi-head attention to scale the denoising UNet. For a batch of input tokens (B,L, d),
where L = hw, B denotes the batch size and h, w, d denote the height, width and channel number
of a feature map respectively. Assuming L is divisible by N , we randomly split the tokens into N
groups and then processed with experts:

{x1, x2, ..., xL}
group split−−−−−→ {X1, X2, ..., XN}, y = Ei(x). (4)

Given the weights if N experts {W1,W2, ...,WN}, weight sharing is performed among all experts
during training:

Wi = γWi + (1− γ)W j with W j =

N∑
j ̸=i

1

N − 1
Wj , (5)

where Wi denotes the updated weight of the i-th expert. Conceptually, we update the weight of
each expert by averaging the weights of the other experts. The momentum coefficient γ ∈ [0, 1)
regulates the degree of information exchange among the experts. The momentum update, as shown
in Eq. 5, ensures a smoother evolution of each expert. Each expert carries a substantial dropout
(i.e., N−1

N ) and they collectively evolve through momentum updates. A relatively large momentum
(e.g., γ = 0.999) works better than a smaller value (e.g., γ = 0.9), suggesting that smaller γ could
probably lead to weight collapse (identical weights across all experts).
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Figure 3: The proposed frequency-augmented decoder is conditioned on the low-resolution image
and uses the AFF block (Huang et al., 2023) to reduce information loss in the frequency domain.

After training, each space MoE layer is converted into an FFN layer by simply averaging the experts:
FFN = 1

NΣN
i=1Ei. In this way, introducing space MoE to augment the denoising UNet only incurs

the computation overhead of a single FFN.

3.3 FREQUENCY COMPENSATED DECODER

To address the information loss using autoencoder, we propose improving the image super-resolution
quality by augmenting the decoder with a frequency-compensated loss and network. To be specific,
the frequency-augmented decoder comprises a VQGAN(Esser et al., 2020) decoder conditioning on
low-resolution inputs similar to (Wang et al., 2023) and a refinement network utilizing frequency
operators along with a frequency loss for optimization, as depicted in Fig. 3.

LR-conditioned Decoder. Conditioning on low-resolution inputs has been proven to enhance the
reconstruction fidelity for image SR (Wang et al., 2023; 2018a). We add a feature extractor to get the
LR image representation for conditions during decoding. Since only several encoding features are
needed, some layers like VQGAN’s middle blocks can be dropped to save memory and computation
cost during inference. The fusion of LR features Flr and decode latent Fd can be formulated as
Fm = Fd + C(Flr, Fd; θ), where C(·; θ) is a sequences of trainable convolution layers as designed
in (Wang et al., 2023).

Refinement Network. We further use a tiny UNet model with frequency augmentation operation
to address information loss. It is inserted after the last upsample block of the VQGAN decoder.
The UNet model consists of six AFF blocks proposed by (Huang et al., 2023), ie. sequences of
activations, linear layers, and adaptive frequency filters. The frequency operator first transforms
the input latent into the frequency domain using the Fourier transform and then applies semantic-
adaptive frequency filtering through element-wise multiplication.

To optimize the frequency-augmented decoder, we use frequency loss Lfreq (Jiang et al., 2020) in
addition to VQ-GAN loss LVQ-GAN (Esser et al., 2020)for reconstruction:

L = LVQ-GAN + λLfreq , with, Lfreq =
1

MN

M−1∑
u=0

N−1∑
v=0

w(u, v) |Fr(u, v)− Ff (u, v)|2 . (6)

We set λ = 10 by default; the matrix element w(u, v) is the weight for the spatial frequency at
(u, v); Fr(u, v), Ff (u, v) are the FFT results of ground-truth and reconstruction images.

4 EXPERIMENTS

Datasets. We train and test our method on 4× and 8× super-resolution with synthesized and real-
world degradation settings. For each task, there are two training stages, stage 1 for Sampling-Space
MoE and stage 2 for Frequency Compensated Decoder. In the first stage, degraded pipelines are
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Table 1: Quantitative Results on 4× SR benchmarks. The 1st and the 2nd best performances are
highlighted in red and blue, respectively. † means reproducing with the official model.

Datasets Metrics RealSR BSRGAN Real-ESRGAN+ DASR FeMaSR LDM StableSR StableSR† OURS

DIV2K
Valid

PSNR↑ 22.36 22.71 22.93 22.70 21.73 21.86 23.26 21.81 22.11
SSIM↑ 0.5559 0.5911 0.6144 0.5988 0.5692 0.5554 0.5726 0.5534 0.5775
LPIPS↓ 0.6191 0.3546 0.3229 0.3545 0.3389 0.3264 0.3114 0.3143 0.2821
FID↓ 71.85 49.0 40.49 51.79 41.26 27.36 24.44 25.64 25.49
MUSIQ↑ 27.20 61.20 60.70 57.26 57.83 62.8906 65.92 66.78 64.78
NIQE ↓ 7.71 4.84 4.88 4.95 4.95 5.64 - 4.81 4.72

RealSR

PSNR↑ 27.77 26.55 25.82 27.06 25.42 25.46 24.65 25.19 24.68
SSIM↑ 0.7760 0.7742 0.7700 0.7833 0.7458 0.7145 0.7080 0.7227 0.7352
LPIPS↓ 0.3805 0.2623 0.2670 0.2923 0.2855 0.3159 0.3002 0.2974 0.2719
FID↓ 88.26 97.09 93.74 92.82 95.32 83.98 - 80.25 83.59
MUSIQ↑ 29.88 62.63 61.54 45.89 58.92 58.90 65.88 63.44 57.10
NIQE ↓ 8.14 5.87 6.15 6.48 5.90 6.78 - 6.35 5.96

DRealSR

PSNR↑ 31.73 29.98 29.69 31.14 27.54 27.88 28.03 29.00 29.35
SSIM↑ 0.8563 0.8240 0.8277 0.8493 0.7638 0.7448 0.7536 0.7658 0.7946
LPIPS↓ 0.3634 0.2757 0.2663 0.2873 0.3273 0.3379 0.3284 0.3353 0.3017
MUSIQ ↑ 23.91 55.12 52.21 40.50 52.56 53.72 58.51 56.72 42.32
NIQE ↓ 9.47 6.70 7.04 7.84 6.22 7.37 - 6.89 6.89

different for each task. For the 4× super-resolution, following StableSR (Wang et al., 2023), we
combine images in DIV2K (Agustsson & Timofte, 2017), Flickr2K(Timofte et al., 2017) and Out-
doorSceneTraining(Wang et al., 2018b) datasets as the training set. We additionally add the openIm-
age dataset (Kuznetsova et al., 2020) for general cases. LR-HR pairs on DIV2K are synthesized with
the degradation pipeline of Real-ESRGAN (Wang et al., 2021). The sizes of LR and HR patch are
128×128 and 512×512. For the 8× super-resolution, we only use DIV2K, Flickr2K and openImage
dataset for training. LR images are with a size of 64×64 and obtained via default setting (bicubic
interpolation) of Matlab function imresize with scale factor 8. In stage 2 of Frequency Compensated
Decoder training, we adopt Sampling-Space MoE to generate 100k LR-Latent pairs for 4× and 8×
SR given the LR images as conditions.

Training. We train all of our Sampling-Space MoEs for 100k steps with a batch size of 144. More-
over, training steps for Frequency Compensated Decoder is 50k and the batch size is 32. Following
LDM(Esser et al., 2020), we use Adam optimizer, and the learning rate is fixed to 5 × 10−5 and
1×10−4 for SS-MOEs and FCD. All trainings are conducted on 8 NVIDIA Tesla 32G-V100 GPUs.

Inference. Consistent with stableSR, we implement DDPM sampling with 200 timesteps. However,
fewer steps can yield comparable results, as discussed in Sec.4.3. We employ evaluation metrics
including LPIPS (Zhang et al., 2018), FID (Heusel et al., 2017), MUSIQ (Ke et al., 2021) and NIQE
(Mittal et al., 2012). PSNR and SSIM scores are also reported on the luminance channel in the
YCbCr color space.

4.1 BENCHMARK RESULTS OF 4× BLIND IMAGE SR.

We first evaluate our method on blind super-resolution. For synthetic data, we follow the degradation
pipeline of Real-ESRGAN(Wang et al., 2021) and generate 3k LR-HR pairs from DIV2K valida-
tion set. We compare our method quantitatively with GAN-based methods such as RealSR(Ji et al.,
2020), BSRGAN(Zhang et al., 2021a), Real-ESRGAN+(Wang et al., 2021), DASR(Liang et al.,
2022), FeMaSR(Chen et al., 2022a) and diffusion-based methods like LDM(Rombach et al., 2021)
and StableSR. The quantitative results are shown in Tab. 1. Note that due to differences in making
test sets, we reproduce StableSR using its official model and code. We can see that our approach out-
performs state-of-the-art SR methods on perceptual metrics (including LPIPS, FID, and NIQE) and
gets the best PSNR and SSIM among diffusion-based methods. Specifically, synthetic benchmark
DIV2K Valid, our method achieves a 0.2821 LPIPS score, which is 10.24% lower than StableSR
and at least 12.64% lower than other GAN-based methods. Besides, our method achieves the lowest
LPIPS score among diffusion-based methods on the two real-world benchmarks (Cai et al., 2019;
Wei et al., 2020), which clearly demonstrates the superiority of our approach. Note that although
GAN-based methods like BSRGAN and Real-ESRGAN+ achieve good MUSIQ and NIQE scores,
but fail to restore faithful details, such as textures and small objects, and generate blurry results as
shown in Fig. 4. Compared with the diffusion-based methods, our method also produces more vi-
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LR                      RealSR BSRGAN         Real-ESRGAN+            DSAR                   FeMaSR LDM                     StableSR Ours                       GT

Figure 4: Qualitative comparisons on 4× SR (128 → 512). Our method is capable of achieving
better detail consistency and generating realistic texture details. (Zoom in for the best view)

sually promising results by reserving more high-frequency information and achieving better detail
consistency.

4.2 BENCHMARK RESULTS OF 8× NON-BLIND IMAGE SR.

We further validate the effectiveness of our method on 8× SR. For the test set, we generate 660
LR-HR pairs from DIV2K validation set via bicubic interpolation with the scale factor 8. We com-
pare to other state-of-the-art models that span from regression models having powerful architectures
and/or generative formulations: RRDB(Wang et al., 2018c), ESRGAN(Wang et al., 2018c), SR-
FLOW(Lugmayr et al., 2020), FxSR-PD(Park et al., 2022), LDM(Rombach et al., 2021). We use
pre-trained models provided by the authors while for the non-provided 8× SR model (RRDB and
ESRGAN), we get unofficial released models from the github1 of SRFLow. All results are tested
on the same dataset using the official inference code. As Tab. 2 shows, our approach significantly
outperforms competing methods on LPIPS, FID, and MUSIQ, and achieves top-2 in terms of NIQE.
The qualitative results in Fig. 5 agree with the conclusions of the numerical results. It can be seen
that our method can generate sharp images with high fidelity more naturally, while others tend to
distort the characters or produce artifacts. Besides, our method can also generate realistic texture
details, whereas others produce over-smooth results. Benefiting from the capacity and scalability of
SS-MoE, our method has much more clear results compared to LDM’s blurry output.

Table 2: Quantitative Results on synthetic 8× SR benchmarks.

Datasets Metrics Bicubic RRDB ESRGAN SRFlow FxSR-PD LDM OURS

DIV2K Valid

PSNR↑ 25.37 27.18 24.13 24.88 25.24 23.81 24.45
SSIM↑ 0.6361 0.6995 0.6035 0.6008 0.6312 0.5875 0.6142
LPIPS↓ 0.6055 0.4332 0.2767 0.2706 0.2425 0.3087 0.2321

FID↓ 118.63 92.4 58.64 59.52 55.0 63.07 44.49
MUSIQ↑ 20.80 46.43 55.84 55.20 62.10 63.82 64.17
NIQE ↓ 11.31 8.65 3.97 4.60 5.24 5.75 4.34

1https://github.com/andreas128/SRFlow
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LR                  RRDB            ESRGAN           SRFlow FxSR LDM                 Ours                 GT

Figure 5: Qualitative comparisons on 8× SR (64 → 512). Our method is capable of generating
sharp images with high-fidelity texture details. (Zoom in for the best view)

Table 3: The effectiveness of SS-MoE evaluated on both 4× and 8×SR.

Model PSNR↑ SSIM ↑ LPIPS↓ FID↓ MUSIQ↑
vanilla 21.86/23.81 0.5554/0.5875 0.3264/0.3087 27.36/63.07 62.89/63.82
w/o Sampling MoE 22.09/24.94 0.5649/0.6176 0.3201/0.2497 26.21/46.34 63.14/63.32
w/o Space MoE 22.15/24.91 0.5680/0.6175 0.3134/0.2426 26.19/43.93 63.77/63.98
w SS-MoE 22.25/25.16 0.5725/0.6273 0.3031/0.2267 23.61/41.37 64.06/63.61

4.3 ABLATION STUDIES AND COMPUTATION COST ANALYSIS

Ablation on SS-MoE. We investigate the significance of our proposed Sampling-Space Mixture of
Experts on both 4× and 8 × SR. Here, we use the original VAE to decode latents generated by
different models. As shown in Tab. 3, the removals of Sampling MoE and Space MoE both lead
to a noticeable performance drop in almost all evaluated metrics for different tasks, demonstrating
both modules contribute to our approach’s powerful generative ability and fidelity. Furthermore, we
evaluate the models’ performance under different sampling steps. As depicted in Tab. 4, for each
sampling step Sampling-MoE can generate high-resolution images with better perceptual quality,
showing its stronger denoise ability by modeling noises of different levels using multiple experts.
We also notice that Sampling-MoE can achieve better FID and LPIPS with fewer steps. For example,
the two metrics in both 4× and 8 × SR with T = 50 outperform Space-MoE model with T = 200,
decreasing 75% sampling steps and resulting in more efficient diffusion-based SR.

Table 5: Ablation Study of FCD.

Model PSNR↑ SSIM↑ LPIPS↓ FID↓ MUSIQ↑ NIQE↓
Baseline 22.25 0.5725 0.3038 23.90 64.02 5.6093

+ AFF-Net 22.16 0.5805 0.2808 24.52 63.66 4.4337
+ FFL loss 22.01 0.5675 0.2892 24.94 63.64 4.5789

+ UNet + FFL 22.19 0.5791 0.2856 25.09 63.94 4.3652
+ AFF + FFL 22.23 0.5814 0.2815 24.30 64.03 4.3675

Ablation on FCD. Then, we aim
to illustrate the effectiveness of our
proposed Frequency Compensated De-
coder. The ablation experiments in Ta-
ble. 5 have the same 25k training steps
and are evaluated on 4×DIV2K. We use
the VQ Model in LDM as the baseline

8
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Table 4: Comparison SS-MOE and Space-Moe on DIV2K with different sampling steps.

Task Model Sampling Step PSNR↑ SSIM ↑ LPIPS ↓ FID↓ MUSIQ↑

4×SR

Space-Moe

T=200 22.09 0.5649 0.3201 26.21 63.14
T=100 22.26 0.5730 0.3188 26.25 63.15
T=50 22.54 0.5852 0.3246 28.42 61.83
T=20 23.05 0.6051 0.3547 36.08 57.39

SS-MoE

T=200 22.24 0.5727 0.3031 23.61 64.06
T=100 22.45 0.5824 0.3074 24.15 63.37
T=50 22.70 0.5918 0.3125 25.87 62.12
T=20 23.26 0.6141 0.3461 34.58 57.56

8×SR

Space-Moe

T=200 24.94 0.6176 0.2497 46.34 63.32
T=100 25.16 0.6262 0.2495 45.99 62.64
T=50 25.47 0.6381 0.2595 46.81 61.36
T=20 26.07 0.6606 0.2829 51.91 57.49

SS-MoE

T=200 25.16 0.6273 0.2267 41.37 63.61
T=100 25.37 0.6365 0.2302 41.59 63.05
T=50 25.60 0.6449 0.2361 42.68 62.06
T=20 26.20 0.6676 0.2668 48.8 58.41

and add AFF-Net and FFL Loss progres-
sively. As shown in Table. 5, frequency refinement introduced by AFF Net and FFL loss improves
the perceptual quality of images, with 7.3% improvement of LPIPS and 22.1% improvement of
NIQE in contrast to baseline. Compared with UNet+FFL, AFF+FFL achieves lower LPIPS and
FID, indicating better realism and suggesting the effectiveness of frequency operation.

Table 6: Parameter and computation cost compar-
ison on 4× SR using 200 timesteps for inference.

Method Total
Param (M)

UNet
Param (M)

VAE
Param (M)

FLOPs(T)
per step Total FLOPs(T)

LDM 168.95 168.95 168.95 0.1608 33.43
Ours 605.30 605.30 605.30 0.1658 35.47

StableSR 1409.11 1409.11 1409.11 0.4162 86.27

Parmeter and Computational Cost Analysis
We further evaluate our method against other
diffusion-based SR methods, including LDM
and StableSR on 4× SR in terms of the pa-
rameter number and FLOPs. The results are
shown in Tab. 6. We calculate FLOPs for one
denoising step and a single SR inference sepa-
rately and timesteps are set to 200 when infer-
ence. Notice that our model’s parameter num-
ber, 605.30, includes SS-MoE with four experts and a frequency-augmented decoder. Benefitting
from SS-MoE, the parameter number of our method increases by 436.35M and the FLOPs only in-
crease by 3.1% and 6.1% compared with LDM. As for StableSR, it utilizes the stable diffusion 2.1
architecture along with a half UNet, resulting in approximately 2.5 times FLOPs compared to our
method, highlighting our lightweight nature.

5 CONCLUSION

Unlike existing pixel diffusion-based SR methods that require huge calculating resources, we have
introduced a latent diffusion model for efficient SR. We propose Sampling-Space MoE to enlarge
the diffusion model without necessitating a substantial increase in training and inference resources.
Furthermore, to address the issue of information loss caused by the latent representation of the dif-
fusion model, we propose a frequency-compensated decoder to refine the details of super-resolution
images. Extensive experiments on both Blind and Non-Blind SR datasets have demonstrated the
superiority of our proposed method.

Limitations. While our method has demonstrated promising results, the potential of diffusion-based
methods has not been fully explored. We encourage further exploration in Latent Diffusion SR to
achieve stronger generalizability in real-world SR. Increasing the size of model and using more
degradation pipelines of data may help alleviate the problem. Our frequency-compensation decoder
does not completely address the distortion caused by latent space compression. Expanding the latent
feature channel might be a solution to further increase the reconstruction accuracy, but it will also
result in a model that is more difficult to converge.

9
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Table 7: Hyper-parameters and values in SS-MoE and Frequency Compensated Decoder.

Configs/Hyper-parameters Values
SS-MoE

f 4
z-shape 35.47

Channels 160
Channel multiplier [1, 2, 4, 4]

Attention resolutions [16, 8]
Head channels 32

Architectures of Space MoE FFN
Activations in Space MoE GELU

Number of Sampling MoEs 4
Time stage split [(1000, 750], (750, 500], (500, 250], (250, 0]]

Frequency Compensated Decoder
Embed dim 4

Number of embed 8192
Double z False

Z channels 3
Channels 128

Channel multiplier [1, 2, 4]
Number of Residual blocks 2

Attention resolutions [ ]
Dropout rate 0.0

Number of feat fusion layers 1
Number of AFF blocks 1

Table 8: Hyper-parameters and values in two stages’ training.

Configs/Hyper-parameters Stage1 Stage2
Loss L2 L1, LPIPS, GAN Loss, FFL Loss

Training steps 1e5 5e4
Learning rate 5e-5 1e-4

Batch size per GPU 9 1
Accumulate grad batches 2 4

Number of GPU 8 8
GPU-type V100-32GB V100-32GB

A IMPLEMENT DETAILS

In this part, we illustrate the details of our method, including model architecture and training set-
ting. To be specific, the framework contains two parts, denoise UNet and Frequency Compensated
Decoder, which correspond to the training stage1 and training stage2 respectively. The denoising
UNet follows the architecture of Latent Diffusion Model and the Frequency Compensated Decoder
is based on VQModel. All hyperparameters are as shown Tab. 7 and Tab. 8.

B USER STUDY

To further confirm the superiority of our method, we conduct a user study on 210 real-world LR
images. These images were collected from three different datasets, namely DIV2K, RealSR, and
DRealSR, with each dataset contributing 70 images. We compare our approach with 7 commonly
used SR methods with competitive performance, i.e., RealSR, BSRGAN, Real-ESRGAN+, DASR,
FeMaSR, LDM and StableSR. The comparison is conducted in pairs, i.e., given an LR image as
reference, the subject is asked to choose the better HR image generated from either our method
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Figure 6: Ours vs. Prior Work in 4× SR.

Figure 7: an Example of User Study.

or others. The example of the user study is shown in Fig. 7. The LR images are divided into 30
pairs for each method. 17 users are recruited to conduct this user study under detailed instruction,
so there are 30 × 7 × 17 votes in total. The win rates of our method are shown in Fig. 7. It can
be observed that our method outperforms all 7 competitive methods by a large margin, consistently
gaining approximately 70% of the votes all the time, indicating the substantial superiority of the
proposed method on human perception.
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LR                       w/o Sample MoE            w/o Space MoE                    w SS-MoE                             GT

Figure 8: Qualitative results of SS-MoE on 4× SR. (Zoom in for the best view)

C QUALITATIVE RESULTS OF ABLATION STUDY

To validate the effectiveness of SS-MoE and FCD, we show qualitative results of both modules.

C.1 QUALITATIVE RESULTS OF SS-MOE

The results are shown in Fig. 8. It can be seen that both individual Sample MoE and Space MoE
generate images with distortion or over-smooth, but SS-MoE generated more realistic images with
more details, which the effectiveness of both modules.

C.2 QUALITATIVE RESULTS OF FCD

We present qualitative results of FCD in Fig. 9. It is clear that FCM can compensate images with
high-frequency details, especially for human skin and animal fur. Furthermore, we conduct spectrum
analysis and the results are in Fig. 10. We apply the Fourier transform to an image and then shift
the spectrum to the center for better visualization. In the spectrum map, the brightness of each
point indicates the energy level of the corresponding frequency component. Yellow points indicate
stronger energy for the corresponding frequency, while purple points indicate weaker energy. To
evaluate the spectrum gap between the generated image and ground truth, we calculate Spearman’s
correlation coefficients and list them under images. Better correlation coefficients show that FCM
can improve images’ frequency consistency through compensating details.
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Figure 9: Qualitative results of FCD on 4× SR. (Zoom in for the best view)
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coef: 0.5626 coef: 0.5951 coef: 1

w/o FCD w FCD GT

coef: 0.5885 coef: 0.6482 coef: 1

coef: 0.5270 coef: 0.5750 coef: 1

w/o FCD w FCD 

Figure 10: Spectrum Analysis on FCD. (Zoom in for the best view)

Table 9: FCD on Image Reconstruction.

Model Coco 15 val Private Dataset

Metrics LPIPS↓ FID↓ LPIPS↓ FID↓
VAE of sd15 0.0746 17.66 0.0524 19.62
+FCD 0.0702 16.12 0.0424 15.71

D APPLICATION OF FCD

Not only diffusion-based SR suffers from information loss caused by the compression of latent
space, but image reconstruction and text-to-image generation face the same problems. We extend
FCD to VAE of stable diffusion v1.5. To be specific, we add AFF-Net after the VAE decoder and
use FFL Loss additionally to finetune the model. Note that lr-conditioned fuse layers are removed
because there are no low-resolution images in the two tasks. The number of training steps is 7e5
and the batch size is 32. After training, we test VAE’s reconstruction ability on Coco 2017 valid set
(5000 images) and a private test set (1000 images collected from the Internet). Quantitative results
are shown in Tab. 9. FCD shows consistent improvement on both LPIPS and FID and qualitative
results in Fig. 11 align with the conclusion.

Then we apply the two VAEs to text-to-image generation. As shown in Fig. 12, it compensates
image local high-frequency areas, like eyes and mouth, thus restoring the distortion compared with
the original VAE. Note that, we only replace the stable diffusion’s decoder with FCD, which means
it is compatible with all sd v1.5 base models.

E MORE QUALITATIVE COMPARISONS

More qualitative Comparisons among diffusion-based SR methods are as follows.
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original VAE                       FCD                                 GT

Figure 11: Qualitative results of FCD on image reconstruction. (Zoom in for the best view)

sd v1.5 with original VAE                               sd v1.5 with FCD                                  sd v1.5 with original VAE                                   sd v1.5 with FCD                                  

Figure 12: Qualitative results of FCD on text-to-image generation. (Zoom in for the best view)
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LR                                LDM                             StableSR Ours                                    GT

Figure 13: Qualitative comparisons on 4× SR (128 → 512). (Zoom in for the best view)
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LR                                             LDM                                           Ours                            GT

Figure 14: Qualitative comparisons on 8× SR (64 → 512). (Zoom in for the best view)
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