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Abstract

Abstract meaning representation (AMR) is
a special semantic representation language
that captures sentences’ meaning with syntax-
irrelevant graphs. AMR-to-text generation
aims to generate text according to a given AMR
graph and is helpful in various downstream
NLP tasks. Existing AMR-to-text generation
methods roughly fall into two categories, each
with pros and cons. The sequence-to-sequence
models, especially pretrained language models
(PLMs), have good text generation ability but
cannot cope well with the structural informa-
tion of AMR graphs. The graph-to-sequence
models utilize graph neural networks (GNNs),
showcasing complementary strengths and lim-
itations. Combining both methods could har-
ness their strengths; yet, merging a GNN with
a PLM is non-trivial. In this paper, we pro-
pose DualGen, a dual encoder-decoder model
that integrates a specially designed GNN into
a sequence-to-sequence PLM. We conduct ex-
tensive experiments, human evaluation, and a
case study, finding that DualGen achieves the
desired effect and yields state-of-the-art per-
formance in the AMR-to-text generation task.
We also show it outperforms the most potent
general-purpose PLMs, LLaMA and GPT-4.

1 Introduction

Abstract meaning representation (AMR) is a seman-
tic representation language representing sentences’
meaning as rooted, directed, and labeled graphs,
free from syntactic idiosyncrasies (Banarescu et al.,
2013). In AMR graphs, nodes depict entities,
events, and properties, while edges denote node
relationships. Figure 1 exemplifies an AMR graph
with two formats.

AMR-to-text generation aims to generate text
with the same meaning as an AMR graph. Itis a
well-established task that is useful in various down-
stream applications, including text summarization
(Liu et al., 2015; Takase et al., 2016), machine

translation (Jones et al., 2012; Song et al., 2019),
and information extraction (Zhang and Ji, 2021).
Figure 1 illustrates AMR-to-text generation.

Previous studies of AMR-to-text generation em-
ploy two kinds of architectures. The first one is the
sequence-to-sequence (s2s) model, which uses a
sequence encoder to process the linearized AMR
graphs and a sequence decoder to generate text
(Konstas et al., 2017; Cao and Clark, 2019). Bene-
fiting from the strong language ability of pretrained
language models (PLMs) (Lewis et al., 2020; Raf-
fel et al., 2020), recent s2s AMR-to-text models
have achieved leading results (Ribeiro et al., 2021a;
Bevilacqua et al., 2021; Bai et al., 2022). However,
linearized AMR graphs that s2s models take as
inputs suffer from information loss, resulting in
reduced performance (Ribeiro et al., 2021b; Song
et al., 2018; Beck et al., 2018).

The second one is the graph-to-sequence (g2s)
model (Song et al., 2018, 2020; Beck et al., 2018;
Guo et al., 2019), which consists of a graph neural
network (GNN) encoder and a sequence decoder.
Different from s2s models, g2s models can cap-
ture the complete structural information of AMR
graphs with GNN encoders. They usually outper-
form un-pretrained s2s models (Song et al., 2020),
particularly for complex graphs. However, because
g2s models cannot be pretrained on corpora, they
exhibit weaker overall performance than PLMs.

In this paper, to combine the strengths of both
s2s and g2s models, we introduce DualGen, a dual
encoder-decoder model, using BART (Lewis et al.,
2020) as the foundation model.! Based on the s2s
architecture of BART, we add a GNN encoder. In
this way, DualGen is expected to take complete
information of AMR graphs while benefiting from
the strong language capabilities of PLMs.

Integrating a GNN encoder into a pretrained
Transformer-based PLM is non-trivial. First, all

'"DualGen is applicable to other Transformer-based PLMs.
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Figure 1: Illustration of two equivalent formats of an AMR graph and the AMR-to-text generation task. “ARGO0”,
“ARG1”, and “degree” are edge labels. In linearized format, nodes are denoted by abbreviations, e.g., “f”” denotes
“feel-01”. The linearized format is indented for better readability.

existing AMR datasets are inadequate to train a
GNN encoder of a similar size as the sequence en-
coder from scratch. Second, no pretrained GNNs
tailored for language tasks are available; prior stud-
ies employing dual-encoders for NLP tasks initiate
GNN training from the ground up. To address these
challenges, we design a specialized GNN encoder
that can be initialized with PLM parameters and
seamlessly integrated with the PLM.

Experiment results on datasets AMR2.0 and
AMR3.0 demonstrate that DualGen outperforms
the state-of-the-art method (Bai et al., 2022) and
the most potent PLMs, LLaMA and GPT-4 across
multiple metrics. We conduct quantitative and qual-
itative analyses, demonstrating that DualGen excels
in processing graph structures while maintaining
text generation quality on par with PLMs. We find
that DualGen particularly excels in handling com-
plex graphs compared with s2s models, showing
that DualGen combines the strengths of both g2s
and s2s models. We conduct a human evaluation
and a case study that further validate these findings.

2 Related Work

AMR-to-text generation. AMR-to-text genera-
tion involves transforming AMR graphs into the
corresponding text. One approach for AMR-to-
text generation employs a sequence-to-sequence
(s2s) model that consists of a sequence encoder
and a sequence decoder. The first neural model
for this task (Konstas et al., 2017) uses stacked
bidirectional LSTM, while recent studies adopt
the Transformer architecture (Vaswani et al., 2017)
and employ pretrained language models (PLMs).
Ribeiro et al. (2021a) proposes adaptive pretrain-
ing, while Bevilacqua et al. (2021) explores lin-
earization methods. Mager et al. (2020) introduces
an additional rescoring stage and explores joint
probability. Bai et al. (2022) employs graph pre-
training. The sequence encoder can only take lin-

earized AMR graphs as input. However, lineariza-
tion causes a loss of graph structure information.

Another approach employs a graph-to-sequence
(g2s) model, which consists of a graph neural net-
work (GNN) encoder and a sequence decoder. Var-
ious GNN encoders have been explored, including
gated GNN (Beck et al., 2018), graph LSTM (Song
et al., 2018), graph convolutional network (Guo
et al., 2019), and graph attention network (Song
etal., 2020; Koncel-Kedziorski et al., 2019; Cai and
Lam, 2020). While the g2s model can effectively
handle graph structures, it cannot process text. Con-
sequently, it cannot be pretrained by textual data,
which limits its language generation ability.

To combine the strengths of s2s and g2s mod-
els, Ribeiro et al. (2021b) employs a PLM-based
approach, incorporating a graph convolutional net-
work (GCN) adapter following the sequence en-
coder for better graph handling. Unlike DualGen,
which uses a dual encoder architecture, Ribeiro
et al. (2021b) employs an un-pretrained GCN and
only fine-tunes the GCN while keeping others
frozen. Later experimental results show the su-
periority of our method over this model.

Dual encoder architecture. Dual encoder archi-
tecture is widely used in NLP. In generative models,
prior work mainly employs un-pretrained models.
For instance, Junczys-Dowmunt et al. (2018) uti-
lized two un-pretrained encoders and a decoder
to recover translation errors. Zhang et al. (2021)
applied two un-pretrained encoders and two un-
pretrained decoders for dialogue summarization.
For pretrained models, Dou et al. (2021) employs
two Transformer encoders and a Transformer de-
coder for text summarization. However, to our
knowledge, there has been no prior dual encoder-
decoder model that simultaneously uses distinct
architectures for the two encoders while utilizing
pretrained models for both encoders. Also, no prior
research has employed the dual encoder architec-
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Figure 2: The architecture of the DualGen model.
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ture for AMR-to-text generation.

For non-generative tasks, dual encoder architec-
ture is employed in tasks including similarity mea-
surement (Mueller and Thyagarajan, 2016; Yang
et al., 2018), context-based candidate selection
(Shyam et al., 2017), and information retrieval
(Pang et al., 2017).

3 Method

In this section, we provide a detailed description
of DualGen. We convert the AMR graph into a lin-
earized and graphical format (Section 3.1), which
is then fed into the dual encoder-decoder model
(Section 3.2). Following prior research, we employ
a two-stage training (Section 3.3).

3.1 Data Processing

We replace the nodes of AMR graphs with their
original labels, omitting the PropBank (Palmer
et al.,, 2005) indexes. For example, the node
f/feel-01 in Figure 1 is transformed into feel.

We use the DFS-based approach as per Bevilac-
qua et al. (2021) to linearize. For tokenization,
we follow the BART method for both encoders,
similarly tokenizing the linearized AMR sequence,
nodes, and edges. This allows us to calculate se-
quence and graph embeddings with shared embed-
ding parameters across the two encoders.

3.2 Model Architecture

DualGen adopts a dual encoder-decoder architec-
ture comprising a Transformer-based sequence
encoder, a GNN-based graph encoder, and a

Transformer-based sequence decoder, as depicted
in Figure 2. The sequence and graph encoder take
linearized and graph AMRs as input, respectively.

Sequence encoder: The sequence encoder is a
Transformer encoder, initialized with BART param-
eters, as illustrated in the left part of Figure 2. It
accepts the linearized AMR as its input.

Graph embeddings: The graph embeddings
comprise node and edge embeddings, which share
parameters with the sequence encoder and the se-
quence decoder embeddings. For a token ¢ in the
vocabulary, its word embedding is t € R%mbed,

Given an AMR graph G = (V,E), where V is
the node set and EE is the edge set. Each node and
edge is labeled with one or more words. The words
are divided into multiple tokens during tokeniza-
tion. These tokens are subsequently used to gener-
ate embeddings for nodes and edges. Anode v € V

is denoted by [, tokens t7,t5,--- ,t}’v. An edge
e € E is denoted by m, tokens t{,¢5,--- |17, .

As Figure 3 shows, for a node v € V, its node
embedding is the average embedding of all its cor-
responding tokens v = % 22’;1 ty.

To facilitate two-way information exchange
along edges, we introduce two linear projections
from Rmbed to R%aze for forward and backward
edges, defined by matrices W, W5 and bias
b¥,bE. For an edge e from node s, to t, its
forward and backward edge embeddings are:

{efwd = G S W+t

ebwd = (LS ¢ )W B + bP

AMR graphs are acyclic, ensuring at most one
edge connects any given pair of nodes. Therefore,
the edge embedding is well-defined:

efvd ifs, =sandt, =t
Vs,t € V,es; =< e ift,=sands, =t
0 otherwise

2

Graph encoder: The graph encoder resem-
bles the Transformer encoder, as shown in Fig-
ure 2. However, it incorporates a unique multi-
head attention mechanism for graphs, as Fig-
ure 4 depicts. The node embedding is V" =

K" = Q" = [Vl \P) V|V|]—r and the
edge embedding for a given node v is E, =
(v €up2 €y, v]

We present a graph attention mechanism inspired
by the work of Song et al. (2020). To leverage
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Figure 3: An example of graph embeddings. The nodes are “constrain” and “less”. The label of the edge is “degree”.
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Figure 4: Graph multi-head attention.

edge information, we incorporate edge embed-
dings into the node value and node key compo-
nents through two distinct linear projections from
Redze to Rt defined by matrices W), WX and
bias terms bY, bX, respectively. As discussed by
Cai and Lam (2020), we treat the graph as fully
connected with specialized edge labels, facilitat-
ing information exchange. The formulation of this
attention mechanism is as follows:

Vi=V"+E,WY +bY
K; = K" + E,WK + bX 3)
Qi =Qf

GraphAttention(Q, K, V); =

4
Multihead-Attention(Q;, K, V;) @)

The graph encoder is “pretrained” in a unique
way. Its structure is similar to the Transformer en-
coder, allowing the central part to be initialized
by pretrained BART parameters, except for the
two additional linear projections depicted in Fig-
ure 4. This initialization process can enhance the
language capabilities of the graph encoder.

Hidden representation merging: To merge the
hidden representations from the two encoders, we
concatenate the two hidden representations and ap-
ply layer normalization (Ba et al., 2016).

Sequence decoder: The sequence decoder in
DualGen follows the pretrained BART decoder, as
illustrated in Figure 2.
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Dataset Train Dev Test
AMR2.0 | 36,521 1,368 1,371
AMR3.0 | 55,635 1,722 1,898

Table 1: Statistics of AMR2.0 and AMR3.0.

3.3 Two-Stage Training

Existing AMR datasets have limited size and may
be inadequate for training effective graph encoders.
We employ a two-stage training strategy to align
with prior research (Bai et al., 2022; Bevilacqua
et al., 2021; Ribeiro et al., 2021a).

For the first stage, we employ model-generated
silver data for pretraining. We randomly sam-
ple 200k entries from the Gigaword dataset
(LDC2011T07) (Parker et al., 2011). We use the
AMR parsing model parse_xfm_bart_base from
amrlib (Jascob, 2020) to generate the correspond-
ing AMR graphs and remove those not following
AMR rules. For the second stage, we employ exist-
ing AMR datasets for fine-tuning.

4 Experiments

We assess the performance of DualGen compared
to state-of-the-art models on authoritative datasets.
We investigate the influence of graph complexity
and evaluate the models’ capacity to process graph
structure through human evaluation. Additionally,
we compared DualGen’s performance with the
most potent PLMs, including LLaMA (Touvron
et al., 2023) and GPT-4 (OpenAl, 2023).

4.1 Dataset

Following previous works (Bai et al., 2022; Ribeiro
et al.,, 2021b; Bevilacqua et al., 2021) , we
evaluate our model using the two most preva-
lent and authoritative AMR datasets, AMR2.0
(LDC2017T10)(Knight et al., 2017) and AMR3.0
(LDC2020T02) (Knight et al., 2016) datasets. Ta-
ble 1 presents dataset statistics for both.



4.2 Evaluation Metrics

Following previous work (Bai et al., 2022; Bevilac-
qua et al., 2021), we use three automated evalua-
tion metrics: BLEU (Papineni et al., 2002), Meteor
(Banerjee and Lavie, 2005), and chrF++ (Popovi¢,
2015). We also perform a human evaluation to
assess language quality and semantic similarity.

4.3 Compared Models

We select the following representative methods for
comparison, including the state-of-the-art approach.
(1) Guo et al. (2019), a g2s model that uses densely
connected graph convolutional networks with at-
tention mechanisms; (2) Song et al. (2020), a g2s
model that uses a structure-aware Transformer en-
coder with vectorized edge information; (3) Ribeiro
et al. (2021a), a s2s model based on PLMs 2; (4)
Bevilacqua et al. (2021), a s2s model based on
PLMs that uses special linearization method and
vocabulary; (5) Ribeiro et al. (2021b), a s2s model
based on PLMs that includes a graph convolutional
network adapter; (6) Bai et al. (2022), the state-of-
the-art method, a s2s model based on PLMs that
uses a unified graph pretraining framework.

4.4 Settings

We use the BART-large model (Lewis et al., 2020)
as the base model of DualGen. DualGen com-
prises 12 sequence encoder layers, 12 graph en-
coder layers, and 12 sequence decoder layers. The
sequence encoder and decoder need minimal fine-
tuning since they share BART’s architecture; the
graph encoder requires more fine-tuning with a dif-
ferent architecture. Consequently, we employ three
distinct learning rates for the three components.

We select hyperparameters by validation set per-
formance. For silver-data training, the model un-
dergoes 6,000 steps over 20 epochs with updates
every 8 steps, with a scale tolerance of 0.5 to filter
out low-quality data. For fine-tuning, the model un-
dergoes 13,000 steps over 65 epochs, with updates
every 4 steps. In both phases, the initial learn-
ing rates are 1 x 1079 for the sequence encoder,
4 x 1075 for the graph encoder, and 8 x 1076 for
the sequence decoder. We use Adam (Kingma and
Ba, 2015) as optimizer with 51 = 0.9, 83 = 0.999,
and a clipping threshold of 0.1.

BLEU Score vs. Graph Complexity
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Figure 5: The impact of graph complexity on model
performance.

4.5 Main Results

Table 2 shows the results. DualGen outperforms
all other methods on all three metrics. Compared
to the state-of-the-art model (Bai et al., 2022), it
achieves a 1.8-point improvement in BLEU, 2.3
points in Meteor, and 0.8 points in chrF++ on
AMR?2.0 dataset. Similarly, on AMR3.0, DualGen
achieves a 2.6-point increase in BLEU, 2.8 points
in Meteor, and 1.1 points in chrF++.

Models utilizing s2s PLMs consistently outper-
form un-pretrained g2s models. This suggests that
pretraining on large corpora significantly enhances
model performance, confirming the validity of our
choice to employ PLM-based methods.

Utilizing silver data leads to better performance
than methods not incorporating such augmenta-
tion. This highlights the effectiveness of our use of
model-generated silver data.

Compared with Ribeiro et al. (2021a), which
shares the same architecture and method as Dual-
Gen without graph encoders, DualGen consistently
achieves superior performance. This underscores
the effectiveness of incorporating a graph encoder
in AMR-to-text generation. Further details of abla-
tion studies can be found in Appendix A.

4.6 Impact of Graph Complexity

To determine the robustness of DualGen across
varying levels of graph complexity and its effective-
ness in processing graph structure, we investigate
how graph complexity affects the performance of
g2s models, s2s models, and DualGen. We choose
Guo et al. (2019) and Ribeiro et al. (2021a)? as the
representative g2s and s2s models, respectively.
A higher edge-to-node ratio suggests a more

Ribeiro et al. (2021a) uses the original Bart which shares
the same architecture and training method as DualGen without
graph encoders, with only minor vocabulary differences.

3We use the model in Ribeiro et al. (2021a) without silver
data pretraining, which is the original Bart model. It shares
architecture and method with DualGen without graph encoder.



Dataset  Model Silver Data BLEU Meteor chrF++
Guo et al. (2019)F 0 27.6 33.1% 57.3
Song et al. (2020) 0 34.2 38.0 68.4%
Ribeiro et al. (2021a) (Bartrge) 0 43.5 429 73.9%
Ribeiro et al. (2021a) (Bartjage) 200k 44.7 43.7 -
Bevilacqua et al. (2021) (Bartjarge) 200k 45.9 41.8 74.2

AMR2.0 | Ribeiro et al. (2021b) (T5pase) 0 44.0 41.9% 71.2
Ribeiro et al. (2021b) (T5jarge) 0 46.6 42.8% 72.9
Bai et al. (2022)(Barty,ge) 200k 46.6 41.4 74.6
Bai et al. (2022)(Bart,rge) 200k 49.8 42.6 76.2
DualGen (Bartjyge) 0 47.9 43.3 74.6
DualGen (Bartjyrge) 200k 51.6 44.9 77.0
Song et al. (2020)F 0 37.9F  394% 70.8%
Bevilacqua et al. (2021) (Bartjarge) 200k 46.5 41.7 73.9
Ribeiro et al. (2021b) (TS5pase) 0 441 42 8% 734

AMR3.0 Ribeiro et al. (2021b) (T5jarge) 0 48.0 44.0% 73.2
Bai et al. (2022)(Bartp,ge) 200k 45.9 40.8 73.8
Bai et al. (2022)(Bartyrge) 200k 49.2 42.3 76.1
DualGen (Bartjyrge) 0 49.5 439 75.7
DualGen (Bartj,ge) 200k 51.8 45.1 77.2

Table 2: Results of AMR-to-text generation for the AMR2.0 and AMR3.0 test sets. Models marked with { are g2s
models. We calculate results marked with ¥ as they are not reported in the original paper. The Silver Data column
indicates how many data entries are used for pretraining. The best results within each dataset are denoted in bold.

complex graph with intricate node relationships.
We use this ratio to measure graph complexity and
conduct regression analysis to examine its connec-
tion with model performance, measured by the
BLEU score. A steeper regression slope indicates
better graph processing ability. A higher regression
line indicates superior overall performance.

Figure 5 presents the regression results. From
the regression slopes, we infer that g2s has the
best ability to process graph, and DualGencomes
next, performing better than s2s, showcasing the
usefulness of the additional graph encoder.

Regarding language skills measured by inter-
cepts, s2s and DualGen perform similarly, surpass-
ing g2s. This confirms the dual encoder-decoder
architecture maintains comparable language skills
to PLM-based s2s methods.

4.7 Model Failures

To explore the shortcomings of the above three
models Guo et al. (2019), Ribeiro et al. (2021a),
and DualGen, we analyzed the failed cases. Entries
with a BLEU score below 25 are considered failed.

The results are presented in Table 3. Compared
with g2s and s2s models, for failed instances, Du-
alGen exhibits fewer edges and nodes, fewer node

reentrance, and lower graph depth, indicating more
superficial graph structures. As the s2s model is
the same as DualGen without graph encoders, the
results imply that DualGen is less sensitive to in-
tricate graph architectures. This underscores the
efficacy of the graph encoder in processing AMR
graphs.

4.8 Human Evaluation

To further assess the performance of the models, we
conduct a human evaluation. Following previous
work (Ribeiro et al., 2021b,a), we randomly select
100 AMR graphs from the AMR2.0 test set. Six
annotators with an English background assessed
these samples, scoring O to 10 for language quality
and semantic similarity. Each entry was assigned
to three annotators to assess the performance of
the six tested models. Further details can be found
in Appendix C. Table 4 shows human evaluation
results.

For language quality, PLM-based s2s ap-
proaches consistently outperform the g2s method,
indicating superior language proficiency. DualGen
achieves language quality scores comparable to
other PLM-based methods, affirming its similar
language capabilities to PLMs.



Model Architecture # Failed Edge Node Reentrance Depth
Guo et al. (2019) g2s 751 19.37 18.55 1.82 3.39
Ribeiro et al. (2021a) s2s 347 18.68 1791 1.77 3.23
DualGen dual encoder 260 18.22 17.65 1.57 3.10

Table 3: Results of model failure analysis. All models are trained without silver data. # Failed indicates the number

of failed cases. Edge, Node, Reentrance, and Depth indicate the average number of edges, average number of nodes,
average number of reentrance nodes, and average graph depth of the failed cases, respectively.

Model Architecture Silver Data quality similarity
Song et al. (2020) g2s 0 8.22 8.01
Ribeiro et al. (2021a) (Bartjarge) s2s 0 9.26 8.26
Bevilacqua et al. (2021)(Bartjyge) s2s 200k 9.11 8.35
Bai et al. (2022) (Bartyge) s2s 200k 9.42 8.57
DualGen (Bartjyge) dual encoder 0 9.29 8.59
DualGen (Bartj,ge) dual encoder 200k 9.38 8.98

Table 4: Results of human evaluation on the AMR2.0 test set. Our model significantly outperforms comparison
methods, as indicated by T-tests with a significance level of p < 0.05. The best language quality scores are

underlined; the best semantic similarity scores are in bold.

Model SD BLEU Meteor chrF++
0 389 403 722
LLaMA 00k 445 419 73.8
0 479 433 74.6
DualGen \0 516 449 77.0

Table 5: Results of fine-tuned LLaMA-2-7B on the
AMR?2.0 dataset. SD stands for Silver Data.

Regarding semantic similarity, DualGen without
silver data pretraining achieves a higher similarity
score than other un-pretrained methods. DualGen
with silver data pretraining significantly outper-
forms all other methods, demonstrating the benefits
of the dual encoder architecture.

4.9 Comparison with the Most Powerful
PLMs

Recently, LLMs have demonstrated impressive lan-
guage generation capabilities on various NLP tasks.
We evaluate the performance of LoRA(Hu et al.,
2021) fine-tuned LLaMA(Touvron et al., 2023),
GPT-3.5(OpenAl, 2021), and GPT-4(OpenAl,
2023) in AMR-to-text generation using the
AMR?2.0 test dataset. The results are presented
in Table 5 and Table 6. Further details can be found
in Appendix B.

LoRA fine-tuned LLaMA-2-7B model performs
comparably with fully fine-tuned smaller models

Model shot BLEU Meteor chrF++
GPT-3.5 0 6.9 254 49.8
GPT-3.5 3 14.6 28.6 534
GPT-3.5 8 17.7 29.9 55.1
GPT-35 | 10 18.4 29.9 55.5
GPT-3.5 | 15 18.5 30.3 56.2
GPT-4 15 30.8 36.7 64.7

Table 6: Results of few-shot prompted GPT-3.5 and
GPT-4 on the AMR2.0 test set.

Ribeiro et al. (2021a), and performs worse than Du-
alGen. With a s2s architecture, fine-tuned LLaMA
cannot use complete graph structure information
and struggles with entity relations.

Although GPTs perform exceptionally well in
many language-related tasks, they encounter dif-
ficulties in AMR-to-text generation without fine-
tuning. We design prompts for in-context learn-
ing with a maximum of 15 shots due to the token
limitation. GPT-4 with 15 shots outperforms all
other LLM settings but lags significantly behind
fine-tuned PLM methods.

To conclude, LLMs, including GPTs and
LLaMA, are not proficient in AMR-to-text gen-
eration, with DualGen yielding significantly better
results after training. Exploring smaller models for
these specific tasks is worthwhile, as LLMs cannot
substitute these models.



AMR Graph

Text

(a/ agitate-01
:ARGO (s2 / spring-up-02
:ARGI1 (s/ scene
:quant (m2 / many)
:mod (h / heroic)
:mod (t2 / tragic)
:topic (a2 / and
:opl (s3 / spear
:ARG1-of (s4 / shine-01))
:0p2 (h2 / horse
:ARG1-of (a3 / armor-01)))
:ARG2-of (s5 / stir-02))
:location (m3 / mind
:poss 1))
:ARG1 (s6 / string
:poss (m / memory
:poss (i/1))
:mod (t4 / thing
:ARGI1-of (t3 / think-01)))
:frequency (o / occasional))

Reference answer: the thought-strings of my mem-
ory have been agitated from time to time - many
heroic, stirring, and tragic scenes of shining spears
and armored horses spring up in my mind.

Song et al. (2020): occasionally, my mem-
ory has been touched by many heroic scene
in my mind springing up in shiney spears and ar-
mored horses.

Ribeiro et al. (2021a): my memory strings
of thoughts are occasionally agitated by the
stirring up of many heroic and tragic scenes of shin-
ing spears and armored horses in my mind.

Bai et al. (2022): many heroic and tragic scenes that
spring up in my mind of stirring spears and armored
horses occasionally agitate the strings of thought in
my memory.

DualGen: occasionally, my memory’s string of
thoughts is agitated by the many stirring, heroic and
tragic scenes of shining spears and armored horses
that spring up in my mind.

Table 7: Case study. The AMR graph is illustrated in its linearized format on the left side of the table. On the right,
we present the reference answer from the AMR3.0 dataset alongside the model-generated answers. Problematic text

is underlined.

4.10 Case Study

Table 7 presents a case study from the AMR2.0 test
set, highlighting the superior performance of Du-
alGen. It showcases sequences generated by both
DualGen and the baseline g2s (Song et al., 2020)
and s2s models (Ribeiro et al., 2021a; Bai et al.,
2022), alongside the reference answer provided by
the AMR2.0 dataset.

The answer generated by Song et al. (2020) con-
tains grammatical errors, such as “many heroic
scene” instead of “many heroic scenes”. Further-
more, the phrase “in my mind springing up in shiny
spears and armored horses” is unclear and ambigu-
ous. These examples highlight the limited language
proficiency of the g2s model.

The s2s PLM-based methods Ribeiro et al.
(2021a); Bai et al. (2022) are proficient in generat-
ing grammatically correct and coherent sentences.
However, Ribeiro et al. (2021a) overlooks specific
entities, such as “spring up’. Both methods misin-
terpret edge relationships, failing to recognize that
“heroic”, “tragic”, and “stirring up” should be jux-
taposed. Furthermore, Bai et al. (2022) mistakenly
employ “stirring” instead of “shining” to modify
“spears”.

Our model, DualGen, is free of grammatical
errors, generates high-quality sentences, and accu-
rately represents all node entities and edge relations.
This demonstrates that our PLM-based model pos-
sesses strong language skills and simultaneously
excels in managing graph structures.

5 Conclusion

We explore a dual encoder-decoder architecture
model for the AMR-to-text generation task. This
model comprises a graph encoder, a sequence
encoder, and a sequence decoder. Our model’s
architecture is specially designed to be compati-
ble with Transformer encoder-decoder architecture,
and all three primary components, including the
graph encoder, can be initialized by PLMs such
as BART (Lewis et al., 2020), GPT2 (Radford
et al., 2019), and T5 (Raffel et al., 2020). This dual
encoder-decoder architecture enhances the model’s
capability to process graph structure information
while maintaining language proficiency on par with
PLMs. Our model surpasses the current state-of-
the-art methods across multiple benchmarks for the
AMR-to-text task.



6 Limitations

For the datasets, we only use AMR2.0 (Knight
et al., 2017) and AMR3.0 (Knight et al., 2016)
as golden AMR-text datasets. Although some
prior works (Bai et al., 2022) use three addi-
tional datasets: The Little Prince (TLP), the
Bio datasets from https://amr.isi.edu/index.
html, and the New3 dataset (part of AMR3.0 but
not AMR2.0), we omit them from our analysis as
their size is relatively small and they are used for
out-of-distribution evaluations in previous studies,
which is not the focus of our paper.

For the experiments, we only test our dual
encoder-decoder method based on the BART-
large(Lewis et al., 2020) pretrained language model.
We choose BART because it is suitable for genera-
tion tasks and has been frequently used in previous
studies.

For Section 4.9 where we use LLaMA (Touvron
et al., 2023) for comparison, we only tested the
performance of the LoRA-finetuned model. We do
not test the performance of fully-finetuned LLaMA.

7 Ethical Statement

We anticipate no ethics-related concerns in our re-
search. All datasets and models used are open-
source, and we will release our code publicly to
facilitate reproducibility.
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A Ablation study

To further demonstrate the capabilities of each com-
ponent within DualGen, we conducted an ablation
study. This involved examining the performance of
different model variations:

¢ DualGen w/o SE: DualGen without the se-
quence encoder;

* DualGen w/o GE: DualGen without the graph
encoder;

* DualGen w/o GP: DualGen with the graph
encoder trained from scratch.

e DualGen w/o SE w/o GP: DualGen without
the sequence encoder, with the graph encoder
trained from scratch.

We use GP to indicate graph pretraining, SE to
indicate sequence encoders, and GE to indicate
graph encoders. The outcomes for the above four
model variants are presented in Table 8.

DualGen w/o SE w/o GP and DualGen w/o
GP exhibit notably poor performance. This is be-
cause the AMR datasets are insufficient for training,
given their limited size compared to the enormous
size of the graph encoders. The training subsets
of the AMR2.0 and AMR3.0 datasets comprise
36k and 56k entries, respectively. In contrast, the
graph encoders contain 152M trainable parameters,
akin in size to the Bart large encoders. In compar-
ison, the full DualGen model encompasses S60M
parameters, while the previously best-performing
g2s model (Song et al., 2020) comprises a total of
62M parameters. Consequently, when fine-tuned
on the AMR datasets, DualGen w/o SE w/o GP and
DualGen w/o GP scarcely acquire meaningful in-
formation, consistently yielding a low BLEU score.
This underscores the efficacy of our approach in
"pretraining” the graph encoder in a specialized
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Dataset Model Silver Data BLEU Meteor chrF++
DualGen w/o SE w/o GP 0 0.0 1.0 34
DualGen w/o GP 0 0.1 4.4 15.5
DualGen w/o SE 0 22.1 314 58.7

AMR2.0 | DualGen w/o GE 0 43.8 42.1 72.1
Ribeiro et al. (2021a) 0 43.5 42.9 73.9%
DualGen 0 47.9 433 74.6
DualGen 200k 51.6 44.9 77.0
DualGen w/o SE w/o GP 0 0.0 1.3 33
DualGen w/o GP 0 0.0 1.0 4.1
DualGen w/o SE 0 22.2 31.6 58.2

AMR3.0 DualGen w/o GE 0 45.7 42.9 73.4
DualGen 0 49.5 43.9 75.7
DualGen 200k 51.8 45.1 77.2

Table 8: Results of ablation study. We calculate results marked with * as they are not reported in the original paper.
The Silver Data column indicates the total number of data entries used for pretraining. The best results within each

dataset are denoted in bold.

manner, initializing the GNN using Transformer
encoder parameters.

DualGen w/o SE displays significantly lower
performance compared to DualGen w/o GE and
the full DualGenmodel. With only graph encoders,
DualGen w/o SE encounters challenges in AMR-to-
text generation. This is because the graph encoder
is designed not to retain all information, particu-
larly entity details of the nodes. Instead, it priori-
tizes structural information and facilitates informa-
tion exchange between two nodes connected by an
edge.

DualGen w/o GE performs similarly to the find-
ings of Ribeiro et al. (2021a) without pretraining on
silver data, aligning with our expected outcomes.
Leveraging the strength of pretrained Transformer-
based language models, the variant DualGen w/o
GE notably outperforms the variant DualGen w/o
SE.

The full DualGen model significantly surpasses
DualGen w/o SE and DualGen w/o GE without
individual encoders, highlighting the importance
of incorporating both sequence and graph encoders
for enhanced performance.

B Large language models experiment
settings

For LLaMA, we fine-tune the LLaMA-2-7B
model using the code offered by Meta Research
in https://github.com/facebookresearch/
llama-recipes. We employ Fully Sharded
Data Parallel (FSDP) and Parameter-Efficient
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parameter value
temperature 0.01
top p 1.0
n 1
frequency penalty | 0.0
max tokens 2048

Table 9: The settings of GPT-3.5 and GPT-4.

Fine-Tuning (PEFT) to fine-tune the model, where
we choose LoRA (Hu et al., 2021) as the PEFT
method. We set the learning rate to 1 x 104, and
trained 10 epochs.

For the experiment on GPTs, we use the
OpenAl ChatCompletion API https://platform.
openai.com/docs/api-reference provided by
OpenAl, with the settings shown in table 9.

We use the following system prompt to instruct
the model:

System:

Recover the text represented by
the Abstract Meaning
Representation graph (AMR
graph) enclosed within triple
guotes. Utilize only the
information provided in the
input. Output only the
recovered text.

—

L A A

For few-shot prompting, we use the format illus-


https://github.com/facebookresearch/llama-recipes
https://github.com/facebookresearch/llama-recipes
https://github.com/facebookresearch/llama-recipes
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference

trated in the following example:

User:
nnn

(p / possible-01-~e.1
:ARGT (m / make-05~e.2
:ARGO (c / company :wiki
"Hallmark_Cards"
:name (n / name :opl
"Hallmark”~e.Q))
:ARG1 (f / fortune~e.4
:source~e.6 (g / guy~e.8
:mod (t / this~e.7)))))

nnn

Assistant:

Hallmark could make a fortune off
of this guy.

—

We evaluate GPT-3.5 using the entire AMR2.0
test set; for GPT-4, we assess its performance by

randomly selecting and testing 400 entries from the
AMR?2.0 test set.

C Human evaluation settings

For human evaluation, we use the test set of
AMR?2.0. We filter out sentences shorter than 30
characters to eliminate meaningless entries like
"2004-10-09". Following this, we randomly pick
100 entries and assign them IDs from 1 to 100.

Six volunteer annotators with an English educa-
tion background carry out the annotation process.
Three annotate entries 1 to 50, while the other three
annotate entries 51 to 100.

Each entry ¢ contains a reference text 7; from
the AMR2.0 dataset and:

« the generated output P of Song et al. (2020);

P2 of Ribeiro et al.

* the generated output FP;

(2021a);

* the generated output P? of Bevilacqua et al.
(2021);

* the generated output PZ»4 of Bai et al. (2022);

* the generated output Pi5 of DualGen without
silver data pretraining;

* the generated output Pi6 of DualGen with sil-
ver data pretraining.

13

For each assigned entry 7, the annotator assigns
scores g, -+ ,q% to rate the quality of sentence
Pil, cee Pf and 511, cee s? to measure the similar-
ity in meaning between T; and P}, --- , P®. The
scores ql-l7 ‘e ,qiﬁ, sil, e ,s? are integers ranging
from O to 10 (inclusive). The rating criteria are
outlined in Table 10.



Score

Criteria for Quality Score

Criteria for Similarity Score

The sentence has numerous grammar er-
rors or contains many irrelevant words or
phrases, making it incomprehensible to read-
ers.

The information conveyed in the generated
output text is irrelevant to the information in
the reference text.

The sentence has many errors in grammar,
vocabulary, or word usage. Readers find it
challenging to grasp the sentence’s intended
meaning.

The generated output primarily conveys in-
formation unrelated to the information in the
reference text, only mentioning some of the
concepts covered in the reference text.

The sentence has noticeable grammar, word,
or phrase usage errors. Through careful read-
ing, readers can generally understand the
main points of the sentence.

The generated output conveys some infor-
mation that aligns with the reference text,
but there are apparent differences in their
meanings.

The sentence has some grammatical errors
or inappropriate word choices/phrases. The
overall expression of ideas is somewhat co-
herent. Readers can generally understand
the meaning.

The generated output primarily conveys the
information covered in the reference text but
either misses important details or includes
some information not mentioned in the ref-
erence text.

The sentence contains a few grammar errors,
uses words and phrases appropriately, ex-
presses ideas coherently and naturally, and
follows a logical structure that makes it easy
for readers to understand the meaning.

The generated output conveys most of the
information covered in the reference test but
omits a few unimportant details or includes
unimportant information not mentioned in
the standard text.

10

The sentence is free of grammar errors, uses
appropriate words and phrases, expresses
ideas coherently and naturally, follows a log-
ical structure, and can be easily understood
by readers in terms of its meaning.

The generated output conveys the same in-
formation as the reference text, neither omit-
ting details nor including information not
mentioned in the reference.

Table 10: Rating criteria for human evaluation.
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