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ABSTRACT

Model-heterogeneity federated learning (FL) is a flexible setting where a client
trains a model subject to its local computation capacity. Towards the scenario,
partial averaging extracts the clients’ models from a global model so that the
aggregation of each model parameter is identified. While existing models can
only generate submodels with predefined settings established during training, our
approach utilizes a trainable probabilistic masking strategy named FedMAP, en-
abling the dynamic creation of customized model sizes aligned with the client’s
budget. In detail, the clients find the best model architectures based on their local
datasets and computation resources, and the FL server merges these local opti-
mal architectures into a probabilistic mask. In the end, we attain a stable prob-
abilistic mask, with which we can generate arbitrary models for evaluation or
update the counterpart of the model parameters while training with the clients’
data. Our experiments validate the effectiveness of the proposed FedMAP from
two aspects: (i) It can improve the state-of-the-art approaches to heterogeneous
model updates, especially for those small-size models; and (ii) We can extract the
submodels whose sizes never appear in training with exceptional performance.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017) is conceptualized to facilitate
inter-client collaboration where a number of edge devices (e.g., smartphones) jointly train a global
model under the orchestration of a central server. Thanks to its distributed nature that enhances
both data and computation utilization, FL has been widely deployed as an efficient solution in var-
ious commercial products (He et al., 2020; Beutel et al., 2020; Lai et al., 2022; Xie et al., 2023).
However, when scaled up to a vast number of client devices, FL is confronted with the challenge of
computation heterogeneity, where the computation capacities of the clients are considerably differ-
ent from each other.

To address this challenge, a common approach is to enable model heterogeneity, ensuring that the
model deployed on each individual client align with its local computation capacity. This can be
done by extracting a submodel for each client from a global model, which encompasses a subset
of the parameters of the global model. Existing works to extract heterogeneous submodels can be
categorized in two different groups, namely, static submodel extraction (e.g., HeteroFL (Diao et al.,
2020) and DepthFL (Kim et al., 2022)) and rolling-based submodel extraction (e.g., FedRolex (Alam
et al., 2022)). As illustrated in Figure 1, both submodel extraction methods construct the submodels
by selecting some neurons at each neural network layer and connecting the neurons between two
consecutive layers at the beginning of the model training. During the model training, the static
submodel extraction keeps the initial submodel architectures unchanged. In contrast, the rolling-
based submodel extraction employs a sliding window to select the neurons and rolls the sliding
window during the training process, changing the selected neurons and rebuilding the submodels at
every communication round.

While the above existing works are capable of extracting submodels with appropriate sizes, the
performance of extracted submodels depend highly on their architectures, and improper choices of
neurons often make them suffer from accuracy degradation (Qu et al., 2022; Isik et al., 2022; Alam
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Figure 1: Three types of heterogeneous models’ extraction. The first two rows come from the
existing works, i.e., static and rolling-based submodel extractions. As for mask-based submodel ex-
traction (our proposed method), there are three different levels of nodes. Neurons with a light green
color do not have any connections with others; neurons with a dark color have connections with all
neighboring neurons except the light one; otherwise, the connection depends on the computation
capacity.

et al., 2022; Liao et al., 2023). Unfortunately, there is no formal analysis on the influence of sub-
model architectures in the literature, impeding one from defining and studying its optimality. To
fill the gap, this study builds a more rigorous understanding of the influence of submodel architec-
tures. Our theoretical insights reveal that existing submodel extraction strategies are unflexible and
unlikely to reach the global optimal solution. Moreover, their inflexibility becomes apparent during
the testing phase because they are constrained by a predetermined set of submodels established dur-
ing training. This lack of adaptability becomes especially problematic when new devices come with
computational capabilities that are not considered during the initial training. More specifically, the
limited number of predetermined submodels can result in impossibility of accommodating devices
with lower capacity than any of the clients involved in the training phase and can also lead to inef-
ficient utilization of new devices’ computation resources if they are more computationally capable
than existing clients.

With the goal of overcoming these limitations, we introduce a novel model heterogeneity aware
federated learning framework, named Federated learning with Masked Architecture Probing
(FedMAP), which is able to probe the optimal submodel architectures and extract submodels of
any size. As illustrated in Fig. 1, the proposed FedMAP can identify the importance levels of neu-
rons by means of a probabilistic mask, and filter out unnecessary neurons while preserving the most
important part of the submodel. To further improve the performance of model-heterogeneity FL, we
develop a coordinate descent algorithm, which alternatively optimizes the probabilistic mask and the
model parameters using FedMAP and the existing partial averaging algorithms (Diao et al., 2020;
Horvath et al., 2021), respectively.

Compared to previous works, there are two key advantages of the proposed FedMAP. First, it ex-
plicitly optimizes submodel architectures, thereby mitigating the performance degradation due to
the use of sub-optimal architecture. Second, different from existing submodel extraction works, our
method possesses the capability to generate a new submodel in accordance with a newly arrived
client whose resource budget differs from existing clients, thereby unlocking new possibilities and
accommodating various computational capacities. This flexibility enables the adaptation to environ-
ments with varied resource requirements, ensuring optimal utilization and avoiding resource waste,
thereby addressing the limitations of predefined submodel extraction strategies.

Contribution. Throughout the paper, our contributions are highlighted as follows:

• To the best of our knowledge, we provide the first theoretical analysis on the convergence of
federated learning algorithms under model heterogeneity. Our analysis reveals limitations of prior
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methods in identifying optimal architectures in this setting. To tackle this limitation, we jointly
optimize architecture and parameters to unlock performance gains.

• Built upon our theoretical analysis, we derive a probabilistic-based solution that learns a mask en-
abling customized submodel generation according to clients’ resource budgets. This allows train-
ing the framework once, then efficiently deploying optimized submodels for heterogeneous edge
devices by sampling important parameters based on their capacities. Our mask learning approach
thus facilitates a flexible one-training-fits-all solution while accounting for device variability.

• Extensive experiments show FedMAP significantly outperforms existing approaches, particularly
for low-resource clients. Pronounced gains on resource-limited devices demonstrate FedMAP’s
strength in efficiently tailoring submodels to diverse capabilities.

2 RELATED WORKS

Heterogeneous Model Aggregation. Training with the heterogeneous clients’ models provides
flexibility in handling computation heterogeneity. There are two different ways to achieve aggre-
gation among heterogeneous models: knowledge distillation (Lin et al., 2020; Zhang et al., 2021;
Itahara et al., 2021; Cho et al., 2022) and partial averaging (Diao et al., 2020; Horvath et al., 2021;
Alam et al., 2022; Kim et al., 2022; Zhu et al., 2022; Ilhan et al., 2023; Liao et al., 2023). Knowledge
distillation achieves heterogeneous aggregation via logits alignment, while partial averaging maps
the parameters to the global model and updates the counterpart. Although knowledge distillation
effectively transfers knowledge across all clients, it is infeasible due to the necessity of a public
dataset. Although our proposed method uses the partial averaging as well, we explore the optimal
submodel architectures when compared with the existing works, as discussed in Section 1.

Other solutions to computation heterogeneity in FL. In contrast to the above method, there is
another type of work for computation heterogeneity with the goal of achieving synchronous global
aggregation, making no extra waiting for the faster devices. In specific, the algorithms allow the
clients to perform multiple local updates before the model aggregation on the server, where the
numbers of local updates vary among the clients (Wang et al., 2020; Li et al., 2020b; Mitra et al.,
2021; Luo et al., 2021; Shin et al., 2022; Wu et al., 2023). These works require the clients to fully
train the model. When a global model is very large, these works are no longer feasible because the
clients can hardly load the model.

Model Pruning in Federated Learning. Meanwhile, we review some computation-efficient ap-
proaches in FL, such as model pruning, which are related to our algorithm design. An emerging
interest has arisen in the pursuit of discovering sparse networks through pruning, with the potential
to achieve remarkably high computation efficiency while maintaining performance in terms of accu-
racy. Though pruning is widely used (Zhou et al., 2019; Li et al., 2020a; 2021; Isik et al., 2022), these
works come from the perspective of saving the computation cost but neglect the various constraints
on the computation resources of distinct devices.

3 PRELIMINARY AND THEORETICAL ANALYSIS ON MODEL ARCHITECTURE

Given an FL system consists of N clients, each has computation capacity γi ∈ [0, 1],∀ i ∈ [N ].
Model-heterogeneity FL (Diao et al., 2020; Horvath et al., 2021; Alam et al., 2022) explicitly asso-
ciates client i with a binary-valued maskMi on the model parameter x̃ ∈ Rd such that at most γid
parameters are learnt on it and solves the following objective

min
x̃∈Rd

F (x̃,M) =
1

N

∑
i∈[N ]

Fi(x̃ ⊙Mi), (1)

where M ∈ {0, 1}N×d denotes the collection of all masks and the capacity constraint requires
that ∥Mi∥1 ≤ γid. We assume thatM is generated from some distribution P , which encompass
deterministic masking strategies by treating any of them as sampling a mask with probability 1. In
addition, Fi(·) is the loss of client i with respect to its given parameters x̃⊙Mi. To be more specific,
Fi(x̃) =

1
|Di|

∑
(din,dout)∈Di

L(x̃; din, dout), where Di is the dataset of client i, and L(·; ·, ·) is the
loss function with respect to the given parameters and the training data.
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With the above problem formulation, we use the following case study to understand how to deter-
mine if the model converges in a non-convex case for a given mask.

Case study: Quadratic functions. Assume Fi(x̃) =
1
2

∥∥∥(x̃ − x
(i)
∗

)
⊙Mi

∥∥∥2
2

and ωi = 1/N for

all i ∈ [N ]. Therefore, the optimal solution to F (x̃) is

x∗ = ∪j(x∗)j , (x∗)j =
1(∑

i∈[N ]Mij

) ∑
i∈[N ]

(
x
(i)
∗

)
j
· Mij .

For simplicity, we denote the result of x∗ by Aggi∈[N ](x
(i)
∗ ⊙Mi). Therefore, in the non-convex ob-

jectives, we aim to show that Aggi∈[N ](∇Fi(x̃t⊙Mi)⊙Mi) can converge to 0 for t ∈ {1, 2, . . . }.
In the following analysis, we denote Aggi∈[N ](∇Fi(x̃t ⊙Mi)⊙Mi) by ∇F (x̃t).

Partial Averaging. With reference to Figure 1, static submodel extraction optimizes x̃ in accor-
dance with the constant masksMi for all clients i ∈ [N ], and rolling-based submodel extraction has
limited options forMi and changes over the communication rounds. The steps of partial averaging
for a general case are described below: At Round t ∈ {0, 1, . . . },

• Sampling: The server randomly samples a subset of clients A ⊂ [N ] and distributes the global
model parameters x̃t to the selected clients

• Local Model Training: The clients i ∈ A performs K-times local updates via x
(i)
t,k = x

(i)
t,k−1 −

η∇Fi

(
x
(i)
t,k−1 ⊙Mt

i

)
⊙Mt

i, where k ∈ {1, . . . ,K} and x
(i)
t,0 = x̃t.

• Global Model Aggregation: The clients collect the model updates from the participants A and
perform the global model aggregation via x̃t+1 = x̃t − ηsAggi∈A

(
x
(i)
t,K − x̃t

)
.

To analyze how the mask affects the model training, we work with the following assumptions:
Assumption 3.1 (Masked-L-smoothness). Given a fixed binary maskM ∈ {0, 1}d, the gradient of
a function Fi is L-Lipschitz continuous, i.e., ∥∇Fi(w ⊙M)−∇Fi(v ⊙M)∥ ≤ L∥(w−v)⊙M∥
for any w, v ∈ Rd.
Assumption 3.2 (Masked Bounded Gradient). Given the arbitrary mask Mi ∈ {0, 1}d and the
arbitrary vector w ∈ Rd, the gradient of a function Fi is bounded by a scalar G ≥ 0 for all i ∈ [M ],
i.e., ∥∇Fi(w ⊙Mi)∥22 ≤ G2

As for the mask is set to be {1}d in the above assumptions, they are reduced to the assumptions that
are widely used in federated learning research (Yang et al., 2020; Karimireddy et al., 2020). Based
on the assumptions above, we can obtain the following theorem:
Theorem 3.3. Suppose the global optimal result for Eq. (1) is F∗ := F (x∗,M∗), but both values
(i.e., x∗ andM∗) are unattainable by the clients. Suppose that Assumption 3.1 and 3.2 hold. At t-th
round, the mask isMt ∈ {0, 1}N×d. Let Nj =

∑
i∈[N ] (Mt

i)j . We set ηs as a vector, which can
change over the round, where at the j-th element of ηs should be

(ηs)j =

(
N
A

)(
N
A

)
−
(
N−Nj

A

) . (2)

We assume the local learning rate η is small enough. Therefore, when the model is updated with
partial averaging, the loss between two consecutive communication rounds follows an update that

EF (x̃t+1,M∗) ≤F (x̃t,M∗)−
ηK

2
∥∇F (x̃t,M∗)∥22 +O

(
η2K2G2

)
+ ηKEMt∼P

∥∥(∇F (x̃t,Mt)−∇F (x̃t,M∗)
)
· 1{∇F (x̃t,M∗ )̸=0}

∥∥2
2

(3)

The theorem gives an intuition that whether the loss gets decreased depends on the differences
between the mask and the optimal mask. When the fixed mask is consistent with the optimal one,
we have the following decent corollary for the convergence guarantee:
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Corollary 3.4. Suppose the optimal mask keeps consistent with the mask that is used for the model
updates. Under the setting of Theorem 3.4, partial averaging will achieve a convergence rate of

min
t∈[T ]

∥∥∇F (x̃t,Mt)
∥∥2
2
≤ O

(
F (x̃0,M0)− F∗√

T

)
+O

(
G2

√
T

)
. (4)

Remark 3.5. According to the above corollary, the convergence rate for partial averaging is
O
(
1/
√
T
)

, which is consistent with the state-of-the-art algorithms. This corollary indicates that
partial averaging can definitely converge to surrogate results when the mask is fixed. However, an-
other insight from the theorem is that partial averaging is unlikely to achieve the global optimal
results because its gradient on the optimal mask is still greater than 0 when the fixed and the optimal
masks mismatch. Motivated by the theoretical findings, it is not trivial to find the optimal mask,
which will be proposed in the next section. With the best mask we can find, we update the model
parameters via the existing partial averaging algorithms. In case the new model is yet to achieve the
best performance, we can follow the idea of coordinate descent algorithm (Wright, 2015) to realize
an algorithm that can alternatively update the probabilistic mask and the model parameters. Further
details will be discussed in the next section.

4 FEDMAP: AN APPROACH FOR MASKED-BASED SUBMODELS
EXTRACTION

Section 3 discusses the importance of finding an initial binary mask, which relies on a predefined
distribution. Therefore, it is important to discuss how to find the distribution such that a proper
binary distribution mask can be drawn. In this section, we introduce a trainable probabilistic mask-
ing strategy named FedMAP with a focus on how the clients train the mask and how the server
aggregates the mask. A detailed algorithm pseudocode is described in Algorithm 1.

4.1 PROBLEM FORMULATION AND MASK GENERATION RULES

Binary masks {Mi}i∈[N ] involve discrete variables which make the global optimum NP-hard to
achieve (Pensia et al., 2020). Inspired by (Rolfe, 2016), we instead consider that eachMi follows
distribution f(Mi | p; γi) parameterized by a client-independent trainable p and client-dependent
capacity γi. We further assume that f(p), the prior of p, is a factorized Beta distribution, i.e., p ∈
[0, 1]d has d independent components, each following a univariate Beta distribution. For simplicity,
we denote f(p) = Beta(α, β) where α, β ∈ Rd. Put together, we solve the following optimization
in lieu of Eq. (1)

min
x̃,α,β

EM,p[F (x̃,M)], s.t.M = {Mi}i∈[N ], Mi ∼ f(Mi | p; γi), p ∼ Beta(α, β). (5)

The merit of Eq. (5) lies in twofold: First, it establishes a quasi-Bayesian framework where likeli-
hood f(Mi | p; γi) behaves more alike a factorized Bernoulli distribution Bern(p) (defined similarly
to the factorized Beta distribution) which conjugate with f(p) as γ → 1. This allows us to take in-
sights from previous works on heterogeneous mask aggregation (Zhou et al., 2019; Isik et al., 2022)
and derive an efficient aggregation algorithm as detailed shortly. Second, this formulation incorpo-
rates randomness in mask learning and helps escape from poor local optimums, often resulting in
further empirical improvement. In the remaining part of this section, we present an effective way to
solve Eq. (5) approximately.

Solution Overview. To solve non-convex Eq. (5), We opt for coordinate descent by learning x̃ and
α, β alternatively. The update of x̃ given α, β follows the conventional partial averaging approaches
(e.g., HeteroFL (Diao et al., 2020), FjORD (Horvath et al., 2021)), and therefore, we omit the
detailed steps in the main context, but we provide a pseudocode in Algo. 3. We apply Algo. 3 in
our experiments. In terms of optimizing α, β, we resort to straight-through estimator (Bengio et al.,
2013) to optimize Fi with respect to p on client i separately. Notably, each p learned on client i is
used as a proxy of the posterior ofMi and we aggregate all of them to update the posterior of p in
the server.
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4.2 LEARNING

Sampling Distribution of Masks. MaskMi ∼ f(Mi | p, γi) for client i ∈ [N ] is generated and
subjected to constraints γi. To this end, one way is to employ rejection sampling, i.e., keep drawing
Mi ∼ Bern(p) until ∥Mi∥1 ≤ γid. However, this may encounter long wait time for small γi. For
speedup, we instead set the candidate set for unmasked positions in each round to the outcome of the
the previous round. In particular, we initialize the candidate mask as M̄0

i = 1d, and at κ-th round,
a new candidate is drawn M̄κ

i ∼ Bern(p⊙ M̄κ−1
i ) until ∥M̄κ

i ∥1 ≤ γid.

Local Updates of Masks. Suppose client i ∈ [N ] holds a model of x̃ and the probabilistic mask p.
While optimizing p, the client should guarantee the training cost within the computation constraint
γi. Now that we find a submodel that satisfies the computation constraints, we discuss how the value
of p updates throughout the local training process. There are two key challenges when optimizing
the value of p with the traditional SGD approach. Firstly, The values of p are in the domain of
[0, 1], which are hard to control during the local training. Secondly, the proposed mask generation
strategy follows a discrete probability distribution, meaning that it is not differentiable over the value
of p, so we cannot directly use SGD to update p. To alleviate these two challenges, we project the
domain of p to a real-number vector Rd and adopt the straight-through estimator (Bengio et al.,
2013) to optimize p. The following proposition gives a detailed description of how p updates, and
the justification is given in Appendix B.
Proposition 4.1. For probabilistic mask p ∈ [0, 1]d, we transform it to an unconstrained vector
s ∈ Rd by applying the inverse of the sigmoid function σ(·) elementwisely, i.e., s = σ−1(p). Client
i ∈ [N ] has expected loss Fi and the maximum computation capacity γi, for which a mask is sampled
Mi ∼ f(Mi|p, γi). We define vector m ∈ Zd

+ upon the candidate mask sequences {M̄κ
i }∞κ=1 by

m =

min{κ:∥M̄κ
i ∥1≤γid}∑

κ=1

M̄κ
i . (6)

In words, m counts for each position how many times 1 is sampled until the valid mask Mi is
generated. Suppose the client holds the global model parameters x̃, we update the probabilistic
mask p through the following steps:

• Shrink the mask Mi: The above mask guarantees the forward propagation within the compu-
tation constraint γi, but the backward propagation is likely to exceed the constraint. Therefore,
we shrink the mask smaller to ensure the backward propagation also within the computation con-
straint. Therefore, we take one more Bernoulli step and update the mask Mi and m via: (i)
Mi ∼ Beta(pi ⊙Mi), and (ii) m← m+Mi.

• Update transformed s: We follow an SGD step via s← s− ηm∇sFi(x̃ ⊙Mi), where ηm is the
learning rate, and

∇sFi(x̃ ⊙Mi) = ∇Fi(x̃ ⊙Mi) · x̃ · 1{m≥∥m∥∞−1}

(
p2 − p2m+2

1 + p

)
(7)

where ∥m∥∞ returns the maximal entry of m.

• Update the probabilistic mask p: We recover updated p← σ(s).

Case study on Quasi-Bayesian Updates on equal γ. Let us consider a special case where all
clients have the equivalent computation capacity, i.e., γi = γ for all i ∈ [N ]. Then, the probabilistic
mask is thereby generated from p ∼ Beta (α, β|γ). Client i can get the value of m from Eq. (6)
while generating the maskMi ∼ f(Mi|pi, γ), and therefore, m can be regarded as drawing from a
distribution g(m|pi, γ), where, at j-th element (j ∈ [d]),

g(mj |pij) =

{
p
mj

ij (1− pij), mj < ∥m∥∞
p
mj

ij , mj = ∥m∥∞
(8)

We denote the above m as mi for client i. Apparently, Bata distribution is a conjugate prior in this
case. Therefore, as long as the clients i ∈ A transmit mi to the server, where A is a set of the
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Algorithm 1 FedMAP
Input: masking learning rate ηm, local updates K, Reset Prior τ , Bata distribution parameters
(α0, β0), initial model x̃0, total communication rounds T .

1: Communicate the initial model x̃0 to all clients i ∈ [N ]
2: for t = 0, 1, 2, . . . , T − 1 do
3: Sample clients A ⊆ [N ]
4: Communicate the probabilistic mask pt =

αt−1
αt+βt−2 with clients i ∈ A

5: for i ∈ A in parallel do
6: Compute s

(i)
t,0 = σ−1(pt)

7: for k = 0, . . . ,K − 1 do
8: Mi, = MaskGeneration

(
σ
(
s
(i)
t,k

)
, γi

)
▷ Algo. 2 defines MaskGeneration

9: s
(i)
t,k+1 = s

(i)
t,k − ηm∇s

(i)
t,k

Fi(x̃0 ⊙Mi)

10: end for
11: ,mi = MaskGeneration

(
σ
(
s
(i)
t,K

)
, γi

)
12: Communicate mi with the server
13: end for
14: if t%τ == 0 then
15: αt = α0, βt = β0

16: end if
17: αt+1 = αt +

∑
i∈A mi, βt+1 = βt + |A| · 1−

∑
i∈A 1{mi=∥mi∥∞}

18: end for
19: return (αT − 1)/(αT + βT − 2)

selected clients, the server can aggregate and update the prior knowledge via

α = α+
∑
i∈A

mi, β = β + |A| · 1−
∑
i∈A

1{mi=∥mi∥∞} (9)

4.3 ALGORITHM DESIGN

Initialization and server setup (Line 3 – 4). We initialize hyper-parameters α0, β0 ∈ Rd in Beta
distribution for α0 = β0 = λ · 1 (λ > 1) to learn as follows. As suggested by (Ferreira et al., 2021;
Isik et al., 2022), in each training round, the probabilistic mask p should be set as the maximum
likelihood estimators, i.e., p = α−1

α+β−2 . It is universally acknowledged that the changes in model
parameters likely lead to different optimal masks. Therefore, we fix the model parameters x̃ during
the update of the probabilistic mask p, with which we can generate a set of optimal masksM for all
clients. In other words, when the server initiates a new round for probabilistic mask optimization, it
only transmits the probabilistic mask p to the selected clients if they have held x̃.

Local updates on clients (Line 5 – 13). Suppose the clients hold the global model x̃. After
receiving the probabilistic mask p from the server, the clients should start training the probabilistic
mask locally. We let pt ∈ [0, 1]d be the initial probabilistic mask received from the server at round
t ∈ {0, 1, ...}. We repeat the steps in Proposition 4.1 for K times and obtain the updated probabilistic
mask p̃it on client i. As the probabilistic mask generated by the server is based on Beta distribution,
the aggregation should be built upon its parameters (α, β). In this case, the client should transmit
how to update α′ and β′ to the server, which depends on Mi ∼ f(Mi|pi, γi), and α′ = m as
defined in Eq. (6).

Server aggregation (Line 14 – 17). After receiving the masks from the selected clients, i.e.,
{mi}i∈A, we take Eq. (9) to update (α, β). However, these two parameters keep increasing during
the training, which probably harms the performance. To add some perturbation and give higher
confidence to update the probabilistic mask value, we reset these two parameters from time to time.
We have analyzed the way under a special case where all clients have the same computation capacity,
which inspires us to work with it under heterogeneous settings. The proposed way can still apply
to the case where the clients have heterogeneous computation capacity. The values on each weight
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Datasets Submodel
Extraction

HeteroFL FjORD
1.0 1./4 1./16 1./64 1.0 1./4 1./16 1./64

CINIC-10
Static 34.22 32.49 31.39 29.18 35.02 38.82 39.42 34.14

FedRolex 39.21 36.49 31.48 28.12 NA NA NA NA
FedMAP 39.95 39.46 37.33 33.32 40.26 42.22 40.51 35.12

CIFAR-100
Static 24.36 22.63 20.28 17.30 31.85 33.01 32.72 32.40

FedRolex 30.17 28.18 21.58 11.71 NA NA NA NA
FedMAP 27.73 30.95 27.92 22.89 33.20 34.89 35.75 35.44

Table 1: Comparison among baselines in terms of the final accuracy (%) after 1000 rounds in CINIC-
10 and CIFAR-100. Bold: The best result in each column for each dataset.

Datasets Submodel
Extraction

HeteroFL FjORD
1.0 0.64 0.36 0.16 1.0 0.64 0.36 0.16

Shakespeare
Static 43.57 44.63 36.89 36.53 42.65 42.69 42.52 42.37

FedRolex 45.83 45.01 43.56 37.7 NA NA NA NA
FedMAP 46.61 46.41 45.64 43.68 48.63 48.55 47.03 44.73

Table 2: Comparison among baselines in terms of the final accuracy (%) after 1000 rounds in Shake-
speare. Bold: The best result in each column for each dataset.

reflect the importance of each parameter. In this means, we are likely to eventually achieveM0 ⊂
M1 ⊂ · · · ⊂ MN−1 as γ0 ≤ γ1 ≤ · · · ≤ γN . When we try to extract a submodel somewhat in the
middle of two consecutive training model sizes, it can perform better than the smaller size.

5 EXPERIMENTS

Datasets and Models. We evaluate the proposed method with two computer vision (CV) datasets
and one natural language processing (NLP) dataset, namely, CINIC-10 (Darlow et al., 2018) and
CIFAR-100 (Krizhevsky et al., 2009) for image classification, and Shakespeare (McMahan et al.,
2017) for next character prediction. For the first two datasets, we train a ResNet-18 (He et al.,
2016) and replace its batch normalization (BN) layers with static BN ones (Diao et al., 2020). For
Shakespeare, we train a 2-layer LSTM (Reddi et al., 2020).

Data Heterogeneity. We follow (Caldas et al., 2018; He et al., 2020) and partition Shakespeare
such that it preserves the non-i.i.d. features with a total of 715 clients, where each client holds
inconsistent numbers of training samples. For CIFAR-100 and CINIC-10, we follow (Hsu et al.,
2019; Jhunjhunwala et al., 2022) and partition the datasets into 100 and 200 clients, respectively,
based on a Dirichlet distribution setting α = 0.3.

Baselines. In this section, we consider two partial averaging approaches, namely, HeteroFL (Diao
et al., 2020) and FjORD (Horvath et al., 2021), and two submodel extractions, i.e., static submodel
extraction (Diao et al., 2020) and rolling-based submodel extraction (or FedRolex (Alam et al.,
2022)). As mentioned by Alam et al. (2022), FedRolex is not compatible with FjORD.

System Heterogeneity and Implementation. For CINIC-10 and CIFAR-100, we consider four
different types of clients hold {1, 1/4, 1/16, 1/64} of the full model’s parameters. As for the
Shakespeare dataset, we also consider four types of clients but with different model settings, i.e.,
{1.0, 0.64, 0.36, 0.16}. To avoid the randomness of the results, we averaged the results from three
different random seeds. In the experiments, we report the results of all the baselines based on the
best hyperparameter settings.

5.1 TEST ACCURACY OVER DIFFERENT TASKS

In this section, we focus on the empirical results of three tasks in Table 1 and 2. These two tables
show the test accuracy against different model sizes for different partial averaging approaches. Thus,

8
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(a) FedMAP (b) FedMAP with HeteroFL (c) FedMAP with FjORD

Figure 2: Comparison of different submodel extraction strategies based on the proposed FedMAP
using test accuracy against the model sizes after 1000 communication rounds when we train ResNet-
18 using CIFAR-100.

we discuss our proposed submodel extraction (FedMAP) among different tasks and different partial
averaging approaches, followed by a comparison with the existing submodel extraction approaches.

The influence of the model sizes on FedMAP. Interestingly, the best performance of our proposed
submodel extraction is likely not at the full model size in the CV datasets. As presented in Table 1,
the models with 1./4 and 1./16 of the parameters are likely to have a better performance than the
full model. When we refer to Table 2, we can see the results that the test accuracy is following the
order of the model size. Therefore, a possible explanation for the phenomenon in the CV datasets is
that the proposed submodel extraction has found the best mask for the smaller-size models but yet
for the full-size.

Comparison with other baselines. In most of the cases, the proposed submodel extraction
achieves better performance than the existing works, except in a case where the model is trained
with CIFAR-100 and updated the parameters using HeteroFL. As we discussed in the last para-
graph, an optimal submodel extraction is yet to be found for the full model size. However, in that
case, the model with 1./4 parameters of FedMAP achieves better accuracy than the model with full
parameters of FedRolex. Put aside the special case, our proposed submodel extraction can achieve
up to 11% accuracy improvement under the same dataset and the same model update approach.

5.2 ABLATION STUDY: TWO SUBMODEL EXTRACTION STRATEGIES OF FEDMAP

We conducted experiments involving two strategies of FedMAP extracting the submodels: TopK
and Sampling. In the TopK method, we selected parameters with the K largest values of proba-
bilistic masks, while in the Sampling method, parameters are sampled with randomness based on
mask probabilities. As depicted in Figure 2, it is evident that TopK outperforms Sampling with
a clear margin. This discrepancy in performance may stem from Sampling introducing redundant
parameters, an issue not encountered with the TopK method. Notably, both methods exhibited an
inflection point as the model size increased, indicating the presence of redundant parameters in the
scope of the whole network. Moreover, our findings suggest that our algorithm is capable of ac-
commodating arbitrary computational constraints. This capability allows it to process models of
sizes not appear during training, and its performance falls within the range observed between two
consecutive training model sizes.

6 CONCLUSION

This work is motivated by a discovery that the existing works cannot find the optimal submodel
architectures such that the performance hardly achieves the global optimal. Therefore, we propose
FedMAP to utilize a probabilistic mask for optimal submodel architectures. In specific, the proba-
bilistic mask is jointly trained by the FL clients and updated via a quasi-bayesian approach. Upon
the approach, we introduce a coordinate descent approach, where the algorithm can alternatively
update the mask and the model parameters. Extensive experiments verify the effectiveness of the
proposed FedMAP when incorporating the state-of-the-art model to update model parameters.

9
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A ALGORITHMS FOR FEDMAP WITH MODEL PARAMETERS UPDATE

Algorithm 2 MaskGeneration
Input: Probabilistic mask p ∈ [0, 1]d, target model size γ ∈ (0, 1].

1: Initialize the maskM = {1}d
2: Initialize the sum of mask m = {0}d
3: while ∥M∥1 > γd do
4: M∼ Bern(p⊙M)
5: m = m+M
6: end while
7: returnM,m

Algorithm 3 FedMAP with Model Updates
Input: masking learning rate ηm, learning rate for model update η, global learning rate for model
update ηs, local updates K, Reset Prior τ , Bata distribution parameters (α0, β0), initial model x̃,
loop τ .

1: for T = 0, τ, 2τ, . . . do
2: if (T/τ)%2 == 0 then ▷ Obtain the probabilistic mask
3: p =FedMAP(ηm,K, τ, (α0, β0), x̃, τ)
4: else ▷ Update the model parameters
5: Sample clients A ⊆ [N ]
6: Generate a sequence of masksMi = MaskGeneration(p, γi) for clients i ∈ A
7: Communicate the model x̃ ⊙Mi with clients i ∈ A
8: for i ∈ A in parallel do
9: Initialize x

(i)
t,0 = x̃ ⊙Mi

10: for k = 0, . . . ,K − 1 do
11: x

(i)
t,k+1 = x

(i)
t,k − η∇Fi(x

(i)
t,k ⊙Mi)⊙Mi

12: end for
13: ∆x

(i)
t = x̃t − x

(i)
t,K

14: end for
15: x̃ = x̃ − ηsAggi∈A(∆x

(i)
t ) ▷ As defined in Section 3

16: end if
17: end for

B EXPLANATION FOR PROBABILISTIC MASK UPDATE (PROPOSITION 4.1)

Let pi = σ(si). Based on the straight-through estimator, we have

∂Bern(pi)

∂si
= σ(si)(1 + exp(−si))−2 · exp(−si) (10)

As our method is equivalent to taking multiple Bernoulli sampling, we have the following conclu-
sion:

∂f(Mi|p)
∂p

=

{
0, m < ∥Mi∥∞ − 1(
p− p2m+1

) (
1− p2

)−1
, Otherwise

(11)

C PROOF OF THEOREM 3.3

Lemma C.1. Let ε = {ε1, . . . , εa} be the set of random variables in Ra×d. Every element in ε is
independent with others. For i ∈ {1, . . . , a}, the value for εi follows the setting below:

εi =

{
ei, probability = q

0, otherwise
(12)
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where q is a constant real number between 0 and 1, i.e., q ∈ [0, 1]. Let | · | indicate the length of
a set, ε \ {0} represent a set in which an element is in ε but not 0. Then, there is a probability of
(1− q)a for |ε \ {0}| = 0, let avg(ε) be the averaged result with the exception of zero vectors, i.e.,

avg(ε) =

{
1

|ε\{0}|
∑a

i=1 εi, |ε \ {0}| ≠ 0

0, |ε \ {0}| = 0
(13)

Then, the following formulas hold for E (avg(ε)) and its second norm E ∥avg(ε)∥22:

E (avg(ε)) = (1− (1− q)a) · 1
a

a∑
i=1

ei; E ∥avg(ε)∥22 ≤ (1− (1− q)a) · 1
a

a∑
i=1

∥ei∥22 (14)

Proof. When q = 0, the formulas in Equation 14 obviously hold because E (avg(ε)) = 0 and
E ∥avg(ε)∥22 = 0. As for q = 1, since avg(ε) = 1

a

∑a
i=1 ei, we leverage Cauchy–Schwarz inequal-

ity and get E ∥avg(ε)∥22 =
∥∥ 1
a

∑a
i=1 ei

∥∥2
2
≤ 1

a

∑a
i=1 ∥ei∥

2
2, which is consistent with the formulas in

Equation 14. In addition to the preceding cases, we consider some general cases for the probability
q within 0 and 1, i.e., q ∈ (0, 1).

Firstly, we show the proof details for E (avg(ε)). For all i in {1, . . . , a}, given that εi is not a zero
vector, the coefficient of ei is based on the binomial distribution on how many non-zero elements in
the set {ε1, . . . , εi−1} ∪ {εi+1, . . . , εa}. Therefore, with the probability q that εi is equal to ei, the
coefficient of ei in the expected form is

q

1

a
·
(
a− 1

a− 1

)
qa−1︸ ︷︷ ︸

(a−1) non-zero elements

+ · · ·+ 1

1
·
(
a− 1

0

)
(1− q)a−1︸ ︷︷ ︸

0 non-zero element


Then, the coefficient of 1

aei can be expressed and simplified for

q

(
a

a
·
(
a− 1

a− 1

)
qa−1 + · · ·+ a

1
·
(
a− 1

0

)
(1− q)a−1

)
(15)

= q

((
a

a

)
qa−1 + · · ·+

(
a

1

)
(1− q)a−1

)
(16)

=

(
a

a

)
qa + · · ·+

(
a

1

)
q(1− q)a−1 (17)

= 1− (1− q)a (18)

where Equation (17) follows(
α

β

)
=

α

β
· (α− 1)× · · · × (α− β + 1)

1× · · · × (β − 1)
=

α

β

(
α− 1

β − 1

)
, ∀α ≥ β > 0

and Equation (18) follows

(q + (1− q))a =

(
a

a

)
qa + · · ·+

(
a

0

)
(1− q)a.

Thus, the equation E (avg(ε)) = (1− (1− q)a) · 1a
∑a

i=1 ei holds.

Secondly, we provide the analysis for E ∥avg(ε)∥22. Based on the definition for avg(ε) in Equation
(13), we discuss the case |ε \ {0}| ≠ 0. By means of Cauchy-Schwarz inequality, we can obtain the
following inequality:∥∥∥∥∥ 1

|ε \ {0}|

a∑
i=1

εi

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ 1

|ε \ {0}|
∑

i,εi ̸=0

εi

∥∥∥∥∥∥
2

2

≤ 1

|ε \ {0}|
∑

i,εi ̸=0

∥εi∥22 =
1

|ε \ {0}|

a∑
i=1

∥εi∥22

(19)
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Therefore,

∥avg(ε)∥22 ≤

{
1

|ε\{0}|
∑a

i=1 ∥εi∥
2
2 , |ε \ {0}| ≠ 0

0, |ε \ {0}| = 0
(20)

Apparently, Equation (20) is very similar to Equation (13) in terms of the expression. As a result,
we can adopt the same proof framework in the analysis of E (avg(ε)). Then, we can directly draw a
conclusion E ∥avg(ε)∥22 ≤ (1− (1− q)a) · 1a

∑a
i=1 ∥ei∥

2
2.

Now, let us consider how to prove the convergence rate. According to Assumption 3.1, the objective
function satisfies L-smooth, and therefore,

EF (x̃t+1,M∗)− F (x̃t,M∗) (21)

≤ E ⟨∇F (x̃t,M∗), (x̃t+1 − x̃t)⊙M∗⟩+
L

2
∥(x̃t+1 − x̃t)⊙M∗∥22 (22)

≤ E

〈
∇F (x̃t,M∗),−ηsηCMtAggj∈A

(
K−1∑
k=0

∇Fi

(
x
(i)
t,k ⊙M

t
i

)
⊙Mt

i

)〉
+

L

2
∥(x̃t+1 − x̃t)⊙M∗∥22

(23)

According to the lemma above, we have the j-th element of CMt
is

(CMt
)j =

(
N
A

)
−
(
N−Nj

A

)(
N
A

) (24)

In the theorem, we define

(ηs)j =

(
N
A

)(
N
A

)
−
(
N−Nj

A

) (25)

The first term of Eq. (23) is

E

〈
∇F (x̃t,M∗),−ηsηCMtAggj∈A

(
K−1∑
k=0

∇Fi

(
x
(i)
t,k ⊙M

t
i

)
⊙Mt

i

)〉
(26)

≤ −ηKE

〈
∇F (x̃t,M∗), Aggj∈A

(
1

K

K−1∑
k=0

∇Fi

(
x
(i)
t,k ⊙M

t
i

)
⊙Mt

i

)〉
(27)

≤ −ηKE ⟨∇F (x̃t,M∗),∇F (x̃t,Mt)⟩ (28)

+ ηK∥∇F (x̃t,M∗)∥ ·

∥∥∥∥∥Aggi∈[N ]

(
1

K

K−1∑
k=0

∇Fi

(
x
(i)
t,k ⊙M

t
i

)
⊙Mt

i −∇Fi(x̃t ⊙Mt
i)⊙Mt

i

)∥∥∥∥∥
(29)

According to SCAFFOLD (Karimireddy et al., 2020), we have∥∥∥∥∥Aggi∈[N ]

(
1

K

K−1∑
k=0

∇Fi

(
x
(i)
t,k ⊙M

t
i

)
⊙Mt

i −∇Fi(x̃t ⊙Mt
i)⊙Mt

i

)∥∥∥∥∥ ≤ √6ηKG (30)

Therefore,

E

〈
∇F (x̃t,M∗),−ηsηCMtAggj∈A

(
K−1∑
k=0

∇Fi

(
x
(i)
t,k ⊙M

t
i

)
⊙Mt

i

)〉
(31)

≤ −ηK

2
∥∇F (x̃t,M∗)∥22 −

ηK

2
∥∇F (x̃t,Mt)∥22 (32)

+
ηK

2

∥∥(∇F (x̃t,Mt)−∇F (x̃t,M∗)
)
· 1{∇F (x̃t,M∗ )̸=0}

∥∥2
2
+
√
6η2K2G2 (33)

According to SCAFFOLD (Karimireddy et al., 2020) and Assumption 3.2, we have

∥(x̃t+1 − x̃t)⊙M∗∥22 ≤ O(η2K2G2) (34)
Therefore, we can have the desired conclusion as what Theorem 3.3 presents.
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