
ECoDe: A Sample-Efficient Method for Co-Design
of Robotic Agents

Kishan Reddy Nagiredla, Buddhika Laknath Semage, Arun Kumar AV, Thommen George Karimpanal and Santu Rana
Applied Artificial Intelligence Institute (A2I2)

Deakin University
Melbourne, Australia

Email: knagiredla@deakin.edu.au

Abstract—Co-designing autonomous robotic agents involves
simultaneously optimizing the controller and the agent’s physical
design. Its inherent bi-level optimization formulation necessitates
an outer loop design optimization driven by an inner loop
control optimization. This can be challenging when the design
space is large and each design evaluation involves a data-
intensive reinforcement learning process for control optimization.
To improve the sample efficiency of co-design, we propose a
multi-fidelity-based exploration strategy in which we tie the
controllers learned across the design spaces through a universal
policy learner for warm-starting subsequent controller learning
problems. Experiments performed on a wide range of agent
design problems demonstrate the superiority of our method
compared to baselines. Additionally, analysis of the optimized
designs shows interesting design alterations including design
simplifications and non-intuitive alterations.

I. INTRODUCTION

Reinforcement Learning (RL) has been a prominent ap-
proach for training agents to learn complex behaviors, relying
solely on reward maximization. Whilst most robotics research
is centered around a few well-known, fixed skeleton designs
e.g., robotic arms or bipedal humanoids, there is an abundance
of skeleton designs in nature that equip animals with unique
and powerful capabilities. For e.g., the split hoof design of
Alpine Ibex makes them excellent climbers, or the strong hind
legs make the Kangaroo rats the best jumpers, etc. Exploring
such exotic design spaces can lead us to exceedingly more
capable designs. Unfortunately, design optimization is a hard
problem because the design space can be large, and evaluating
designs can be computationally expensive, especially when
the control is learned through inherently sample-intensive RL
algorithms.

A subset of the robot design problem that we consider in
this work deals with fixed skeletal structures with variable
parameters. Such problems are often formulated as bi-level
optimization problems [2]. This includes (a) searching over
the design space in the outer loop and (b) evaluating each
design’s task-solving capability by learning the control policy
in the inner loop. The inner loop typically involves training
the agent with Deep-RL methods [13], making it an extremely
sample-intensive process. Ha [5] used a Genetic Algorithm
(GA) for optimization of the outer loop, and other notable
works such as [21], learned a parameter-attribution policy

using RL in the outer loop. Unfortunately, both GAs and RL
are sample-intensive, and their combinations as such becomes
practically infeasible. A naiv̈e solution may include running
sample-efficient optimization algorithms such as Bayesian
optimization [10] in the outer loop. However, such a solution
would still be limited, as firstly, it ignores the fact that control
policies corresponding to adjacent regions in the parameter
space may be similar to each other. As a result, the policy
corresponding to each parameter would necessarily have to
be learned from scratch, which can be highly inefficient.
Secondly, such solutions ignore the stochastic monotonicity
of RL; i.e., the fact that on average, the performance of RL
agents tends to monotonically increase with time, which could
form a basis prematurely terminating unpromising designs.

To this end, we propose a novel approach in which the
morphology and control policy required to perform a task
are learned in conjunction. Our framework (a) employs trans-
fer learning to exploit the closeness of the control policies
corresponding to adjacent sets of parameters and (b) uses
a type of multi-fidelity approach to exploit the stochastic
monotonicity in RL. Specifically, we adopt the multi-armed
bandit-based hyperparameter optimization method HyperBand
[8] that uses a set of multi-level filters, with each filter offering
a specific mix of exploration (how many different parameters
are examined) and exploitation (how well they are examined).
In HyperBand, the widest filter starts with a large set of
random parameters, where at the first level a fixed but small
sampling budget is provided for evaluating each parameter.
Larger sampling budgets are provided in subsequent levels,
for evaluating a smaller set of more promising designs.

Since RL generally exhibits stochastic monotonicity, it is
more likely that low-fidelity (the policy is trained with smaller
number of samples) evaluations of policies are somewhat
reflective of their high-fidelity (the policy trained with larger
number of samples) evaluations. However, in HyperBand,
since the ordering based on just the low-fidelity evaluation can
be noisy, to improve the chances of retaining the best designs,
a set of top-k parameters are collected and trained with
more samples. The whole process repeats until only one best-
performing parameter remains. Subsequent filters start with
lesser number of initial parameters, but this initial set is pro-
vided a larger budget in the first level than the preceding filter.



Fig. 1: ECoDe Architecture for multi-fidelity based knowl-
edge propagation mechanism to identify the best co-design
(light blue blob). The blobs indicate different robot design
samples and hatched boxes indicate the training time. Inside
each horizontal box (light green), top-performing samples (red
blobs) are made to progress from lower fidelities to higher
fidelities. The thick blue arrows indicate the evaluation order
to aid effective knowledge transfer through UPN.

This way HyperBand effectively uses stochastic monotonicity
to efficiently navigate the sample space. Additionally, we use
Universal Policy Network (UPN) [20] to perform transfer
learning across parameters where the policy learning for a
new parameter borrows knowledge from the policy learned
with the last set of parameters. However, UPN-based transfer
can create a biased preference for high-fidelity observations as
even a bad design with a high number of samples to train its
policy can create a seemingly better policy than a good design
with only a small number of samples to train its policy. Thus,
through Fig. 1 we show how ECoDe navigates the filters in
a specific manner (in the opposite direction to HyperBand -
explained later in IV) to reduce such bias.

We implement our method on seven OpenAI Gym [4]
environments to demonstrate its effectiveness in identifying
good co-designs. We contend that these environments are
well-suited for our research, as they provide a standardized
interface for training RL algorithms across a wide range
of environments and tasks, and closely mimic the type of
control required for real-world robotics applications [1]. Our
results show that our approach outperforms existing methods
in identifying good co-designs across multiple environments.

II. RELATED WORKS

The co-design of physical and control structures for robotic
agents [21] has for long, been a problem of interest. From
Von Neumman’s work around the idea of agents utilizing evo-
lutionary mechanisms [18] for morphing, similar mechanisms
were later used to generate intelligent virtual agents [14].
While some research continued to focus on the optimization
of skeletal structures and design parameters, others focused
on using pre-selected skeletons to optimize solely over design
parameters. Nevertheless, early evolutionary mechanisms were
extremely sample-inefficient [19] as it involved evaluating
each design in the population. Recent works by Ha [5] and
Yuan et al. [21] have addressed this with sample efficient
approaches. Parts of the environment are parameterized, fa-
cilitating joint learning of policy and physical structure to
uncover task-assistive design principles in both these works.

By using the implicit function theorem [7], Ha expresses both
motion and design parameters as functions describing robot
dynamics. His work optimizes over a linear approximation of
these functions resulting in agents that learn to change the
policy and design parameters depending on the task.

Transfer learning has been used to improve sample effi-
ciency in several works. Schaff et al. [12] demonstrated the
transfer of knowledge between previous and new designs by
considering design parameters as an additional policy input.
Similarly, Luck et al. [9] used the Q-function from RL as
an objective function for design adaptation from randomly
chosen initial designs. Model-based methods like Villarreal
et al. [17] rely on modeling environment dynamics to learn
both morphological and control policies sample-efficiently.
However, such methods lack robustness, and are sensitive to
changes in the dynamics or design parameters, emphasizing
the importance of generalization and knowledge transfer for
co-design. In many domains, control policies modeled via
neural networks and trained using the Deep-RL framework
have outperformed prior methods and have delivered state-
of-the-art results [22], [20]. Although their ability to learn
complex policies without supervision is desirable, deep RL
deals solely with policy optimization, and is as such, sample
inefficient by nature.

Recently Bayesian Optimization (BO) [10] and Hyper-
Band [8] have successfully been used for sample efficient
optimization, specifically in the context of hyperparameter
optimization of deep neural networks. While BO provides
a general framework for black-box optimization, HyperBand
provides a more specific solution that exploits stochastic
monotonicity to achieve further sample efficiency through
multi-fidelity search. Since RL also demonstrates stochastic
monotonicity with respect to the number of steps, HyperBand
provides a more natural choice to work in conjunction with RL
techniques. In this work, we focus on improving the sample
efficiency of co-design by leveraging multi-fidelity methods
and the knowledge-sharing aspect of existing policy transfer
mechanisms.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) problems are modeled as a
Markov Decision Process (MDP), represented as ⟨S,A, T,R⟩,
where S is the state-space, A is the action-space, T :
S ×A → S is the transition function governing the next state
reached by taking an action a ∈ A in a state s ∈ S, and
R : S×A → R is the scalar-valued reward producing function
for taking action a in state s.

The learning problem is to find the optimal policy that
maximizes the returns Eτ∼πR(τ), where π is the policy, τ
is a trajectory sampled from π, and R(τ) =

∑
(s,a)∈τ R(s, a)

is shorthand for sum of the rewards over the trajectory τ .

B. Universal Policy Network (UPN)

UPN [20] is an RL approach to simultaneously learn a li-
brary of policies corresponding to different design parameters.



F = 3 F = 2 F = 1 F = 0
i ni pi ni pi ni pi ni pi
0 27 1 9 3 3 9 1 27
1 9 3 3 9 1 27
2 3 9 1 27
3 1 27

TABLE I: HyperBand process showcasing the 4 filters denoted
by F and all stage values for number of configurations (ni)
and number of resource units (pi) when M=27 and η=3.

UPN state sUPN ∈ SUPN is obtained by augmenting the agent’s
state s with design parameters θ as sUPN = [s, θ]⊺.

UPN policy πUPN is learned by solving the MDP
⟨SUPN ,A, TUPN , R⟩, where TUPN : SUPN × A → SUPN .
Assuming that the control problems between two close sets
of design parameters are not very different, πUPN can also
be differentiable and thus learnable. UPN has been shown to
exploit this property [20] by learning across different design
parameters together via large neural networks.

C. HyperBand

HyperBand [8] is a powerful bandit-based multi-fidelity
technique that extends the capability and generalizability of
a much simpler but effective technique - Successive Halving
[6], designed to stop poorly performing configurations early.
HyperBand shows a remarkable performance boost in solving
the problem of Hyperparameter Optimization in deep neural
networks and outperforms random search and Bayesian Opti-
mization [8].

In HyperBand, a given budget B is partitioned into a
combination of a number of configurations (M). A budget
of (Fmax + 1)M is allocated per configuration in each filter,
where Fmax is the maximum number of filters (obtained
from ⌊logη(M)⌋). These filters (arranged from highest to
lowest exploration as presented in Table I) are independent and
resemble arms in a multi-armed bandit technique. Successive
Halving is then called as a subroutine on the randomly sampled
configurations ni and a resource budget of pi is allocated,
which then outputs the top-k performers.

IV. METHODOLOGY

We aim to determine our optimal design parameters θ∗,
given by:

θ∗ = argmax
θ∈Θ

f(θ) (1)

where θ represents the design parameters to be learned, f() is
a performance measure for a particular design choice, and Θ
is the space of choices for the design parameters, which we
assume to be a bounded set.

In many cases f() can be time-consuming to measure, as
learning a policy for complex control problems will require
a large number of observations ({s, a,R(s, a)}). Instead, we
consider obtaining a low-fidelity (noisy) evaluation of the
policy by providing it with a limited budget of resources for
evaluation. The key idea is that although low-fidelity evalua-
tions may be noisy, they may still be reflective of the quality of

the designs. For instance, it may be possible to use low-fidelity
measurements to discard low-performing designs and reserve
the high-fidelity evaluations for more promising design con-
figurations. This manner of multi-fidelity evaluations boosts
sample efficiency by ensuring that a large number of samples
is not spent for accurately evaluating clearly inferior design
configurations. Such problems of optimization of expensive
functions, exploiting the multi-fidelity problem is common in
neural network HyperParameter Optimization problems (HPO)
where θ would be the set of hyperparameters to be tuned, f()
being the validation performance. Even in such cases, multi-
fidelity measurement of f() can be achieved by limiting the
number of training epochs. One prominent HPO algorithm in
that context is HyperBand, discussed in III-C.

Though HyperBand has been proven to show good perfor-
mance, adaptability as well as scalability in high-dimensional
spaces, it does not attempt to learn across configurations. For
instance, once a design configuration is evaluated using the
multi-fidelity approach described above, one would need to
redo the evaluation for another configuration, even if it is
highly similar to the former. We address this by using UPN,
which trains the required configuration while simultaneously
updating the policy parameters of neighboring configurations.
As a result, when applying the multi-fidelity approach to
neighboring configurations, we obtain a much more reliable
estimate of its performance.

In the original HyperBand (Table I), filtering is done from
left to right (F = 3 to F = 0), starting with low-fidelity
filters, and subsequently moving to high-fidelity ones. Since
the nature of low-fidelity filters is to obtain noisy evaluations
of a number of configurations, and that of high-fidelity filters
is to obtain more reliable evaluations of specific configura-
tions, using UPN in this same direction may not be the best
choice. Through ECoDe, we propose that UPN if instead
was used in reverse (right to left), it would start with high-
fidelity evaluations on a smaller number of configurations,
using which policies corresponding to multiple configurations
would be updated (as UPN tends to train policies for multiple
configurations simultaneously). As a result, the evaluations of
more number of configurations in subsequent lower fidelity
filters would be more reliable, thereby further improving the
sample efficiency of the co-design process.

To summarize, ECoDe evaluates and filters out ineffective
co-designs and continually learns from successful co-designs
to achieve good task performance in a sample-efficient manner.
Our proposed method is provided in Alg. 1.

V. EXPERIMENTS AND RESULTS

A. Environments

Our simulation environments consist of 2 modified Clas-
sic control and 5 modified Mujoco [16] environments from
OpenAI Gym [4] (shown in Fig. 2).
CartPole (Classic): We use the standard CartPole-v1 environ-
ment which has a cart balancing a pole of a given length, and
allow for the pole length to be changed in the range [0.1, 3]



Algorithm 1 ECoDe (Efficient Co-Design)
Input: M (maximum configurations), η (early-stopping aggressiveness)
Initialize Fmax = ⌊logη(M)⌋ , B = (Fmax + 1)M
//Fmax + 1: maximum number of filters, B: budget per filter
for F ∈ {0, 1, ....., Fmax − 1, Fmax} do
// Begin Successive Halving with calculated n and p values.

n =
⌈

B
M

ηF

(F+1)

⌉
//n : configurations per filter

p = Mη−F //p : resource units per filter
T = get hyperparameter configuration(n)
for i ∈ {0, ....., F} do

ni =
⌊
nη−i

⌋
//ni : configurations per stage

pi = pηi //pi : resource units per stage
L = {run UPN(t, pi) : t ∈ T}
T = top-k(T, L, ⌊ni/η⌋) // best configurations

end for
end for
return t ∈ T with the largest average reward

Fig. 2: OpenAI Gym Environments (clockwise from top) -
CartPole, Acrobot, Hopper, Humanoid, Ant and Walker2D.

to maintain the pole upright. Additionally, we modified the
reward function to impose a ground truth length of 1.425.
Acrobot (Classic): We use the Acrobot-v1 environment,
where the agent’s goal is to provide enough actuation at the
intersection of the two links to get the second link to reach
the target height. The configurable design parameters are the
link lengths and their masses, which are both varied between
0.1 to 2.

Our simulation environments consist of 2 standard Classic
control and 5 standard Mujoco [16] environments from Ope-
nAI Gym [4], discussed below and shown in Fig. 2.
Hopper (Mujoco): We use the Hopper-v3 environment in
which the 2D one-limb robot has a torso, thigh, leg, and foot.
The Foot and Leg lengths are allowed to vary between 1/4th
and 4 times their original lengths.
Walker2D (Mujoco): We use the Walker2D-v3 environment
in which the two-limb robot contains 4 main parts: a torso,
two thighs, two legs, and two feet. All these parts are allowed
to vary within ±20% of their original values.
Ant (Mujoco): We use the standard Ant-v3 environment in
which the agent is a 3D ant-like four-limb robot with a
spherical torso. The design parameters are the link lengths
of all 4 limbs. The range is chosen to be between 0.1 to 0.5.

Humanoid (Mujoco): We use the standard Humanoid-v3
environment in which the agent is a 3D human-like two-legged
and two-armed robot. We have considered thigh, shin, and feet
lengths of both leg lengths as the design parameters that can
vary between 0.5 to 1.5 times the default values.
MaxHumanoid (Mujoco): This environment is similar to the
original Humanoid except that we allow for 16 configurable
parameters. This presents a highly complex co-design problem
where the agent has to choose length and thickness values for
all 12 parts in the four limbs with a range similar to that of the
original Humanoid environment (0.5 to 1.5 times the default
values).

The goal of all the Mujoco agents is to move forward
without falling to collect the maximum reward.

B. Baselines

We evaluate our method against the following baselines:
RandomSearch: We randomly sample parameters from a
uniform distribution within their ranges. This provides a lower
bound on the expected performance of other methods.
Transform2Act [21]: Transform2act uses graph-based repre-
sentation for agents with limbs represented as edges and joints
as nodes in a 3-stage policy optimization - first for skeleton
design, second for parameter learning, and then for learning
control policy. In our implementation of Transform2Act, we
freeze Transform2act’s first stage as we assume the skeleton
to remain the same.
nLimb [12]: nLimb uses a Gaussian mixture model to param-
eterize the design distribution and maintains multiple different
hypotheses for designs that may be promising. Their method
maintains a uniform distribution across components, and half
of them with the lowest rewards are eliminated after every N
iterations.
HyperBand [8]: In original form, without UPN.
Coadaptation [9]: This approach utilizes the Q-function of a
trained policy to evaluate the suitability of given design param-
eters. Subsequently, it employs particle swarm optimization
in conjunction with exploration heuristics to identify the next
viable design parameters for evaluation.

We compare these methods with our proposed method
(discussed in IV) to make the co-optimization sample efficient.
All methods are given a budget of a fixed number of steps that
can be taken in an environment.

C. UPN Framework

The UPN agent architecture we use is a dense network
with 3 hidden layers, each containing 64 nodes. The input
for the network is the concatenated vector of observations (o)
for the task with design parameters (θ) for the agent and the
environment. The output of this network produces a policy
distribution (mean and std. variation) with the size of action
space for the environment.

D. Policy Performance

Table II shows the average rewards accumulated by the best
parameter-policy combinations for different environments and



by different algorithms. We used a budget of 2.13 million
steps for CartPole, Acrobot, Hopper, and Walker2D and an
increased 2.84 million steps for Ant and 7.11 million steps for
Humanoid, as Ant and Humanoid are more complex control
problems.

Meth
The results in Table II represent an average of 10 indepen-

dent trials along with the standard errors. We implemented
Transform2Act and nLimb on the Hopper, Walker2D, and
Ant environments and we extended their application to the
Humanoid environment. We implemented Coadaptation from
scratch and hence were able to compare it with ECoDe on all
the environments. Except for CartPole environment, ECoDe
significantly outperforms the second-best (i.e. with p < 0.05)
in all other environments. In CartPole, ECoDe is also better
than the second-best but at a slightly reduced significance
level (i.e. with p = 0.06). This shows the utility of knowledge
propagation via UPN and the efficient use of environment
interactions through multi-fidelity evaluations.

Surprisingly, Transform2Act sometimes performed worse
than Random Search, possibly due to it trying to solve a much
harder problem (i.e. learning a policy to choose good designs,
rather than directly learning a good design). In Hopper, Hu-
manoid & MaxHumanoid, the default reward function is such
that the agents move forward while balancing themselves with
minimal control maneuvers. ECoDe seems to focus on getting
the balance first by getting the physical design parameters in
the right zone (e.g., increase the foot size) and then choosing
the best parameter by finding the one easiest to control. This
intuitive breakdown of the design process is akin to what an
expert might have done.

E. Design Search Optimality

The results in Table II showcase ECoDe’s ability to find
co-designs that perform significantly better compared to other
algorithms across multiple environments. Table III shows the
corresponding co-design pole lengths for the CartPole environ-
ment as found by different algorithms when given different
amounts of sampling budget As seen, even across different
sampling budgets, ECoDe found designs, which are closest to
the ground truth optimal length of 1.425.

With abundant samples and a powerful network that can
learn intricate control rules, the length selection seems less
important for achieving higher rewards. However, ECoDe still
provides an optimal length closest to the ground truth.

F. Computational Efficiency

The total number of agent-environment interactions (the
most time-consuming aspect in RL) for ECoDe is O(ωnlogn)
where n is the number of different configurations that we
must try and ω is the minimum number of agent-environment
interactions that must be allowed. Thus, we see that it uses
the total resources quite efficiently. Table ?? shows the wall-
clock time for each environment when run on a Dell R6525
2.25GHz CPU with 64 cores and 1TB RAM machine.

Fig. 3: A visualization of the simplification of design by
ECoDe from the original Acrobot (left) to the simplified
Acrobot (right), where the control input is applied at the
intersection of the two links. The simplified Acrobot (right)
resembles a Pendulum and the control problem with this
design is much easier to solve as the first link is small
compared to the original Acrobot design (left).

Amongst all the baselines, Transform2Act, nLimb, Coad-
aptation, and ECoDe collected much higher average rewards
across multiple environments, possibly owing to the policy-
transfer mechanisms associated with them. However, while
ECoDe took 1.5 hours to train the bipedal walker in the
Walker2D environment, Transform2Act required 6 hours, and
the average performance of their co-design is still sub-par
(Table II). We observe a similar trend in Hopper and Ant
environments as well. In contrast, nLimb and Coadapta-
tion matched our computational efficiency, although ECoDe’s
multi-fidelity based resource allocation mechanism facilitated
collecting high average rewards in similar time.

G. Design Simplification

A rather more interesting result is observed in the Acrobot
environment. The best-performing co-design configuration
happens to find a design that reduced the more difficult two-
link Acrobot control problem to a simpler one-link control
problem by choosing the smallest length value for the first
link (Fig. 3).

H. Constrained Design

We experimented with breaking the robot’s symmetry in
the Ant environment by removing the front left leg’s ground
contact link (Fig. 4). While other methods struggled to identify
designs that walk, our method found good co-designs within
a 2.8 million steps budget. The resultant design had the other
front leg (i.e., right leg) shortened and the hind legs elongated,
resembling a Kangaroo rat. This bio-mimetic design exhibits
jumping and crawling behaviours. Although the control policy
can be further refined, the design appears near-optimal given
the limited time steps.

I. Multi-terrain Performance

Furthermore, we applied our method to identify good co-
designs in varying terrains. As such, we used the original
Humanoid environment and modified it to create an incline
and decline surface with a slope of 15°. While the default
design barely managed to stay upright in such conditions, our



CartPole Acrobot Hopper Walker2D Ant Humanoid
Random Search 328.4 ± 4.7 -434.6 ± 2.9 587.1 ± 21.2 138.3 ± 3.7 -1183.1 ± 22.1 774.1 ± 28.8
HyperBand [8] 432.3 ± 9.1 -33.2 ± 7.6 823.8 ± 28.4 428.7 ± 4.1 -33.4 ± 2.7 856.8 ± 18.8

Transform2Act [21] - - 545.1 ± 2.8 614.1 ± 4.3 533.3 ± 9.3 613.2 ± 8.1
nLimb [12] - - 967.3 ± 5.4 1344.5 ± 6.6 691.9 ± 5.7 645.5 ± 3.2

Coadaptation [9] 444.4 ± 5.9 -29.5 ± 2.8 867.5 ± 71.4 1568.9 ± 198.3 1018.3 ± 203.9 819.4 ± 26.9
ECoDe 464.1 ± 7.9 -12.9 ± 2.4 1089.4 ± 7.1 3297.4 ± 179.6 3419.1 ± 128.2 4110.3 ± 179.5

TABLE II: Average Performance across 10 different runs of the best design-policy combination across various environments
and algorithms. All algorithms have been given the same sampling budget (2.13 million for all, except for the Ant, which uses
2.84 million steps, and Humanoid, which uses 7.11 million steps).

Pole Lengths per Sampling Budgets
Methods 710K 2.13M 2.84M

RandomSearch 1.51± 0.1 1.55 ± 0.1 1.86 ± 0.1
HyperBand 1.11 ± 0.2 1.17 ± 0.1 1.11 ± 0.2

ECoDe 1.45 ± 0.1 1.5 ± 0.1 1.34 ± 0.1

TABLE III: Design analysis (as mean ± standard error) of
Random Search, HyperBand and ECoDe algorithms in Cart-
Pole Environment over 10 trials when trained with a budget
of 710K steps, 2.13M steps and 2.84M steps.

Environment Runtime (in hours)
CartPole 0:35
Acrobot 0:45
Hopper 1:30

Walker2D 1:30
Ant 6:45

Humanoid 8:30
MaxHumanoid 9:00

TABLE IV: Total runtime per environment

co-designs were able to walk up and down the slope with only
a budget of 10.2 million steps, and their average performance
is reported in Table V. Most notably, these co-designs were
identified to be the best from a pool of 547 candidates.

Moreover, on the flat surface, our method was able to
identify functional but non-intuitive asymmetrical designs,
showing the existence of asymmetrical designs that can walk
as well as the symmetrical design. The chosen designs exhibit

Fig. 4: Illustration of the initial ant robot with a broken
limb design (left) when the front left limb is severed (as
indicated by the blue bounding box). The simple and non-
intuitive co-design (right) suggested by ECoDe, shows short-
ened front right limb (indicated with the orange bounding box)
and lengthened hind limbs (indicated with yellow and grey
bounding boxes) resembling a Kangaroo rat.

(a) Incline (b) Decline

Fig. 5: ECoDe has identified that to walk along: (a) Incline
plane with a 15°slope, it is preferable to have a larger foot
on the trailing leg (right leg) to balance the body with only
the forward leg (left leg) being used to move the humanoid
forward. (b) Decline plane with a 15°slope, it is preferable to
have a longer trailing leg (right leg) relative to the forward
leg (left leg), and each leg is swung forward in an alternate
sequence, as in regular human walking.

a characteristic feature on flat and inclined surfaces, wherein
one leg is solely used for balancing while the other drags the
body forward. Conversely, on the declined surface, we observe
a longer trailing leg and human-like walking. (Fig. 5).

Additionally, in Fig. 6 we present a histogram obtained by
running the fully trained UPN over 1000 designs which are
randomly sampled from a uniform distribution within the 0.5
to 1.5 times range of default design values. It is hence evident
that a large portion of the co-designs are adequately good,
however, only a small number of the better ones can produce
the highest task performance.

Original Design Co-Design
Flat Terrain 5174.1 ± 86.7 6133.8 ± 291.3

Inclined Terrain 4731.3 ± 35.3 5444.7 ± 80.8
Declined Terrain 5178.5 ± 44.5 5852.4 ± 77.5

TABLE V: Average Rewards (as mean ± standard error) of
the original Humanoid design compared with ECoDe’s Co-
Designed Humanoid across varying terrain conditions com-
puted across 10 independent trials when a 10.2 million steps
budget is provided.



Fig. 6: Histogram of average reward collected by the fully
trained ECoDe over 1000 16-dimensional humanoid designs
randomly sampled from a uniform distribution.

Fig. 7: Average cumulative difference (solid lines) and the std.
error (shaded areas) between trajectories (Euclidean distance
between states) trained on two nearby sets of parameters
(θ, θ′s) for Walker2D environment.

J. Scalability

We use the MaxHumanoid Environment discussed in V-A
to create a humanoid with 16 configurable design parameters,
which include individual links on both hands and legs. Re-
markably, with the same budget of 10.2 million timesteps, our
agent was able to identify the best co-design and learn the
complex task of humanoid walking.

K. Stability of Optimal Designs

Our method also showcased remarkable stability when
a 2% uniform noise is added to all the identified design
parameters and evaluated over 10 episodes. The mean and
standard deviation for the 6-dimensional and 16-dimensional
configurable design Humanoids was recorded as 6203.3 ±
208.4 and 4885.7 ± 40.3. Interestingly, we see a high but less
stable performance for 6d optimization but a more stable but
lower performance for 16d optimization. It may show further
room for improvement for the 16d case where more samples
would have led us to a better but sharper performance region.

L. Justification for Algorithm Choice

1) UPN Assumption: : Except for a few boundary cases
(where setting a parameter to 0 may imply a different con-
figuration or a different dynamics being at play), the nearby
policies in continuous parameter space are similar. To test
this hypothesis, we ran an experiment using the Walker2D

environment. First, we sample a random set of design pa-
rameters θ and then engineer new samples θ′ such that they
are at different levels of nearness (||θ − θ′||2 = [0.001, 0.1])
to the initial sample θ. We independently train θ and θ′

without UPN. Fig. 7 shows the average cumulative difference
between trajectories between the policies trained on θ and
those trained on θ′ in their respective environments, averaged
over 5 random parameter sets. As evident from Fig. 7 when
||θ − θ′||2 < 0.01, trajectories are almost identical, whereas
larger differences between the parameter sets showed higher
trajectory divergence, validating the assumption made by UPN
that control problems between close sets of design parameters
are not very different.

Walker2D Ant Humanoid
UPNHB 2096.27 ± 244.6 3212.83 ± 116.6 2587.86 ± 343.5
ECoDe 3297.41 ± 179.6 3419.03 ± 128.2 4110.32 ± 179.5

TABLE VI: Average performance comparison (as mean ±
standard error) of UPNHB (a naive UPN and HyperBand
combination) with ECoDe across the complex Mujoco envi-
ronments Walker2D, Ant, and Humaniod over 10 independent
trials when a 10.2 million steps budget is provided.

2) HyperBand Filter Order: : As hypothesized in IV, we
have experimentally observed that ECoDe performs better
than UPNHB (a naive combination of HyperBand and UPN)
because it shuns the undesirable bias. For example, while
UPNHB selects the best configuration from the right-most
(less explorative) filter, F = 0 (as shown in Table I),
ECoDe selects the best configuration from the left-most (most
explorative) filter, F = 3. Since in the latter case the best
configuration is chosen from a large number of initial config-
urations, it results in lower bias. We report the performance
difference between ECoDe and UPNHB in the most complex
environments like Ant and Humanoid in Table VI.

M. Sim-to-Real Transferibility

1) Reliance on Simulation Environment: Effectively trans-
ferring behaviors learned through simulation into real-world
robots has been demonstrated in multiple prominent works
including [3] [15] and [11]. While bridging the reality gap
is necessary to transfer behaviors learned in simulation to
reality, which is a challenge in itself, this work addresses the
preceding problem of how to derive reliable co- designs for
any given task in a sample efficient manner. Hence, through
simulated environments, this work explores diverse co-design
scenarios both for training and testing which can be extremely
challenging to set up in the real world.

2) Robustness of ECoDe: To study the robustness of our
method’s learned behavior, we introduced minor simulation
environment perturbations in the Ant environment by ran-
domly changing 5 parameters, i.e., sliding friction, torsional
friction, rolling friction, joint damping, and joint stiffness in
a ±5% range around their default values. We only noticed
a small variation in performance (within the 1.2% of the
original value). In these different environmental conditions, we



Fig. 8: The spectrogram plots of the averaged control signals
show that with the modified reward function (i.e. when no
penalty is applied for energy usage), all the limb’s movements
are in sync and thus would seem more natural. In contrast,
with the default reward function, each limb appears to have
different base frequencies and thus will lack any naturalistic
rhythm.

observed small changes in gait but no change in the agent’s
ability to walk.

3) Lack of Naturality in Agent’s Gait: We acknowledge
that we observed some seemingly unnatural movements of our
optimized agents. While that can partially be attributed to the
simplistic nature of the simulator, our analysis suggests that
the primary cause was the nature of the reward function used
(as presented in Fig. 8). The default reward function comprises
two elements: a reward for movement and a penalty for energy
usage. The latter minimizes joint movements, affecting the nat-
uralness of the agent’s movements. By removing this penalty,
we observed a noticeable improvement in the naturalness of
the movement. Hence, by adjusting rewards, we can effectively
tailor design outcomes for real-world applications where the
goals are almost always multi-objective. However, discussions
on designing reward functions for real-world application con-
texts extend beyond the scope of this paper.

N. Discussion

A natural extension of our work is to make it applicable for
free-form skeletal designing, which is an extremely challeng-
ing problem and will require innovations in the design iterator
that can handle a variable number of parameters as well as
in a transfer learning mechanism that can transfer control
policies across different skeleton structures. Other extensions
of our work can be towards making the co-design more robust

using sim2real strategies such as domain randomization, opti-
mization based on multi-objective criteria such as improving
naturalness in the movement, integrating the differential cost
of design changes for different parts, etc.

VI. CONCLUSION

We presented ECoDe, a multi-fidelity-based co-design
method that uses a transfer learning mechanism to effi-
ciently discover optimal design-control policy combinations
for robotic agent design. Specifically, we perform a multi-
fidelity search whilst warm-starting policies so that inferior
designs can be identified and discarded using fewer samples,
resulting in a sample-efficient co-design method. We evaluated
our method on 7 different robot design problems using realistic
physics simulators and the results show that on all occasions
ECoDe performed the best. An interesting future direction
may include going beyond just design parameters and adapting
ECoDe to co-design the skeletal structure as a whole.
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