
Reverse Prompt Engineering

Anonymous ACL submission

Abstract

We explore a new language model inver-001
sion problem under strict black-box, zero-shot,002
and limited data conditions. We propose a003
novel training-free framework that reconstructs004
prompts using only a limited number of text005
outputs from a language model. Existing meth-006
ods rely on the availability of a large number007
of outputs for both training and inference, an008
assumption that is unrealistic in the real world,009
and they can sometimes produce garbled text.010
In contrast, our approach, which relies on lim-011
ited resources, consistently yields coherent and012
semantically meaningful prompts. Our frame-013
work leverages a large language model together014
with an optimization process inspired by the ge-015
netic algorithm to effectively recover prompts.016
Experimental results on several datasets de-017
rived from public sources indicate that our ap-018
proach achieves high-quality prompt recovery019
and generates prompts more semantically and020
functionally aligned with the originals than021
current state-of-the-art methods. Additionally,022
use-case studies introduced demonstrate the023
method’s strong potential for generating high-024
quality text data on perturbed prompts.025

1 Introduction026

With the advancement of large language models027

(LLMs), prompt engineering has become an essen-028

tial technique for expanding their capabilities (Sa-029

hoo et al., 2024). This method uses task-specific in-030

structions, or prompts, to enhance model effective-031

ness without altering core parameters. Widely used032

prompting techniques, such as few-shot prompting033

(Radford et al., 2019), chain-of-thought prompting034

(Wei et al., 2022), and retrieval-augmented gen-035

eration (Lewis et al., 2020), have proven highly036

practical in diverse applications.037

With the increasing focus on prompt engineer-038

ing, where input prompts are carefully modified039

to improve the outputs generated by LLMs, a040

natural question arises: can we infer the input041

prompt based solely on the outputs? This challenge, 042

termed language model inversion by Morris et al. 043

(2024), has gained prominence with the growing 044

prevalence of LLMs offered as “services,” where 045

users interact only with outputs while the original 046

prompts remain concealed. This situation presents 047

a dual interest, with users seeking to deduce con- 048

cealed prompts and service providers striving to 049

protect them, thereby rendering language model 050

inversion an increasingly pertinent problem (Mor- 051

ris et al., 2024). Furthermore, recovering prompts 052

has practical applications, such as enabling users to 053

adapt inferred prompts for generating high-quality 054

outputs tailored to new contexts, e.g., transforming 055

a marketing plan for one product into a similarly 056

high-quality plan for another with minimal adjust- 057

ments. In Section 4.4, we demonstrate that text 058

generated through our language model inversion 059

method is more favored by human evaluators than 060

text derived from existing high-quality templates. 061

Morris et al. (2024) develop a model trained to 062

predict the input prompt by leveraging the prob- 063

ability distributions and logits from the last layer 064

of an LLM. Building on this, Zhang et al. (2024) 065

further propose a model that uses only the textual 066

outputs to infer the prompts, without relying on 067

internal model parameters. However, this approach 068

is developed under the assumption that a large num- 069

ber of outputs (64) are available to recover a single 070

prompt and that access to user prompts for com- 071

plex system prompts is granted. These assumptions 072

rarely hold true in real-world scenarios. Further- 073

more, both methods demand extensive training on 074

large datasets, which can be resource-intensive. Ad- 075

ditionally, their outputs are heavily influenced by 076

the form of the training data, so they perform poorly 077

on out-of-domain prompt recovery and sometimes 078

generate non-linguistic sequences. These limita- 079

tions, alongside the broader interest in uncovering 080

and protecting prompts and the practical utility of 081

generating high-quality data, motivate the develop- 082

1

Figure 1: Performance comparison of RPE and
output2prompt on the REhard dataset. Evaluates the
effectiveness of recovering complex system prompts
from outputs generated by different target LLMs.

Figure 2: Examples of non-linguistic prompts recovered
by outpue2prompt and prompts recovered by RPE
for the same latent prompts.

ment of a robust, training-free, zero-shot language083

model inversion method that operates with limited084

output access.085

In this paper, we propose a novel language model086

inversion technique, reverse prompt engineering087

(RPE), which assumes the target LLM is a black-088

box model accessible only through limited text089

outputs. RPE infers the underlying prompt from090

these outputs by leveraging the LLM’s reasoning091

capabilities in combination with an iterative opti-092

mization algorithm inspired by the genetic algo-093

rithm (Sampson, 1976). Importantly, RPE in-094

troduces no new models and requires no training.095

The core idea of RPE is to conceptualize lan-096

guage model inversion as a reverse-engineering097

optimization problem, using the relationship be-098

tween prompts and outputs to iteratively refine po-099

tential candidates. By utilizing the reasoning ability100

of an LLM to generate candidate prompts, RPE101

evaluates these candidates based on the similarity102

of their generated outputs to the true output. This103

evaluation serves as the basis for iterative optimiza-104

tion, guided by a genetic algorithm intertwined 105

with an LLM, to progressively reduce discrepan- 106

cies between candidates and the latent prompt, and 107

to converge on the most plausible prompt. 108

Compared to previous methods (Morris et al., 109

2024; Zhang et al., 2024), RPE is more resource- 110

efficient, requiring only minimal information from 111

the target LLM (five text outputs) while ensur- 112

ing the generation of natural language outputs. 113

RPE outperforms state-of-the-art methods, achiev- 114

ing an average 6.2% improvement in cosine sim- 115

ilarity over output2prompt (Zhang et al., 2024) 116

on Llama-2 Chat (7B) outputs and 10.9% on 117

GPT-3.5 outputs across different datasets. Ad- 118

ditionally, RPE demonstrates superior perfor- 119

mance in system prompt recovery tasks, surpassing 120

output2prompt by an average of 5.8% in cosine 121

similarity. 122

Our main contributions are as follows. 123

• We provide the first study of the language 124

model inversion problem under black-box, 125

zero-shot, and limited data conditions. 126

• We design an innovative evaluation method 127

that selects the most accurate recovered 128

prompt from multiple candidates by their cor- 129

responding outputs, thereby enhancing the ac- 130

curacy of prompt recovery in scenarios involv- 131

ing multiple candidate prompts. 132

• We purpose a novel optimization algorithm 133

that leverages the LLM itself as an optimizer 134

to further enhance prompt recovery accuracy. 135

The code and datasets are available at 136

https://github.com/Anonymous-Author980/ 137

RPE_Reverse_Prompt_Engineering. 138

2 Related Works 139

2.1 Prompt Engineering 140

Prompt engineering is a closely related field, es- 141

sential for optimizing LLMs by designing prompts 142

that guide model outputs across diverse tasks with- 143

out altering model parameters (Sahoo et al., 2024). 144

Initial prompting techniques include zero-shot and 145

few-shot prompting (Radford et al., 2019; Brown 146

et al., 2020), demonstrating that LLMs can han- 147

dle novel tasks without additional training. Chain- 148

of-thought (CoT) prompting by Wei et al. (2022) 149

introduced step-by-step reasoning, which inspired 150

further techniques to enhance LLM reasoning and 151

logic abilities (Zhang et al., 2023; Wang et al., 152

2

https://github.com/Anonymous-Author980/RPE_Reverse_Prompt_Engineering
https://github.com/Anonymous-Author980/RPE_Reverse_Prompt_Engineering
https://github.com/Anonymous-Author980/RPE_Reverse_Prompt_Engineering

2023; Zhao et al., 2024; Hu et al., 2023; Yao et al.,153

2024a; Long, 2023; Yao et al., 2024b; Weston and154

Sukhbaatar, 2023; Zhou et al., 2023b; Wang et al.,155

2024; Diao et al., 2024; Chia et al., 2023). To156

improve accuracy and mitigate hallucinations, Re-157

trieval Augmented Generation (RAG) integrates158

information retrieval into prompting (Lewis et al.,159

2020), and its variations enhance real-time knowl-160

edge access for LLMs (Yao et al., 2023; Dhuliawala161

et al., 2024; Li et al., 2024b; Yu et al., 2024b).162

Other approaches incorporate external tools for im-163

proved accuracy (Paranjape et al., 2023; Wu et al.,164

2024). Techniques for automating prompt genera-165

tion have also emerged, using LLMs as optimizers166

to craft more effective prompts (Zhou et al., 2023a;167

Yang et al., 2024), alongside specialized prompting168

methods for specific tasks such as code generation169

(Nye et al., 2021; Chen et al., 2023; Li et al., 2023b,170

2024a), emotion comprehension (Li et al., 2023a),171

user intent understanding (Deng et al., 2023), and172

abstract concept extraction (Zheng et al., 2024).173

2.2 Language Model Inversion174

Unlike prompt engineering, which focuses on175

crafting prompts to achieve better outputs, lan-176

guage model inversion aims to infer the under-177

lying prompt from given outputs. Morris et al.178

(2024) first introduce this problem, developing179

logit2prompt, a solution that extracts prompts180

from next-token probability distributions using a181

T5-based model (Raffel et al., 2020) with addi-182

tional training. Building on logit2prompt, Zhang183

et al. (2024) propose output2prompt, the current184

state-of-the-art method for language model inver-185

sion. The output2prompt method, also T5-based,186

can recover prompts using only text outputs, with-187

out requiring access to model logits (Zhang et al.,188

2024).189

Our proposed method, RPE, differs in that190

it requires neither access to model logits nor191

user prompts, making it particularly suitable192

for closed-source LLMs like GPT-3.5. Un-193

like output2prompt, which still relies on the194

user prompt when reconstructing complex system195

prompts, RPE depends solely on LLM outputs,196

requiring no additional information. Moreover,197

RPE is unique in that it does not require training,198

training data, or large quantities of LLM outputs,199

needing only five outputs compared to the 64 re-200

quired by output2prompt. Since logit2prompt201

and output2prompt use T5-based models with202

smaller vocabularies than modern LLMs, RPE203

Figure 3: Example of One Answer One Shot inference.

offers the advantage of generating prompts with 204

more flexibility in word choice. 205

3 Methodology 206

We formalize the language model inversion prob- 207

lem as follows: given a set of n responses, denoted 208

as A = {a1, a2, . . . , an}, generated by submitting 209

a single prompt p to an LLM n times, the objective 210

is to design a language model inversion method, de- 211

noted as RPE, that can infer the original prompt p 212

from the response set A, which means the output p′ 213

of RPE should be the same as the original prompt 214

p: 215

min d(p, p′) (1) 216

LLM(p)n = A (2) 217

RPE(A) = p′ (3) 218

Here, d could be any score measuring the difference 219

between two prompts. The intriguing part is that p 220

is latent and thus unknown. In this setup, the LLM 221

is treated as a black box, meaning that, aside from 222

the text outputs, no access is granted to its internal 223

parameters or mechanisms. Moreover, the RPE 224

method is developed under a zero-shot constraint, 225

where no prior training data or additional examples 226

of outputs (beyond the given set) are available, and 227

no training is permitted in the development of the 228

method. 229

3.1 The “Naive” Approach 230

Our initial approach aims to directly infer the 231

prompt p using exactly one response a generated by 232

the LLM. Specifically, we query the LLM to infer 233

the underlying prompt based on the given response 234

3

Figure 4: Example of Five Answers One Shot and Five
Answer Five Shots inference.

a, a method we refer to as one-answer-one-shot235

reverse prompt engineering (RPE1A1S). As illus-236

trated in Figure 3, we provide an example where237

GPT-3.5 is tasked with recovering a prompt from238

a response related to start-up ideas. The recovered239

prompt p′ contains some elements of the original240

prompt p but also includes additional details drawn241

from the response a, such as “customer service,”242

“data analytics,” and “cybersecurity,” which are not243

part of the original prompt. We hypothesize that244

inferring the prompt from only one response may245

lead the LLM to overemphasize specific details246

from the response a that were not present in the247

original prompt p, as demonstrated in the example248

shown in Figure 3.249

3.2 Five Answers Inference250

We then extend the naive method by using mul-251

tiple responses to recover the underlying prompt.252

Given a set of responses A, we inform the LLM253

that these responses are generated from the same254

prompt p and ask the LLM to recover p based on255

the entire set A. We set n = 5 in our experiments256

and refer to this method as five-answers-one-shot257

reverse prompt engineering (RPE5A1S). In Fig-258

ure 4, we present an example of RPE5A1S using259

GPT-3.5. Compared to RPE1A1S , the recovered260

prompt p′ in RPE5A1S captures more elements261

of the original prompt, such as “two,” “AI,” and262

“missions.” Additionally, RPE5A1S avoids incor-263

porating response-specific details, like “customer264

service” and “data analytics,” which were mistak-265

enly included by RPE1A1S . However, there is still266

room for improvement, as the recovered prompt267

does not fully replicate the original prompt.268

Figure 5: Workflow of RPEGA

Building on RPE5A1S , we propose an enhanced 269

approach that generates multiple candidate prompts 270

and selects the most accurate one. Specifically, 271

given a set of responses A with n answers, we 272

ask the LLM to recover the prompt p and gen- 273

erate a set of m candidate prompts, denoted as 274

P ′ = {p′1, p′2, . . . , p′m}. To evaluate the quality of 275

each candidate prompt in P ′, we first pass each 276

recovered prompt p′i to the LLM and obtain a cor- 277

responding response a′i. We then compute the 278

ROUGE-1 score between a′i and each answer in 279

A, yielding a set of scores S′
i = {s′i1, s′i2, . . . , s′in}. 280

While it is intuitive to take the average of S′
i as the 281

final score, a promising prompt might generate a 282

response a′i that closely matches one of the answers 283

in A but not the others. To address this, we combine 284

both the mean and the maximum of S′
i to define the 285

final score for p′i as s′i =
mean(S′

i)+max(S′
i)

2 . 286

The recovered prompt with the highest score s′i 287

is selected as the final prompt. In our experiments, 288

we use n = 5 and m = 5, referring to this approach 289

as five-answers-five-shots reverse prompt engineer- 290

ing (RPE5A5S). As shown in Figure 4, the recov- 291

ered prompt using RPE5A5S captures more details 292

from the original prompt compared to RPE5A1S , 293

although further improvement is still possible. 294

3.3 Iterative Method 295

To further enhance our approach, we introduce an 296

iterative method aimed at progressively optimiz- 297

ing the recovered prompt with each iteration. In- 298

spired by the genetic algorithm (Sampson, 1976), 299

we designed an algorithm that generates new candi- 300

date prompts based on existing ones and selects the 301

most accurate candidates using a custom evaluation 302

strategy. We refer to this iterative reverse prompt 303

engineering method as RPEGA. The complete 304

workflow of the algorithm is depicted in Figure 305

5. Below, we describe the key components of this 306

algorithm in detail. 307

4

Figure 6: Process of generating new candidate prompts
from the old ones.

3.3.1 Initialization308

Given a set of responses A with n answers,309

we first ask the LLM to infer the underlying310

prompt p, generating m candidate prompts P ′ =311

{p′1, p′2, . . . , p′m}, following the same procedure as312

in RPE5A5S (see Section 3.2). We then evalu-313

ate each candidate prompt p′i using the evaluation314

method from RPE5A5S , where we pass each can-315

didate p′i to the LLM to generate a response a′i316

and calculate its performance score s′i. The per-317

formance score s′i for each candidate prompt is318

calculated by averaging the mean and max of the319

ROUGE-1 score between a′i and each response in320

A. This completes the initialization phase of the321

RPEGA algorithm.322

3.3.2 Iteration323

Following the initialization step, we iteratively gen-324

erate new candidate prompts and replace the ex-325

isting candidates with better-performing ones. In326

each iteration, we start with the set of original re-327

sponses A, the current candidate set P ′, the re-328

sponses A′ = {a′1, a′2, . . . , a′m} generated by can-329

didate prompts P ′, and the corresponding perfor-330

mance scores S′ = {s′1, s′2, . . . , s′m}. For each can-331

didate prompt p′i and its corresponding response a′i,332

we first ask the LLM to identify the differences333

between a′i and the responses in A. Then, we334

request the LLM to summarize these differences335

Figure 7: Example prompt from each dataset.

and use the summary as a guide to modify the 336

candidate prompt p′i. The process is illustrated 337

in Figure 6 in detail. This process yields a new 338

set of candidate prompts, P ′′ = {p′′1, p′′2, . . . , p′′m}, 339

for which we calculate the performance scores 340

S′′ = {s′′1, s′′2, . . . , s′′m} as in the previous step. 341

Based on these scores, we update the candidate 342

set by replacing low score prompts in P ′ with the 343

new high score candidates from P ′′, thus forming 344

the updated set of candidate prompts. 345

3.3.3 Output 346

After repeating the iteration process for k iterations, 347

we select the best-performing prompt from the fi- 348

nal candidate set P ′ based on the highest perfor- 349

mance score in S′. This selected prompt, denoted 350

as p′o, is the final recovered prompt produced by 351

the RPEGA method. 352

4 Computational Assessment 353

In this section, we present the results of testing our 354

proposed methods on various datasets, comparing 355

their performance with the benchmark approach of 356

outpu2prompt (Zhang et al., 2024). The evalua- 357

tion focuses on assessing the semantic and func- 358

tional similarity between the recovered and original 359

prompts. Specifically, we employ cosine similarity 360

as the evaluation metric, as it best aligns with the 361

language model inversion objective (Zhang et al., 362

2024). Throughout all experiments, GPT-3.5 serves 363

as the backbone model for RPE. 364

4.1 Dataset 365

We evaluate our method using five datasets: Awe- 366

some ChatGPT Prompts1 (153 complex instruc- 367

tional role-based prompts), MetaMathQA (Yu et al., 368

2024a) (395,000 linguistically diverse math word 369

problems), TruthfulQA (Lin et al., 2022) (817 truth- 370

fulness assessment prompts), Alpaca-GPT4 (Peng 371

et al., 2023) (52,000 simple instruction-following 372

1https://github.com/f/awesome-chatgpt-prompts

5

https://github.com/f/awesome-chatgpt-prompts

Figure 8: Demonstration of system prompt and user
prompt.

Figure 9: Comparison of RPRGA and
output2prompt.

prompts), and Dolly Creative Writing2 (673 cre-373

ative writing prompts). Detailed descriptions are374

provided in the appendix A.375

Figure 7 presents an example prompt from each376

dataset. To ensure comprehensive evaluation across377

diverse LLM tasks, including general conversation,378

complex instructions, and creative writing, we sam-379

ple prompts from all five datasets. However, eval-380

uating large datasets via the OpenAI API incurs381

significant costs. To balance cost efficiency and382

evaluation rigor, we randomly select 20 prompts383

from each dataset, forming our primary test set,384

REprompt, while maintaining diversity and com-385

plexity.386

To assess how prompt complexity impacts RPE387

performance, we construct two additional test sets:388

REhard, containing 100 challenging prompts from389

Awesome ChatGPT Prompts, and REeasy, consist-390

ing of 100 simpler prompts from Alpaca-GPT4.391

These three test sets enable a thorough evaluation392

of both the proposed method and the benchmark393

model across varying levels of prompt complexity.394

4.2 Benchmark395

We compare the performance of our best-396

performing method, RPEGA, against the state-of-397

the-art benchmark output2prompt (Zhang et al.,398

2https://huggingface.co/datasets/lionelchg/
dolly_creative_writing

2024). To ensure a fair comparison, given that 399

output2prompt is trained on outputs from Llama- 400

2 Chat (7B), experiments are performed on outputs 401

generated by both Llama-2 Chat (7B) and GPT- 402

3.5. Following Zhang et al. (2024), cosine simi- 403

larity is chosen as the evaluation metric due to its 404

alignment with the objectives of language model 405

inversion. We utilize OpenAI’s “text-embedding- 406

ada-002” and “text-embedding-3-large” models to 407

compute text embeddings for this purpose. 408

Zhang et al. (2024) also introduce a variant of 409

output2prompt, referred to as output2prompts, 410

specifically designed to recover system prompts 411

but requiring access to user prompt. In Figure 8, 412

we present an example from the REhard dataset, 413

which includes both system and user prompts. 414

In output2prompts, the user must generate a 415

total of 64 distinct outputs with 64 different out- 416

puts. These 64 outputs are then fed into the 417

trained output2prompts model to infer the system 418

prompt. To ensure a fair comparison, we evalu- 419

ate output2prompts under two additional settings: 420

(1) using a randomly selected subset of five outputs 421

from the 64, denoted as output2prompts5, and (2) 422

using the same five outputs utilized by RPEGA, 423

denoted as output2prompts5o. This comparison is 424

conducted exclusively on the REhard dataset, as the 425

other two datasets consist mostly of user prompts 426

and do not include system prompts. Additionally, 427

since output2prompts is trained on GPT-3.5 input 428

and output, all experiments comparing RPEGA 429

with output2prompts are performed using GPT- 430

3.5 outputs. 431

4.3 Experiments 432

We conduct experiments on all three datasets using 433

the methods described in Section 3 with parame- 434

ters n = 5, m = 5, and k = 5. As shown in Fig- 435

ure 9, RPEGA achieves higher cosine similarity 436

than output2prompt across all datasets, regardless 437

of whether the outputs are generated by Llama-2 438

Chat (7B) or GPT-3.5. On average across all 3 439

datasets, RPEGA outperforms output2prompt by 440

6.2% on Llama-2 Chat (7B) outputs and by 10.9% 441

on GPT-3.5 outputs, demonstrating its superior per- 442

formance. 443

Furthermore, we evaluate RPEGA’s cosine sim- 444

ilarity on different datasets to measure its per- 445

formance under different prompt complexities. 446

Figure 9 shows that RPEGA performs best on 447

REprompt, achieving 90.1% on GPT-3.5 outputs 448

with “text-embedding-ada-002” and 71.2% with 449

6

https://huggingface.co/datasets/lionelchg/dolly_creative_writing
https://huggingface.co/datasets/lionelchg/dolly_creative_writing

Figure 10: Comparison of RPEGA and
output2prompts on system prompt recovery
(REhard).

System Prompt: I want you to act as an ascii artist. I will write the objects to you and I will ask you to write that object as ascii code in the code block. Write only ascii code. Do not explain
about the object you wrote. I will say the objects in double quotes. My first object is "cat"
User Prompt: My first object is "cat”

5 Inputs for !"# and $%&'%&(')$*'&:
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”

!"#!" recovered prompt:
Prompt: Please generate the following ASCII art of a cat: /_/\ (o.o) > ^ <

$%&'%&(')$*'&# recovered prompt:
"<pad> GPT Description: The "_<unk>__| |____| |____|
|_____| |_____| |_____| |______| |______| |_______|
|___
___”

$%&'%&(')$*'& recovered prompt:
"<pad> <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (
o.o) > > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> __/<unk> (o.o) > >
> <unk> <unk> /<unk> __/<unk> (o.o) > > <unk> <unk> <unk> <unk> <unk> /<unk>____________"

64 inputs for $%&'%&(')$*'&#:
• "1: "A cat”” ……
• "<unk>plaintext” ……
• "1: I am a digital artist specializing in ASCII

art.”……
• "____ _ _____ _ __”……

Figure 11: Example of RPEGA and output2prompt
recovering a prompt. To conserve space, we do not
include all 64 outputs generated for output2prompts,
but instead present one output for each query mentioned
earlier.

“text-embedding-3-large.” In contrast, on REhard,450

its performance drops by 4.8% and 11.9%, respec-451

tively, due to the complex and restrictive nature452

of these prompts (e.g. “do not write explana-453

tions” and “answer only ASCII drawing”). Ad-454

ditionally, performance declines when switching455

from REprompt to REeasy, as prompts from Meta-456

MathQA (in REprompt) are easier to recover than457

those from Alpaca-GPT4, the source of REeasy.458

When solving mathematical problems, LLMs tend459

to repeat the original question, facilitating recov-460

ery, whereas REeasy prompts often lead to extra461

elaboration that hinders prompt recovery. Overall,462

RPEGA performs best on REprompt, moderately463

on REeasy, and worst on REhard, but still handily464

beating the benchmark, indicating that detailed in-465

structions with output restrictions present the great-466

est challenge for language model inversion.467

With n = m = k = 5, RPEGA issues468

230 queries to an LLM and processes approxi-469

mately 100,000 input tokens and 30,000 output470

tokens to recover a prompt. The benchmark471

output2prompt is trained on 30,000 prompts, with472

each prompt necessitating 64 outputs—resulting473

in a total of 1,920,000 queries to an LLM dur-474

ing training. The final output2prompt model is475

based on the T5 architecture and comprises of476

222 million parameters. Next, we evaluate the477

Figure 12: Examples of recovered prompts of RPEGA

and output2prompt.

ability of RPEGA to recover the system prompt 478

on REhard and compare it with output2prompts 479

and its variants with additional settings. Figure 480

10 reports the performance of each method. On 481

system prompt recovery, RPEGA achieves higher 482

cosine similarity than both output2prompts5 and 483

output2prompts5o. When evaluated with “text- 484

embedding-3-large,” RPEGA exhibits an improve- 485

ment of 20.4% over output2prompts5 and 11.7% 486

over output2prompts5o. Moreover, when com- 487

pared with output2prompts, which utilizes all 64 488

outputs, RPEGA achieves higher cosine similarity, 489

with enhancements of 2.3% using “text-embedding- 490

ada-002” and 8.1% using “text-embedding-3-large.” 491

These findings indicate that RPEGA produces 492

prompts that are more semantically and function- 493

ally aligned with the original system prompts than 494

those recovered by output2prompts. 495

Furthermore, since RPEGA uses an LLM to 496

generate the recovered prompt, the output is guar- 497

anteed to be in natural language. In contrast, the 498

output of output2prompt and output2prompts 499

occasionally produces sequences that are not lan- 500

guage. As illustrated in Figure 11, RPEGA suc- 501

cessfully recovers a complete, coherent sentence, 502

whereas output2prompt and output2prompts do 503

not. The example in Figure 11 represents a partic- 504

ularly challenging task, as RPEGA has only five 505

identical answers, containing only ASCII symbols, 506

to work with. In contrast, output2prompts has ac- 507

cess to more information, especially from the query 508

“Provide 16 scenarios where I can use your services. 509

Start with ‘1:’.” Despite this difficulty, RPEGA 510

still outperforms output2prompts, demonstrating 511

its robustness in generating natural and semanti- 512

cally meaningful prompts, even under constrained 513

conditions. 514

Another key advantage of RPEGA is its abil- 515

ity to generate prompts in free form, whereas 516

7

Marketing Plan Video Game Design Lyrics
Example Number Template RPE Template RPE Template RPE

1 2 5 3 4 1 6
2 0 7 0 7 1 6
3 0 7 2 5 1 6
4 / / / / 2 5
5 / / / / 3 4
6 / / / / 3 4

summary 2(9.5%) 19(90.5%) 5(23.8%) 16(76.2%) 11(26.2%) 31(73.8%)

Table 1: Result of the Use Case Experiment. Record the number of people who think the answer generated by the
corresponding method is better than the other.

output2prompt and output2prmopts is con-517

strained to producing prompts in a specific for-518

mat, especially output2prompts, as shown in Fig-519

ure 12. This limitation of output2prompts may520

stem from its training data, where all prompts521

follow a uniform structure. Additionally, mod-522

els in output2prompt and output2prompts has523

a smaller vocabulary size compared to GPT-3.5,524

leading to the possible inclusion of “<unk>” tokens525

in its outputs, as seen in the first example in Fig-526

ure 12. An ablation study of RPE is included in527

appendix B528

4.4 Use Case529

A potential use case of RPE is extracting prompts530

from high-quality content, such as marketing plans,531

video game designs, and song lyrics, enabling users532

to refine and reuse them for generating similar high-533

quality outputs. To explore this, we collect samples534

from these domains and use RPEGA to infer the535

original prompts. The inferred prompts are then536

used to generate new content—marketing plans537

for different products, game designs with varied538

themes, and lyrics featuring diverse motifs—which539

are compared against outputs generated using stan-540

dard templates.541

Participants in our evaluation are recruited from542

a pool of college students. An online question-543

naire has been developed and its link is distributed544

through email and social media platforms to reach545

individuals who had not previously been known to546

the research team, thereby ensuring an unbiased547

sample. To assess quality, we conducted a blind548

evaluation in which participants reviewed both tem-549

plate generated and RPE generated responses for550

the same task without any indication of their ori-551

gin. Participants were asked to select the response552

they deemed more favorable, with the option cho-553

sen by the majority being classified as the higher 554

quality response. Table 1 presents the human evalu- 555

ation results, demonstrating that RPE outperforms 556

template based methods in generating content pre- 557

ferred by users. This result indicates that RPE is 558

better for producing more high-quality data than 559

templates. The workflow for generating new high 560

quality data and complete examples is provided in 561

appendix C. 562

5 Conclusion 563

We address the language model inversion prob- 564

lem under black-box, zero-shot conditions, intro- 565

ducing reverse prompt engineering. RPE utilizes 566

only an LLM and an optimization algorithm to 567

recover prompts from as few as five text outputs. 568

Experiments on three datasets (REprompt, REhard, 569

REeasy) demonstrate that RPE effectively recon- 570

structs high-quality prompts. On average across 571

all datasets and embedding models, RPE outper- 572

forms output2prompt by 8.55% in cosine sim- 573

ilarity on language model inversion. In system 574

prompt reconstruction, RPE recovers prompts 575

from REhard that are 5.8% closer in cosine similar- 576

ity to the original prompts than output2prompts, 577

a variant tailored for system prompt recovery. Ad- 578

ditionally, use-case experiments show that RPE 579

generates higher-quality text that human evaluators 580

prefer over template-generated outputs. 581

6 Limitations 582

While our approach demonstrates significant ad- 583

vancements in language model inversion under 584

zero-shot and black-box conditions, there are sev- 585

eral limitations to consider. First, although the 586

method requires only five outputs from the target 587

LLM, making it resource-efficient compared to ex- 588

8

isting approaches, real-world scenarios may im-589

pose stricter constraints where fewer outputs are590

available, which could affect its applicability. Sec-591

ond, the quality and informativeness of the outputs592

play a critical role in the effectiveness of the prompt593

recovery process. In cases where the latent prompt594

restricts the target LLM to produce minimal or un-595

informative responses—such as outputs containing596

only ASCII characters, as demonstrated in Figure597

11—our method has room for improvement to han-598

dle such situations more effectively. Lastly, the599

computational cost of iterative optimization can600

scale with the complexity of the task, posing chal-601

lenges for large-scale or time-sensitive applications.602

Addressing these limitations offers opportunities603

for future work to further enhance the robustness604

and applicability of the proposed framework.605

References606

Tom Brown, Benjamin Mann, Nick Ryder, Melanie607
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind608
Neelakantan, Pranav Shyam, Girish Sastry, Amanda609
Askell, Sandhini Agarwal, Ariel Herbert-Voss,610
Gretchen Krueger, Tom Henighan, Rewon Child,611
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens612
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-613
teusz Litwin, Scott Gray, Benjamin Chess, Jack614
Clark, Christopher Berner, Sam McCandlish, Alec615
Radford, Ilya Sutskever, and Dario Amodei. 2020.616
Language models are few-shot learners. In Ad-617
vances in Neural Information Processing Systems,618
volume 33, pages 1877–1901. Curran Associates,619
Inc.620

Wenhu Chen, Xueguang Ma, Xinyi Wang, and621
William W. Cohen. 2023. Program of thoughts622
prompting: Disentangling computation from reason-623
ing for numerical reasoning tasks. In Transactions624
on Machine Learning Research.625

Yew Ken Chia, Guizhen Chen, Luu Anh Tuan, Sou-626
janya Poria, and Lidong Bing. 2023. Contrastive627
chain-of-thought prompting. In arXiv preprint628
arXiv:2311.09277.629

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-630
quan Gu. 2023. Rephrase and respond: Let large631
language models ask better questions for themselves.632
In arXiv preprint arXiv:2311.04205.633

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,634
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-635
son Weston. 2024. Chain-of-verification reduces hal-636
lucination in large language models. In Findings of637
the Association for Computational Linguistics: ACL638
2024, pages 3563–3578. Association for Computa-639
tional Linguistics.640

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, 641
Xiang Liu, and Tong Zhang. 2024. Active prompt- 642
ing with chain-of-thought for large language models. 643
In Proceedings of the 62nd Annual Meeting of the 644
Association for Computational Linguistics (Volume 645
1: Long Papers), pages 1330–1350. Association for 646
Computational Linguistics. 647

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song, 648
Wai Lam, and Yue Zhang. 2023. Chain-of-symbol 649
prompting elicits planning in large langauge models. 650
In arXiv preprint arXiv:2305.10276. 651

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 652
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 653
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 654
täschel, et al. 2020. Retrieval-augmented generation 655
for knowledge-intensive NLP tasks. In Advances in 656
Neural Information Processing Systems, volume 33, 657
pages 9459–9474. 658

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, 659
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang, 660
and Xing Xie. 2023a. Large language models under- 661
stand and can be enhanced by emotional stimuli. In 662
arXiv preprint arXiv:2307.11760. 663

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, 664
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei- 665
Fei, Fei Xia, and brian ichter. 2024a. Chain of code: 666
Reasoning with a language model-augmented code 667
emulator. In Forty-first International Conference on 668
Machine Learning. 669

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023b. Struc- 670
tured chain-of-thought prompting for code genera- 671
tion. In ACM Transactions on Software Engineering 672
and Methodology. ACM New York, NY. 673

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng 674
Ding, Shafiq Joty, Soujanya Poria, and Lidong Bing. 675
2024b. Chain-of-knowledge: Grounding large lan- 676
guage models via dynamic knowledge adapting over 677
heterogeneous sources. In The Twelfth International 678
Conference on Learning Representations. 679

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. 680
Truthfulqa: Measuring how models mimic human 681
falsehoods. In Proceedings of the 60th Annual Meet- 682
ing of the Association for Computational Linguistics 683
(Volume 1: Long Papers), pages 3214–3252. 684

Jieyi Long. 2023. Large language model guided tree-of- 685
thought. In arXiv preprint arXiv:2305.08291. 686

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vi- 687
taly Shmatikov, and Alexander M Rush. 2024. Lan- 688
guage model inversion. In The Twelfth International 689
Conference on Learning Representations. 690

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, 691
Henryk Michalewski, Jacob Austin, David Bieber, 692
David Dohan, Aitor Lewkowycz, Maarten Bosma, 693
David Luan, et al. 2021. Show your work: Scratch- 694
pads for intermediate computation with language 695
models. In arXiv preprint arXiv:2112.00114. 696

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.48550/arXiv.2311.09277
https://doi.org/10.48550/arXiv.2311.09277
https://doi.org/10.48550/arXiv.2311.09277
https://doi.org/10.48550/arXiv.2311.04205
https://doi.org/10.48550/arXiv.2311.04205
https://doi.org/10.48550/arXiv.2311.04205
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.48550/arXiv.2305.10276
https://doi.org/10.48550/arXiv.2305.10276
https://doi.org/10.48550/arXiv.2305.10276
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.48550/arXiv.2307.11760
https://doi.org/10.48550/arXiv.2307.11760
https://doi.org/10.48550/arXiv.2307.11760
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.48550/arXiv.2305.08291
https://doi.org/10.48550/arXiv.2305.08291
https://doi.org/10.48550/arXiv.2305.08291
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=t9dWHpGkPj
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2112.00114

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,697
Hannaneh Hajishirzi, Luke Zettlemoyer, and698
Marco Tulio Ribeiro. 2023. Art: Automatic multi-699
step reasoning and tool-use for large language mod-700
els. In arXiv preprint arXiv:2303.09014.701

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-702
ley, and Jianfeng Gao. 2023. Instruction tuning with703
GPT-4. In arXiv preprint arXiv:2304.03277.704

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,705
Dario Amodei, Ilya Sutskever, et al. 2019. Language706
models are unsupervised multitask learners. In Ope-707
nAI blog, volume 1, page 9.708

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine709
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,710
Wei Li, and Peter J Liu. 2020. Exploring the limits711
of transfer learning with a unified text-to-text trans-712
former. In Journal of machine learning research,713
volume 21, pages 1–67.714

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,715
Vinija Jain, Samrat Mondal, and Aman Chadha. 2024.716
A systematic survey of prompt engineering in large717
language models: Techniques and applications. In718
arXiv preprint arXiv:2402.07927.719

Jeffrey R Sampson. 1976. Adaptation in natural and720
artificial systems (John H. Holland). In SIAM Review,721
volume 18, pages 529–530. Society for Industrial and722
Applied Mathematics.723

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,724
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,725
and Denny Zhou. 2023. Self-consistency improves726
chain of thought reasoning in language models. In727
The Eleventh International Conference on Learning728
Representations.729

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin730
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-731
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,732
and Tomas Pfister. 2024. Chain-of-table: Evolving733
tables in the reasoning chain for table understanding.734
In The Twelfth International Conference on Learning735
Representations.736

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten737
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,738
et al. 2022. Chain-of-thought prompting elicits rea-739
soning in large language models. In Advances in740
Neural Information Processing Systems, volume 35,741
pages 24824–24837.742

Jason Weston and Sainbayar Sukhbaatar. 2023. System743
2 attention (is something you might need too). In744
arXiv preprint arXiv:2311.11829.745

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,746
Michihiro Yasunaga, Kaidi Cao, Vassilis N. Ioanni-747
dis, Karthik Subbian, Jure Leskovec, and James Zou.748
2024. Avatar: Optimizing LLM agents for tool us-749
age via contrastive reasoning. In Advances in Neural750
Information Processing Systems.751

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao 752
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. 753
2024. Large language models as optimizers. In 754
The Twelfth International Conference on Learning 755
Representations. 756

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 757
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 758
2024a. Tree of thoughts: Deliberate problem solving 759
with large language models. In Advances in Neural 760
Information Processing Systems, volume 36. 761

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 762
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023. 763
React: Synergizing reasoning and acting in language 764
models. In The Eleventh International Conference 765
on Learning Representations. 766

Yao Yao, Zuchao Li, and Hai Zhao. 2024b. GoT: Effec- 767
tive graph-of-thought reasoning in language models. 768
In Findings of the Association for Computational 769
Linguistics: NAACL 2024, pages 2901–2921. Associ- 770
ation for Computational Linguistics. 771

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, 772
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li, 773
Adrian Weller, and Weiyang Liu. 2024a. Metamath: 774
Bootstrap your own mathematical questions for large 775
language models. In The Twelfth International Con- 776
ference on Learning Representations. 777

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Peixin 778
Cao, Kaixin Ma, Jian Li, Hongwei Wang, and Dong 779
Yu. 2024b. Chain-of-note: Enhancing robustness in 780
retrieval-augmented language models. In Proceed- 781
ings of the 2024 Conference on Empirical Methods in 782
Natural Language Processing, pages 14672–14685. 783
Association for Computational Linguistics. 784

Collin Zhang, John Xavier Morris, and Vitaly 785
Shmatikov. 2024. Extracting prompts by inverting 786
LLM outputs. In Proceedings of the 2024 Conference 787
on Empirical Methods in Natural Language Process- 788
ing, pages 14753–14777. Association for Computa- 789
tional Linguistics. 790

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 791
Smola. 2023. Automatic chain of thought prompting 792
in large language models. In The Eleventh Interna- 793
tional Conference on Learning Representations. 794

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber, 795
Jae Hee Lee, Kun Chu, and Stefan Wermter. 2024. 796
Enhancing zero-shot chain-of-thought reasoning in 797
large language models through logic. In Proceed- 798
ings of the 2024 Joint International Conference on 799
Computational Linguistics, Language Resources and 800
Evaluation, pages 6144–6166. 801

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, 802
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny 803
Zhou. 2024. Take a step back: Evoking reasoning via 804
abstraction in large language models. In The Twelfth 805
International Conference on Learning Representa- 806
tions. 807

10

https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2304.03277
https://doi.org/10.48550/arXiv.2304.03277
https://doi.org/10.48550/arXiv.2304.03277
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.1137/1018105
https://doi.org/10.1137/1018105
https://doi.org/10.1137/1018105
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/pdf?id=_VjQlMeSB_J
https://openreview.net/pdf?id=_VjQlMeSB_J
https://openreview.net/pdf?id=_VjQlMeSB_J
https://doi.org/10.48550/arXiv.2311.11829
https://doi.org/10.48550/arXiv.2311.11829
https://doi.org/10.48550/arXiv.2311.11829
https://openreview.net/forum?id=N4quRxE19p
https://openreview.net/forum?id=N4quRxE19p
https://openreview.net/forum?id=N4quRxE19p
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2024.findings-naacl.183/
https://aclanthology.org/2024.findings-naacl.183/
https://aclanthology.org/2024.findings-naacl.183/
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://doi.org/10.18653/v1/2024.emnlp-main.813
https://doi.org/10.18653/v1/2024.emnlp-main.813
https://doi.org/10.18653/v1/2024.emnlp-main.813
https://doi.org/10.18653/v1/2024.emnlp-main.819
https://doi.org/10.18653/v1/2024.emnlp-main.819
https://doi.org/10.18653/v1/2024.emnlp-main.819
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://aclanthology.org/2024.lrec-main.543/
https://aclanthology.org/2024.lrec-main.543/
https://aclanthology.org/2024.lrec-main.543/
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,808
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy809
Ba. 2023a. Large language models are human-level810
prompt engineers. In The Eleventh International811
Conference on Learning Representations.812

Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang813
Tao, Guodong Long, Jian-Guang Lou, and Jianbing814
Shen. 2023b. Thread of thought unraveling chaotic815
contexts. In arXiv preprint arXiv:2311.08734.816

A Public Datasets and Ethics817

• Awesome ChatGPT Prompts3: This is a cu-818

rated set of 153 prompts resembling system819

messages used in real-world LLM-based APIs820

and services. These prompts are structured as821

detailed instructions, designed to adapt the822

LLM to specific roles, such as a food critic or823

a Python interpreter. The dataset is released824

under the CC0-1.0 license.825

• MetaMathQA: Introduced by Yu et al.826

(2024a), MetaMathQA consists of 395,000827

linguistically diverse math word problems,828

ranging in difficulty from primary school to829

graduate school. This dataset is released under830

the MIT license.831

• TruthfulQA: TruthfulQA(Lin et al., 2022)832

consists of 817 questions across 38 categories,833

including health, law, finance, and politics.834

These questions are designed in a way that835

some humans might answer incorrectly due to836

false beliefs or misconceptions. The dataset837

is intended to evaluate whether a language838

model generates truthful answers to such ques-839

tions. This dataset is released under the840

Apache-2.0 license.841

• Alpaca-GPT4: Alpaca-GPT4 contains842

52,000 instruction-following examples843

generated by GPT-4 using prompts from the844

Alpaca dataset, and it was used to fine-tune845

LLMs in the work by Peng et al. (2023). The846

dataset is released under the CC-BY-NC-4.0847

license.848

• Dolly Creative Writing4: This dataset con-849

sists of 673 prompts designed to assess the850

creativity of a language model. Each prompt851

is either a question or an instruction, guiding852

the LLM to perform a creative writing task.853

3https://github.com/f/awesome-chatgpt-prompts
4https://huggingface.co/datasets/lionelchg/

dolly_creative_writing

Figure 13: Comparison of different RPE methods on
three datasets.

The benchmark code for output2prompt is dis- 854

tributed under the MIT license. All datasets and 855

code employed in this study are solely intended 856

for academic research, in accordance with their 857

designated usage. We have verified the ethical doc- 858

umentation for each dataset and conducted exten- 859

sive sampling to ensure the absence of personally 860

identifying or objectionable content. The code and 861

datasets generated in this study will likewise be 862

released under the MIT license. 863

Moreover, our questionnaire explicitly obtained 864

participants’ consent to utilize their anonymized 865

responses in our research. 866

B Ablation Study 867

In the ablation study, we compare the performance 868

of RPEGA and its variants depicted in Section 3. 869

In addition, we examine the impact of different 870

approaches to calculating the performance score s′ 871

for the RPEGA variant. Specifically, the variant 872

RPEGAm computes s′i by selecting the maximum 873

ROUGE-1 score between a′i and each response in 874

set A, while RPEGAa calculates s′i as the average 875

ROUGE-1 score between a′i and all responses in 876

A. The best and thus default RPEGA method, by 877

contrast, determines s′i as the average of both the 878

mean and maximum ROUGE-1 scores. 879

As illustrated in Figure 13, RPEGA consistently 880

outperforms the other RPE variants. The results 881

from RPEGAm and RPEGAa indicate that using 882

either the maximum or the average score alone for 883

performance calculation compromises the quality 884

of the inferred prompts. Furthermore, the superior 885

performance of RPE5A5S over other non-iterative 886

approaches underscores the efficacy of our evalu- 887

11

https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-
https://doi.org/10.48550/arXiv.2311.08734
https://doi.org/10.48550/arXiv.2311.08734
https://doi.org/10.48550/arXiv.2311.08734
https://github.com/f/awesome-chatgpt-prompts
https://huggingface.co/datasets/lionelchg/dolly_creative_writing
https://huggingface.co/datasets/lionelchg/dolly_creative_writing

ation strategy in selecting high-quality recovered888

prompts.889

C Details of Generating High Quality890

Content891

Figure 14: Workflow to generate new high quality an-
swers.

In Figure 14, we illustrate the workflow for gen-892

erating new high-quality data using both RPE and893

templates, exemplified by generating a marketing894

plan for Product B based on Product A’s plan.895

C.1 Use Case Experiments: Marketing Plan896

We begin with a marketing plan for an energy drink897

as our initial reference point. Using both the RPE898

and template methods, we then generate marketing899

plans for three distinct products: “a new smart-900

phone targeting seniors aged 65 and older”, “a901

financial software tailored for small businesses and902

individual investors”, and “developmental toys de-903

signed for toddlers under one year old”. As shown904

in Table 1, for each product, a greater number of905

participants favored the RPE-generated market-906

ing plan over the template-generated one. Overall,907

90.5% of responses preferred the RPE method,908

while only 9.5% favored the template method. De-909

tailed marketing plans are provided in appendix910

C.4.911

C.2 Use Case Experiments: Video Game912

Design913

Using the game design of the popular video game914

“Don’t Starve” as a reference, we created high-915

quality designs for other games. We prompted916

GPT-3.5 to design games based on the following917

themes: “a rogue-like game incorporating elements918

of Greek mythology and combat,” “a kart racing919

game that includes multiplayer and item-based me-920

chanics,” and “a first-person shooter game combin-921

ing elements of war and counter-terrorism.” Using922

both RPE and template methods, we produced923

a total of six game designs. As shown in Table924

1, participants preferred the game designs gener-925

ated by RPE over those created by the template926

method. Overall, 76.2% of responses favored the 927

RPE-generated designs, while only 23.8% pre- 928

ferred the template-generated designs. Complete 929

game designs are presented in appendix C.5. 930

C.3 Use Case Experiments: Lyrics 931

For the lyrics generation task, we first use “Cruel 932

Summer” by Taylor Swift as a reference to create 933

lyrics for songs with the following themes: “evok- 934

ing sadness and grief with themes of loss, winter, 935

and religion,” “evoking happiness and joy with 936

themes of family, friends, college life, and flowers,” 937

and “evoking excitement and positivity with themes 938

of courage, hope, and the future.” We then use 939

“Master of Puppets” by Metallica as another refer- 940

ence to generate lyrics for songs themed around 941

“love and heartbreak,” “self-discovery and personal 942

growth,” and “nostalgia and memories.” For each 943

theme, we generated two sets of lyrics using both 944

the template and RPE methods, producing a total 945

of twelve lyrics. Participants preferred the RPE- 946

generated lyrics, with 73.8% of responses favoring 947

them over the template-generated versions, which 948

received only 26.2% preference. All lyrics are pro- 949

vided in appendix C.4. 950

C.4 Complete Examples of Market Plan 951

Figure 15 presents the reference marketing plan, 952

the prompt recovered using RPE, and edited 953

prompts used to generate marketing plans for dif- 954

ferent products. Complete marketing plans gener- 955

ated from perturbed RPE-recovered prompts and 956

template-based prompts are provided in Figures 16, 957

17, and 18. 958

C.5 Complete Examples of Video Game 959

Description 960

Figure 19 displays the reference video game de- 961

scription, along with the prompt recovered using 962

RPE and modified prompts used to generate de- 963

scriptions for video games with varying themes. 964

The full set of video game descriptions gener- 965

ated from perturbed RPE-recovered prompts and 966

template-based prompts is presented in Figures 20, 967

21, and 22. 968

C.6 Complete Examples of Lyrics 969

Figures 23 and 24 present the reference song lyrics, 970

along with the prompt recovered using RPE and 971

modified prompts used to generate lyrics in differ- 972

ent styles and themes. The complete set of lyrics 973

generated from perturbed RPE-recovered prompts 974

12

Figure 15: Reference marketing plan and the prompt recovered by RPE, along with perturbed prompts used to
generate marketing plans for different products.

Figure 16: Example 1 of market plan generation.

13

Figure 17: Example 2 of market plan generation.

Figure 18: Example 3 of market plan generation.

14

Figure 19: Reference video game description and the prompt recovered by RPE, along with perturbed prompts
used to generate video description for different themes.

Figure 20: Example 1 of video game description generation.

15

Figure 21: Example 2 of video game description generation.

Figure 22: Example 3 of video game description generation.

16

and template-based prompts is shown in Figures975

25, 26, 27, 28, 29, and 30.976

17

Figure 23: Reference song lyrics 1 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

Figure 24: Reference song lyrics 2 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

18

Figure 25: Example 1 of song lyrics generation.

Figure 26: Example 2 of song lyrics generation.

19

Figure 27: Example 3 of song lyrics generation.

Figure 28: Example 4 of song lyrics generation.

20

Figure 29: Example 5 of song lyrics generation.

Figure 30: Example 6 of song lyrics generation.

21

	Introduction
	Related Works
	Prompt Engineering
	Language Model Inversion

	Methodology
	The ``Naive'' Approach
	Five Answers Inference
	Iterative Method
	Initialization
	Iteration
	Output

	Computational Assessment
	Dataset
	Benchmark
	Experiments
	Use Case

	Conclusion
	Limitations
	Public Datasets and Ethics
	Ablation Study
	Details of Generating High Quality Content
	Use Case Experiments: Marketing Plan
	Use Case Experiments: Video Game Design
	Use Case Experiments: Lyrics
	Complete Examples of Market Plan
	Complete Examples of Video Game Description
	Complete Examples of Lyrics

