
Autoencoding Random Forests

Binh Duc Vu∗

King’s College London
binh.vu@kcl.ac.uk

Jan Kapar∗
University of Bremen

kapar@leibniz-bips.de

Marvin Wright
University of Bremen

wright@leibniz-bips.de

David S. Watson
King’s College London

david.watson@kcl.ac.uk

Abstract

We propose a principled method for autoencoding with random forests. Our strat-
egy builds on foundational results from nonparametric statistics and spectral graph
theory to learn a low-dimensional embedding of the model that optimally represents
relationships in the data. We provide exact and approximate solutions to the decod-
ing problem via constrained optimization, split relabeling, and nearest neighbors
regression. These methods effectively invert the compression pipeline, establishing
a map from the embedding space back to the input space using splits learned by
the ensemble’s constituent trees. The resulting decoders are universally consistent
under common regularity assumptions. The procedure works with supervised or
unsupervised models, providing a window into conditional or joint distributions.
We demonstrate various applications of this autoencoder, including powerful new
tools for visualization, compression, clustering, and denoising. Experiments il-
lustrate the ease and utility of our method in a wide range of settings, including
tabular, image, and genomic data.

1 Introduction

Engineering compact, informative representations is central to many learning tasks [53, 91, 8, 39, 76].
In supervised applications, it can simplify regression or classification objectives, helping users better
understand the internal operations of large, complicated models [37, 98]. In reinforcement learning,
embeddings help agents navigate complex environments, imposing useful structure on a potentially
high-dimensional state space [2, 58]. In unsupervised settings, latent projections can be used for data
compression [64], visualization [88], clustering [92], and generative modeling [87].

The current state of the art in representation learning is dominated by deep neural networks (DNNs).
Indeed, the tendency of these algorithms to learn rich embeddings is widely cited as a key component
of their success [39], with some even arguing that large language models are essentially compression
engines [25]. It is less obvious how to infer latent factors from tree-based ensembles such as random
forests (RFs) [14], a popular and flexible function class widely used in areas like bioinformatics [19]
and econometrics [3]. DNNs are known to struggle in tabular settings with mixed continuous and
categorical covariates, where tree-based ensembles typically match or surpass their performance
[81, 43]. Though several authors have proposed methods for computing nonlinear embeddings with
RFs (see Sect. 2), these approaches tend to be heuristic in nature. Moreover, the task of decoding
latent vectors to recover input data in these pipelines remains unresolved.

We propose a novel, principled method for autoencoding with RFs. Our primary contributions are: (1)
We prove several important properties of the adaptive RF kernel, including that it is asymptotically

∗Equal contribution.

Preprint. Under review.

universal. (2) These results motivate the use of diffusion maps to perform nonlinear dimensionality
reduction and manifold learning with RFs. Resulting embeddings can be used for various downstream
tasks. (3) We introduce and study multiple methods for decoding spectral embeddings back into
the original input space, including exact and approximate solutions based on constrained optimiza-
tion, split relabeling, and nearest neighbors regression. (4) We apply these methods in a series of
experiments and benchmark against a wide array of neural and tree-based alternatives. Our results
demonstrate that the RF autoencoder is competitive with the state of the art across a range of tasks
including data visualization, compression, clustering, and denoising.

The remainder of this paper is structured as follows. After a review of background material and
related work (Sect. 2), we propose and study methods for encoding (Sect. 3) and decoding (Sect.
4) data with RFs. Performance is illustrated in a series of experiments (Sect. 5). Following a brief
discussion (Sect. 6), we conclude with directions for future work (Sect. 7).

2 Background

Our starting point is the well established connection between RFs and kernel methods [13, 24, 78].
The basic insight is that classification and regression trees (CART) [15], which serve as basis functions
for many popular ensemble methods, are a kind of adaptive nearest neighbors algorithm [61]. At the
root of the tree, all samples are connected. Each split severs the link between one subset of the data
and another (i.e., samples routed to left vs. right child nodes), resulting in a gradually sparser graph as
depth increases. At completion, a sample’s “neighbors” are just those datapoints that are routed to the
same leaf. Given some feature space X ⊂ RdX , the implicit kernel of tree b, k(b) : X × X 7→ {0, 1},
is an indicator function that evaluates to 1 for all and only neighboring sample pairs.2 This base
kernel can be used to define different ensemble kernels. For instance, taking an average over B > 1
trees, we get a kernel with a simple interpretation as the proportion of trees in which two samples
colocate: kS(x,x′) = B−1

∑B
b=1 k

(b)(x,x′). We call this the Scornet kernel after one of its noted
proponents [78], who showed that kS is provably close in expectation to the Breiman RF kernel kRF

n :

kRF
n (x,x′) =

1

B

B∑
b=1

(
k(b)(x,x′)∑n
i=1 k

(b)(x,xi)

)
, (1)

where i ∈ [n] := {1, . . . , n} indexes the training samples. This kernel represents the average of
normalized tree kernels, and fully encodes the information learned by the RF fn via the identity:

fn(x) =

n∑
i=1

kRF
n (x,xi) yi, (2)

which holds uniformly for all x ∈ X . Though kS is sometimes referred to as “the random forest
kernel” [24, 70], this nomenclature is misleading—only kRF

n satisfies Eq. 2.

Several nonlinear dimensionality reduction techniques are based on kernels, most notably kernel
principal component analysis (KPCA) [75]. We focus in particular on diffusion maps [21, 22], which
can be interpreted as a form of KPCA [47]. Bengio et al. [7] establish deep links between these
algorithms and several related projection methods, demonstrating how to embed test data in all
settings via the Nyström formula, a strategy we adopt below. Inverting any KPCA algorithm to map
latent vectors to the input space is a nontrivial task that must be tailored to each specific kernel. For
an example with Gaussian kernels, see [67].

Previous authors have explored feature engineering with RFs. Shi and Horvath [80] perform multi-
dimensional scaling on a dissimilarity matrix extracted from supervised and unsupervised forests.
However, they do not explore the connections between this approach and kernel methods, nor do they
propose any strategy for decoding latent representations. Other more heuristic approaches involve
running PCA on a weighted matrix of all forest nodes (not just leaves), a method that works well in
some experiments but comes with no formal guarantees [71].

2This ignores certain subtleties that arise when trees are grown on bootstrap samples, in which case k(b)

may occasionally evaluate to larger integers. For present purposes, we presume that trees are grown on data
subsamples; see Appx. A.

2

…𝑋!𝑋"𝑋#
…Red04.6

...Blue12.3

………

25 12 49 40 8 28 18 37 29 5 1 38 50 23 17 15 7 34 41 11 47 22 27 20 16 6 19 24 21 33 44 45 32 143
115
135
122
120
114
134
102
139
124
128
147
150
127
144
125
116
121
141
136
123
108
103
106
131
130
126
119
111
142
109
104
112
113
133
138
148
117
129
146
140
105
42 107
118
110
132
101
149
137
145
31 35 4 26 30 10 13 43 14 46 9 39 2 3 36 48 94 58 61 99 82 68 70 54 81 60 63 80 90 83 97 56 72 100
65 91 95 93 87 76 66 92 86 53 52 57 71 51 78 67 62 85 89 96 75 59 79 64 55 88 98 74 84 69 73 77

77
73
69
84
74
98
88
55
64
79
59
75
96
89
85
62
67
78
51
71
57
52
53
86
92
66
76
87
93
95
91
65
100
72
56
97
83
90
80
63
60
81
54
70
68
82
99
61
58
94
48
36
3
2
39
9
46
14
43
13
10
30
26
4
35
31
145
137
149
101
132
110
118
107
42
105
140
146
129
117
148
138
133
113
112
104
109
142
111
119
126
130
131
106
103
108
123
136
141
121
116
125
144
127
150
147
128
124
139
102
134
114
120
122
135
115
143
32
45
44
33
21
24
19
6
16
20
27
22
47
11
41
34
7
15
17
23
50
38
1
5
29
37
18
28
8
40
49
12
25

0

0.2

0.4

0.6

0.8

1

…

−0.050

−0.025

0.000

0.025

0.050

−0.050 −0.025 0.000 0.025
PC1

PC
2

Species setosa versicolor virginica

(a)

(b)

(c)

(d)

(e)

𝐊 = 𝐕𝚲𝐕$𝟏

Figure 1: Visual summary of the encoding pipeline. (a) Input data can be a mix of continuous, ordinal,
and/or categorical variables. (b) A RF (supervised or unsupervised) is trained on the data. (c) A kernel
matrix K ∈ [0, 1]n×n is extracted from the ensemble. (d) K is decomposed into its eigenvectors and
eigenvalues, as originally proposed by David Hilbert (pictured). (e) Data is projected onto the top
dZ < n principal components of the diffusion map, resulting in a new embedding Z ∈ Rn×dZ .

Several generative algorithms based on RFs have been proposed, building on the probabilistic circuit
literature [23, 94]. These do not involve any explicit encoding step, although the models they train
could be passed through our pipeline to extract implicit embeddings (see Sect. 5). Existing methods
for sum-product network encoding could in principle be applied to an RF following compilation into
a corresponding circuit [90]. However, these can often increase rather than decrease dimensionality,
and do not come with any associated decoding procedure.

Perhaps the most similar method to ours, in motivation if not in execution, is Feng and Zhou
[30]’s encoder forest (eForest). This algorithm maps each point to a hyperrectangle defined by the
intersection of all leaves to which the sample is routed. Decoding is then achieved by taking some
representative value for each feature in the subregion (e.g., the median). Notably, this approach does
not include any dimensionality reduction. On the contrary, the embedding space requires minima and
maxima for all input variables, resulting in a representation with double the number of features as the
inputs. Working from the conjecture that optimal prediction is equivalent to optimal compression
[73, 53, 44], we aim to represent the information learned by the RF in relatively few dimensions.

3 Encoding

As a preliminary motivation, we prove several important properties of the RF kernel. The following
definitions are standard in the literature. Let X be a compact metric space, and let C(X) be the set of
all real-valued continuous functions on X .
Definition 3.1 (Positive semidefinite). A symmetric function k : X ×X 7→ R is positive semidefinite
(PSD) if, for all x1, . . . ,xn ∈ X , n ∈ N, and ci, cj ∈ R, we have:

∑n
i,j ci cj k(xi,xj) ≥ 0.

The Moore-Aronszajn theorem [1] states that PSD kernels admit a unique reproducing kernel Hilbert
space (RKHS) [9], providing a rich mathematical language for analyzing their behavior.
Definition 3.2 (Universal). We say that the RKHS H is universal if the associated kernel k is dense
in C(X) with respect to the uniform norm. That is, for any f∗ ∈ C(X) and ϵ > 0, there exists some
f ∈ H such that ∥f∗ − f∥∞ < ϵ.

Several variants of universality exist with slightly different conditions on X [82]. Examples of
universal kernels include the Gaussian and Laplace kernels [83].
Definition 3.3 (Characteristic). The bounded measurable kernel k is characteristic if the function
µ 7→

∫
X k(·,x) dµ(x) is injective, where µ is a Borel probability measure on X .

Characteristic kernels are especially useful for statistical testing, and have inspired flexible nonpara-
metric methods for evaluating marginal and conditional independence [41, 34]. For instance, Gretton
et al. [42] show that, when using a characteristic kernel k, the maximum mean discrepancy (MMD)
between two measures µ, ν on X is zero iff µ = ν. The MMD is defined as:

MMD2(µ, ν; k) := Ex,x′∼µ[k(x,x
′)]− 2Ex∼µ,y∼ν [k(x,y)] + Ey,y′∼ν [k(y,y

′)].

With these definitions in place, we state our first result (all proofs in Appx. A).

3

Theorem 3.4 (RF kernel properties). Assume standard RF regularity conditions (see Appx. A). Then:
(a) For all n ∈ N, the function kRF

n is PSD and the kernel matrix K ∈ [0, 1]n×n is doubly stochastic.
(b) Let {fn} be a sequence of RFs. Then the associated RKHS sequence {Hn} is asymptotically
universal. That is, for any f∗ ∈ C(X) and ϵ > 0, we have:

lim
n→∞

P
(
∥f∗ − fn∥∞ ≥ ϵ

)
= 0.

(c) The RKHS sequence {Hn} is asymptotically characteristic. That is, for any ϵ > 0, the Borel
measures µ, ν are equal if and only if:

lim
n→∞

P
(
MMD(µ, ν; kRF

n) ≥ ϵ
)
= 0.

The literature on kernel methods is largely focused on fixed kernels such as the radial basis function
(RBF). Among adaptive partitioning alternatives, the Scornet kernel been studied in some detail
[24, 78, 70], as has the Mondrian kernel [59, 4, 17]. However, to the best of our knowledge, we
are the first to establish these results for the RF kernel. Thm. 3.4 confirms that kRF

n is flexible,
informative, and generally “well-behaved” in ways that will prove helpful for autoencoding.

Spectral Graph Theory A key insight from spectral graph theory is that for any PSD kernel k,
there exists an encoding g : X 7→ Z for any embedding dimension dZ < n that optimally represents
the data, in a sense to be made precise below. This motivates our use of diffusion maps [22, 21],
which are closely related to Laplacian eigenmaps [5, 6], an essential preprocessing step in popular
spectral clustering algorithms [69, 92, 54]. These methods are typically used with fixed kernels such
as the RBF; by contrast, we use the adaptive RF kernel, which is better suited to mixed tabular data.

The procedure begins with a dataset of paired feature vectors x ∈ X ⊂ RdX and outcomes y ∈ Y ⊂ R
sampled from the joint distribution PXY .3 A RF of B trees fn is trained on {xi, yi}ni=1. Using Eq.
1, we construct the kernel matrix K ∈ [0, 1]n×n with entries kij = kRF

n (xi,xj). This defines a
weighted, undirected graph Gn over the training data. As K is doubly stochastic, it can be interpreted
as encoding the transitions of a Markov process. Spectral analysis produces the decomposition
KV = VΛ, where V ∈ Rn×n denotes the eigenvector matrix with corresponding eigenvalues
λ ∈ [0, 1]n, and Λ = diag(λ). Indexing from zero, it can be shown that V0 is constant, with
1 = λ0 ≥ λ1 ≥ · · · ≥ λn. Following standard convention, we drop this uninformative dimension
and take the leading eigenvectors from V1.

The elements of this decomposition have several notable properties.4 For instance, the resulting
eigenvectors uniquely solve the constrained optimization problem:

min
V∈Rn×dZ

∑
i,j

kij ∥vi − vj∥2 s.t. V⊤V = I,

for all dZ ∈ [n], thereby minimizing Dirichlet energy and producing the smoothest possible represen-
tation of the data that preserves local relationships in the graph. These eigenvectors also simplify
a number of otherwise intractable graph partition problems, providing smooth approximations that
motivate spectral clustering approaches [79, 92]. If we think of Gn as a random sample from a
Riemannian manifold M, then scaling each Vj by

√
nλtj produces an approximation of the jth eigen-

function of the Laplace-Beltrami operator at time t, which describes how heat (or other quantities)
diffuse across M [5, 7]. Euclidean distance in the resulting space matches diffusion distances across
Gn, providing a probabilistically meaningful embedding geometry [22].

The diffusion map Z =
√
nVΛt represents the long-run connectivity structure of the graph after t

time steps of a Markov process. Test data can be projected into spectral space via the Nyström formula
[46], i.e. Z0 = K0ZΛ

−1 for some K0 ∈ [0, 1]m×n, where rows index test points and columns index
training points. For more details on diffusion and spectral graph theory, see [20, 68, 92].

3Even in the unsupervised case, we typically train the ensemble with a regression or classification objective.
The trick is to construct some Y that encourages the model to make splits that are informative w.r.t. PX (e.g.,
[80, 94]). For fully random partitions, Y can be any variable that is independent of the features (e.g., [36, 35]).

4Observe that the eigenvectors of K are identical to those of the graph Laplacian L = I−K, which has jth
eigenvalue γj = 1− λj . For more on the links between diffusion and Laplacian eigenmaps, see [57, 47].

4

4 Decoding

Our next task is to solve the inverse problem of decoding vectors from the spectral embedding space
back into the original feature space—i.e., learning the function h : Z 7→ X such that x ≈ h

(
g(x)

)
.

We propose several solutions, including methods based on constrained optimization, split relabeling,
and k-nearest neighbors. To study the properties of these different methods, we introduce the notion
of a universally consistent decoder.

Definition 4.1 (Universally consistent decoder). Let g∗ : X 7→ Z be a lossless encoder. Then we say
that the sequence of decoders {hn : Z 7→ X} is universally consistent if, for all distributions PX ,
any x ∼ PX , and all ϵ > 0, we have:

lim
n→∞

P
(
∥x− hn

(
g∗(x)

)
∥∞ ≥ ϵ

)
= 0.

The first two methods—constrained optimization and split relabeling—are designed to infer likely leaf
assignments for latent vectors z. If these are correctly determined, then the intersection of assigned
leaves defines a bounding box that contains the corresponding input vector x. Our estimate x̂ is then
sampled uniformly from this subspace, which is generally small for sufficiently large and/or deep
forests. As a motivation for this approach, we show that a leaf assignment oracle would constitute a
universally consistent decoder.

Let d(b)Φ be the number of leaves in tree b, and dΦ =
∑B

b=1 d
(b)
Φ the number of leaves in the forest

f . The function πf : X 7→ {0, 1}dΦ maps each sample x to its corresponding leaves in f . It is
composed by concatenating the outputs of B unique functions π(b)

f : X 7→ {0, 1}d(b)
Φ , each satisfying

∥π(b)
f (x)∥1 = 1 for all x ∈ X . Let ψf : Z 7→ {0, 1}dΦ be a similar leaf assignment function, but

for latent vectors. Then for a fixed forest f and encoder g, the leaf assignment oracle ψ∗
f,g satisfies

πf (x) = ψ∗
f,g

(
g(x)

)
, for all x ∈ X .

Theorem 4.2 (Oracle consistency). Let fn be a RF trained on {xi, yi}ni=1
i.i.d.∼ PXY . Let h∗n : Z 7→ X

be a decoder that (i) maps latent vectors to leaves in fn via the oracle ψ∗
fn,g

; then (ii) reconstructs
data by sampling uniformly from the intersection of assigned leaves for each sample. Then, under the
assumptions of Thm. 3.4, the sequence {h∗n} is universally consistent.

4.1 Constrained Optimization

Our basic strategy for this family of decoders is to estimate a kernel matrix from a set of embeddings,
then use this matrix to infer leaf assignments. Let s ∈ {1/[n−1]}dΦ be a vector of inverse leaf sample
sizes, composed of tree-wise vectors s(b) with entries s(b)i = 1/

∑n
j=1 π

(b)
i (xj). Then the canonical

feature map for the RF kernel can be written ϕ(x) =
[
ϕ(1)(x), . . . , ϕ(B)(x)

]
, with tree-wise feature

maps ϕ(b)(x) = π(b)(x)⊙
√
s(b), where ⊙ denotes the Hadamard (element-wise) product. Now RF

kernel evaluations can be calculated via the scaled inner product kRF
n (x,x′) = B−1⟨ϕ(x), ϕ(x′)⟩,

which is equivalent to Eq. 1.

Say we have n training samples used to fit the forest fn, and m latent vectors to decode from an
embedding space of dimension dZ < n. We will refer to these samples as a test set, since they may
not correspond to any training samples. We are provided a matrix of embeddings Z0 ∈ Rm×dZ ,
from which we estimate the corresponding kernel matrix K̂0 = Z0ΛZ†, where Z† denotes the
Moore-Penrose pseudo-inverse of Z.

Now we must identify the most likely leaf assignments for each of our m (unseen) test samples
X0 ∈ Rm×dX , given their latent representation Z0. Call this target matrix Ψ ∈ {0, 1}m×dΦ . To
estimate it, we start with the binary matrix of leaf assignments for training samples Π ∈ {0, 1}n×dΦ .
Exploiting the inner product definition of a kernel, observe that our original (training) adjacency
matrix K satisfies BK = ΦΦ⊤ = ΠSΠ⊤, where Φ ∈ [0, 1]n×dΦ is the RKHS representation of
X, and S = diag(s). We partition [dΦ] into B subsets L(b) that index the leaves belonging to tree b.
Recall that each tree b partitions the feature space X into L(b) hyperrectangular subregions X (b)

ℓ ⊂ X ,
one for each leaf ℓ ∈ [L(b)]. Let R(b)

i ∈ {X (b)
1 , . . . ,X (b)

L(b)} denote the region to which sample i is

5

routed in tree b. Then leaf assignments for test samples can be calculated by solving the following
integer linear program (ILP):

min
Ψ∈{0,1}m×dΦ

∥BK̂⊤
0 −ΠSΨ⊤∥1 s.t. ∀i, b :

∑
ℓ∈L(b)

ψiℓ = 1, ∀i :
⋂

b∈[B]

R
(b)
i ̸= ∅. (3)

The objective is an entry-wise L1 norm that effectively treats the resulting matrix as a stacked vector.
The first constraint guarantees that test samples are one-hot encoded on a per-tree basis. The second
constraint states that the intersection of all assigned hyperrectangles is nonempty. We call these the
one-hot and overlap constraints, respectively. Together they ensure consistent leaf assignments both
within and between trees. The ILP approach comes with the following guarantee.

Theorem 4.3 (Uniqueness). Assume we have a lossless encoder g∗ : X 7→ Z such that the estimated
K̂0 coincides with the ground truth K∗

0. Then, under the assumptions of Thm. 3.4, as n→ ∞, with
high probability, the ILP of Eq. 3 is uniquely solved by the true leaf assignments Ψ∗.

Together with Thm. 4.2, Thm. 4.3 implies that the ILP approach will converge on an exact recon-
struction of the data under ideal conditions. While this may be encouraging, there are two major
obstacles in practice. First, this solution scales poorly with m and dΦ. Despite the prevalence of
highly optimized solvers, ILPs are NP-complete and therefore infeasible for large problems. Second,
even with an oracle for solving this program, results may be misleading when using noisy estimates
of K̂0. Since this will almost always be the case for dZ ≪ n—an inequality that is almost certain to
hold in most real-world settings—the guarantees of Thm. 4.3 will rarely apply. We describe a convex
relaxation in Appx. C via the exclusive lasso [101, 16], an approach that is more tractable than the
ILP but still turns each decoding instance into a nontrivial optimization problem.

4.2 Split Relabeling

Another strategy for computing leaf assignments front-loads the computational burden so that down-
stream execution requires just a single pass through a pretrained model, as with neural autoencoders.
We do this by exploiting the tree structure itself, relabeling the splits in the forest so that they apply
directly in embedding space.

The procedure works as follows. Recall that each split is a literal of the form Xj ▷◁ x for some
j ∈ [dX], x ∈ Xj , where ▷◁ ∈ {<,=} (the former for continuous, the latter for categorical data). At
each node, we create a synthetic dataset X̃ by drawing uniformly from the corresponding region. We
embed these points with a diffusion map to create the corresponding matrix Z̃. Samples are labeled
with a binary outcome variable Y indicating whether they are sent to left or right child nodes. Next,
we search for the axis-aligned split in the embedding space that best predicts Y . The ideal solution
satisfies Zk < z ⇔ Xj ▷◁ x, for some k ∈ [dZ], z ∈ Zk. Perfect splits may not be possible, but
optimal solutions can be estimated with CART. Once all splits have been relabeled, the result is a tree
with the exact same structure as the original but a new semantics, effectively mapping a recursive
partition of the input space onto a recursive partition of the embedding space.

This strategy may fare poorly if no axis-aligned split in Z approximates the target split in X . In
principle, we could use any binary decision procedure to route samples at internal nodes. For example,
using logistic regression, we could create a more complex partition of Z into convex polytopes. Of
course, this increase in expressive flexibility comes at a cost in complexity. The use of synthetic data
allows us to choose the effective sample size for learning splits, which is especially advantageous in
deep trees, where few training points are available as depth increases.

4.3 Nearest Neighbors

Our final decoding strategy elides the leaf assignment step altogether in favor of directly estimating
feature values via k-nearest neighbors (k-NN). First, we find the most proximal points in the latent
space. Once nearest neighbors have been identified, we reconstruct their associated inputs using
the leaf assignment matrix Π and the splits stored in our forest fn. From these ingredients, we
infer the intersection of all leaf regions for each training sample—what Feng and Zhou [30] call the
“maximum compatible rule”—and generate a synthetic training set X̃ by sampling uniformly in these
subregions. Observe that this procedure guarantees g(X̃) = Z by construction.

6

tree depth = 1 tree depth = 2 tree depth = 4 tree depth = 8 tree depth = 16

−1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1

0

1

2

KPC1

K
P

C
2

Label
3
4
8
9

Figure 2: Diffusion maps visualize RF training. Using a subsample of the MNIST dataset, we find
that digits become more distinct in the embedding space as tree depth increases.

Neighbors are weighted in inverse proportion to their diffusion distance from the target z0, producing
the weight function w : Z 7→ ∆k−1. Let K ⊂ [n] denote the indices of the selected points and
{x̃i}i∈K the corresponding synthetic inputs. Then the jth entry of the decoded vector x̂0 is given by
x̂0j =

∑
i∈K wi(z0) x̃ij . For categorical features, we take the most likely label across all neighbors,

weighted by w, with ties broken randomly. The k-NN decoder comes with similar asymptotic
guarantees to the previous methods, without assuming access to a leaf assignment oracle.

Theorem 4.4 (k-NN consistency). Let k → ∞ and k/n→ 0. Then under the assumptions of Thm.
3.4, the k-NN decoder is universally consistent.

This approach is arguably truer to the spirit of RFs, using local averaging to decode inputs instead of
just predict outputs. Like the split relabeling approach, this is a modular decoding solution that does
not rely on any particular encoding scheme. However, it is uniquely well suited to spectral embedding
techniques, which optimally preserve kernel structure with respect to L2 norms in the latent space.

5 Experiments

In this section, we present a range of experimental results on visualization, reconstruction and
denoising. Further details on all experiments can be found in Appx. B, along with additional results.
Code for reproducing all figures and tables is included in the supplement.

Visualization As a preliminary proof of concept, we visualize the embeddings of a RF classifier
with 200 trees as it trains on a subset of the MNIST dataset [26] including samples with labels 3, 4,
8, and 9 (see Fig. 2). Plotting a sequence of diffusion maps with dZ = 2 at increasing tree depth,
we find the model learning to distinguish between the four digits, which gradually drift into their
own regions of the latent space. Early in training, the data are clumped around the origin. As depth
increases, the manifold blooms and samples concentrate by class label. KPC1 appears to separate 3
and 8 from 4 and 9, which makes sense given that these respective pairs are often hard to distinguish
in some handwritten examples. Meanwhile, KPC2 further subdivides 3 from 8. The relative proximity
of 4’s and 9’s demonstrates that the RF is somewhat uncertain about these samples, although with
extra dimensions we find clearer separation (not shown). In other words, the embeddings suggest a
highly interpretable recursive partition, as we might expect from a single decision tree.

Reconstruction We limit our decoding experiments in this section to the k-NN method, which
proved the fastest and most accurate in our experiments (for a comparison, see Appx. B.2). Hence-
forth, this is what we refer to as the RF autoencoder (RFAE).

dZ = 2

dZ = 4

dZ = 8

dZ = 16

dZ = 32

Original

Figure 3: MNIST digit reconstructions with vary-
ing latent dimension sizes; original images are dis-
played in the bottom row.

As an initial inspection of RFAE’s recon-
struction behavior, we autoencode the first
occurrence of each digit in the MNIST test
set for varying latent dimensionalities dZ ∈
{2, 4, 8, 16, 32} in Fig. 3. For this experiment,
we fit an (unsupervised) completely random for-
est [12] with B = 1000 trees, train the encoder
on full training data, project the test samples
into Z via Nyström, and decode them back us-
ing k = 50 nearest neighbors. Although RFAEs
are not optimized for image data, the recon-
structions produce mostly recognizable digits
even with very few latent dimensions, with out-
puts that partially correspond to the wrong class.

7

plpn spambase student telco wq

hd king marketing mushroom obesity

churn credit diabetes dry_bean forestfires

abalone adult banknote bc car

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.5

0.6

0.7

0.8

0.9

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.05

0.10

0.15

0.20

0.25

0.00

0.25

0.50

0.75

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.5

0.35

0.40

0.45

0.50

0.55

0.60

0.1

0.2

0.3

0.4

0.5

0.3

0.4

0.5

0.3

0.4

0.5

0.6

0.4

0.5

0.6

0.7

0.8

0.2

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.8

0.2

0.4

0.6

Compression Factor

D
is

to
rt

io
n

Method RFAE TVAE TTVAE AE VAE

Figure 4: Compression-distortion trade-off on twenty benchmark tabular datasets. Shading represents
standard errors across ten bootstraps.

Best results can be observed at dZ = 32, where the reconstructions appear quite similar to the
originals. Additional results examining the influence of other parameters are presented in Appx. B.2.

Next, we compare RFAE’s compression-distortion trade-off against two state-of-the-art neural ar-
chitectures for autoencoding tabular data (TVAE and TTVAE), along with standard and variational
autoencoders (AE and VAE, respectively) that are not optimized for this task. Although there are
some other notable deep learning algorithms designed for tabular data (e.g., CTGAN [97], TabSyn
[100], and TabPFN [51]), these do not come with inbuilt methods for decoding back to the input space
at variable compression ratios. We also do not include eForest [30], another RF based autoencoder,
because it only works with a fixed dZ = 2dX and is not capable of compression. For RFAE, we use
the unsupervised ARF algorithm [94] with 500 trees and set k = 20 for decoding.

In standard AEs, reconstruction error is generally estimated via L2 loss. This is not sensible with a
mix of continuous and categorical data, so we create a combined measure that evaluates distortion on
continuous variables via 1−R2 (i.e., the proportion of variance unexplained) and categorical variables
via classification error. Since both measures are on the unit interval, so too is their average across all
dX features. We plot this measure across a range of compression factors (i.e., inverse compression
ratios dZ/dX) in 20 benchmark tabular datasets (see Fig. 4). For more details on these datasets, see
Appx. B.1, Table 1. We evaluate performance over ten bootstrap samples at each compression factor,
testing on the randomly excluded out-of-bag data. We find that RFAE is competitive in all settings,
and has best average performance in 12 out of 20 datasets (see Appx. B.1, Table 2).

Denoising As a final experiment, we consider a denoising example with single-cell RNA-
sequencing (scRNA-seq) data. Pooling results from different labs is notoriously challenging in
scRNA-seq due to technical artifacts collectively known as “batch effects” [60]. We propose to
harmonize data across batches by training a RFAE on a large baseline study and passing new samples
through the autoencoding pipeline.

As an illustration, we compare two studies of the mouse brain transcriptome. Using the top dX = 5000
genes, we learn a dZ = 64-dimensional embedding of the Zeisel et al. [99] dataset (n = 2874).
Our RF is a completely random forest with B = 1000 trees. We project the Tasic et al. [86] data
(m = 1590) into the latent space and decode using the top k = 100 nearest neighbors. Results are

8

presented in Fig. 5. To avoid potential biases from reusing our own embeddings, we compare original
and denoised samples using PCA [55] and tSNE [88], two dimensionality reduction techniques that
are widely used in scRNA-seq. In both cases, we find that denoising with RFAE helps align the
manifolds, thereby minimizing batch effects.

6 Discussion

Original Batch Corrected

−40 −20 0 20 −20 0 20 40

−40

−20

0

20

40

−25

0

25

50

tSNE1

tS
N

E2

Study Tasic et al., 2016 Zeisel et al., 2015

Original Batch Corrected

−40 −20 0 20 −20 0 20 40

−40

−20

0

20

40

−25

0

25

50

tSNE1

tS
N

E2

A

Original Batch Corrected

−20 0 20 40 −40 −20 0 20

−20

0

20

−20

0

20

PC1

PC
2

B

Figure 5: Denoising with RFAE alleviates batch
effects in scRNA-seq data.

The building blocks of our encoding scheme
are well established. Breiman himself took a
kernel perspective on RFs [13], a direction that
has been picked up by numerous authors since
[24, 78, 4]. The theory of diffusion maps and
KPCA goes back some twenty years [21, 22, 75].
However, just as much RF theory has focused on
idealized variants of the algorithm [11], no prior
works appear to have studied the properties of
the true RF kernel, opting instead to analyze sim-
pler approximations. And while there have been
some previous attempts to generate RF embed-
dings [80, 71], these have been largely heuristic
in nature. By contrast, we provide a principled
approach to dimensionality reduction in RFs,
along with various novel decoding strategies.

One notable difference between our method and
autoencoding neural networks is that RFAE is
not trained end-to-end. That is, while a deep au-
toencoder simultaneously learns to encode and
decode, RFAE is effectively a post-processing
procedure for a pre-trained RF, with independent modules for encoding and decoding. We high-
light that end-to-end training represents a fundamentally different objective. Whereas traditional
autoencoders are necessarily unsupervised, our method works in tandem with either supervised or
unsupervised RFs. As such, the goal is not necessarily to learn an efficient representation for its own
sake, but rather to reveal the inner workings of a target model. One upshot of this decoupling is that
our split relabeling and k-NN decoders can work in tandem with any valid encoding scheme. For
instance, we could relabel an RF’s splits to approximate the behavior of sample points in principal
component space, or indeed any Z for which we have a map g : X 7→ Z .

We highlight two notable limitations of our approach. First, the computational demands of our
decoding strategies are nontrivial. (For a detailed analysis, see Appx. D.) Second, when using the
k-NN approach, results will vary with the choice of k. However, we observe that autoencoding is a
difficult task in general, and top deep learning models pose far greater computational burdens than
RFAE. Moreover, having just a single hyperparameter to worry about is a rare luxury in this field,
where leading algorithms often require bespoke architectures and finely tuned regularization penalties.
Compared to the leading alternatives, RFAEs are relatively lightweight and simple.

Autoencoders are often motivated by appeals to the minimum description length principle [73, 50, 44].
Information theory provides a precise formalism for modeling the communication game that arises
when one agent (say, Alice) wants to send a message to another (say, Bob) using a code that is
maximally efficient with minimal information loss. This is another way to conceive of RFAE—as a
sort of cryptographic protocol, in which Alice and Bob use a shared key (the RF itself) to encrypt and
decrypt messages in the form of latent vectors z, which is presumably more compact (and not much
less informative) than the original message x.

Several authors have persuasively argued that learning expressive, efficient representations is central
to the success of deep neural networks [8, 39]. Our work highlights that RFs do something very
similar under the hood, albeit through entirely different mechanisms. This insight has implications
for how we use tree-based ensembles and opens up new lines of research for this function class.

9

7 Conclusion

We have introduced novel methods for encoding and decoding data with RFs. The procedure is
theoretically sound and practically useful, with a wide range of applications including compression,
clustering, data visualization, and denoising. Future work will investigate extensions to generative
modeling, as well as other tree-based algorithms, such as gradient boosting machines [31, 18].
Another promising direction is to use the insights from this study to perform model distillation
[49, 33], compressing the RF into a more compact form with similar or even identical behavior. This
is not possible with current methods, which still require the original RF to compute adjacencies and
look up leaf bounds.

Acknowledgements

This research was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) [Grant reference number EP/Y035216/1] Centre for Doctoral Training in Data-Driven
Health (DRIVE-Health) at King’s College London and by the German Research Foundation (DFG),
Emmy Noether Grant 437611051.

References
[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):

337–404, 1950.

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[3] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. Ann. Statist., 47(2):
1148–1178, 2019.

[4] M. Balog, B. Lakshminarayanan, Z. Ghahramani, D. M. Roy, and Y. W. Teh. The Mondrian kernel. In
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence, pages 32–41, 2016.

[5] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computation, 15(6):1373–1396, 2003.

[6] Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for Laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

[7] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent, and Marie
Ouimet. Learning eigenfunctions links spectral embedding and kernel PCA. 16(10):2197–2219, 2004.

[8] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798–1828, 2012.

[9] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and
statistics. Springer, New York, 2003.

[10] Gérard Biau. Analysis of a random forests model. J. Mach. Learn. Res., 13:1063–1095, 2012.

[11] Gérard Biau and Erwan Scornet. A random forest guided tour. TEST, 25(2):197–227, 2016.

[12] Gérard Biau, Luc Devroye, and Gábor Lugosi. Consistency of random forests and other averaging
classifiers. J. Mach. Learn. Res., 9(66):2015–2033, 2008.

[13] Leo Breiman. Some infinity theory for predictor ensembles. Technical Report 579, Statistics Department,
UC Berkeley, 2000.

[14] Leo Breiman. Random forests. Mach. Learn., 45(1):1–33, 2001.

[15] Leo Breiman, Jerome Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees.
Taylor & Francis, Boca Raton, FL, 1984.

[16] Frederick Campbell and Genevera I. Allen. Within group variable selection through the exclusive lasso.
Electron. J. Stat., 11(2):4220–4257, 2017.

10

[17] Matias D. Cattaneo, Jason M. Klusowski, and William G. Underwood. Inference with Mondrian random
forests. arXiv preprint, 2310.09702, 2023.

[18] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page 785–794,
2016.

[19] Xi Chen and Hemant Ishwaran. Random forests for genomic data analysis. Genom., 99(6):323–329,
2012.

[20] F. Chung. Spectral graph theory. Conference Board of the Mathematical Sciences, Washington, 1997.

[21] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geometric
diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl.
Acad. Sci., 102(21):7426–7431, 2005.

[22] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic Analysis,
21(1):5–30, 2006.

[23] Alvaro Correia, Robert Peharz, and Cassio P de Campos. Joints in random forests. In Advances in Neural
Information Processing Systems, volume 33, pages 11404–11415, 2020.

[24] Alex Davies and Zoubin Ghahramani. The random forest kernel and other kernels for big data from
random partitions. arXiv preprint, 1402.4293, 2014.

[25] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus Hutter, and
Joel Veness. Language modeling is compression. In The 12th International Conference on Learning
Representations, 2024.

[26] Li Deng. The MNIST database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[27] Misha Denil, David Matheson, and Nando De Freitas. Narrowing the gap: Random forests in theory and
in practice. In Proceedings of the 31st International Conference on Machine Learning, pages 665–673,
2014.

[28] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

[29] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019. URL http://archive.ics.
uci.edu/ml.

[30] Ji Feng and Zhi-Hua Zhou. Autoencoder by forest. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 2018.

[31] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Ann. Stat., 29(5):
1189 – 1232, 2001.

[32] Jerome H. Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw., 33(1):1–22, 2010.

[33] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv preprint,
1711.09784, 2017.

[34] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of conditional
dependence. In Advances in Neural Information Processing Systems, volume 20, 2007.

[35] Robin Genuer. Variance reduction in purely random forests. J. Nonparametr. Stat., 24(3):543–562, 2012.

[36] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Mach. Learn., 63(1):
3–42, 2006.

[37] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based
explanations. In Advances in Neural Information Processing Systems, volume 32, 2019.

[38] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,
J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring. Science, 286(5439):531–537, 1999.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[40] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method
for the two-sample-problem. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems, volume 19, 2006.

[41] Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex Smola. A kernel
statistical test of independence. In Advances in Neural Information Processing Systems, volume 20, 2007.

[42] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. J. Mach. Learn. Res., 13(25):723–773, 2012.

[43] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In 36th Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

[44] Peter Grünwald. The minimum description length principle. The MIT Press, Cambridge, MA, 2007.

[45] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer-Verlag, New York, 2002.

[46] Fredrik Hallgren. Kernel PCA with the Nyström method. arXiv preprint, 2109.05578, 2021.

[47] Jihun Ham, Daniel D. Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of the dimensionality
reduction of manifolds. In Proceedings of the 21st International Conference on Machine Learning, 2004.

[48] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained
variational framework. In International Conference on Learning Representations, 2017.

[49] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint, 1503.02531, 2015.

[50] Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length and Helmholtz free
energy. Advances in neural information processing systems, 6, 1993.

[51] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation
model. Nature, 637(8045):319–326, 2025.

[52] Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman. palmerpenguins: Palmer Archipelago
(Antarctica) penguin data, 2020. URL https://allisonhorst.github.io/palmerpenguins/. R
package version 0.1.0.

[53] M. Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability.
Springer Berlin Heidelberg, Berlin, 2004.

[54] Christopher R John, David Watson, Michael R Barnes, Costantino Pitzalis, and Myles J Lewis. Spectrum:
fast density-aware spectral clustering for single and multi-omic data. Bioinformatics, 36(4):1159–1166,
2019.

[55] I.T. Jolliffe. Principal Component Analysis. Springer, New York, second edition, 2002.

[56] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston,
MA, 1972.

[57] Risi Imre Kondor and John D. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In
Proceedings of the 19th International Conference on Machine Learning, page 315–322, 2002.

[58] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

[59] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests: Efficient online random
forests. In Advances in Neural Information Processing Systems, volume 27, 2014.

[60] Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan
Johnson, Donald Geman, Keith Baggerly, and Rafael A. Irizarry. Tackling the widespread and critical
impact of batch effects in high-throughput data. Nat. Rev. Genet., 11(10):733–739, 2010.

12

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://allisonhorst.github.io/palmerpenguins/

[61] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. J. Am. Stat. Assoc., 101(474):
578–590, 2006.

[62] King’s College London. King’s computational research, engineering and technology environment (create).
https://doi.org/10.18742/rnvf-m076, 2022. Retrieved May 10, 2025.

[63] Gábor Lugosi and Andrew Nobel. Consistency of data-driven histogram methods for density estimation
and classification. Ann. Stat., 24(2):687 – 706, 1996.

[64] David J.C. MacKay. Information theory, inference, and learning algorithms. Cambridge University Press,
Cambridge, 2003.

[65] Nicolai Meinshausen. Quantile regression forests. J. Mach. Learn. Res., 7:983–999, 2006.

[66] Defeng Sun Meixia Lin, Yancheng Yuan and Kim-Chuan Toh. A highly efficient algorithm for solving
exclusive lasso problems. Optim. Methods Softw., 39(3):489–518, 2024.

[67] Sebastian Mika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, Matthias Scholz, and Gunnar
Rätsch. Kernel PCA and de-noising in feature spaces. In Advances in Neural Information Processing
Systems, volume 11, 1998.

[68] Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffusion maps, spectral
clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmon. Anal., 21(1):113–127,
2006. Special Issue: Diffusion Maps and Wavelets.

[69] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems, volume 14. The MIT Press, 2001.

[70] Sambit Panda, Cencheng Shen, and Joshua T. Vogelstein. Learning interpretable characteristic kernels
via decision forests. arXiv preprint, 1812.00029, 2018.

[71] Konstantinos Pliakos and Celine Vens. Mining features for biomedical data using clustering tree ensembles.
J. Biomed. Inform., 85:40–48, 2018.

[72] Carl Edward Rasmusssen and Christopher K.I. Williams. Gaussian processes for machine learning. The
MIT Press, Cambridge, MA, 2006.

[73] Jorma Rissanen. Stochastic complexity in statistical inquiry. World Scientific, Singapore, 1989.

[74] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. The MIT Press, Cambridge, MA, 2001.

[75] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[76] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. Toward causal representation learning. Proc. IEEE, 109(5):612–634, 2021.

[77] Erwan Scornet. On the asymptotics of random forests. J. Multivar. Anal., 146:72–83, 2016.

[78] Erwan Scornet. Random forests and kernel methods. IEEE Trans. Inf. Theory, 62(3):1485–1500, 2016.

[79] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 22(8):888–905, 2000.

[80] Tao Shi and Steve Horvath. Unsupervised learning with random forest predictors. J. Comput. Graph.
Stat., 15(1):118–138, 2006.

[81] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Inf. Fusion, 81:
84–90, 2022.

[82] Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R.G. Lanckriet. Universality, characteristic kernels
and RKHS embedding of measures. J. Mach. Learn. Res., 12(70):2389–2410, 2011.

[83] Ingo Steinwart. On the influence of the kernel on the consistency of support vector machines. J. Mach.
Learn. Res., 2:67–93, March 2002.

[84] Charles J. Stone. Consistent nonparametric regression. Ann. Statist., 5(4):595 – 620, 1977.

[85] Cheng Tang, Damien Garreau, and Ulrike von Luxburg. When do random forests fail? In Advances in
Neural Information Processing Systems, volume 31, 2018.

13

https://doi.org/10.18742/rnvf-m076

[86] Bosiljka Tasic, Vilas Menon, Thuc Nghi Nguyen, Tae Kyung Kim, Tim Jarsky, Zizhen Yao, Boaz Levi,
Lucas T Gray, Staci A Sorensen, Tim Dolbeare, Darren Bertagnolli, Jeff Goldy, Nadiya Shapovalova,
Sheana Parry, Changkyu Lee, Kimberly Smith, Amy Bernard, Linda Madisen, Susan M Sunkin, Michael
Hawrylycz, Christof Koch, and Hongkui Zeng. Adult mouse cortical cell taxonomy revealed by single
cell transcriptomics. Nat. Neurosci., 19(2):335–346, 2016.

[87] Jakub Tomczak. Deep generative modeling. Springer, New York, 2022.

[88] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. J. Mach. Learn. Res., 9(86):
2579–2605, 2008.

[89] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2013.

[90] Antonio Vergari, Robert Peharz, Nicola Di Mauro, Alejandro Molina, Kristian Kersting, and Floriana Es-
posito. Sum-product autoencoding: Encoding and decoding representations using sum-product networks.
In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

[91] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.
J. Mach. Learn. Res., 11(110):3371–3408, 2010.

[92] Ulrike von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–416, 2007.

[93] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using random
forests. J. Am. Stat. Assoc., 113(523):1228–1242, 2018.

[94] David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for
density estimation and generative modeling. In Proceedings of the 26th International Conference on
Artificial Intelligence and Statistics, pages 5357–5375, 2023.

[95] Marvin N. Wright and Andreas Ziegler. ranger: A fast implementation of random forests for high
dimensional data in c++ and r. J. Stat. Softw., 77(1), 2017.

[96] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European Journal
of Operational Research, 242(3):693–709, 2015.

[97] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data
using conditional GAN. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, 2019.

[98] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar. On
completeness-aware concept-based explanations in deep neural networks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 20554–20565, 2020.

[99] Amit Zeisel, Ana B. Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna
Juréus, Sueli Marques, Hermany Munguba, Liqun He, Christer Betsholtz, Charlotte Rolny, Gonçalo
Castelo-Branco, Jens Hjerling-Leffler, and Sten Linnarsson. Cell types in the mouse cortex and hippocam-
pus revealed by single-cell RNA-seq. Science, 347(6226):1138–1142, 2015.

[100] Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos Falout-
sos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-based diffusion
in latent space. In The Twelfth International Conference on Learning Representations, 2024.

[101] Yang Zhou, Rong Jin, and Steven Chu–Hong Hoi. Exclusive lasso for multi-task feature selection. In
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pages 988–995,
2010.

14

A Proofs

Since several of our results rely on RF regularity conditions, we review these here for completeness.

We say that a sequence of functions {fn} is universally consistent if it converges in probability on
any target function. That is, for any f∗ ∈ C(X) and all ϵ > 0, we have:

lim
n→∞

P (∥f∗ − fn∥∞ > ϵ) = 0.

Under certain assumptions, it can be shown that RFs are universally consistent in this sense [65, 27,
11, 77, 93]. Specifically, we assume:

(A1) Training data for each tree is split into two subsets: one to learn split parameters, the other
to assign leaf labels.

(A2) Trees are grown on subsamples rather than bootstraps, with subsample size n(b) satisfying
n(b) → ∞, n(b)/n→ 0 as n→ ∞.

(A3) At each internal node, the probability that a tree splits on any given Xj is bounded from
below by some ρ > 0.

(A4) Every split puts at least a fraction γ ∈ (0, 0.5] of the available observations into each child
node.

(A5) For each tree b ∈ [B], the total number of leaves d(b)Φ satisfies d(b)Φ → ∞, d
(b)
Φ /n → 0 as

n→ ∞.

Under (A1)-(A5), decision trees satisfy the criteria of Stone’s theorem [84] and are therefore univer-
sally consistent (see Devroye et al. [28, Thm. 6.1] and Györfi et al. [45, Thm. 4.2]). The consistency
of the ensemble follows from the consistency of the basis functions [12]. There is some debate in the
literature as to whether these assumptions are necessary for universal consistency—(A1) and (A2) in
particular may be overly strong—but they are provably sufficient. See Biau [10, Rmk. 8], Wager and
Athey [93, Appx. B], and Tang et al. [85] for a discussion.

A.1 Proof of Thm. 3.4 (RF kernel properties)

This theorem makes three separate claims: that RF kernels are (a) PSD and stochastic; (b) asymptoti-
cally universal; and (c) asymptotically characteristic.

(a) PSD Take PSD first. It is well known that any convex combination of PSD kernels is PSD [74],
so to secure part (a) it is sufficient to prove that the standard decision tree kernel is PSD. This is
simply a normalized indicator kernel:

kDT (x,x′) =
k(b)(x,x′)∑n
i=1 k

(b)(x,xi)
,

which either evaluates to zero (if the samples do not colocate) or the reciprocal of the leaf sample
size (if they do).

To show that kDT is PSD, we take a constructive approach in which we explicitly define the canonical
feature map ϕ : X 7→ H, which maps input vectors to an inner product space H. This suffices to
establish the PSD property, since for any finite dataset the resulting kernel matrix KDT ∈ [0, 1]n×n

is a Gram matrix with entries kDT
ij = ⟨ϕ(xi), ϕ(xj)⟩. As described in Sect. 4, the DT feature map

for tree b is given by:

ϕ(b)(x) = π(b)(x)⊙
√

s(b),

where π(b) : X 7→ {0, 1}d(b)
Φ is a standard basis vector indicating which leaf x routes to in tree b, and

s ∈ {1/[n− 1]}d(b)
Φ is a vector of corresponding inverse leaf sample sizes. Concatenating these maps

over B trees and taking the inner product for sample pairs, we get an explicit formula for the RF
feature map, thereby establishing that kRF is PSD.

Part (a) makes an additional claim, however—that kRF
n is stochastic. This means that, for any x ∈ X ,

the kernel kRF
n (x,xi) defines a probability mass function over the training data as i ranges from 1

to n. It is easy to see that the kernel is nonnegative, as all entries are either zero (if samples do not

15

colocate) or some positive fraction representing average inverse leaf sample size across the forest (if
they do). All that remains then is to show that the values sum to unity. Consider the sum over all n
training points:

n∑
i=1

kRF
n (x,xi) =

n∑
i=1

1

B

B∑
b=1

(
k(b)(x,xi)∑n
j=1 k

(b)(x,xj)

)

=
1

B

B∑
b=1

n∑
i=1

(
k(b)(x,xi)∑n
j=1 k

(b)(x,xj)

)

=
1

B

B∑
b=1

∑n
i=1 k

(b)(x,xi)∑n
j=1 k

(b)(x,xj)

=
1

B

B∑
b=1

1

= 1.

Since the kernel is symmetric, the training matrix K ∈ [0, 1]n×n of kernel entries is doubly stochastic
(i.e., all rows and columns sum to one).

(b) Universal Recall that the Moore-Aronszajn theorem tells us that every PSD kernel defines a
unique RKHS [1]. Given that kRF

n is PSD, universality follows if we can show that the associated
RKHS H is dense in C(X). Of course, this is provably false at any fixed n, as dΦ = o(n) by (A5),
and a finite-dimensional H necessarily contains “gaps”—i.e., some functions f∗ ∈ C(X) such that
⟨f∗, h⟩ = 0 for all h ∈ H.

However, as n and dΦ grow, these gaps begin to vanish. Since these two parameters increase at
different rates, and it is the latter that more directly controls function complexity, we interpret the
subscript ℓ on Hℓ as indexing the leaf count. (As noted above, we focus on the single tree case, as
ensemble consistency follows immediately from this.)

The following lemma sets up our asymptotic universality result.
Lemma A.1 (RF subalgebra). Let Hℓ denote the set of continuous functions on the compact metric
space X representable by a tree with ℓ leaves, trained under regularity conditions (A1)-(A5). Define:

A :=

∞⋃
ℓ=1

Hℓ.

Then A is a subalgebra of C(X) that contains the constant function and separates points.

Proof. The lemma makes three claims, each of which we verify in turn.

(1) A is a subalgebra of C(X).

Each Hℓ consists of continuous, piecewise constant functions on X , induced by recursive
binary partitions of X into ℓ leaf regions. These spaces are closed under addition, scalar
multiplication, and multiplication, as the sum or product of two piecewise constant functions
is piecewise constant over the common refinement of their partitions. Since A is the union
of these Hℓ, it is closed under addition, multiplication, and scalar multiplication.

(2) A contains the constant functions.

This follows immediately, as any tree (and hence any Hℓ) can represent constant functions—
for instance, a trivial tree with no splits assigns the same value to all points.

(3) A separates points.

By regularity conditions (A3) and (A4), every coordinate has a nonzero probability ρ > 0
of being selected for splitting at any node, and every split allocates at least a fraction
γ ∈ (0, 0.5] of the points to each child node. Meinshausen [65, Lemma 2] has shown that,
under these conditions, the diameter of each leaf goes to zero in probability. This amount

16

to an asymptotic injectivity guarantee. Since X is compact, for any pair of distinct points
x,x′ ∈ X , there exists an index ℓ such that some fℓ ∈ Hℓ assigns different values to x and
x′. In other words, some tree in A is guaranteed to route x and x′ to different leaves.

We now invoke the Stone-Weierstrass theorem to conclude the density of A.

Theorem A.2 (Stone–Weierstrass). Let X be a compact Hausdorff space. If a subalgebra A of C(X)
contains the constant functions and separates points, then A is dense in C(X) with respect to the
uniform norm.

Combining Lemma A.1 with this classical result, we conclude that the sequence {Hℓ} converges on
a universal RKHS.

(c) Characteristic Item (c) follows from (b) under our definition of universality. This was first
shown by Gretton et al. [40, Thm. 3] in the non-asymptotic regime (although Sriperumbudur et al.
[82] prove that the properties can come apart under slightly different notions of universality). We
adapt the result simply by substituting a sufficiently close approximation in H, where proximity is
defined w.r.t. the supremum norm. Since the existence of such a close approximation is guaranteed
by (b), the sequence {Hℓ} is asymptotically characteristic.

A.2 Proof of Thm. 4.2 (Oracle consistency)

This result follows trivially from the universal consistency of the RF algorithm itself. Any partition
of X that satisfies regularity conditions (A1)-(A5) converges on the true joint distribution PX as
n, dΦ → ∞ (see [63, Thm. 1] and [23, Thm. 2]). Resulting leaves have shrinking volume, effectively
converging on individual points x with coverage proportional to the density p(x). Because there
are no gaps in these leaves (i.e., no subregions of zero density), a weighted mixture of uniform
draws—with weights given by the leaf coverage—is asymptotically equivalent to sampling from PX

itself. A leaf assignment oracle would therefore be guaranteed to map each latent vector z ∈ Z to the
corresponding input point x ∈ X , since leaf assignments effectively determine feature values in the
large sample limit.

A.3 Proof of Thm. 4.3 (Uniqueness)

It is immediately obvious that when K̂0 = K∗
0, the true leaf assignment matrix Ψ∗ drives the ILP

objective to zero and automatically satisfies the one-hot and overlap constraints. Our task, therefore,
is to demonstrate that no other binary matrix Ψ̂ ̸= Ψ∗ can do the same.

For simplicity, consider just a single test point (m = 1). Let F ⊂ {0, 1}dΦ denote the feasible region
of leaf assignment vectors, i.e. all and only those that satisfy the one-hot and overlap constraints. A
sufficient condition for our desired uniqueness result is that no two feasible leaf assignments produce
the same kernel values. More formally, if there exist no ψ,ψ′ ∈ F such that ΠSψ⊤ = ΠSψ

′⊤,
then the map ψ 7→ ΠSψ⊤ is injective over F , in which case only a single solution can minimize the
ILP objective.

Note that this injectivity property cannot be shown to hold in full generality. As a minimal coun-
terexample, consider a case where the feature space is a pair of binary variables X = {0, 1}2 and our
forest contains just two trees, the first placing a single split on X1 and the second placing a single
split on X2. Now, say our training data comprises just two points, x = [0, 0] and x′ = [1, 1]. We
observe the kernel entries k(x0,x) = k(x0,x

′) = 1/2. In this case, we know that x0 colocates with
each training sample exactly once, and therefore that it shares exactly one coordinate with each of
our two training points. However, we do not have enough information to determine where these
colocations occur, since both [0, 1] and [1, 0] are plausible feature vectors for x0.

Such counterexamples become increasingly rare as the forest grows more complex. As previously
noted, under (A3) and (A4), leaf diameter vanishes in probability [65, Lemma 2]. This is why random
forests are asymptotically injective, a property we exploited in the proof for part (b) of Thm. 3.4. A

17

corollary of Meinshausen’s lemma is that for all distinct points x,x′ ∈ X :

lim
n→∞

P
(
fn(x) = fn(x

′)
)
= 0.

By modus tollens, it follows that if function outputs converge on the same value, then corresponding
inputs must be identical. This is important, since with fixed training labels Y , model predictions
are fully determined by kernel evaluations via Eq. 2. If two distinct vectors ψ,ψ′ produce identical
values when left-multiplied by ΠS, then the corresponding inputs x,x′ cannot be separated by fn.
Therefore, with probability tending toward 1 as sample size grows, we conclude that the ILP of Eq. 3
is uniquely solved by the true leaf assignments.

A.4 Proof of Thm. 4.4 (k-NN consistency)

To secure the result, we must show that

(a) x̃
p→ x: sampling uniformly from the intersection of each sample’s assigned leaf regions

asymptotically recovers the original inputs; and

(b) x̂
p→ x̃: k-NN regression in the spectral embedding space is universally consistent.

Item (a), which amounts to a universal consistency guarantee for the eForest method of Feng and
Zhou [30], follows immediately from our oracle consistency result (Thm. 4.2), plugging in the
identity function for g. Since we know the true leaf assignments for each training sample, under
universal consistency conditions for RFs, we can reconstruct the data by taking uniform draws from
all leaf intersections.

Item (b) follows from the properties of the k-NN algorithm, which is known to be universally
consistent as k → ∞, k/n→ 0 [84].

B Experiments

RFs are trained either using the ranger package [95], or the arf package [94], which also returns
a trained forest of class ranger. Truncated eigendecompositions are computed using RSpectra.
Memory-efficient methods for sparse matrices are made possible with the Matrix package. We use
the RANN package for fast k-NN regression with kd-trees. For standard lasso, we use the glmnet
package [32], and ExclusiveLasso for the exclusive variant [16]. In both cases, we do not tune the
penalty parameter λ, but simply leave it fixed at a small value (0.0001 in our experiments). This is
appropriate because we are not attempting to solve a prediction problem, but rather a ranking problem
over coefficients.

B.1 Reconstruction benchmark

We describe the setup for the experiments presented in the main text, Sect. 5.

For the compression reconstruction benchmark, we use 20 datasets sourced from the UCI Machine
Learning Repository [29], OpenML [89], Kaggle, and the R palmerpenguins [52] package. In
each dataset, we remove all rows with missing values. We also remove features that are not rele-
vant to this task (e.g., customer names), features that duplicate in meaning (e.g., education and
education_num in adult) and date-time features. We report the subsequent in Table 1, describing
for each used dataset the number of rows, features, and the proportion of categorical features in the
total feature set, as a measure of the ’mixed’-ness of the tabular data.

Then, our pipeline proceeds as follows:

• For each dataset, we take ten different bootstrap samples, to form ten training sets, and use
the remaining out-of-bag data as the testing set. We do this to ensure data is not unnecessarily
unused, which could skew results in datasets with a small n.

• For each dataset, we define 10 compression ratios, or latent rates, going uniformly from 0.1
(10% of the number of features) to 1 (100% the number of features). For each value, we
find dZ = dX × latent_rate

18

Table 1: Summary of datasets used. % Categorical indicates the proportion of categorical features. #
Classes indicates the total cardinality of all the categorical features.

Dataset Code #Samples #Numerical #Categorical # Total %Categorical #Classes

Abalone abalone 4177 8 1 9 0.11 3
Adult adult 45222 5 9 14 0.64 100
Banknote Auth. banknote 1372 4 1 5 0.20 2
Breast Cancer bc 570 30 1 32 0.03 2
Car car 1728 0 7 7 1.00 25
Bank Cust. Churn churn 10000 6 5 11 0.56 11
German Credit credit 1000 7 14 21 0.67 56
Diabetes diabetes 768 8 1 9 0.11 2
Dry Bean dry_bean 13611 16 1 17 0.06 7
Forest Fires forestfires 517 11 2 13 0.15 19
Heart Disease hd 298 7 7 14 0.50 23
King County Housing king 21613 19 0 19 0.00 0
Bank Marketing marketing 45211 7 10 17 0.59 44
Mushroom mushroom 8124 0 22 22 1.00 119
Obesity Levels obesity 2111 8 8 16 0.50 30
Palmer Penguins plpn 333 5 3 8 0.38 8
Spambase spambase 4601 58 1 59 0.02 2
Student Performance student 649 16 17 33 0.52 43
Telco Churn telco 7032 3 17 20 0.85 43
Wine Quality wq 4898 12 0 12 0.00 0

• For each dataset and bootstrap, we run each method with the specified dZ for the dimension-
ality of their latent embeddings. This involves training the method on the bootstrap training
data, then passing the testing data through its encoding and decoding stages to produce a
reconstruction.

• We then compute the distortion of these reconstructions compared to the original test
samples, using metrics described in the main text. For each bootstrap and dZ on a dataset,
we aggregate the results into a mean, and report the standard error as error bars. This
standard error represents a combination of any stochastic component of the methods used,
as well as the finite sample uncertainty of the used data.

Within this specification, we run each method 20× 10× 10 = 2000 times, and for 5 methods this
balloons to 10,000 runs. To meet these computational demands, we run these experiments from
a high-performance computing partition, with 12 AMD EPYC 7282 CPUs, 64GB RAM, and an
NVIDIA A30 graphics card. These high-performance computing units were used as part of King’s
College London’s CREATE HPC [62]

Next, we describe in detail each of the methods used in the reconstruction benchmark:

• TVAE & TTVAE: For both the TVAE and TTVAE models, we do not make any changes to
the underlying model architecture. However, we make minor modifications to not perform
any sampling/interpolation at the latent stage, and simply decode the same embeddings that
we acquired from the encoder.

• Autoencoder: We use an MLP-based autoencoder for this benchmark. This is in contrast
to a CNN-based autoencoder, which is more suited to image data, but is not relevant in
tabular data tasks, where there is no inherent structure that could be extracted by convolution
kernels. We structure our network to have five hidden layers, where the size of these layers
are adaptive to dX and dZ . In particular, we want to structure the network such that the size
of each hidden layer reduces uniformly from dX to dZ at encoding and increases uniformly
from dZ to dX at decoding. Our structure then is:
Input(dX) → Dense(dX − (dX − dZ) × 1/3) → Dense(dX − (dZ − dZ) × 2/3) →
Latent(dZdZ) → Dense(dX − (dX − dZ) × 2/3) → Dense(dX − (dX − dZ) × 1/3) →
Output(dX).
If dX = 8, dZ = 2 then with this rule the network will be 8 → 6 → 4 → 2 → 4 → 6 → 8.
For hyperparameters, we use common defaults: epochs = 50, optimizer = ADAM. We
use ReLU activations at hidden layers, a sigmoid for the output, and a random 10% validation
set from the training data.

19

https://archive.ics.uci.edu/dataset/1/abalone
https://archive.ics.uci.edu/dataset/2/adult
https://www.openml.org/search?type=data&sort=runs&id=1462&status=active
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/19/car+evaluation
https://www.openml.org/search?type=data&status=active&id=46911
https://www.openml.org/search?type=data&status=active&sort=nr_of_downloads&id=31
https://archive.ics.uci.edu/dataset/34/diabetes
https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
https://archive.ics.uci.edu/dataset/162/forest+fires
https://archive.ics.uci.edu/dataset/45/heart+disease
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.openml.org/search?type=data&status=active&id=1461
https://archive.ics.uci.edu/dataset/73/mushroom
https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
https://allisonhorst.github.io/palmerpenguins/
https://archive.ics.uci.edu/dataset/94/spambase
https://archive.ics.uci.edu/dataset/320/student+performance
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://archive.ics.uci.edu/dataset/186/wine+quality

Table 2: Mean distortion (with standard deviation) for each method and dataset, across all dZ values
used and all runs. Best result per row is bolded.

Dataset RFAE TVAE TTVAE AE VAE

abalone 0.167 (0.002) 0.309 (0.005) 0.260 (0.003) 0.230 (0.025) 0.211 (0.006)
adult 0.326 (0.007) 0.158 (0.005) 0.195 (0.007) 0.401 (0.003) 0.391 (0.004)
banknote 0.100 (0.012) 0.312 (0.013) 0.276 (0.023) 0.724 (0.023) 0.771 (0.013)
bc 0.333 (0.003) 0.564 (0.003) 0.359 (0.005) 0.287 (0.008) 0.578 (0.003)
car 0.320 (0.011) 0.195 (0.014) 0.107 (0.015) 0.349 (0.012) 0.313 (0.011)
churn 0.352 (0.012) 0.603 (0.011) 0.422 (0.014) 0.861 (0.005) 0.731 (0.006)
credit 0.315 (0.004) 0.450 (0.005) 0.375 (0.011) 0.450 (0.005) 0.456 (0.004)
diabetes 0.479 (0.016) 0.726 (0.007) 0.643 (0.014) 0.799 (0.011) 0.895 (0.004)
dry_bean 0.137 (0.002) 0.273 (0.002) 0.303 (0.008) 0.083 (0.014) 0.206 (0.001)
forestfires 0.575 (0.008) 0.804 (0.003) 0.705 (0.008) 0.782 (0.007) 0.790 (0.003)
hd 0.432 (0.008) 0.582 (0.003) 0.605 (0.006) 0.892 (0.003) 0.916 (0.002)
king 0.308 (0.008) 0.352 (0.006) 0.348 (0.008) 0.377 (0.011) 0.518 (0.004)
marketing 0.292 (0.009) 0.304 (0.005) 0.259 (0.011) 0.357 (0.007) 0.372 (0.004)
mushroom 0.083 (0.001) 0.093 (0.003) 0.011 (0.003) 0.055 (0.004) 0.035 (0.004)
obesity 0.227 (0.008) 0.354 (0.004) 0.299 (0.008) 0.306 (0.009) 0.358 (0.003)
plpn 0.176 (0.006) 0.282 (0.006) 0.224 (0.011) 0.384 (0.013) 0.410 (0.009)
spambase 0.558 (0.005) 0.825 (0.002) 0.807 (0.003) 0.446 (0.010) 0.784 (0.001)
student 0.371 (0.002) 0.424 (0.001) 0.426 (0.004) 0.536 (0.003) 0.551 (0.002)
telco 0.177 (0.003) 0.155 (0.003) 0.091 (0.007) 0.128 (0.005) 0.130 (0.005)
wq 0.240 (0.005) 0.691 (0.008) 0.759 (0.006) 0.467 (0.019) 0.708 (0.004)

Average Rank 1.80 3.38 2.45 3.27 4.10

• Variational Autoencoder: Similar to the autoencoder, we use an MLP-based variational
autoencoder. For comparison, we mimic the autoencoder’s architecture, activation function,
and defaults, only changing epochs = 100 and adding batch_size = 32. We also
impose a β coefficient inspired from [48]. However, we select a β = 0.1, to avoid pos

The RF training approach we use here is the adversarial random forests (ARFs) [94]. Using this
algorithm allows us to train the forest unsupervised, and preserve all features. Other approaches
involving unsupervised random forests can also be used, such as the ones proposed in Shi and Horvath
[80] or Feng and Zhou [30]. However, we choose ARF on the basis that our decoders’ complexity
scale on dΦ, which is smaller for the ARF than others, because it learns its structure over several
iterations of training.

We present the results in Table 2 corresponding to the plots in Fig. 4.

B.2 Additional results

We present the results of additional experiments comparing different decoding methods, multip as
well as supervised vs. unsupervised RF embeddings.

Decoder Comparison We compare the performance of three decoders that we describe in section
4: the kNN, the split relabelling and the LASSO decoder, on a smaller compression / reconstruction
benchmark. We follow the same experimental setup as the previous experiment, but only use two
datasets of small size (credit & student), and for each of these, we only use the first 5 bootstrap
splits. This is because we only aim to illustrate the performance of these decoders side by side, and
also because of the both the relabeling and LASSO’s decoder much higher complexity compared
to kNN. We maintain the RFAE setup as previously described in Appx. B.1. To make comparison
easier, for each iteration we run the encoding stage once, and apply the three decoders to the same
embeddings. We describe the relabeling and the LASSO decoder in more detail:

• Relabeling Decoder: For the relabeling decoder, we take the original RF object, and go
through each split to find a corresponding split with the data on the latent space with the
highest simple matching coefficient (SMC) to replace it. This process is global, so all data
points are used in each split.

20

An alternative approach to this is to re-find splits locally, i.e., only use the data located at
each split in the original forest. However, in practice, the lack of training points at high
depths will cause the relabeled splits to be inaccurate, so we use the global approach. Once
the forest is ’relabeled’, we can pass the embeddings for test data through it, and sample by
using the leaf bounds of the original forest.

• LASSO Decoder: For the LASSO decoder, we follow the derivations in the main text and
compute the kernel matrix K̂0 = Z0ΛZ†, and recover the leaf assignments for test samples
via the LASSO & greedy leaf search algorithm in Appx. C. Once the leaf assignments are
recovered, we once again sample by using the forest’s leaf bounds.

To reduce complexity, we impose a sparsity on the number of training samples allowed in
the LASSO, sorted by the the values of the estimated kernel matrix. Because in most cases,
a test sample will only land in the same leaf with a small number of training samples, even
across an entire forest, this allows us to narrow the search space significantly with minimal
impact on the model performance. For our datasets with 649 and 1000 samples, we set
sparsity = 100.

We present the results in figure 6, where the kNN method is denoted as RFAE.
credit student

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

Compression Factor

D
is

to
rt

io
n

Method RFAE LASSO RELABEL

Figure 6: Compression-distortion trade-off on student and credit. Shading represents standard
errors across five bootstraps.

From this plot, we can see that the kNN decoder dominates performance. Several reasons can explain
the poor performance that the other decoders display. For the relabeling decoder, because our only
criteria is to find the best matching split, if all candidates are bad, the best matching split does not
have to be an objectively good choice. Given the forest’s hierarchical nature, inaccuracies can be
compounded traversing down the tree, and the final forest is completely dissimilar to the original.
The small dZ also means more variance is introduced into the process.

For the LASSO decoder, several things may have caused this performance. First, the estimation
of K̂ may not be accurate, which is passed on to the LASSO optimization. The LASSO is also an
approximate optimization, and variance here can lead to the greedy leaf algorithm to find the wrong
leaf assignments for the test samples. This, in combination with the high complexity, motivate us to
use the kNN decoder for RFAE.

MNIST reconstruction: hyperparameter analysis Figure 7 complements Figure 3 in Section 5
by showing the effects of different parameters on the reconstruction performance for MNIST test
digits: the number of trees B (Figure 7a), the number of samples ntrain_enc used for encoder training
(Figure 7b), the diffusion time step t (Figure 7c), and the number k of nearest neighbors used for
decoding (Figure 7d). In each subplot, the respective parameter varies in a pre-defined range, while all
other ones are kept fixed at B = 1000, ntrain_enc = 30 000, t = 1, and k = 50; the latent dimension is
set to dZ = 32 throughout.

21

B = 50

B = 100

B = 200

B = 500

B = 1000

Original

(a) Varying number of decision trees B in random
forest.

ntrain enc = 1000

ntrain enc = 5000

ntrain enc = 10000

ntrain enc = 30000

ntrain enc = 60000

Original

(b) Varying number of training points ntrain_enc used
for encoder training.

t = 0

t = 1

t = 2

t = 3

t = 10

t = 50

Original

(c) Varying number of time steps t for diffusion
map encoding.

k = 1

k = 2

k = 3

k = 5

k = 10

k = 20

k = 50

Original

(d) Varying number of nearest neighbors k used
for k-NN-based decoding.

Figure 7: MNIST digit reconstructions produced by RFAE with varying parameter values; original
images are displayed in the bottom row.

RFAE (supervised)

RFAE (completely random)

ConvAE

Original

Figure 8: MNIST digit reconstructions produced by RFAE using supervised and copmletely random
forests, and by a convolutional autoencoder; original images are displayed in the bottom row.

Figure 8 compares RFAE reconstructions using supervised and (unsupervised) completely random
forests with those produced by a convolutional autoencoder with three convolutional layers. All
models were trained on full training data and with dZ = 32.

22

Supervised Unsupervised

−1.0 −0.5 0.0 0.5 −0.4 0.0 0.4

−0.5

0.0

0.5

0.0

0.5

1.0

KPC1

K
P

C
2

Class ALL AML

Figure 9: Embeddings can represent supervised or
unsupervised RFs. Data from the Golub et al. [38]
leukemia transcriptomics study.

Supervised vs. unsupervised embeddings
RF embeddings provide different perspectives
on the data depending on whether we use su-
pervised or unsupervised learning objectives.
We train a standard RF classifier to distinguish
acute lymphoblastic (ALL) from acute myeloid
(AML) leukemia samples in a well known tran-
scriptomic dataset [38]. After filtering, the
feature matrix includes expression values for
dX = 3572 genes recorded in n = 72 patients.
These kind of short, wide datasets are common
in bioinformatics, but can be challenging for
many learning algorithms. RFs excel in these
settings, attaining out-of-bag accuracy of 98% on this task. KPC1 clearly separates the two classes in
the left panel, while KPC2 appears to isolate a potential outlier within the AML cohort. Using an
unsupervised adversarial RF [94], we find far greater overlap among the two classes (as expected),
although ALL and AML samples are hardly uniform throughout the latent space. This example
demonstrates the flexibility of our method. Whereas standard spectral embedding algorithms with
fixed kernels are limited to unsupervised representations, RFAE can take any RF input.

C Leaf assignments via lasso and greedy search

In this section, we briefly describe the lasso relaxation of the ILP in Eq. 3. First, we split the task into
m separate subproblems, one for each test vector. Let k̂0 denote a row of K̂0, say for test point x0.
Observe that this adjacency vector is generally sparse, since most training points are unlikely to be
neighbors of x0.5 Let a = ∥k̂0∥0 be the number of neighbors for x0, and write k̂↓

0 ∈ [0, 1]a for the
reduction of k̂0 to just its nonzero entries. We also write L(b)↓ ⊆ L(b) for the set of leaves to which
x0’s neighbors are routed in tree b, with cardinality d(b)↓Φ ≤ d

(b)
Φ , and d↓Φ =

∑
b d

(b)↓
Φ . (Though the

reduction operation is defined only w.r.t. some x0, we suppress the dependency to avoid clutter.)
This implies corresponding reductions of Φ to the submatrix Φ↓ ∈ {0, 1}k×d↓

Φ , with one row per
neighbor of x0 and columns for each leaf to which at least one neighbor is routed in f ; and S to
S↓ ∈ [0, 1]d

↓
Φ×d↓

Φ , with diagonal entries for each leaf in
⋃

b L
(b)↓ .

Following these simplifications, we solve:

min
ψ∈[0,1]d

↓
Φ

∥Bk̂↓⊤
0 −Φ↓S↓ψ⊤∥22 + λ

∑
b∈[B]

(∑
ℓ∈L(b)↓

ψℓ

)2
, (4)

where the penalty factor λ promotes a sparse solution with a similar effect to the one-hot constraint
above. Specifically, it encourages competition both within trees (via the L1 norm), and between trees
(via the L2 norm). Eq. 4 is an exclusive lasso problem, which can be efficiently solved via coordinate
descent [101, 16] or dual Newton methods [66]. The interval (rather than integer) constraints on
our decision variables effectively allow for “fuzzy” leaf membership, in which samples may receive
nonzero weight in multiple leaves of the same tree.

Exploiting these fuzzy leaf assignments, we propose a greedy method to determine leaf member-
ship. The method provisionally assigns a sample to the leaves with maximal entries in ψ̂. If any
inconsistencies arise, we replace the “bad” assignments—i.e., those less likely to overlap with other
assigned regions—with the next best leaves according to ψ̂. The procedure repeats until assignments
are consistent. Though convergence is guaranteed, greedy search may prove inaccurate if coefficients
are poorly estimated.

Alg. 1 provides an overview of the greedy leaf assignment procedure. This is run for a single sample
x ∈ X , which has associated fuzzy leaf assignment vector p̂ ∈ [0, 1]dΦ . We select the leaf coordinates
associated with tree b ∈ [B] by writing p̂(b) ∈ [0, 1]d

(b)
Φ . We overload notation somewhat by writing

R
(b)
i ⊂ X to denote the hyperrectangular region associated with leaf i ∈ [d

(b)
Φ] of tree b ∈ [B] in step

5That neighbors vanish as a proportion of training samples is a common consistency condition for nonpara-
metric models in general and local averaging estimators in particular [84].

23

Algorithm 1 GREEDYLEAFASSIGNMENTS

Input: Fuzzy leaf assignments p̂ ∈ [0, 1]dΦ

Output: Hard leaf assignments q ∈ {1, . . . , d(b)Φ }
B

1: Initialize: t← 0, C(t)← ∅, S(t)← X , converged← FALSE
2: while not converged do
3: t← t+ 1
4: for all trees b ∈ [B] do
5: Find leaf with maximum fuzzy value in the feasible region:

q(b)(t)← argmax
i∈[d

(b)
Φ]

p̂
(b)
i s.t. R

(b)
i ∩ S(t) ̸= ∅

6: Let R(b)
q (t) be the region corresponding to leaf q(b)(t)

7: end for
8: Let G(t) = ⟨[B], E(t)⟩ be a graph with edges:

E(t) := {i, j ∈ [B] : R(i)
q (t) ∩R(j)

q (t) ̸= ∅}

9: if G(t) is complete then
10: converged← TRUE
11: else
12: if the maximal clique of G(t) is unique then
13: Let C(t) ⊂ [B] be the unique maximal clique of G(t)
14: else if the maximal cliques of G(t) have nonempty intersection then
15: Let C(t) ⊂ [B] be the intersection of all maximal cliques of G(t)
16: else
17: Let C(t) ⊂ [B] be any maximal clique of G(t)
18: end if
19: Let S(t)←

⋂
b∈C(t) R

(b)
q (t) be the feasible region associated with C(t)

20: end if
21: end while
22: q← q(t)

5; and then R(b)
q (t) to denote the region associated with leaf q(b)(t), which maximizes p̂(b) among

all leaves that intersect with the feasible region S(t). If the argmax in step 5 is not unique, then we
select among the maximizing arguments at random. Similarly, if there are multiple non-overlapping
maximal cliques, then we select one at random in step 14. (This should be exceedingly rare in
sufficiently large forests.) The undirected graph G(t) encodes whether the regions associated with
assigned leaves overlap. Since consistent leaf assignments require intersecting regions for all trees,
the algorithm terminates only when G(t) is complete. The procedure is greedy in the sense that edges
can only be added and never removed, leading to larger maximal cliques C(t) and smaller feasible
regions S(t) with each passing round.

While the algorithm is guaranteed to converge on a consistent set of leaf assignments, this may only
be achievable by random sampling of leaves under a consistency constraint. Such uninformative
results are likely the product of noisy estimates for K̂0. Note that while the maximal clique problem
is famously NP-complete [56], we must solve this combinatorial task at most once (at t = 1). In
subsequent rounds t ≥ 2, we simply check whether any new nodes have been added to C(t − 1).
Maximal clique solvers are highly optimized and have worst-case complexity O(2B/3), but are often
far more efficient due to clever heuristics [96]. In practice, the method tends to find reasonable leaf
assignments in just a few rounds. When computing leaf assignments for multiple test points, we may
run Alg. 1 in parallel, as solutions are independent for each sample.

D Computational complexity

In this section, we study the complexity of different RFAE pipelines.

The encoding step requires O(n2) space to store the adjacency matrix. For large datasets, this can
be approximated by using a subsample of all training points to compute K, at the cost of losing the

24

exact functional equivalence of Eq. 2. Similar tricks are common in kernel methods such as Gaussian
process regression [72].

While the ILP solution is generally intractable, the lasso relaxation requires O(d3Φ) operations [16]
to score leaves (although dΦ can in fact be reduced to ai = ∥ki∥0 for each test point i ∈ [m]; see
Appx. C). The subsequent greedy leaf assignment algorithm searches for the maximal clique in a
graph with B nodes for each test sample, incurring worst-case complexity O

(
exp(B)

)
. Though the

maximal clique problem is famously NP-complete [56], modern solvers often execute very quickly
due to clever heuristics [96]. We can also parallelize over the test samples, as each greedy solution is
independent. Note that both the cubic term in the exclusive lasso task and the exponential term in the
greedy leaf assignment algorithm are user-controlled parameters that can be reduced by training a
forest with fewer and/or shallower trees. Alternatively, we could use just a subset of the RF’s trees
to reduce the time complexity of decoding via constrained optimization, much like we could use a
subset of training samples to reduce the space complexity of encoding.

The split relabeling method is essentially an iterated CART algorithm, and therefore requires
O(dZ ñ log ñ) time to relabel each split, where ñ is the number of synthetic samples X̃. How-
ever, since the number of splits is generally exponential in tree depth, this can still be challenging for
deep forests.

The most efficient decoder is the k-NN method, which proceeds in two steps. First, we find the nearest
neighbors in embedding space, which for reasonably small dZ can be completed in O(m log n) time
using kd-trees. Next, we compute the intersection of all leaf regions for selected neighbors, incurring
a cost of O(kmdΦdX).

25

	Introduction
	Background
	Encoding
	Decoding
	Constrained Optimization
	Split Relabeling
	Nearest Neighbors

	Experiments
	Discussion
	Conclusion
	Proofs
	Proof of Thm. 3.4 (RF kernel properties)
	Proof of Thm. 4.2 (Oracle consistency)
	Proof of Thm. 4.3 (Uniqueness)
	Proof of Thm. 4.4 (k-NN consistency)

	Experiments
	Reconstruction benchmark
	Additional results

	Leaf assignments via lasso and greedy search
	Computational complexity

