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Abstract

Large Language Models (LLMs) have evolved from text generators into sophisti-1

cated autonomous agents capable of conducting independent scientific research.2

This paper reviews the current landscape of LLM-driven scientific discovery, where3

AI agents can now execute the entire research pipeline, including reading scien-4

tific literature, forming novel hypotheses, designing experiments, interfacing with5

laboratory tools and simulators, analyzing data, and interpreting results. A key6

advancement is the deployment of multi-agent systems, where specialized agents7

collaborate in roles such as ’scientist,’ ’critic,’ and ’evaluator’ to tackle complex8

challenges beyond the scope of individual agents. We survey domain-specific ap-9

plications and highlight validated discoveries, including the autonomous synthesis10

of novel chemical compounds and materials, the design of functional nanobodies11

for SARS-CoV-2 variants, and the automation of complex bioinformatics analy-12

ses. The development of end-to-end research systems that can progress from an13

initial idea to a full, peer-reviewed publication demonstrates a paradigm shift in the14

automation of science. Despite these successes, significant challenges remain, in-15

cluding performance degradation on highly complex causal reasoning tasks. Future16

directions point toward creating more robust, causally-aware agents and enhancing17

human-AI collaboration to accelerate scientific breakthroughs.18

1 Introduction19

Large Language Models (LLMs) are being used as autonomous agents to make real scientific20

discoveries by reading papers, forming hypotheses, designing experiments, and analyzing results.21

These AI systems can now work independently or in teams to advance research across many scientific22

fields.23

This paper provides a comprehensive overview of the current state and future potential of LLM agents24

in scientific discovery. We begin by examining the foundational Capabilities and Core Functions that25

enable individual LLM agents to mirror the traditional scientific method. From there, we explore the26

evolution toward collaborative Multi-Agent Systems and Frameworks, where specialized agents work27

in concert to solve complex problems.28

To illustrate these concepts, we survey a range of Domain-Specific Applications, highlighting29

validated breakthroughs in biology, chemistry, materials science, and healthcare. We then discuss the30

culmination of this research in End-to-End Autonomous Research Systems capable of managing the31

entire scientific workflow from initial idea to final publication. Finally, we assess the current state of32

the field by reviewing established Performance Levels and Evaluation benchmarks and conclude by33

addressing the key Challenges and Future Directions that will shape the next generation of AI-driven34

scientific inquiry.35
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2 Capabilities and Core Functions of LLM Agents in Science36

LLM agents in science operate across a sophisticated spectrum of capabilities that mirror the tradi-37

tional scientific method. At their core, these systems can leverage vast interdisciplinary knowledge to38

break down information barriers and propose scientific hypotheses that have been validated against39

existing literature [24]. The agents demonstrate remarkable capacity to generate scientifically plausi-40

ble and potentially novel hypotheses by combining their extensive domain knowledge with advanced41

reasoning capabilities [30] [34].42

A key advancement is the agents’ ability to integrate with external tools and scientific simulators,43

enabling automated statistical discovery and reasoning [30]. This integration allows LLM agents to44

move beyond theoretical hypothesis generation into practical experimentation and validation. For45

example, systems like FunSearch have demonstrated the ability to make genuine discoveries for46

established open problems by searching for programs that describe how to solve problems rather than47

what the solutions are [27].48

The scientific research pipeline has been transformed as LLM agents can now collaborate across all49

critical stages including hypothesis generation, experimental design, data acquisition, and analysis50

[31]. These agents can interface with experimental data sources through programming execution,51

allowing for real-world experimentation and validation [25]. Domain-specific implementations like52

ChemCrow have shown how agents can autonomously plan and execute complex tasks such as53

chemical syntheses and guide the discovery of novel compounds [25] [5].54

Recent research has established a three-level taxonomy for LLM involvement in scientific discovery:55

LLM as Tool for specific supervised tasks, LLM as Analyst for complex autonomous processing,56

and LLM as Scientist for fully autonomous research conduct from hypothesis formulation through57

result interpretation [46]. The most advanced capability involves autonomous knowledge generation,58

where agents synthesize data from multiple sources to propose novel insights, extrapolate trends, infer59

causality, and develop testable hypotheses, transforming them from passive information consumers60

into active contributors to scientific discovery [18].61

LLM agents can perform the full spectrum of scientific research tasks, from generating novel
hypotheses and designing experiments to analyzing data and making discoveries. They function
at three levels: as tools for specific tasks, as analysts for complex processing, or as autonomous
scientists capable of conducting entire research workflows.

3 Multi-Agent Systems and Frameworks62

The evolution toward multi-agent systems represents a significant advancement in autonomous63

scientific discovery, where specialized LLM agents collaborate to tackle complex research challenges64

that exceed the capabilities of individual agents. These frameworks harness what researchers describe65

as a "swarm of intelligence" similar to biological systems, enabling unprecedented scale, precision,66

and exploratory power that surpasses traditional human-driven research methods [12] [11].67

Modern multi-agent scientific frameworks employ sophisticated role-based architectures where dis-68

tinct agents assume specialized functions. The SciAgents framework exemplifies this approach by69

deploying agents with specific expertise as "Ontologist," "Scientist," and "Critic" to collectively gen-70

erate and refine scientific hypotheses, orchestrating these ChatGPT-4-based agents around ontological71

knowledge graphs that encode relationships between scientific concepts [20]. Similarly, systems like72

CellAgent implement hierarchical decision-making mechanisms with planner, executor, and evaluator73

roles, incorporating self-iterative optimization to ensure output quality [8] [37].74

Several notable frameworks have demonstrated end-to-end autonomous research capabilities. Agent75

Laboratory accepts human-provided research ideas and progresses through literature review, experi-76

mentation, and report writing stages, achieving an 84% reduction in research expenses compared to77

previous methods while enabling human feedback integration at each stage [29]. The Virtual Lab78

framework employs an LLM principal investigator guiding specialized agent teams with different79

scientific backgrounds, successfully designing functional nanobodies for SARS-CoV-2 variants80

through experimental validation [28] [32].81

Advanced multi-agent systems are achieving remarkable discovery efficiency through sophisticated co-82

ordination mechanisms. The PiFlow framework treats scientific discovery as a structured uncertainty83
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reduction problem, demonstrating a 73.55% increase in discovery efficiency and 94.06% enhance-84

ment in solution quality compared to single-agent systems across nanomaterials, bio-molecules, and85

superconductor research domains [23]. Other systems like IDVSCI incorporate Dynamic Knowledge86

Exchange mechanisms and Dual-Diversity Review paradigms to simulate heterogeneous expert87

evaluation, consistently outperforming existing frameworks in autonomous research tasks [42].88

The integration of specialized tools and domain expertise enables these multi-agent systems to89

conduct sophisticated interdisciplinary research. Recent implementations have successfully generated90

thousands of structured hypotheses from vast literature databases, with rigorous evaluation processes91

identifying feasible, useful, and novel research directions [47] [40]. Contemporary frameworks like92

NovelSeek have achieved significant performance improvements across multiple scientific fields with93

dramatically reduced time costs, demonstrating accuracy increases from 27.6% to 35.4% in reaction94

yield prediction within just 12 hours [45].95

Multiple specialized AI agents work together in teams to conduct scientific research, with
different agents handling specific roles like hypothesis generation, experiment design, and
results evaluation. These collaborative frameworks achieve better research outcomes than single
agents and can autonomously discover new materials, drugs, and scientific insights across
diverse domains.

4 Domain-Specific Applications96

4.1 Biology and Biomedicine97

• Protein Design: ProtAgents enables collaborative design of novel proteins with targeted98

mechanical properties through dynamic multi-agent environments that combine knowledge99

retrieval, structure analysis, and physics-based simulations [10]100

• Single-Cell Analysis: CellAgent automates scRNA-seq data processing with hierarchical101

decision-making mechanisms coordinating planner, executor, and evaluator roles, dramati-102

cally reducing workload for biological data analysis [37]103

• Genetic Research: BioDiscoveryAgent autonomously designs genetic perturbation experi-104

ments, outperforming traditional methods in identifying genes linked to specific phenotypes105

and improving prediction accuracy [26]106

• Multi-Omics Analysis: AutoBA leverages LLMs to automate bioinformatics analysis using107

established libraries to generate new biological insights [2]108

4.2 Chemistry and Drug Discovery109

• Chemical Synthesis: The notable ChemCrow system integrates 18 expert-designed tools with110

GPT-4 to autonomously plan and execute syntheses of insect repellents and organocatalysts111

while guiding discovery of novel chromophores [5]112

• Drug Development: DrugAssist performs interactive molecule optimization through human-113

machine dialogue, achieving leading results in both single and multiple property optimization114

tasks [41]. DrugPilot demonstrates exceptional performance with task completion rates of115

98.0%, 93.5%, and 64.0% for simple, multi-tool, and multi-turn drug discovery scenarios116

respectively [17]117

• Experimental Automation: Coscientist combines LLMs to autonomously plan, design, and118

execute scientific experiments, successfully demonstrating catalyzed chemical reactions119

while addressing safety concerns [26]120

4.3 Materials Science121

• Autonomous Synthesis: The notable A-LAB system discovered and synthesized 41 novel122

compounds from 58 targets in 17 days of continuous operation, combining computations,123

literature data, and active learning for inorganic powder synthesis [33]124

3



• Alloy Design: AtomAgents uses multi-agent frameworks combining physics-based simula-125

tions and multi-modal data integration for autonomous alloy discovery [13]126

• Crystal Structure Generation: MatLLMSearch demonstrates that pre-trained LLMs can127

generate stable crystal structures without fine-tuning, achieving 78.38% metastable rate128

validated by machine learning potentials [9]129

• Data Extraction: Eunomia autonomously extracts and structures experimental datasets130

from scientific literature, achieving performance comparable to state-of-the-art fine-tuned131

materials information extraction methods [1]132

4.4 Healthcare and Clinical Applications133

• Speech-Language Pathology: Specialized systems successfully identified 2,421 interventions134

from 64,177 research articles, creating publicly accessible intervention knowledge bases135

with significant community benefit [14]136

• Pharmaceutical Research: AI co-scientist systems demonstrate empirically validated ef-137

fectiveness in pharmaceutical repurposing, target discovery, and antimicrobial resistance138

research through multi-agent tournament-based evolutionary processes [26]139

4.5 Cross-Domain Scientific Research140

• General Scientific Discovery: The AI Scientist framework enables fully automated scientific141

discovery where LLMs independently generate ideas, execute experiments, write papers,142

and undergo review processes across multiple research fields [26]143

- Tool-Augmented Reasoning: SciAgent systems retrieve, understand, and use specialized tools144

for scientific problem solving across five scientific domains, with SciAgent-Llama3-8B surpassing145

comparable LLMs by more than 8.0% in absolute accuracy [21]146

LLM agents are making real discoveries across many scientific fields, from finding new materials
and drugs to analyzing biological data and designing proteins. These specialized systems have
successfully identified thousands of research interventions, synthesized novel compounds, and
automated complex experiments in chemistry, biology, materials science, and healthcare.

5 End-to-End Autonomous Research Systems147

The development of end-to-end autonomous research systems represents the pinnacle of LLM-driven148

scientific discovery, where complete research workflows are automated from initial conception149

through final publication. Agent Laboratory exemplifies this capability by accepting human-provided150

research ideas and progressing through three comprehensive stagesliterature review, experimentation,151

and report writingto produce complete research outputs including code repositories and research152

reports while enabling user feedback at each stage [29]. This system achieves remarkable efficiency153

gains, demonstrating an 84% reduction in research expenses compared to previous autonomous154

research methods while generating machine learning code that achieves state-of-the-art performance155

[29].156

Several pioneering frameworks have demonstrated successful end-to-end scientific discovery capa-157

bilities across diverse domains. The AI Scientist framework performs fully automated research in158

machine learning, including problem definition, experimental execution, code writing, and paper159

production with automated peer review [28] [45]. The enhanced AI Scientist-V2 incorporates agent160

tree search and vision-language model feedback, achieving the milestone of producing the first161

workshop paper fully generated and peer-reviewed by AI [45].162

Real-world validation of these systems has produced tangible scientific breakthroughs. The Virtual163

Lab system employs an LLM principal investigator guiding specialized agent teams to design164

functional nanobody binders for SARS-CoV-2 variants, with experimental validation revealing165

promising binding profiles and two nanobodies showing improved binding to recent viral variants [28]166

[32]. Similarly, AI Co-Scientist has demonstrated empirically validated effectiveness in biomedical167
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domains including drug repurposing and novel target identification through multi-agent systems168

employing "generate-debate-evolve" strategies [45].169

The automation extends to physical experimentation through systems like ORGANA, which integrates170

decision-making and perception tools to automate diverse chemistry experiments while collaborating171

with chemists via LLMs to define objectives and generate detailed experiment logs [19] [7]. These172

robotic systems demonstrate over 50% reduction in user frustration and physical demand while saving173

researchers an average of 80.3% of their time [7].174

Performance metrics across multiple scientific domains showcase the effectiveness of these au-175

tonomous systems. NovelSeek achieved significant accuracy improvements in just hours of pro-176

cessing: reaction yield prediction increased from 27.6% to 35.4% in 12 hours, enhancer activity177

prediction rose from 0.65 to 0.79 in 4 hours, and 2D semantic segmentation precision advanced178

from 78.8% to 81.0% in 30 hours [45]. These systems span the entire research pipeline from idea179

generation and experimental design to code implementation and academic paper drafting [39] [16]180

[44] [3] [15] [35].181

Complete autonomous research systems can now handle the entire scientific process from start
to finish, taking in research ideas and producing full papers, code, and experimental results.
These systems have successfully created functional discoveries like nanobodies and reduced
research costs by up to 84% while maintaining scientific rigor.

6 Performance Levels and Evaluation182

The evaluation of LLM agents in scientific discovery has evolved to include sophisticated performance183

taxonomies and comprehensive benchmarking frameworks that assess both current capabilities and184

future potential. A formal five-level performance hierarchy has been established, ranging from185

basic scientific tasks to paradigm-shifting discoveries [22]. At Level 3, agents demonstrate the186

ability to make novel scientific contributions worthy of publication at top conferences, while Level 4187

encompasses groundbreaking contributions meriting oral presentations or best paper awards [22]. The188

highest Level 5 represents the ultimate goal: agents capable of pursuing long-term research agendas189

and producing paradigm-shifting breakthroughs worthy of Nobel or Turing prizes over extended190

periods [22].191

Current evaluation frameworks reveal both the promise and limitations of existing systems. The192

Auto-Bench benchmark challenges LLMs to conduct human-like scientific research through causal193

graph discovery, requiring models to uncover hidden structures and make optimal decisions with194

valid justifications [6]. Testing state-of-the-art models including GPT-4, Gemini, Qwen, Claude, and195

Llama reveals significant performance degradation as problem complexity increases, highlighting196

important gaps between machine and human intelligence [6].197

Real-world applications demonstrate impressive quantitative results in hypothesis generation and198

evaluation. Multi-agent systems have successfully processed massive datasets, with one implemen-199

tation analyzing 66,000 scientific abstracts to produce 1,000 structured hypotheses [47]. Rigorous200

evaluation of these hypotheses revealed that 243 were deemed feasible based on current scientific201

knowledge, 175 demonstrated practical utility, and 12 stood out as highly novel contributions [47].202

These systems employ sophisticated evaluation mechanisms including retrieval-augmented genera-203

tion, tree-of-thoughts reasoning, and LLM-as-a-judge frameworks to ensure only the most promising204

hypotheses emerge from the discovery process [47] [40].205

Researchers have defined five performance levels for LLM scientific agents, from basic hypoth-
esis generation to Nobel Prize-worthy breakthroughs, with current systems achieving notable
success in mid-level tasks but showing significant performance drops as problem complexity
increases. Evaluation frameworks now test agents on causal discovery, hypothesis generation,
and multi-step reasoning across thousands of scientific problems.

7 Challenges and Future Directions206

Despite the remarkable progress in LLM-driven scientific discovery, significant challenges remain207

that limit current systems’ effectiveness and point toward critical areas for future development.208
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Comprehensive evaluation of state-of-the-art models including GPT-4, Gemini, Qwen, Claude, and209

Llama reveals a consistent pattern: performance drops significantly as problem complexity increases,210

highlighting an important gap between machine and human intelligence that future LLM development211

must address [6]. This performance degradation becomes particularly pronounced in tasks requiring212

causal graph discovery, where models must uncover hidden structures and make optimal decisions213

with valid justifications through iterative refinement processes [6].214

A major frontier involves building more robust LLM agents that can effectively plan, reason, and215

interact with both humans and specialized scientific tools. The integration of LLMs into agent-216

based frameworks requires coordination with external tools such as retrosynthesis engines, docking217

software, and laboratory automation platforms to complete complex multi-step discovery workflows218

[36] [240288398 | García-Ortegón et al. | 2021 | Citations: 85]. These enhanced agent systems could219

potentially close the loop between computational prediction and experimental validation, enabling220

more flexible and goal-directed molecular design while accelerating the iterative discovery process221

[36] [240288398 | García-Ortegón et al. | 2021 | Citations: 85].222

The development of causally-aware LLM agents represents another critical advancement area, with223

systems like MRAgent demonstrating the ability to autonomously scan literature, identify potential224

exposure-outcome pairs, execute causal inference analyses, and generate comprehensive reports225

[4] [38]. Future enhancements in AI-driven hypothesis generation will require agents to synthesize226

information from literature, structured databases, and experimental data to propose testable causal227

hypotheses, leveraging LLMs’ strength in generating causal arguments based on their vast training228

data [4].229

Advanced applications are emerging in target identification and validation, where causal agents230

integrate LLM-driven reasoning with data-driven causal discovery methods applied to omics data,231

identifying potential causal genes or pathways implicated in diseases with comprehensive explanations232

for their proposed roles [4] [43]. The integration of automated experiment analysis, including vision-233

based agents that can detect drug-cell interactions in microscopy images without task-specific234

training, promises to streamline experimental workflows and collectively shorten research cycles235

while prioritizing experiments based on causal plausibility [4].236

Current LLM agents face significant challenges as scientific problems become more complex,
showing performance drops when dealing with intricate causal relationships and multi-step
reasoning. Future development focuses on creating more robust agent frameworks that can
better integrate computational predictions with experimental validation and handle complex
causal discovery tasks.
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