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Abstract

We consider the question of learning the natural parameters of a k-parameter mini-
mal exponential family from i.i.d. samples in a computationally and statistically
efficient manner. We focus on the setting where the support as well as the natural
parameters are appropriately bounded. While the traditional maximum likelihood
estimator for this class of exponential family is consistent, asymptotically normal,
and asymptotically efficient, evaluating it is computationally hard. In this work, we
propose a computationally efficient estimator that is consistent as well as asymp-
totically normal under mild conditions. We provide finite sample guarantees to
achieve an (`2) error of α in the parameter estimation with sample complexity
O(poly(k/α)) and computational complexity O(poly(k/α)). To establish these
results, we show that, at the population level, our method can be viewed as the
maximum likelihood estimation of a re-parameterized distribution belonging to the
same class of exponential family.

1 Introduction

We are interested in the problem of learning the natural parameters of a minimal exponential family
with bounded support. Consider a p-dimensional random vector x = (x1, · · · , xp) with support
X ⊂ Rp. An exponential family is a set of parametric probability distributions with probability
densities of the following canonical form

fx(x;θ) ∝ exp
(
θTφ(x) + β(x)

)
, (1)

where x ∈ X is a realization of the underlying random variable x, θ ∈ Rk is the natural parameter,
φ : X → Rk is the natural statistic, k denotes the number of parameters, and β is the log base
function. For representational convenience, we shall utilize the following equivalent representation of
(1):

fx(x; Θ) ∝ exp

(〈〈
Θ,Φ(x)

〉〉)
= exp

(∑
i∈[k1],j∈[k2],l∈[k3]

Θijl × Φijl(x)

)
(2)

where Θ = [Θijl] ∈ Rk1×k2×k3 is the natural parameter, Φ = [Φijl] : X → Rk1×k2×k3 is the natural
statistic, k1 × k2 × k3 − 1 = k, and

〈〈
Θ,Φ(x)

〉〉
denotes the tensor inner product, i.e., the sum of

product of entries of Θ and Φ(x). An exponential family is minimal if there does not exist a nonzero
tensor U ∈ Rk1×k2×k3 such that

〈〈
U,Φ(x)

〉〉
is equal to a constant for all x ∈ X .

The notion of exponential family was first introduced by Fisher [17] and was later generalized by
Darmois [12], Koopman [30], and Pitman [40]. Exponential families play an important role in
statistical inference and arise in many diverse applications for a variety of reasons: (a) they are
analytically tractable, (b) they arise as the solutions to several natural optimization problems on the
space of probability distributions, (c) they have robust generalization property (see [5, 2] for details).
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Truncated (or bounded) exponential family, first introduced by Hogg and Craig [20], is a set of
parametric probability distributions resulting from truncating the support of an exponential family.
Truncated exponential families share the same parametric form with their non-truncated counterparts
up to a normalizing constant. These distributions arise in many applications where we can observe
only a truncated dataset (truncation is often imposed by during data acquisition) e.g., geolocation
tracking data can only be observed up to the coverage of mobile signal, police department can often
monitor crimes only within their city’s boundary.

The natural parameter Θ specifies a particular distribution in the exponential family. If the natural
statistic Φ and the support of x (i.e., X ) are known, then learning a distribution in the exponential
family is equivalent to learning the corresponding natural parameter Θ. Despite having a long history,
there has been limited progress on learning natural parameter Θ of a minimal truncated exponential
family. More precisely, there is no known method (without any abstract condition) that is both
computationally and statistically efficient for learning natural parameter of the minimal truncated
exponential family considered in this work.

1.1 Contributions

As the primary contribution of this work, we provide a computationally tractable method with
statistical guarantees for learning distributions in truncated minimal exponential families. Formally,
the learning task of interest is estimating the true natural parameter Θ∗ from i.i.d. samples of x
obtained from fx(·; Θ∗). We focus on the setting where Θ∗ and Φ are appropriately bounded (see
Section 2). We summarize our contributions in the following two categories.

1. Computationally Tractable Estimator : Consistency, Normality, Finite Sample Guarantees.
Given n samples x(1) · · · ,x(n) of x, we propose the following novel loss function to learn a distribu-
tion belonging to the exponential family in (2):

Ln(Θ) =
1

n

n∑
t=1

exp
(
−
〈〈

Θ, Φ(x(t))
〉〉)

, (3)

where Φ(·) = Φ(·)− EUX [Φ(·)] with UX being the uniform distribution over X . We establish that
the estimator Θ̂n obtained by minimizing Ln(Θ) over all Θ in the constraint set Λ, i.e.,

Θ̂n ∈ arg min
Θ∈Λ

Ln(Θ), (4)

is consistent and (under mild further restrictions) asymptotically normal (see Theorem 4.2). We obtain
an ε-optimal solution Θ̂ε,n of the convex minimization problem in (4) (i.e., Ln(Θ̂ε,n) ≤ Ln(Θ̂n) + ε)
by implementing a projected gradient descent algorithm with O(poly(k1k2/ε))

1 iterations (see
Lemma 3.1). Finally, we provide rigorous finite sample guarantees for Θ̂ε,n (with ε = O(α2))
to achieve an error of α (in the tensor `2 norm) with respect to the true natural parameter Θ∗

with O(poly(k1k2/α)) samples and O(poly(k1k2/α)) computations (see Theorem 4.3). By letting
certain additional structure on the natural parameter, we allow our framework to capture various
constraints on the natural parameter including sparse, low-rank, sparse-plus-low-rank (see Section
2.1).

2. Connections to maximum likelihood estimation (MLE) of a re-parameterized distribution.
We establish connections between our method and the MLE of the distribution fx(·; Θ∗ −Θ). We
show that the estimator that minimizes the population version of the loss function in (3) i.e.,

L(Θ) = E
[

exp
(
−
〈〈

Θ, Φ(x)
〉〉)]

.

is equivalent to the estimator that minimizes the Kullback-Leibler (KL) divergence between UX (the
uniform distribution on X ) and fx(·; Θ∗ −Θ) (see Theorem 4.1). Therefore, at the population level,
our method can be viewed as the MLE of the parametric family fx(·; Θ∗ −Θ). We show that the KL
divergence (and therefore L(Θ)) is minimized if and only if Θ = Θ∗, and this connection provides
an intuitively pleasing justification of the estimator in (4).

1We let k3 = O(1). See Section 2.
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1.2 Related Works

In this section, we look at the related works on learning exponential family. Broadly speaking, there
are two line of approaches to overcome the computational hardness of the MLE : (a) approximating
the MLE and (b) selecting a surrogate objective. Given the richness of both of approaches, we cannot
do justice in providing a full overview. Instead, we look at a few examples from both. Next, we look
at some of the related works that focus on learning a class of exponential family. More specifically,
we look at works on (a) learning the Gaussian distribution and (b) learning exponential family Markov
random fields (MRFs). Finally, we explore some works on the powerful technique of score matching.
In Appendix A, we further review works on learning exponential family MRFs, score-based methods
(including the related literature on Stein discrepancy) and latent variable graphical models (since
these capture sparse-plus-low-rank constraints on the parameters similar to our framework).

Approximating the MLE. Most of the techniques falling in this category approximate the MLE by
approximating the log-partition function. A few examples include : (a) approximating the gradient of
log-likelihood with a stochastic estimator by minimizing the contrastive divergence [19]; (b) upper
bounding the log-partition function by an iterative tree-reweighted belief propagation algorithm [57];
(c) using Monte Carlo methods like importance sampling for estimating the partition function [43].
Since these methods approximate the partition function, they come at the cost of an approximation
error or result in a biased estimator.

Selecting surrogate objective. This line of approach selects an easier-to-compute surrogate objective
that completely avoids the partition function. A few examples are as follows : (a) pseudo-likelihood
estimators [4] approximate the joint distribution with the product of conditional distributions, each of
which only represents the distribution of a single variable conditioned on the remaining variables;
(b) score matching [22, 21] minimizes the Fisher divergence between the true log density and the
model log density. Even though score matching does not require evaluating the partition function, it
is computationally expensive as it requires computing third order derivatives for optimization; (c)
kernel Stein discrepancy [32, 9] measures the kernel mean discrepancy between a data distribution
and a model density using the Stein’s identity. This measure is directly characterized by the choice of
the kernel and there is no clear objective for choosing the right kernel [61].

Learning the Gaussian distribution. Learning the Gaussian distribution is a special case of learning
exponential family distributions. There has been a long history of learning Gaussian distributions
in the form of learning Gaussian graphical models e.g. the neighborhood selection scheme [36],
the graphical lasso [18], the CLIME [6], etc. However, finite sample analysis of these methods
require various hard-to-verify conditions e.g. the restricted eigenvalue condition, the incoherence
assumption ([59, 24]), bounded eigenvalues of the precision matrix, etc. A recent work [28] provided
an algorithm whose sample complexity, for a specific subclass of Gaussian graphical models, match
the information-theoretic lower bound of [60] without the aforementioned hard-to-verify conditions.

Learning Exponential Family Markov Random Fields (MRFs). MRFs can be naturally repre-
sented as exponential family distributions via the principle of maximum entropy (see [58]). A popular
method for learning MRFs is estimating node-neighborhoods (fitting conditional distributions of each
node conditioned on the rest of the nodes) because the natural parameter is assumed to be node-wise-
sparse. A recent line of work has considered a subclass of node-wise-sparse pairwise continuous
MRFs where the node-conditional distribution of xi ∈ Xi for every i arise from an exponential family
as follows:

fxi|x−i
(xi|x−i = x−i) ∝ exp

([
θi +

∑
j∈[p],j 6=i

θijφ(xj)
]
φ(xi)

)
, (5)

where φ(xi) is the natural statistics and θi +
∑
j∈[p],j 6=i θijφ(xj) is the natural parameter.2 Yang

et al. [62] showed that only the following joint distribution is consistent with the node-conditional
distributions in (5) :

fx(x) ∝ exp
( ∑
i∈[p]

θiφ(xi) +
∑
j 6=i

θijφ(xi)φ(xj)
)
. (6)

To learn the node-conditional distribution in (5) for linear φ(·) (i.e., φ(x) = x), Yang et al. [62]
proposed an `1 regularized node-conditional log-likelihood. However, their finite sample analysis

2Under node-wise-sparsity,
∑

j∈[p],j 6=i |θij | is bounded by a constant for every i ∈ [p].
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required the following conditions: incoherence, dependency (see [59, 24]), bounded moments of the
variables, and local smoothness of the log-partition function. Tansey et al. [51] extended the approach
in [62] to vector-space MRFs (i.e., vector natural parameters and natural statistics) and non-linear
φ(·). They proposed a sparse group lasso (see [45]) regularized node-conditional log-likelihood and
an alternating direction method of multipliers based approach to solving the resulting optimization
problem. However, their analysis required same conditions as [62].

While node-conditional log-likelihood has been a natural choice for learning exponential family
MRFs, M-estimation [56, 55, 44] and maximum pseudo-likelihood estimator [39, 63, 10] have
recently gained popularity. The objective function in M-estimation is a sample average and the
estimator is generally consistent and asymptotically normal. Shah et al. [44] proposed the following
M-estimation (inspired from [56, 55]) for vector-space MRFs and non-linear φ(·): with UXi

being
the uniform distribution on Xi and φ̃(xi) = φ(xi)−

∫
x′i
φ(x′i)UXi(x

′
i)dx

′
i

arg min
1

n

n∑
i=1

exp
(
−
[
θiφ̃(xi) +

∑
j∈[p],j 6=i

θij φ̃(xi)φ̃(xj)
])
. (7)

They provided an entropic descent algorithm (borrowing from [55]) to solve the optimization in (7)
and their finite-sample bounds rely on bounded domain of the variables and a condition (naturally
satisfied by linear φ(·)) that lower bounds the variance of a non-constant random variable.

Yuan et al. [64] considered a broader class of sparse pairwise exponential family MRFs compared to
[62]. They studied the following joint distribution with natural statistics φ(·) and ψ(·)

fx(x) ∝ exp
(∑
i∈[p]

θiφ(xi) +
∑
j 6=i

θijψ(xi, xj)
)
. (8)

They proposed an `2,1 regularized joint likelihood and an `2,1 regularized node-conditional likelihood.
They also presented a Monte-Carlo approximation to these estimators via proximal gradient descent.
Their finite-sample analysis required restricted strong convexity (of the Hessian of the negative
log-likelihood of the joint density) and bounded moment-generating function of the variables.

Building upon [55] and [44], Ren et al. [41] addressed learning continuous exponential family
distributions through a series of numerical experiments. They considered unbounded distributions
and allowed for terms corresponding to multi-wise interactions in the joint density. However,
they considered only monomial natural statistics. Further, they assume node-wise-sparsity of the
parameters as in MRFs and their estimator is defined as a series of node-wise optimization problems.

In summary, tremendous progress has been made on learning the sub-classes of exponential family in
(6) and (8). However, this sub-classes are restricted by the assumption that the natural parameters are
node-wise-sparse. For example, none of the existing methods for exponential family MRFs work in
the setting where the natural parameters have a low-rank constraint.

Score-based method. A scoring rule S(x, Q) is a numerical score assigned to a realization x of a
random variable x and it measures the quality of a predictive distribution Q (with probability density
q(·)). If P is the true distribution of x, the divergence D(P,Q) associated with a scoring rule is
defined as EP [S(x, Q)−S(x, P )]. The MLE is an example of a scoring rule with S(·, Q) = − log q(·)
and the resulting divergence is the KL-divergence.

To bypass the intractability of MLE, [22] proposed an alternative scoring rule with S(·, Q) =
∆ log q(·) + 1

2‖∇ log q(·)‖22 where ∆ is the Laplacian operator,∇ is the gradient and ‖ · ‖2 is the `2
norm. This method is called score matching and the resulting divergence is the Fisher divergence.
Score matching is widely used for estimating unnormalizable probability distributions because
computing the scoring rule S(·, Q) does not require knowing the partition function. Despite the
flexibility of this approach, it is computationally expensive in high dimensions since it requires
computing the trace of the unnormalized density’s Hessian (and its derivatives for optimization).
Additionally, it breaks down for models in which the second derivative grows very rapidly.

In [34], the authors considered estimating truncated exponential family using the principle of score
matching. They build on the framework of generalized score matching [21] and proposed a novel
estimator that minimizes a weighted Fisher divergence. They showed that their estimator is a special
case of minimizing a Stein Discrepancy. However, their finite sample analysis relies on certain
hard-to-verify assumptions, for example, the assumption that the optimal parameter is well-separated
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from other neighboring parameters in terms of their population objective. Further, their estimator
lacks the useful properties of asymptotic normality and asymptotic efficiency.

1.3 Useful notations and outline

Notations. For any positive integer t, let [t] := {1, · · · , t}. For a deterministic sequence
v1, · · · , vt, we let v := (v1, · · · , vt). For a random sequence v1, · · · , vt, we let v := (v1, · · · , vt).
For a matrix M ∈ Ru×v, we denote the element in ith row and jth column by Mij , the
singular values of the matrix by σi(M) for i ∈ [min{u, v}], the matrix maximum norm by
‖M‖max := maxi∈[u],j∈[v] |Mij |, the entry-wise L1,1 norm by ‖M‖1,1 :=

∑
i∈[u],j∈[v] |Mij |,

the nuclear norm by ‖M‖? :=
∑
i∈[min{u,v}] σi(M). We denote the Frobenius or Trace in-

ner product of matrices M,N ∈ Ru×v by 〈M,N〉 :=
∑
i∈[u],j∈[v]MijNij . For a matrix

M ∈ Ru×v, we denote a generic norm on Ru×v byR(M) and denote the associated dual norm by
R∗(M) := sup{〈M,N〉|R(N) ≤ 1} where N ∈ Ru×v. For a tensor U ∈ Ru×v×w, we denote
its (i, j, l) entry by Uijl, its lth slice (obtained by fixing the last index) by U::l or U (l), the tensor
maximum norm (with a slight abuse of notation) by ‖U‖max := maxi∈[u],j∈[v],l∈[w] |Uijl|, and the

tensor norm by ‖U‖T :=
√∑

i∈[u],j∈[v],l∈[w] U
2
ijl. We denote the tensor inner product of tensors

U,V ∈ Ru×v×w by 〈〈U,V〉〉 :=
∑
i∈[u],j∈[v],l∈[w] UijlVijl. We denote the vectorization of the

tensor U ∈ Ru×v×w by vec(U) ∈ Ruvw×1 (the ordering of the elements is not important as long
as it is consistent). Let 0 ∈ Rk1×k2×k3 denote the tensor with every entry zero. We denote a
p-dimensional ball of radius b centered at 0 by B(0, b).

Outline. In Section 2, we formulate the problem of interest, state our assumptions, and provide
examples. In Section 3, we provide our loss function and algorithm. In Section 4, we present our main
results including the connections to the MLE of fx(·; Θ∗ −Θ), consistency, asymptotic normality,
and finite sample guarantees. In Section 5, we conclude, provide some remarks, discuss limitations
as well as some directions for future work. See supplementary for organization of the Appendix.

2 Problem Formulation

Let x = (x1, · · · , xp) be a p−dimensional vector of continuous random variables.3 For any i ∈ [p],
let the support of xi be Xi ⊂ R. Define X :=

∏p
i=1 Xi. Let x = (x1, · · · , xp) ∈ X be a realization

of x. In this work, we assume that the random vector x belongs to an exponential family with bounded
support (i.e., length of Xi is bounded) along with certain additional constraints. More specifically,
we make certain assumptions on the natural parameter Θ ∈ Rk1×k2×k3 , and on the natural statistic
Φ(x) : X → Rk1×k2×k3 as follows.

Natural parameter Θ. We focus on natural parameters with bounded norms. However, instead
of having such constraints on the natural parameter Θ as it is, we decompose Θ into k3 slices (or
matrices) and have slice specific constraints. The key motivation for this is to broaden the class
of exponential family covered by our formulation. For example, this decomposability allows our
formulation to en-capture the sparse-plus-low-rank decomposition of Θ in addition to only sparse or
only low-rank decompositions of Θ (see Section 2.1). This is precisely the reason for considering
tensor natural parameters instead of matrix natural parameters. Further, we assume k3 = O(1) i.e., it
does not scale with p. We formally state this assumption below.

Assumption 2.1. (Bounded norms of Θ.) For every i ∈ [k3], we let Ri(Θ(i)) ≤ ri where Θ(i) ∈
Rk1×k2 is the ith slice of Θ, Ri : Rk1×k2 → R+ is a norm and ri is a known constant. This
decomposition is represented compactly by R(Θ) ≤ r where R(Θ) = (R1(Θ(1)), · · · ,Rk3(Θ(k3)))
and r = (r1, · · · , rk3).

We define Λ to be the set of all natural parameters satisfying Assumption 2.1 i.e., Λ := {Θ : R(Θ) ≤
r}. For any Θ̃, Θ̄ ∈ Λ and t ∈ [0, 1], we have R(tΘ̃ + (1 − t)Θ̄) ≤ tR(Θ̃) + (1 − t)R(Θ̄) ≤
tr + (1− t)r = r. Therefore, tΘ̃ + (1− t)Θ̄ ∈ Λ and the constraint set Λ is a convex set.

3Even though we focus on continuous variables, our framework applies equally to discrete variables.
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Natural Statistic Φ. For mathematical simplicity, we center the natural statistic Φ(·) such that their
integral with respect to the uniform density on X (i.e., UX ) is zero. UX is well-defined because the
support X is a strict subset of Rp i.e., X ⊂ Rp.
Definition 2.1. (Centered natural statistics). The centered natural statistics are defined as follows:

Φ(·) := Φ(·)− EUX [Φ(x)].

In this work, we focus on bounded natural statistics which may enforce certain restrictions on the
length of support X . See Section 2.1 for examples. We define two notions of boundedness. First,
we make the following assumption to be able to bound the tensor inner product between the natural
parameter Θ and the centered natural statistic Φ(·) (see Appendix B.1).
Assumption 2.2. (Bounded dual norms of Φ). For every i ∈ [k3] and normRi, we assume that the
dual norm R∗i of the ith slice of the centered natural statistic i.e., Φ(i) is bounded by a constant
di. Formally, for any i ∈ [k3] and x ∈ X , R∗i (Φ(i)(x)) ≤ di. This is represented compactly by
R∗(Φ(x)) ≤ d where R∗(Φ(x)) = (R∗1(Φ(1)(x)), · · · ,R∗k3(Φ(k3)(x))) and d = (d1, · · · , dk3).

Next, we assume that the tensor maximum norm of the centered natural statistic Φ(·) is bounded by a
constant φmax. This assumption is stated formally below.
Assumption 2.3. (Bounded tensor maximum norm of Φ). For any x ∈ X , ‖Φ(x)‖max ≤ φmax.

The Exponential Family. Summarizing, x belongs to a minimal truncated exponential family with
probability density function as follows

fx(x; Θ) ∝ exp
(〈〈

Θ,Φ(x)
〉〉)

. (9)

where the natural parameter Θ ∈ Rk1×k2×k3 is such that R(Θ) ≤ r and the natural statistic
Φ(x) : X → Rk1×k2×k3 is such that for any x ∈ X , R∗(Φ(x)) ≤ d and ‖Φ(x)‖max ≤ φmax.

Let Θ∗ denote the true natural parameter of interest and fx(x; Θ∗) denote the true distribution of x.
Naturally, we assume R(Θ∗) ≤ r. Formally, the learning task of interest is as follows:

Goal. (Natural Parameter Recovery). Given n independent samples of x i.e., x(1) · · · ,x(n) obtained
from fx(x; Θ∗), compute an estimate Θ̂ of Θ∗ in polynomial time such that ‖Θ∗ − Θ̂‖T is small.

2.1 Examples

We will first present examples of natural parameters that satisfy Assumption 2.1. Next, we will
present examples of natural statistics along with the corresponding support that satisfy Assumptions
2.2, and 2.3. See Appendix H and I for more discussion on these examples.

Examples of natural parameter. We provide examples in Table 1 to illustrate the decomposability
of Θ as in Assumption 2.1. We will revisit these examples briefly in Section 4 and in-depth in
Appendix H. Assumption 2.1 should be viewed as a potential flexibility in the problem specification
i.e., a practitioner has the option to choose from a variety of constraints on the natural parameters (that
could be handled by our framework). For example, in some real-world applications the parameters are
sparse while in some other real-world applications the parameters have a low-rank and a practitioner
could choose either depending on the application at hand. For the sparse-plus-low-rank decomposition,

Table 1: A few examples of natural parameter Θ.

Decomposition k3 Convex Relaxation

Sparse decomposition (Θ∗ = (Θ∗(1))) 1 ‖Θ∗(1)‖1,1 ≤ r1

Low-rank decomposition (Θ∗ = (Θ∗(1))) 1 ‖Θ∗(1)‖? ≤ r1

Sparse-plus-low-rank decomposition 2 ‖Θ∗(1)‖1,1 ≤ r1 and ‖Θ∗(2)‖? ≤ r2

(Θ∗ = (Θ∗(1),Θ∗(2)))

it is more natural to think about the minimality of the exponential family in terms of matrices as
opposed to tensors. See Appendix I for details.
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Examples of natural statistic. The following are a few example of natural statistics (along with the
corresponding support) that fall in-line with Assumptions 2.2 and 2.3.

1. Polynomial statistics: Suppose the natural statistics are polynomials of x with maximum degree l,
i.e.,

∏
i∈[p] x

li
i such that li ≥ 0 ∀i ∈ [p] and

∑
i∈[p] li ≤ l. If X = [0, b] for b ∈ R, then φmax =

2bl. If Θ∗ has a sparse decomposition and X = [0, b] for b ∈ R, then R∗(Φ(x)) ≤ 2bk. Further, if
Θ∗ has a low-rank decomposition, l = 2, and X = B(0, b) for b ∈ R, then R∗(Φ(x)) ≤ 2(1+b2).
Finally, if Θ∗ has a sparse-plus-low-rank decomposition, l = 2, and X = B(0, b) for b ∈ R, then
R∗(Φ(x)) ≤ (2b2, 2 + 2b2).

2. Trigonometric statistics: Suppose the natural statistics are sines and cosines of x with l different
frequencies, i.e., sin(

∑
i∈[p] lixi) ∪ cos(

∑
i∈[p] lixi) such that li ∈ [l] ∪ {0}. For any X ⊂ Rp,

φmax = 2. If Θ∗ has a sparse decomposition, then R∗(Φ(x)) ≤ 2 for any X ⊂ Rp.

Our framework also allows combinations of polynomial and trigonometric statistics (see Appendix
I).4

3 Algorithm

We propose a novel, computationally tractable loss function drawing inspiration from the recent
advancements in exponential family Markov Random Fields [56, 55, 44].

The loss function and the estimator. The loss function, defined below, is an empirical average of
the inverse of the function of x that the probability density fx(x; Θ) is proportional to (see (9)).
Definition 3.1 (The loss function). Given n samples x(1) · · · ,x(n) of x, the loss function maps
Θ ∈ Rk1×k2×k3 to Ln(Θ) ∈ R defined as

Ln(Θ) =
1

n

n∑
t=1

exp
(
−
〈〈

Θ, Φ(x(t))
〉〉)

. (10)

The proposed estimator Θ̂n produces an estimate of Θ∗ by minimizing the loss function Ln(Θ) over
all natural parameters Θ satisfying Assumption 2.1 i.e.,

Θ̂n ∈ arg min
Θ∈Λ

Ln(Θ). (11)

For any ε > 0, Θ̂ε,n is an ε-optimal solution of Θ̂n if Ln(Θ̂ε,n) ≤ Ln(Θ̂n) + ε. The optimization in
(11) is a convex minimization problem (i.e., minimizing a convex function Ln over a convex set Λ)
and has efficient implementations for finding an ε-optimal solution. Although alternative algorithms
(including Frank-Wolfe) can be used, we provide a projected gradient descent algorithm below.

Algorithm 1: Projected Gradient Descent
Input: η, τ,Λ

Output: Θ̂ε,n

Initialization: Θ(0) = 0
1 for t = 0, · · · , τ do
2 Θ(t+1) ← arg minΘ∈Λ ‖Θ(t) − η∇Ln(Θ(t))−Θ‖T
3 Θ̂ε,n ← Θ(τ+1)

The following Lemma shows that running sufficient iterations of the projected gradient descent in
Algorithm 1 results in an ε-optimal solution of Θ̂n.
Lemma 3.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. Let η = 1/k1k2k3φ

2
max exp(rTd). Then,

Algorithm 1 returns an ε-optimal solution Θ̂ε,n as long as

τ ≥ 2k1k2k3φ
2
max exp(rTd)

ε
‖Θ̂n‖2T. (12)

Further, ignoring the dependence on k3, φmax, r and d, τ in (12) scales as O
(
poly

(
k1k2
ε

))
.

4We believe that for polynomial and/or trigonometric natural statistics, Assumptions 2.2 and 2.3 would hold
whenever the domain of X is appropriately bounded.
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The proof of Lemma 3.1 can be found in Appendix B. The proof outline is as follows : (a) First, we
prove the smoothness property of Ln(Θ). (b) Next, we complete the proof using a standard result
from convex optimization for the projected gradient descent algorithm for smooth functions.

4 Analysis and Main results

In this section, we provide our analysis and main results. First, we focus on the connection between
our method and the MLE of fx(·; Θ∗ −Θ). Then, we establish consistency and asymptotic normality
of our estimator. Finally, we provide non-asymptotic finite sample guarantees to recover Θ∗.

1. Connection with MLE of fx(·; Θ∗ − Θ). First, we will establish a connection between the
population version of the loss function in (10) (denoted by L(Θ)) and the KL-divergence of the
uniform density on X with respect to fx(x; Θ∗ − Θ). Then, using minimality of the exponential
family, we will show that this KL-divergence and L(Θ) are minimized if and only if Θ = Θ∗. This
provides a justification for the estimator in (11) as well as helps us obtain consistency and asymptotic
normality of Θ̂n.

For any Θ ∈ Λ, L(Θ) = E
[

exp
(
−
〈〈

Θ, Φ(x)
〉〉)]

. The following result shows that the population
version of the estimator in (11) is equivalent to the maximum likelihood estimator of fx(x; Θ∗−Θ).
Theorem 4.1. With D(· ‖ ·) representing the KL-divergence,

arg min
Θ∈Λ

L(Θ) = arg min
Θ∈Λ

D(UX (·) ‖ fx(·; Θ∗ −Θ)).

Further, the true parameter Θ∗ is the unique minimizer of L(Θ).

The proof of Theorem 4.1 can be found in Appendix C. The proof outline is as follows : (a) First,
we express fx(·; Θ∗ − Θ) in terms of L(Θ) (b) Next, we complete the proof by simplifying the
KL-divergence between UX (·) and fx(·; Θ∗ −Θ).

2. Consistency and Normality. We establish consistency and asymptotic normality of the proposed
estimator Θ̂n by invoking the asymptotic theory of M-estimation. We emphasize that, from Theorem
4.1, the population version of Θ̂n is equivalent to the maximum likelihood estimate of fx(·; Θ∗ −Θ)

and not fx(·; Θ). Moreover, there is no clear connection between Θ̂n and the finite sample maximum
likelihood estimate of fx(·; Θ) or fx(·; Θ∗ −Θ). Therefore, we cannot invoke the asymptotic theory
of MLE to show consistency and asymptotic normality of Θ̂n.

Let A(Θ∗) denote the covariance matrix of vec
(
Φ(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉))

. LetB(Θ∗) denote the
cross-covariance matrix of vec(Φ(x)) and vec(Φ(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉)

). LetN (µ,Σ) represent
the multi-variate Gaussian distribution with mean vector µ and covariance matrix Σ.

Theorem 4.2. Let Assumptions 2.1, 2.2, and 2.3 be satisfied. Let Θ̂n be a solution of (11). Then,
as n → ∞, Θ̂n

p→ Θ∗. Further, assuming Θ∗ ∈ interior(Λ) and B(Θ∗) is invertible, we have
√
n× vec(Θ̂n −Θ∗)

d→ N (vec(0), B(Θ∗)−1A(Θ∗)B(Θ∗)−1).

The proof of Theorem 4.2 can be found in Appendix D. The proof is based on two key observations :
(a) Θ̂n is an M -estimator and (b) L(Θ) is uniquely minimized at Θ∗.

3. Finite Sample Guarantees. To provide the non-asymptotic guarantees for recovering Θ∗, we re-
quire the following assumption on the smallest eigenvalue of the autocorrelation matrix of vec(Φ(x)).

Assumption 4.1. (Positive eigenvalue of the autocorrelation matrix of Φ.) Let λmin denote the
minimum eigenvalue of Ex[vec(Φ(x))vec(Φ(x))T ]. We assume λmin is strictly positive i.e., λmin > 0.

We also make use of the following property of the matrix norms.

Property 4.1. For any norm R̃ : Rk1×k2 → R+, and matrix M ∈ Rk1×k2 , there exists g such that
R̃(M) ≤ gk1k2‖M‖max.

For most matrix norms of interest including entry-wise Lp,q norm (p, q ≥ 1), Schatten p-norm
(p ≥ 1), and operator p−norm (p ≥ 1), we have g = 1 as shown in Appendix J.
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Let g = (g1, · · · , gk3) where ∀i ∈ [k3], gi is such that R∗i (M) ≤ gik1k2‖M‖max with R∗i being
the dual norms from Assumption 2.2.

Theorem 4.3 below shows that, with enough samples, the ε-optimal solution of Θ̂n is close to the true
natural parameter in the tensor norm with high probability.

Theorem 4.3. Let Θ̂ε,n be an ε-optimal solution of Θ̂n obtained from Algorithm 1 for ε of the order
O(α2λmin). Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Recall Property 4.1. Then, for any
δ ∈ (0, 1), we have ‖Θ̂ε,n −Θ∗‖T ≤ α with probability at least 1− δ as long as

n ≥ O
(

k2
1k

2
2

α4λ2
min

log
(k1k2

δ

))
. (13)

The computational cost scales as O
(
k1k2
α2 max

(
k1k2n, c(Λ)

))
where c(Λ) is the cost of projection

onto Λ. Further, ignoring the dependence on δ, λmin, and c(Λ), n in (13) (as well as the associated
computational cost) scales as O

(
poly

(
k1k2
α

))
.

The proof of Theorem 4.3 can be found in Appendix G. The proof is based on two key properties
of the loss function Ln(Θ) : (a) with enough samples, the loss function Ln(Θ) naturally obeys the
restricted strong convexity with high probability and (b) with enough samples, ‖∇Ln(Θ∗)‖max is
bounded with high probability. See the proof for the dependence of the sample complexity and the
computational complexity on k3, r,d, g and φmax.

The computational cost of projection onto Λ i.e., c(Λ) is typically polynomial in k1k2. In Appendix H,
we provide the computational cost for the example constraints on the natural parameter Θ from Section
2.1 i.e., sparse decomposition, low-rank decomposition, and sparse-plus-low-rank decomposition.

4. Comparison with the traditional MLE. To contextualize our method, we compare it with the
MLE of the parametric family fx(·; Θ). The MLE of fx(·; Θ) minimizes the following loss function

min− 1

n

n∑
t=1

〈〈
Θ,Φ(x(t))

〉〉
+ log

∫
x∈X

exp
(〈〈

Θ,Φ(x
〉〉)

dx. (14)

The maximum likelihood estimator has many attractive asymptotic properties : (a) consistency (see
[16, Theorem 17]), i.e., as the sample size goes to infinity, the bias in the estimated parameters goes
to zero, (b) asymptotic normality (see [16, Theorem 18]), i.e., as the sample size goes to infinity,
normalized estimation error coverges to a Gaussian distribution and (c) asymptotic efficiency (see
[16, Theorem 20]), i.e., as the sample size goes to infinity, the variance in the estimation error attains
the minimum possible value among all consistent estimators. Despite having these useful asymptotic
properties of consistency, normality, and efficiency, computing the maximum likelihood estimator is
computationally hard [52, 26].

Our method can be viewed as a computationally efficient proxy for the MLE. More precisely, our
method is computationally tractable as opposed to the MLE while retaining the useful properties of
consistency and asymptotic normality. However, our method misses out on asymptotic efficiency.
This raises an important question for future work — can computational and asymptotic efficiency be
achieved by a single estimator for this class of exponential family?

5 Conclusion, Remarks, Limitations, Future Work

In this section, we conclude, provide a few remarks, discuss the limitations of our work as well as
some interesting future directions.

Conclusion. In this work, we provide a computationally and statistically efficient method to learn
distributions in a minimal truncated k-parameter exponential family from i.i.d. samples. We propose
a novel estimator via minimizing a convex loss function and obtain consistency and asymptotic
normality of the same. We provide rigorous finite sample analysis to achieve an α-approximation to
the true natural parameters with O(poly(k/α)) samples and O(poly(k/α)) computations. We also
provide an interpretation of our estimator in terms of a maximum likelihood estimation.

Node-wise-sparse exponential family MRFs vs general exponential family. We highlight that the
focus of our work is beyond the exponential families associated with node-wise-sparse MRFs and
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towards general exponential families. The former focuses on local assumptions on the parameters
such as node-wise-sparsity and the sample complexity depends logarithmically on the parameter
dimension i.e., O(log(k)). In contrast, our work can handle global structures on the parameters (e.g.,
a low-rank constraint) and there are no prior work that can handle such global structures with sample
complexity O(log(k)). Similarly, for node-wise-sparse MRFs there has been a lot of work to relax
the assumptions required for learning (see the discussion on Assumption 4.1 below). Since our work
focuses on global structures associated with the parameters, we leave the question of relaxing the
assumptions required for learning as an open question. Likewise, the interaction screening objective
[56] and generalized interaction screening objective [55, 44] were designed for node-wise parameter
estimation i.e., they require the parameters to be node-wise-sparse and are less useful when the
parameters have a global structure. On the contrary, our loss function is designed to accommodate
global structures on the parameters.

Assumption 4.1. For node-wise-sparse pairwise exponential family MRFs (e.g., Ising models), which
is a special case of the setting considered in our work, Assumption 4.1 is proven (e.g., Appendix T.1
of [44] provides one such analysis for a condition that is equivalent to Assumption 4.1 for sparse
continuous graphical model). However, such analysis typically requires (a) a bound on the infinity
norm of the parameters and a bound on the degree of each node or (b) a bound on the `1 norm of the
parameters associated with each node. Since the focus of our work is beyond the exponential families
associated with node-wise-sparse MRFs, we view Assumption 4.1 as an adequate condition to rule
out certain singular distributions (as evident in the proof of Proposition E.1 where this condition is
used to effectively lower bounds the variance of a non-constant random variable) and expect it to hold
for most real-world applications. Further, we highlight that the MLE in (14) remains computationally
intractable even under Assumption 4.1. To see this, one could again focus on node-wise-sparse
pairwise exponential family MRFs where Assumption 4.1 is proven and the MLE is still known to be
computationally intractable.

Sample Complexity. We do not assume p (the dimension of x) to be a constant and think of k1 and
k2 as implicit functions of p. Typically, for an exponential family, the quantity of interest is the
number of parameters i.e., k and this quantity scales polynomially in p e.g., k = O(p2) for Ising
model, k = O(pt) for t-wise MRFs over binary alphabets. Therefore, in this scenario, the dependence
of the sample complexity on p would also be O(poly(p)). Further, the 1/α4 dependence of the
sample complexity seems fundamental to our loss function. For learning node-wise-sparse MRFs,
this dependence is in-line with some prior works that use a similar loss function [44, 55] as well as
that do not use a similar loss function [29]. While it is known that for learning node-wise-sparse
MRFs [56] and truncated Gaussian [13] one could achieve a better dependence of 1/α2, it is not yet
clear how the lower bound on the sample complexity would depend on α for the general class of
exponential families considered in this work (which may not be sparse or Gaussian).

Practicality of Algorithm 1. While the optimization associated with Algorithm 1 is a convex
minimization problem (i.e., (11)) and the computational complexity of Algorithm 1 is polynomial in
the parameter dimension and the error tolerance, computing the gradient of the loss function requires
centering of the natural statistics (see (26)). If the natural statistics are polynomials or trigonometric,
centering them should be relatively straightforward (since the integrals would have closed-form
expressions). In other cases, centering them may not be polynomial-time and one might require an
assumption of computationally efficient sampling or that obtaining approximately random samples of
x is computationally efficient [14].

Limitations and Future Work. First, in our current framework, we assume boundedness of the
support. While, conceptually, most non-compact distributions could be truncated by introducing a
controlled amount of error, we believe this assumption could be lifted as for exponential families:
P(|xi| ≥ δ log γ) ≤ cγ−δ where c > 0 is a constant and γ > 0. Alternatively, the notion of
multiplicative regularizing distribution from [41] could also be used. Second, while the population
version of our estimator has a nice interpretation in terms of maximum likelihood estimation, the
finite sample version of our estimator does not have a similar interpretation. We believe there could
be connections with the Bregman score and this is an important direction for immediate future work.
Third, while our estimator is computationally efficient, consistent, and asymptotically normal, it is not
asymptotically efficient. Investigating the possibility of a single estimator that achieves computational
and asymptotic efficiency for this class of exponential family could be an interesting future direction.
Lastly, building on our framework, empirical study is an important direction for future work.
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