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ABSTRACT

Snapshot compressive spectral imaging offers the capability to effectively capture
three-dimensional spatial-spectral images through a single-shot two-dimensional
measurement, showcasing its significant potential for spectral data acquisition.
However, the challenge of accurately reconstructing 3D spectral signals from 2D
measurements persists, particularly when it comes to preserving fine-grained de-
tails like textures, which is caused by the lack of high-fidelity clean image in-
formation in the input compressed measurements. In this paper, we introduce a
two-phase training strategy embedding high-quality knowledge prior in a deep
unfolding framework, aiming at reconstructing high-fidelity spectral signals. Our
experimental results on synthetic benchmarks and real-world datasets demonstrate
the notably enhanced accuracy of our proposed method, both in spatial and spec-
tral dimensions. Code and pre-trained models will be released.

1 INTRODUCTION

Hyperspectral images (HSIs) contain multiple spectral bands with more abundant spectral signatures
than normal RGB images, widely applied in image classification (Maggiori et al., 2017} [Li et al.,
2019)), object detection (Li et al., [2020; Rao et al., [2022), tracking (Van Nguyen et al., 2010; |Uzkent;
et al.,[2017), medical imaging (Lu & Fei, 2014} ul Rehman & Qureshil, 202 1)), remote sensing (Goetz
et al., [1985; [Lu et al., 2020), etc. To collect HSI, conventional imaging systems use spectrometers
to scan the scenes along the spectral or spatial dimension, which is time-consuming and limited
to static objects. Recently, snapshot compressive imaging (SCI) systems (Du et al., 2009; [Llull
et al.} 2013;|Cao et al.| [2016} |Luo et al.,2023) have obtained much attention to capture HSIs, among
which the coded aperture snapshot spectral imaging (CASSI)|Wagadarikar et al.| (2008b); Meng et al.
(2020c) stands out with impressive performance and efficiency. CASSI modulates the HSI signal at
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Figure 1: Comparisons with the previous reconstruction methods, and the visualization of learned knowledge.
The error map shows the absolute error between the reconstructed spectral image and the ground truth, where
brighter areas indicate larger error values. The zoomed parts in subfigures in (a) show several typical artefacts
we found in previous reconstruction methods, including distorted edges, blocking, blur and oversmooth. The
visualization of the learned knowledge in (b) further illilstrates the learned patterns facilitate image fidelity.
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different wavelengths and mixes all modulated spectra to generate a 2D compressed measurement.
Subsequently, reconstructing the 3D HSI cube from the 2D compressive measurements poses a
fundamental challenge for the CASSI system.

From traditional model-based methods Bioucas-Dias & Figueiredo|(2007)); Beck & Teboulle{(2009);
Yuan| (2016) to widely used learning-based methodsCharles et al.| (201 1)); Miao et al.| (2019); Meng
et al.| (2020b), CASSI reconstruction methods have been developed for years to recover high-quality
HSI signals. Recent studies adopt deep unfolding Wang et al.[(2022); [Cai et al.| (2022c)); Meng et al.
(2023)); |Dong et al.| (2023) framework with a multi-stage network to map the measurement into the
HSI cube. These deep unfolding networks are intuitively interpretable by explicitly characterizing
the image priors and the imaging system. Besides, these methods also enjoy the power of learning-
based methods (deep denoisers or prior networks) and thus have great potential. Furthermore, with
the help of the representation capabilities on the long-range dependency of the Transformer|Vaswani
et al.[(2017), the deep denoisers of unfolding networks can explore the spatial and spectral correla-
tions [Hu et al.[ (2022);|Cai et al.|(2022b)); Dong et al.| (2023)).

Previous reconstruction networks aim to recover the clean image from compressed measurement,
which encourages learning the local and non-local similarity in spatial and spectral dimensions from
measurement. However, there remains an intrinsic issue implied in the ill-posed CASSI inverse
problem, where the compressed measurement is severely degraded due to physical modulation, spec-
tral compression, and unpredictable system noise. Thus, the severe degradation mismatch leads to
insufficient authenticity and limited fidelity in the reconstructed images, such as distorted edges,
blocky patterns, blurring, and other artifacts (as shown in Fig.[T).

To solve the problem, in this paper, we leverage high-fidelity knowledge, i.e. discrete prototypes
learned from the uncompressed images, and explicit degradation information into the proposed
deep unfolding framework for spectral compressive image reconstruction. Specifically, we train a
lightweight counselor model by constructing a vector quantized variational autoencoder (VQ-VAE)
to learn high-fidelity knowledge from the ground-truth image space. Then, we proposed a U-net
bridge denoiser equipped with the mask-aware knowledge-assist attention (MKA) mechanism to in-
corporate multi-layer degradation information and high-fidelity prior knowledge in an elegant and
principal manner. Notably, our unfolding framework can absorb external prior knowledge from the
counselor model and the cascade degradation information to boost its reconstruction performance.
The main contributions we have made in this paper can be summarized as follows:

i) We propose a degradation-aware knowledge-assist deep unfolding framework using vector-
quantized high-fidelity HSI knowledge to guide the CASSI reconstruction.

ii) We propose a U-net bridge denoiser that integrates high-fidelity HSI knowledge and cas-
cade degradation information to guide the CASSI reconstruction, which is learned with a
VQ-VAE-based counselor network and a sophisticated mask cross encoder, respectively.

iii) Extensive experiments on the synthetic benchmark and real dataset demonstrate the supe-
rior accuracy of our proposed method both in spatial and spectral dimensions.

2 RELATED WORK

2.1 HYPERSPECTRAL IMAGE RECONSTRUCTION

Traditional model-based methods|Wang et al.|(2017);|Zhang et al.|(2019); Wagadarikar et al.[(2008al)
are mainly based on hand-crafted image priors, such as total variation |Yuan| (2016), sparsity |Kittle
et al.| (2010), low-rank [Liu et al.| (2019)), etc. While these methods have demonstrated theoretical
properties and interpretability, they require manual parameter tuning with low reconstruction speed
and suffer from limited representation capacity and poor generalization ability. Recently, deep learn-
ing methods have been used to solve the inverse problem of spectral SCI. The first popular branch
is Plug-and-play (PnP) algorithms [Chan et al.| (2017); Ryu et al.[|(2019); [Yuan et al.| (2020; |2021)),
which integrate pre-trained denoising networks into traditional model-based methods to solve the
HSI reconstruction problem, but suffering from fixed nature of pre-trained denoiser and limited per-
formance. The second branch of deep learning methods follows the End-to-end (E2E) training man-
ner, which usually employ a powerful network, such as convolutional neural network (CNN)|Cheng
et al.| (2022); [Lu et al.| (2020); [Hu et al.| (2022)) and Transformers |Cai et al.| (2022b3a)), to learn the
mapping function from measurements to desired HSIs. However, they learn a brute-force mapping
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ignoring the working principles of CASSI systems, thereby lacking interpretability and flexibility for
various hardware systems. To overcome these issues, Deep unfolding methods Meng et al.| (2020a);
Ma et al.| (2019); |Cai et al.| (2022c); |Dong et al.| (2023) take advantage of both model-based methods
and deep learning-based methods, which transfer conventional iterative optimization algorithms into
the multi-stage network. Each stage typically involves a linear projection and a single-stage network
that learns the underlying denoiser prior. Deep unfolding methods offer intuitive interpretability by
explicitly modeling image priors and the system. Moreover, they benefit from the power of deep
learning, presenting significant potential that remains partially untapped.

2.2 PROTOTYPE LEARNING FOR SCI

The key idea of prototype learning for SCI is to exploit the non-local similarity as prototypes across
images. In the SCI problem considered here, the non-local similarity can also be searched across
different frames. In previous methods, sparse representation with learned dictionaries has demon-
strated its superiority in SCI reconstruction, such as sparse dictionary (usually over-complete) learn-
ing |Aharon et al.| (2006), Bayesian dictionary learning |Yuan et al.| (2015), group-based sparse cod-
ing [Liu et al.| (2019). However, these methods usually require an iterative optimization to learn the
dictionaries and sparse coding or pay a price for running time in patch matching, suffering from high
computational costs. With the development of VQVAE Van Den Oord et al.|(2017), the first method
introduced a highly compressed codebook, is realizable to learn the representative prototypes with
a vector-quantized Autoencoder model. Unlike the large hand-crafted dictionary Jo & Kim| (2021)),
the learnable codebook automatically learns optimal elements and provides superior efficiency and
expressiveness, circumventing the laborious dictionary design|Zhou et al.| (2022). Inspired by proto-
type learning, this paper investigates a discrete proxy space for SCI reconstruction. Different from
existing methods, we exploit the discrete unpolluted iconic prototypes with a counselor model from
the ground truth video as external knowledge prior and aim to guide the reconstruction. Such de-
signs allow our method to take full advantage of the knowledge so that it does not solely depend
on the degraded compressed information, tightly fitting the spectral compressive imaging task and
significantly enhancing the robustness of face restoration.

3 PROPOSED MODEL

3.1 PROBLEM FORMULATION

The CASSI system aims to modulate different wavelengths in the spectral data cube and then in-
tegrate them into a 2D imaging sensor. The mathematical model of the single-disperser CASSI
(SD-CASSI) [Wagadarikar et al.| (2008a) sensing process is illustrated as follows. As shown in the
Fig.[2| (a), the original HST data, denoted as X € R">*#*B is modulated by the fixed physical mask
M € RY*H where W, H, and B denote the width, height, and the number of spectral channels,
respectively. The coded HSI data cube is represented as X'(:,:,b) = X(:,:,b) ©M,b = 1,2,...,B,
where © represents the element-wise multiplication. After light propagating through the disperser,
each channel of X' is shifted along the H -axis. The shifted data cube is denoted as X” € RW>H*5B,
where H = H + dp. Here, dp represents the shifted distance of the B — th wavelength. This process

can be formulated as modulating the shifted version X € RW *#*B with a shifted mask M € RW *H 5

where M (i, j,b) = M (w,h+dg). At last, the imaging sensor captures the shifted image into a 2D
measurement Y, calculated as

Y=Y X(;,:;,b) OM(:,:,b) +N, (1)

M=

b=1

where N € R"*# denotes the measurement noise. By vectorizing the spectral data cube and mea-
surement, that is « = vec(X) € R"”2 and y = vec(Y) € R"#, this model can be formulated as

- y=Az+n, (2)
where A € RWH*WHB denotes the sensing matrix (coded aperture) which is a concatenation of di-
agonal matrices, that is A = [Dy,...,Dp], where D}, = Diag(vec(M(:,:,b))) is the diagonal matrix
with vec(M(:,:,b)) as the diagonal elements. The sensing matrix A is a sparse matrix and AA"
is a diagonal matrix [Jalali & Yuan| (2019)). In this paper, we focus on the ill-posed HSI restoration

problem, recovering the high-quality image « from the compressed measurement y.



Under review as a conference paper at ICLR 2024

Mask Disperser (a) SD-CASSI System

pipersion ' ' n

Original Coded Shifted Monochromatic Coded Measurement
Hsl Data HS| Data Data Cube Camera

—

Modulate

—

Sampling

Mask (b) Deep Unfolding Network

Cross
{ Encoder |

Stage-1

DE-ADMM |
Projection |

- Reconstruction

Measurement

(e) Vector Quantization (VQ) VAE
; Phase-1
Zim L] - ol
> —> 1
Codebook

(c) DE-ADMM Projection

1

{ Phase-2

Figure 2: (a) The SD-CASSI forward process. HSI data cube is coded and compressed on a 2D sensor
plane. (b) Our unfolding framework. (c) DE-ADMM projection. (d) Mask cross encoder. (e) Vector quantized
Variational AutoEncoder (VQ-VAE). In phase 1, only VQ-VAE is trained in a self-supervised manner, both
input and output are clean HSIs. In phase 2, VQ-VAE is embedded into the unfolding framework and updates
its encoder parameter with other unfolding structures. Mask A and measurement y are input in this phase.

3.2 THE UNFOLDING ADMM FRAMEWORK

HSI reconstruction problem in Eq. 2] can be typically solved by convex optimization through the
following objective:

1
:i::argminEHy—AwH%—i-lR(w), 3)
x

where A is a noise-balancing factor. The first term guarantees that the solution & meets the obser-
vation, and the second term R(x) refers to the image regularization.

ADMM (Alternating Direction Method of Multipliers) Boyd et al.| (201 1)) breaks down the original
optimization problem into multiple sub-problems and updates them alternately, leading to excel-
lent convergence, error reduction, reduced computational and storage complexity. Here, we choose
ADMM as our optimization framework |[Zheng et al.|(2021). Therefore, the problem in Eq. @ can
be written as:

| 2
2 = argming || Az —yl3+ 5 - ()|, @
=2 2 ’
2
2K = argminAR(2) + g Hz - (mk+1 +uk)‘ )’ 5
S (wkﬂ _zk+1) 7 (6)

where z is an auxiliary variable, uw is the multiplier, p is a penalty factor, and k is the in-
dex of iterations. Recalling the proximal operator |Parikh et al.| (2014), defined as proxg(v) =

argming(x)+ 1|z — vl[3, Equ. [5| is the Euclidean projection with a closed-form solution, i.e.,
k! = (ATA—FpI)f1 [ATy+p (F—u*)]. Equ |§| can be viewed as a denoiser 2. Further-
more, recalling that AA T is a diagonal matrix for image-plane coding, (AT A+ p1I) ! can be calcu-
lated efficiently using the matrix inversion lemma (Woodbury matrix identity) as (ATA +pI ) o
p'I—pTtAT(I 4—pAAT)7l Ap~!. Then the Euclidean projection can be simplified and the
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final solution is

! = (zk —uk) +AT [y —A (zk —uk)} @ [Diag (AAT) +p] , (7
# = g (2 b)), (8)
S R (mk+1 7Zk+1) : 9)

where Diag(-) extracts the diagonal elements of the ensued matrix, @ denotes the Hadamard divi-
sion, and Z is the denoiser of the k — th stage. Here, the noise penalty factor p is tuned to match
the measurement noise. Considering the projection step Equ. |/} assisted by deep learning, we can
correct this step as follows:

21 — 2k + DE(AT (y - Az%))DE (Diag (AAT)), (10)
k p—

where z;, (zk —uk ) , and DE(-) denotes the deep learning enhancement in ADMM, implemented
by a neural network consisting of a depthwise separable convolution and a GELU Hendrycks &
Gimpel| (2016)) operation. This enhancement aims to use deep linear and non-linear operations, as
illustrated in Fig. [2] (c), to further correct the gradient descent direction in ADMM and estimate the
influence of noise in the diagonal matrix. Thus, we name this step Deep Enhanced ADMM (DE-
ADMM) Euclidean Projection. The overall unfolding framework is shown in Fig.[2|(b), mask A and
measurement y are inputs of the network, following the Equ. and 9] we acquire the first stage
output z' and residue w'. The first stage denoiser is a pre-trained VQ-VAE with some fixed mod-
ules. The intermediate variable F, will be used as prior knowledge in the later stages. Other stage
denoisers are U-shape networks, receiving cross space mask features and prior knowledge. There-
fore, we will next introduce how to learn the cross-space mask features and high-fidelity knowledge
priors, and then propose a novel scheme to integrate them to facilitate denoising and reconstruction.

3.3 MASK-AWARE HIGH-FIDELITY KNOWLEDGE LEARNING

3.3.1 MASK CROSS ENCODER

The mask is a crucial component in SCI reconstruction as it provides the degradation details in
SCI measurement. However, establishing the relationship between the degradation information and
the mask in compressed measurements can be challenging. To address this, we propose a Mask
Cross Encoder (MCE) that extracts the Cross-Space Mask Feature from two Euclidean spaces:
the observation and compressive domains. As shown in Fig. E] (d), the mask (A) and compressed
mask (Diag(AAT)) are fed into a dual-path network respectively, and then two kinds of information
Fya1 = Conv(Sigmoid(Diag(AA ")) and Fp = Conv(Sigmoid(A)) are concatenated and fused as:

Fiusion € RF*WXC = De fConv(DConv(Concat (Fy,Fys7)))

where DConv refers to the dilated convolution network, which effectively increases the receptive
field while minimizing the number of parameters. DefConv denotes the deformable convolution,
which learns offsets based on object shapes within images, allowing for the extraction of more
intricate information compared to vanilla convolution. In this way, the mask-aware features across
two Euclidean spaces are fused and aligned to guide the SCI reconstruction.

Then we use the pixel unshuffle (PU) operations to obtain the multi-level mask-aware representations
by zooming feature size. Each PU operation rearranges elements, transforming a tensor of shape
HxWxCto % X % x 4C. As shown in Fig. [2|(d), two PU layers are employed, and the outputs
contain three multi-scale mask-aware features, stated as:

; Frusion if i=1

Fiy = { o 1

M {PU(FA’4 Bifi>1
To this end, MCE encodes mask features into hierarchical representations and will facilitate SCI
reconstruction by integrating the degradation information.

H w i1
i T x —x471C .
Fl, e R2-1731 i=1,2,3.

3.3.2 VECTOR QUANTIZATION FOR HIGH-FIDELITY KNOWLEDGE LEARNING

In previous SCI reconstruction methods, the input typically consists of compressed measurements
and masks that lack local textures and details. This limited information results in the lack of high-
fidelity natural image prior knowledge for the reconstruction. Thus, we aim to solve this prob-
lem using discrete representation to learn high-fidelity knowledge from the uncompressed domain.
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Figure 3: (a) The bridge U-Net. Each bridge module is composed of several convolution layers. The mask
features obtained by the mask cross encoder will be sent into each encoder and decoder for cross-space recon-
struction. (b) The Mask-aware Knowledge-assist Attention module (MKA), where the mask features Fy; and
prior knowledge F; are integrated through cross attention.

Specifically, we design a two-phase vector quantized variational autoencoder to learn and integrate
the discrete unpolluted knowledge.

Phase 1: We aim to learn the prior high-fidelity knowledge by a lightweight counselor model in a
self-supervised manner, which encodes clean HSI data a into F, by the encoder E, then reconstructs
Z from F, by the decoder D. Specifically, as shown in Fig. 2| (e), we first encode the x € RWxHxB
into latent feature F, € R"*"*¢ output by the ADMM projection. Then, we quantize the continual
feature F, as F, € R™*7xd by replacing the features of each position with its nearest prototypes in

the codebook € = {Ck c R4 }2’:0 along spatial dimension, formulated as:

Fg'j ) = arg min‘
€€

-,

Then the quantized feature F, is decoded into reconstruction & through decoder D. The training
objective for optimizing VQ-VAE and codebook can be formulated as:

. 2
o%odebook = ”fC 758”1 + ” Sg (Fe) 7F!1||% +ﬁ ||Fe —Sg (Fq)||27

where sg(+) stands for the stop-gradient operator and f3 is a trade-off weight. The first term of the
objective aims to measure the reconstruction loss and the rest terms aim to regularize the high-
fidelity prototypes in codebooks. The encoder-decoder network is implemented by an elegant U-
Net, detailed in Section[3.4.1] The counselor model is inserted into the first stage of the unfolding
framework as the first denoiser and shares the quantized F, and framework with denoisers in the
later stages.

Phase 2: At the previous phase, the high-fidelity prototypes learned in a self-supervised manner are
reckoned as prior knowledge in the successive unfolding stages to reconstruct the high-quality HSI
data. Fixing the decoder and codebook, we aim to leverage knowledge for training an unfolding
network to reconstruct HSIs from measurement. In the second phase, the codebook and decoder are
fixed, while the encoder adapts its parameters to encode !, which can be recognized as the noisy
HSI. Thus, the training process in this phase is relatively easier compared to directly inputting the
measurement. Notably, the training objective in the second phase only contains the reconstruction
loss for denoiser updating.

3.4 MASK-AWARE KNOWLEDGE-ASSIST DENOISING
3.4.1 OVERVIEW OF THE DENOISER: BRIDGE U-NET

Obtained the mask-aware features and high-fidelity prior knowledge, how to make good use of them
remains unsolved. Therefore, we propose a U-Net-shaped framework for denoising with information
filtering bridges between the hierarchical symmetric encoders and decoders. Instead of using a direct
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skip connection, we implement a bridge module including several convolution layers to aggregate
information from each spatial level and filter unimportant information. Furthermore, the features
from the encoder and the filtered features of a higher-level bridge are concatenated and fused as a
‘clean’ residual information for decoding. As shown in Figure 3| (a), the multi-level mask features
and quantized features are integrated for better reconstruction, implemented with the proposed mask-
aware knowledge-assist attention module in transformer encoder and decoders.

3.4.2 LEVERAGING THE MASK AND HIGH-FIDELITY INFORMATION INTO TRANSFORMER

In the Transformer block, we introduce the multi-scale mask features F;, and quantized high-fidelity
HSI feature F into the vanilla multi-head attention, named Mask-aware Knowledge-assist Atten-
tion module (MKA). As shown in the Fig. E] (b), the MKA encodes input U; by 1 x 1 convolu-
tions and deformable convolutions into query (Q), key (K) and value (V) (with the same size as
U;). Here, we implement a cross attention, i.e.modulate K with selected high-fidelity HSI feature
Sigmoid(Conv(F,)) and modulate V with mask feature F}, while keep Q unchanged. The Sigmoid
and convolution transform F, into a proper latent space to interact with K. The MKA can be formu-
lated as:

MKA(U;) = W1V © Softmax(K © Q/at) (11)
Q = W (W2Norm(U;) +b9), (12)
K = W5 (WX Norm(U;) + b5) © Sigmoid (W), (13)
V = W% (WYNorm(U;) + b)) ©F,, (14)

where W, and W, represent weights of bias-free convolution, W, b, are weight and bias of the
deformable convolution, FA"/I,i = 1,2,3 denotes the mask feature of different spatial levels, and F; is
the quantized feature which refers to the learned prior knowledge. Leveraging mask features enables
the encoder and decoder to make the most use of degradation information at each spatial level and
align the position of the mask-relative noise on x*. The high-fidelity knowledge learned from the
uncompressed images provides guidance for high-quality reconstruction, as it preserves detailed GT
features. In summary, the MKA module helps to focus on relevant information instead of falling
into the noisy HSI data itself while considering the information of mask and prior HSI knowledge,
investigating relationships among these features.

4 EXPERIMENTS

We conduct experiments on both simulation and real HSI datasets. Following the approaches
in Meng et al.|(2020bza); [Huang et al.| (2021)); |Cai et al.| (2022b), we select a set of 28 wavelengths
ranging from 450-650nm by employing spectral interpolation techniques applied to the HSI data.

4.1 EXPERIMENTAL SETTINGS

Simulation and Real Datasets: We adopt two widely used HSI datasets, i.e., CAVE |Park et al.
(2007) and KAIST |Choi et al.[(2017) for simulation experiments. The CAVE dataset comprises 32
HSIs with a spatial size of 512 x 512. The KAIST dataset includes 30 HSIs with a spatial size
of 2704 x 3376. Following previous works Meng et al.[(2020bja); Huang et al.| (2021)); |Caz1 et al.
(2022b)), we employ the CAVE dataset as the training set, while 10 scenes from the KAIST dataset
are utilized for testing. During the training process, a real mask of size 256 x 256 pixles is applied.
In our real experiment, we utilized the HSI dataset captured by the SD-CASSI system in Meng et al.
(2020b)). The system captures real-world scenes of size 660 x 714 x 28 with wavelengths spanning
from 450 to 650 nm and dispersion of 54 pixels.

Implementation Details: For the codebook settings, the item number N of the codebook is set to
4096, and the code dimension d is set to 112. In the first phase of training, the trade-off weight
B = 0.25. For all phases of training, we use the Adam [Kingma & Ba|(2014) optimizer with a batch
size of 4. and set the learning rate to 4 X 10~*. PSNR and SSIM Wang et al.| (2004) are utilized
as our metrics. Our method is implemented with the PyTorch framework and trained using four
NVIDIA RTX3090 GPUs.
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Table 1: The average results of PSNR in dB (top entry in each cell), SSIM (bottom entry in each
cell) on the 10 synthetic spectral scenes.

Algorithms Scenel Scene2 Scene3 Scene4 SceneS Scene6 Scene7 Scene8 Scene9 ScenelO | Avg
TwIST 25.16  23.02 2140  30.19 2141 20.95 2220  21.82 22.42 22,67 | 23.12
0.700  0.604  0.711 0.851 0.635 0.644  0.643 0.650  0.690 0.569 | 0.669

GAP-TV 26.82  22.89 26.31 30.65 23.64 21.85 2376 2198 22.63 23.10 | 24.36
0.754  0.610 0802 0852  0.703 0.663 0.688 0.655 0.682 0.584 | 0.669

DeSCI 27.13 23.04  26.62 3496 23.94 22.38 24.45 22.03 24.56 2359 | 25.27
© 0.748 0.620  0.818 0.897 0.706  0.683 0.743 0.673 0.732 0.587 | 0.721
HSSP 31.48 31.09 28.96 3456  28.53 30.83 28.71 30.09 30.43 28.78 30.35
0.858 0.842  0.823 0902  0.808  0.877 0.824  0.881 0.868 0.842 | 0.852

DNU 31.72 31.13 29.99 3534 29.03 30.87 28.99 30.13 31.03 29.14 | 30.74
0.863 0.846  0.845 0.908 0.833 0.887 0.839  0.885 0.876 0.849 | 0.863

32.63

0.915 0.898  0.925 0964  0.882  0.937 0.886 0923 0911 0.925 0.917

\
DGSMP ‘ 33.26 32.09 33.06  40.54 28.86 33.08 30.74 31.55 31.66 31.44

\
35.14 35.67 36.03  42.30 32.69 3446  33.67 32.48 34.89 32.38 ‘ 34.97

Ours-9stg

0969  0.981 0.979 0992 0977 0978 0970 0978  0.983 0.967

HDNet
0.935 0.940  0.943 0.969 0.946 0.952 0.926 0.941 0.942 0.937 0.943
MST++ 35.40 35.87 36.51 42.27 32.77 34.80 33.66 32.67 35.39 3250 | 35.99
0.941 0.944  0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.951
CST-L+ 35.96 36.84 38.16 4244 33.25 35.72 34.86 34.34 36.51 33.09 36.12
0.949 0.955 0.962 0.975 0.955 0.963 0.944 0.961 0.957 0.945 0.957
DAUHST-9stg 37.25 39.02 41.05 46.15 35.80 37.08 37.57 35.10  40.02 34.59 38.36
0.958 0.967 0.971 0.983 0.969 0.970 0.963 0.966 0.970 0.956 | 0.967
DADF-Net (Plus-3) | 37.46 39.86 41.03 45.98 35.53 37.02 36.76 34.78 40.07 34.39 38.29
0.965 0.976 0.974 0.989 0.972 0.975 0.958 0.971 0.976 0.962 0.972
RDLUF-MixS2-3stg | 36.67 38.48 40.63 46.04 34.63 36.18 35.85 34.37 38.98 33.73 37.56
0.953 0.965 0.971 0.986 0.963 0.966 0.951 0.963 0.966 0.950 | 0.963
Ours-3stg 36.86 38.46 40.83 45.92 35.01 36.43 36.41 34.90 39.31 33.80 | 37.90
0.959 0.967 0.974 0.988 0.967 0.971 0.958 0.968 0.971 0.956 | 0.969
RDLUF-MixS2-9stg | 37.94 40.95 43.25 47.83 37.11 37.47 38.58 3550  41.83 35.23 39.57
0.966 0.977 0.979 0.990 0.976 0.975 0.969 0970  0.978 0.962 0.974

37.98 4120 4334 47770 37.16 37.82  38.61 3644  42.64 35.29 ‘ 39.82

Spectral Curves

RGB Reference TwiST DeSCl MST++ CST-L+ DADF-Plus-3 DAUHST-9 RDLUF_MixS2-9 Ours-9stage Ground Truth

Figure 4: The synthetic data comparisons. 4 out of 28 wavelengths are selected to compare visually. ‘Corr’
is the correlation coefficient between one method curve and the ground truth curve of the chosen (green box)
region. Our method has a more accurate wavelength curve than others.

4.2 COMPARE WITH STATE-OF-THE-ART

We compare our proposed method with recent state-of-the-art (SOTA) methods including deep un-
folding series RDLUF-MixS2 |Dong et al.|(2023)), DAUHST [Cai et al.|(2022c), end-to-end designed
networks DADF-Net |Xu et al.| (2023), CST |Cai et al.| (2022a), MST |Cai et al.| (2022b)), HDNetHu
et al.| (2022) and traditional model-based methods TwIST Bioucas-Dias & Figueiredo (2007) and
DeSCI |Liu et al.[ (2019) on both synthetic and real datasets. Other methods like GAP-TV |Yuan
(2016), HSSP |Wang et al.| (2019), DNU Wang et al.| (2020) and DGSMP |Huang et al.| (2021) are
compared on synthetic data.

Synthetic data: Table|I|shows quantitative comparisons on synthetic data that our proposed method
outperforms other compared methods. It surpasses the recent deep unfolding method RDLUF-
MixS2 both in the 3-stage (+0.34dB) and 9-stage (+0.25 dB) network according to average PSNR
and SSIM. The Fig. {f] shows the visual reconstruction results. 4 out of 28 wavelengths are selected
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RGB Images TwiST DeSCl MST++ CST-L+ DADF-Plus-3 DAUHST-3 RDLUF_Mixs2-3 Ours-3stage

Figure 5: The real data comparisons of 2 scenes. 4 out of 28 wavelengths are selected to compare visually.

to compare. The region within the red box was chosen to analyze the wavelength accuracy. ‘Corr’
is the correlation coefficient between one method and the ground truth of the chosen region. Ac-
cording to the ‘Corr’, our method (0.99) has a more accurate wavelength curve than others (0.98 for
RDLUF-MixS2). Moreover, as shown in Fig. [I] our method demonstrates a stronger capability to
reconstruct intricate details and textures, while previous methods tend to over-smooth the surface.
The visualization of the learned knowledge in (b) further illustrates the learned patterns facilitate
improved image fidelity. Each patch in (b) denotes a codebook value which is decoded to the natural
image domain to represent some basic texture elements.

Real data: Fig. [5] shows reconstruction results of multiple methods on the real scene ‘Lego Man’
and ‘Real Plant’. 4 out of 28 wavelengths are selected to compare visually. Unlike the previous
SOTA RDLUF-MixS2, we can see that our method can reconstruct fewer artifacts horizontally and
vertically. More results can be seen in the supplementary material (SM).

5 ABLATION STUDY

For the ablati q . Method PSNR (dB) | Params (M)
O L1 ADOn Sucy: we Ll our w/o MCE and ME 37.61 2317
o ft led.sym te“C “a‘g“fg ;ta w/o HFK in MKA 37.74 2.322
i unfolding stage modeis.  1a- plain ADMM projection 37.45 2.187
ble [5] shows our contributions yield /ot h trat 37.80 2430
lity performance improvements Wio Zwo-phiase Stalegy ’ '
quaity p ' Our Full Model 37.90 2325

We only show main module compar-
isons here, further ablation study can
also be seen in the SM. Row 4 in Ta-
ble[5]means that it only uses normal denoiser in the first stage unfolding and only trains the network
once from measure to reconstruction. F, is also removed in MKA. It demonstrates that our two-
phase learning strategy leads to a 0.1 dB improvement. Row 1 in Table [5] removes mask encoder
and F), in attention. It demonstrates that our mask cross encoder with cross attention improves the
performance by 0.29 dB. Row 2 uses two-phase training but F, in attention. It demonstrates that
our prior knowledge of cross attention improves the performance by 0.16 dB. Row 3 in Table 3|
uses a plain ADMM projection in our unfolding network, dropping the performance by 0.45 dB. It
illustrates that our DE-ADMM plays a role in the unfolding network.

Figure 6: Ablation study of our method.

6 CONCLUSION

This paper introduces a spectral SCI reconstruction network that leverages high-fidelity knowledge
from clean HSIs as well as the cascade degradation information. It achieves state-of-the-art perfor-
mance on simulated data and real data, surpassing the previous best reconstruction algorithms both
in spatial and spectral dimensions. In addition, we proposed a two-phase training strategy within a
deep unfolding framework to transfer essential knowledge. We hope to give a new way of model-
ing high-fidelity knowledge from ground-truth observation space for video compressive, which can
potentially extend to a wider range of application scenarios in the future, such as video SCI.
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