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Abstract

The excellent generative capabilities of text-to-image diffusion models suggest
they learn informative representations of image-text data. However, what knowl-
edge their representations capture is not fully understood, and they have not been
thoroughly explored on downstream tasks. We investigate diffusion models by
proposing a method for evaluating them as zero-shot classifiers. The key idea is
using a diffusion model’s ability to denoise a noised image given a text description
of a label as a proxy for that label’s likelihood. We apply our method to Stable Dif-
fusion and Imagen, using it to probe fine-grained aspects of the models’ knowledge
and comparing them with CLIP’s zero-shot abilities. They perform competitively
with CLIP on a wide range of zero-shot image classification datasets. Additionally,
they achieve state-of-the-art results on shape/texture bias tests and can successfully
perform attribute binding while CLIP cannot. Although generative pre-training
is prevalent in NLP, visual foundation models often use other methods such as
contrastive learning. Based on our findings, we argue that generative pre-training
should be explored as a compelling alternative for vision-language tasks.

1 Introduction

Large models pre-trained on internet-scale data can adapt effectively to a variety of downstream tasks.
Increasingly, they are being used as zero-shot learners with no task-specific training, such as with
CLIP (Radford et al., 2021) for images and GPT-3 (Brown et al., 2020) for text. In natural language
processing, many successful pre-trained models are generative (i.e., language models). However,
generative pre-training is less commonly used for visual tasks. Until recently, the usual practice for
vision problems was to pre-train models on labeled datasets such as Imagenet (Deng et al., 2009), or
JFT (Sun et al., 2017). Later research in visual and vision-language problems has led to image-text
models pre-trained primarily using either contrastive losses (Radford et al., 2021; Jia et al., 2021;
Yuan et al., 2021) or autoencoding tasks (Vincent et al., 2010; He et al., 2022).

On the other hand, generative text-to-image models based on denoising diffusion probabilistic models
(Ho et al., 2020) such as Imagen (Saharia et al., 2022a), Dalle-2 (Ramesh et al., 2022), and Stable
Diffusion (Rombach et al., 2022) can generate realistic high-resolution images and generalize to
diverse text prompts. Their strong performance suggests that they learn effective representations of
image-text data. However, their ability to transfer to downstream discriminative tasks and how they
compare to other pre-trained models has not been explored thoroughly.

In this paper, we investigate these questions by transferring Imagen and Stable Diffusion (SD) to
discriminative tasks. While previous studies have used representations from diffusion models for
downstream tasks (Brempong et al., 2022; Burgert et al., 2022; Zhao et al., 2023), we instead propose
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Figure 1: Zero-Shot Classification using Diffusion Models. We first compute denoising scores for
each label prompt across multiple time-steps to generate a scores matrix. We then classify an image
by aggregating the scores for each class using a weighting function over the time-steps. The image is
assigned the class with the minimum aggregate score. In Section 3.1, we discuss how efficiency can
be improved only computing a subset of the full scores matrix.

a way of using text-to-image diffusion models directly as zero-shot image classifiers. Our method
essentially runs the models as generative classifiers (Ng & Jordan, 2001), using a re-weighted version
of the variational lower bound to score images since diffusion models do not produce exact likelihoods.
More specifically, the method repeatedly noises and denoises the input image while conditioning the
model on a different text prompt for each possible class. The class whose text prompt results in the
best denoising ability is predicted. This procedure is expensive because it requires denoising many
times per class (with different noise levels). To make it usable in practice, we present improvements
that increase the method’s sample efficiency by up to 1000x, such as pruning obviously-incorrect
classes early. While still requiring too much compute to be an easily-deployable classifier, our method
allows us to quantitatively study fine-grained aspects of a diffusion model’s learned knowledge
through evaluation on classification tasks (as opposed to qualitatively examining model generations).

We compare Imagen and SD against CLIP2 (Radford et al., 2021), a widely used model for zero-shot
image-text tasks trained with contrastive learning. A high-level goal of the experiments is to see the
strengths and weaknesses of generative and contrastive pre-training for computer vision. First, we
demonstrate that diffusion models have strong zero-shot classification accuracies (competitive with
CLIP) on several diverse vision datasets. Next, we show both Imagen and SD performs remarkably
well on the Cue-Conflict dataset (Geirhos et al., 2019), where images have been stylized with textures
conflicting with their labels. For example, Imagen achieves >50% error reduction over CLIP and
even outperforms the much larger ViT-22B (Dehghani et al., 2023) model. This finding is particularly
interesting because, unlike supervised classifiers, humans are known to be much more reliant on
shape than texture when identifying images. Lastly, we study attribute binding using the synthetic
data from Lewis et al. (2022), and find that, unlike CLIP, diffusion models can successfully bind
together attributes in some settings.

The main contributions of this paper are:

• We show text-to-image diffusion models can be used as effective zero-shot classifiers. While
using too much compute to be very practical on downstream tasks, the method provides a
way of quantitatively studying what the models learn.
• We develop techniques that hugely lower the compute cost of these zero-shot classifiers,

making them usable (although still slow) on datasets with many classes.
• We demonstrate the strong generalization capabilities of Imagen and Stable Diffusion,

resulting in good zero-shot performance on vision datasets (comparable to CLIP).

• We show that diffusion models are robust to misleading textural cues, achieving state-of-the-
art results on Cue-Conflict.

• We use our framework to study attribute binding in diffusion models and find that they can
perform some binding tasks while CLIP cannot.

2We use ViT-L/14, the largest public CLIP model
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Together, our results suggest that text-to-image diffusion models learn powerful representations that
can effectively be transferred to tasks beyond image generation.

2 Preliminaries

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Song & Ermon,
2020) are latent variable generative models defined by a forward and reverse Markov chain. Given an
unknown data distribution, q(x0), over observations, x0 ∈ Rd, the forward process corrupts the data
into a sequence of noisy latent variables, x1:T := {x1,x2, · · · ,xT }, by gradually adding Gaussian
noise with a fixed schedule defined as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (1)

where q(xt|xt−1) := Normal(xt;
√
1− βtxt−1, βtI). The reverse Markov process gradually de-

noises the latent variables to the data distribution with learned Gaussian transitions starting from
Normal(xT ; 0, I) i.e.

pθ(x0:T ) := p(xT ) ·
T−1∏
t=0

pθ(xt−1|xt)

pθ(xt−1|xt) := Normal
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
. The aim of training is for the forward process

distribution {xt}Tt=0 to match that of the reverse process {x̃t}Tt=0 i.e., the generative model pθ(x0)
closely matches the data distribution q(x0). Specifically, these models can be trained by optimizing
the variational lower bound of the marginal likelihood (Ho et al., 2020; Kingma et al., 2021):

− log pθ(x0) ≤ −VLB(x0) := LPrior + LRecon + LDiffusion

LPrior and LRecon are the prior and reconstruction loss that can be estimated using standard techniques
in the literature (Kingma & Welling, 2014). The (re-weighted) diffusion loss can be written as:

LDiffusion = Ex0,ε,t

[
wt‖x0 − x̃θ(xt, t)‖22

]
with x0 ∼ q(x0), ε ∼ Normal(0, I), and t ∼ U([0, T ]). Here, wt is a weight assigned to the
timestep, and x̃θ(xt, t) is the model’s prediction of the observation x0 from the noised observation xt.
Diffusion models can be conditioned on additional inputs like class labels, text prompts, segmentation
masks or low-resolution images, in which case x̃θ also takes a conditioning signal y as input.

3 Zero-Shot Classification using Diffusion Models

In this section, we show how to convert the generation process of a text-to-image diffusion model
into a zero-shot classifier to facilitate quantitative evaluation on downstream tasks. Figure 1 shows an
overview of our method.

Diffusion Generative Classifier: We begin with a dataset,
{
(x1, y1), . . . , (xn, yn)

}
⊆ Rd1×d2 ×

[yK ] of n images3 where each image belongs to one of K classes [yK ] := {y1, y2, · · · , yK}. Given
an image x, our goal is to predict the most probable class assignment

ỹ = argmax
yk

p(y = yk|x) = argmax
yk

p(x|y = yk) · p(y = yk) = argmax
yk

log p(x|y = yk).

where we assume a uniform prior p(yi = yk) = 1
k that can be dropped from the argmax.4 A

generative classifier (Ng & Jordan, 2001) uses a conditional generative model with parameters θ to
estimate the likelihood as pθ(x|y = yk).

Using a text-to-image diffusion model as a generative classifier requires two modifications. First,
the models are conditioned on text prompts rather than class labels. Thus we convert each label, yk,
to text using a mapping φ with a dataset-specific template (e.g. yk → A photo of a yk). Second,

3For simplicity, we use x in place of x0 to refer to an image.
4We can’t use a learned prior in the zero-shot setting.
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diffusion models do not produce exact log-likelihoods (i.e. we cannot compute log pθ(x|y = yk)
directly). Our key idea for a solution is to use the VLB (more specifically LDiffusion as Imagen and SD
are not trained with the other losses) as a proxy. Thus we have:

ỹ = argmax
yk

log pθ(x|y = yk) ≈ argmin
yk

LDiffusion(x, yk)

= argmin
yk∈[yK ]

Eε,t
[
wt‖x− x̃θ

(
xt,φ(yk), t

)
‖22
]

(2)

Note that for SD, x and x̃θ are latent representations, with x obtained by encoding the image using a
VAE. With Imagen on the other hand, x consists of the raw image pixels.

Estimating the Expectation: We approximate the expectation in Equation (2) using Monte-Carlo
estimation. At each step, we sample a t ∼ U([0, 1]) and then a xt according to the forward diffusion
process (Equation (1)): xt ∼ q(xt|x0). Next, we denoise this noisy image using the model (i.e.
we use it to predict x from xt), obtaining x̂ = x̃θ

(
xt,φ(yk), t

)
. We call the squared error of the

prediction, ‖x− x̂‖22, a score for (x, yk). We score each class N times, obtaining a K ×N scores
matrix5 for the image. Finally, we weight the scores according to the corresponding wt and take the
mean, resulting in an estimate of LDiffusion for each class.

Choice of Weighting Function: Imagen and SD are trained with the “simple" loss, where wt =
SNR(t), the signal-to-noise ratio (Kingma et al., 2021) for timestep t. However, we found other
weighting functions can improve results. First, we experimented with learning wt by binning the
times into 20 buckets and training a 20-features logistic regression model to learn weights for the
buckets that maximize classification accuracy. However, using that weighting is not truly zero-shot
since it requires label information to learn. We thus, also handcrafted a weighting function that can
be used across datasets. We designedwt by finding a simple function that looked close to our learned
weighting function on CIFAR-100 (we did not look at other datasets to preserve zero-shot protocol).
Interestingly, we found that the simple function wt := exp(−7t) works well for both Imagen an SD
across tasks and used it for our experiments. As it is monotonic, LDiffusion with this weighting can still
be viewed as a likelihood-based objective that maximizes-the variational lower bound under simple
data augmentations (Kingma & Gao, 2023). We provide details on learning wt and an empirical
comparison of different weighting functions in Appendix B.

3.1 Improving Efficiency

Computing ỹ with naive Monte-Carlo estimation can be expensive because LDiffusion has fairly high
variance. Here, we propose techniques that reduce the compute cost of estimating the argmin over
classes. The key idea is to leverage the fact that we only need to compute the argmin and do not
require good estimates of the actual expectations.

Shared Noise: Differences between individual Monte-Carlo samples from LDiffusion can of course
be due to different t or forward diffusion samples from q(xt|xt−1), whereas we are only interested
in the effect of the text conditioning φ(yk). We find far fewer samples are necessary when we use
the same t and xt across different classes, as shown in Figure 1. After sampling a t ∼ U([0, 1]) and
xt ∼ q(xt|x0), we score all classes against this noised image instead of a single one. As a result, the
differences between these estimates are only due to the different text conditioning signals.

Candidate Class Pruning: Rather than using the same amount of compute to estimate the expec-
tation for each class, we can further improve efficiency by discarding implausible classes early and
dynamically allocating more compute to plausible ones. In particular, we maintain a set of candidate
classes for the image being classified. After collecting a new set of scores for each candidate class,
we discard classes that are unlikely to become the lowest-scoring (i.e. predicted) class with more
samples. Since we are collecting paired samples (with the same t and x̂i,t), we use a paired student’s
t-test to identify classes that can be pruned. This pruning can be viewed as a succesive elimination
algorithm for best-arm identification in a multi-armed bandit setting (Paulson, 1964; Even-Dar et al.,
2002). Of course, scores do not exactly follow the standard assumptions of a student’s t-test, so we

5Later we discuss how we can avoid computing the full matrix for efficiency.
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use a small p-value (2e−3 in our experiments) and ensure each class is scored a minimum number of
times (20 in our experiments) to minimize the chance of pruning the correct class. The full procedure
is shown in Algorithm 1.

Algorithm 1 Diffusion model classification with
pruning.

given: Example to classify x, diffusion
model w/ params θ, weighting function
w, hyperparameters min_scores, max_scores,
cutoff_pval.
//Map from classes to diffusion model scores.
scores = {yi : [] for yi ∈ [yK ]}
n = 0
while |scores| > 1 and n < max_scores:
n = n+ 1

//Noise the image
t ∼ U([0, 1])
xt ∼ q(xt|x)

//Score against the remaining classes.
for yi ∈ scores:

add wt‖x− x̃θ
(
xt,φ(yi), t

)
‖22

to scores[yi]
//Prune away implausible classes.
ỹ = argminyi scores[yi].mean()
if n ≥ min_scores:

for yi ∈ scores:
if paired_ttest_pval(
scores[ỹ], scores[yi]) < cutoff_pval:

remove yi from scores.
return ỹ
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Figure 2: Comparison of efficiency improve-
ments for Imagen on CIFAR-100. Shared noise
improves sample efficiency by roughly 100x and
pruning by an additional 8-10x.

Comparison: Figure 2 compares the number of
samples needed to accurately classify CIFAR-100
images for different efficiency strategies. Using
shared noise and pruning greatly improves effi-
ciency, requiring up to 1000x less compute than
naïve scoring. Nevertheless, classifying with a dif-
fusion model still typically takes 10s of scores per
class on average, making the diffusion classifier
expensive to use for datasets with many classes.

4 Empirical Analysis and Results

In this section, we detail our analysis for the dif-
fusion zero-shot classifiers on a variety of tasks.
These include classification on various vision
datasets to study generalization capabilities on
diverse domains, evaluating model robustness to
conflicting cues between texture and shape, and
studying attribute binding ability through targeted
evaluation on synthetic data.

We mainly compare Imagen and SD with CLIP
(Radford et al., 2021). We chose CLIP because it
is a well-studied and widely-used model, as our
primary aim is to study diffusion models rather
than push state-of-the-art zero-shot accuracies.
Our experiments reveal strengths and weaknesses
of image-text representations learned via genera-
tive training vs. CLIP’s contrastive training.

Model details: Imagen is a cascaded diffusion
model (Ho et al., 2022) consisting of a 64 × 64
low-resolution model and two super-resolution
models. We only use the 64 × 64 model for our
experiments because we found the high-resolution
models performed poorly as classifiers. Combin-
ing the 64× 64 model’s scores with scores from
the higher-resolutions models did not improve re-
sults either (see Appendix E for details). The issue
is that high-resolution models condition strongly
on their low-resolution inputs and are therefore
less sensitive to the text prompt. Unlike with Fig-
ure 3, high-resolution denoising with different text
prompts produces images imperceptibly different
to the human eye because they all agree with the
same low resolution image.

We use version 1.4 of Stable diffusion for our
experiments. It uses a pre-trained text encoder
from CLIP to encode the text and a pre-trained variational autoencoder to map images to a latent
space.

CLIP consists of vision and text transformers trained with contrastive learning. We use the largest
CLIP model (ViT-L/14@224px). We provide more details on all the models in Appendix A.
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arctic fox vs pillow

lorikeet vs brain coral

analog clock vs pufferfish leopard vs. high speed train

gray whale vs pirate shipgolden retriever vs. african elephant

cat vs bottle (cue conflict) keyboard vs elephant (cue conflict) chair vs clock (cue conflict)

Figure 3: Example predictions from Imagen when denoising the same image with different text
prompts. Each set of images shows the original, noised, and denoised images for the two classes. The
top two rows use ImageNet images and the bottom row uses Cue-Conflict.

Experiment details: For each experiment, we obtain scores using the heuristic timestep weighting
function and the efficient scoring method in Algorithm 1. Due to the method’s still-substantial
compute cost, we use reduced-size datasets (4096 examples) for our experiments. We preprocess
each dataset by performing a central crop and then resizing the images to 64 × 64 resolution for
Imagen, 512× 512 for SD, and 224× 224 for CLIP. We use min_scores = 20, max_scores = 2000,
and cutoff_pval = 2 × e−3. These are simply reasonable choices that keep the method efficient
to run; changing the values does effect the model behavior in expectation but trades off compute
for reduction in variance. We use a single prompt for each image. While we could have used an
ensemble of prompts (i.e, made the expectation in Equation (2) also over different prompt templates),
we chose not to for the sake of simplicity, as our goal is to better understand models rather than
achieve state-of-the-art zero-shot performance. Therefore, our reported results are slightly lower
than in the CLIP paper, which uses prompt ensembling. We found in our experiments that diffusion
models were quite robust to the choice of prompt. For example, we tried four different prompts from
the CLIP templates for CIFAR-100 and found accuracies to all be within 1.5% of each other.

Comparing models: Imagen, SD and CLIP have different model sizes, input resolutions, and are
trained on different datasets for different amounts of time, so the comparison is not direct. While
ideally we would train models of the same size on the same data, this would be very expensive and
challenging in practice; we instead use these strong existing pre-trained models. Our comparisons are
geared towards highlighting the strengths and weaknesses of text-image diffusion models.

4.1 Image Classification

Setup: We first evaluate the performance at zero-shot classification. For this purpose, we consider
13 datasets from Radford et al. (2021) as reported in Table 1. We use the prompt templates and class
labels used by Radford et al. (2021), which renames some classes that confuse models (e.g. “crane
→ “crane bird"” in Imagenet) (OpenAI, 2021b). We use the first prompt from the list, except for
Imagenet, where we use “A bad photo of a label ” since this is a good prompt for Imagen, SD and
CLIP (OpenAI, 2021a).

Since we use the low-resolution Imagen model, we obtain results using CLIP under two settings for a
more thorough comparison. In the first setting, we resize all the datasets to 64 × 64 which serves
as the base low-resolution dataset. Imagen uses this dataset directly. For CLIP, we subsequently
upsample the images, resizing them to 224× 224 resolution. In the second setting, we directly resize
all datasets to 224× 224 resolution to obtain the best results possible using CLIP where it can take
advantage of its higher input resolution.

Results: Results are shown in Table 1. The first eight datasets (up through EuroSAT) on the top
block of the table are all originally of resolution 64× 64 or less. On these datasets, Imagen generally
outperforms CLIP and Stable Diffusion on classification accuracy under the same evaluation setting
i.e., the models are conditioned on the same text prompts, etc. Imagen significantly outperforms CLIP
on SVHN and SD on digit recognition datasets like MNIST and SVHN, which requires recognizing
text in an image. Saharia et al. (2022b) observe that Imagen is particularly good at generating text,
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Model CIFAR10 CIFAR100 STL10 MNIST DTD Camelyon SVHN EuroSAT

Imagen 96.6 84.3 99.6 79.2 37.3 60.3 62.7 60.3
Stable Diffusion 72.1 45.3 92.8 19.1 44.6 51.3 13.4 12.4
CLIP/ViT-L/14 94.7 68.6 99.6 74.3 36.0 58.0 21.5 58.0

Model Stanford Cars Imagenet Caltech 101 Oxford Pets Food101

Imagen 81.0 62.7 68.9 66.5 68.4
Stable Diffusion 77.8 61.9 73.0 72.5 71.6
CLIP/ViT-L/14 62.8/75.8 63.4/75.1 70.2/84.1 76.0/89.9 83.9/93.3

Table 1: Percent accuracies for zero-shot image classification. For CLIP where two numbers are
reported, the accuracy correspond to two settings: downsizing the images to 64x64 and then resizing
the images up to 224x224 (so CLIP does not have an advantage in input resolution over the 64x64
Imagen model) and resizing the images directly to 224x224 (so CLIP has the advantage of higher
resolution). Variances in accuracy are <1% across different random seeds. The top set of results are
on low-resolution datasets (which is why SD performs poorly).

while SD generally performs poorly (see Figure 6 in the appendix). This demonstrates that Imagen’s
areas of strength in generation carry over to downstream tasks and suggests that classification on
OCR datasets could be used as a quantitative metric to study a model’s text-generation abilities.
SD generally performs poorly on the low-resolution datasets, perhaps because it is only trained on
high-resolution images.6 To better understand how much low-resolution is to blame, we evaluated SD
on ImageNet after down-sampling the images to 32×32 and 64×64 resolution. SD’s accuracy drops
from 61.9% to 15.5% and 34.6% respectively. The next five datasets use higher-resolution images.
For some of these, taking advantage of CLIP’s higher input resolution substantially improves results.
SD performs comparably to Imagen on all these datasets (although of course it has an advantage in
terms of input resolution).

Due to our reduced-size evaluation sets, variances in accuracy on zero-shot classification tasks across
different random splits are roughly ±0.4% for CLIP, ±0.7% for Imagen, and ±0.6% for Stable
Diffusion. The diffusion models have higher variance due to the inherent randomness in noising
images (while CLIP is deterministic). Overall, we are not interested in small accuracy differences
anyway, as the comparison between models is non-direct in various ways; instead we are trying go
get a broad understanding of the models’ abilities.

To our knowledge, these results are the first instance of a generative model achieving classification
accuracy competitive with strong transformer-based discriminative methods. Lastly, we note that our
method relies on the model being highly sensitive to text prompt, which we observe qualitatively in
Figure 3.

Imagen Stable Diffusion CLIP ViT-22B ResNet50 (supervised)

84.4 72.5 51.6 68.7 79 (top-5)

Table 2: Percent shape accuracy for zero-shot classification on the Cue-Conflict Imagenet dataset.

4.2 Robustness to Shape-Texture Conflicting Cues

We next study diffusion models’ robustness to presence of texture cues in images by evaluating
their performance on the Cue-Conflict dataset from Geirhos et al. (2019). The dataset consists of
Imagenet images altered to have a shape-texture conflict. While (for example) changing an image
of a cat to have the texture of an elephant skin doesn’t confuse humans, it could cause a model to
classify the image as an elephant. Geirhos et al. (2019) showed that CNNs trained on Imagenet were
strongly biased towards recognising textures rather than shapes, which is in stark contrast to human
behavioural evidence.

6while low-resolution images were incorporated in CLIP’s training, doing so with SD would run the risk of
the model producing blurry images during generation
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Control tasks test if the model can identify basic image features by scoring an
attribute in the image against one not present. For example:
Shape: A sphere. vs. A cylinder. Color: A gray object. vs. A red object.,

Binding tasks test if the model binds a given attribute to the correct object. For
example: Color|Shape: A yellow sphere. vs. A gray sphere.
Color|Position: On the right is a gray object vs. On the right is a yellow object.

Pair binding tasks are easier binding tasks where information about both objects
is provided. For example:
Shape,Size: A small sphere and a large cube. vs. A large sphere and a small cube.
Color,Size: A small yellow object and a large gray object. vs. A large yellow object
and a small gray object.

Figure 4: Examples of the synthetic-data attribute binding tasks. We explored more sophisticated
prompts than in the figure (e.g., “A blender rendering of two objects, one of which is a yellow
sphere."), but they didn’t substantially change results.

We test Imagen’s and Stable Diffusion’s robustness to detecting shapes in presence of texture cues
by using the same setting for classification as in Section 4.1. We report shape accuracy which is
the percentage of images for which the model predicts the image’s shape correctly in Table 2. We
compare Imagen and SD with CLIP, the recently proposed ViT-22B model (Dehghani et al., 2023)
which was trained on JFT (Sun et al., 2017) extended to 4B images (Zhai et al., 2022) and fine-tuned
on Imagenet, and a (not zero-shot) supervised ResNet50 model trained on the training set. Imagen
and SD comphrehensively outperform all previous methods on this dataset. Imagen further achieves
an accuracy of 84.4% outperforming SD, CLIP, and ViT-22B by more than 12%, 30% and 15%
respectively, and the top-5 accuracy performance of the supervised ResNet50 model by 5%.

We believe that the denoising process of the diffusion model is critical in removing the texture bias
commonly observed in supervised models, making it robust to presence of textural cues. These
findings are in line with Nie et al. (2022), who achieve state-of-the-art adversarial robustness through
denoising adversarial examples with a diffusion model. We further qualitatively confirm this in
Figure 3 in the appendix which depicts example images from this dataset and Imagen’s result after
denoising those images conditioned on text prompts with both the correct and incorrect shape class.

4.3 Evaluating Attribute Binding on Synthetic Data

We have shown that Imagen and SD perform comparably to CLIP at zero-shot classification, and
much better than CLIP at disregarding misleading textural cues. Do diffusion models have additional
capabilities that are difficult to obtain through contrastive pre-training? We hypothesize that one
such area may be in compositional generalization, and specifically compare the models at attribute
binding. Text-to-image generative models have shown emergent compositional generalization at large
enough scale, being able to combine diverse concepts to handle prompts such as “a chair shaped like
an avacado" (Ramesh et al., 2021). Attribute binding is a key piece of compositional reasoning, as it
enables the understanding and integration of multiple concepts into a coherent whole. For example in
the statement “a yellow sphere and a gray cube" we understand the sphere is yellow and the cube is
gray, not the other way around. While previous work has examined attribute binding in text-to-image
models by examining model generations (Nichol et al., 2021; Yu et al., 2022; Feng et al., 2023),
our diffusion model classifier offers a way of more precisely studying the question quantitatively.
We hope in the future, this type of study enabled by our method will be useful for comparing other
abilities of generative image models at a fine-grained level.

Dataset Construction: We use synthetic images similar to Lewis et al. (2022), where images are
generated based on the CLEVR (Johnson et al., 2017) visual question answering dataset. CLEVR
images contain various object (cubes, cylinders, and spheres) with various attributes (different sizes,
colors, and materials). A modified version of the CLEVR rendering script is used to generates images
containing two objects of different shapes. From these images, we construct binary classification
tasks of 1000 examples each; see Figure 4 for more details and examples. We follow the same setup
as in the classification evaluation, using the 64× 64 Imagen model and 512× 512 Stable Diffusion
model with heuristic timestep weighting and largest public CLIP model (with full-resolution inputs).
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Tasks Imagen Stable Diffusion CLIP

Shape (control task) 85 91 91
Color (control task) 96 85 94

Shape,Color / Shape|Color / Color|Shape 100 / 66 / 73 85 / 65 / 59 54 / 52 / 53
Shape,Size / Shape|Size / Size|Shape 99 / 48 / 51 63 / 48 / 52 52 / 51 / 50
Shape,Position / Shape|Position / Position|Shape 74 / 51 / 52 49 / 50 / 50 50 / 48 / 51
Color,Size / Color|Size / Size|Color 86 / 54 / 54 59 / 52 / 48 48 / 51 / 48
Color,Position / Color|Position / Position|Color 72 / 49 / 49 53 / 51 / 49 49 / 50 / 49
Size,Position / Size|Position / Position|Size 69 / 50 / 54 54 / 49 / 49 51 / 50 / 48

Table 3: Percent accuracy for models on zero-shot synthetic-data tasks investigating attribute binding.
Bold results are significant (p < 0.01) according to a two-sided binomial test. CLIP is unable to bind
attributes, while Imagen and SD sometimes can.

Results: Scores for Imagen, SD, and CLIP at these tasks is shown in Table 3. On the control tasks,
all the models are able to identify shapes and colors that occur in the image with high accuracy.
Imagen is slightly worse at shape identification; we find most of these are due to it mixing up
“cylinder" and “cube" when the objects are small. Mistakes in color recognition generally occur when
the distractor color is similar to the true color or to the color of the other object in the image (e.g. the
distractor color is blue and there is a large cyan object in the image).

While CLIP can recognize image attributes, it performs no better than random chance for the attribute
binding tasks. This result shows it is unable to connect attributes to objects and is consistent with the
prior study from Subramanian et al. (2022). In contrast, Imagen can perform (at least to some extent)
the pair binding tasks, and does better than chance on the Shape|Color and Color|Shape tasks. SD
cannot perform the positional tasks, but can perform shape/color binding.

Part of Imagen’s advantage might be in its text encoder, the pre-trained T5 (Raffel et al., 2020)
model. Saharia et al. (2022b) find that instead using CLIP’s text encoder for Imagen decreased its
performance on generations involving specific colors or spatial positions. Similarly, Ramesh et al.
(2022) find that DALLE-2, which uses a CLIP text encoder, is worse at attribute binding than GLIDE,
which uses representations from a jointly-trained transformer processing the text. An advantage of
the diffusion models over CLIP is their use of cross attention to allow interaction between textual and
visual features. A visual model without completely independent text and image encoders such as
LXMERT (Tan & Bansal, 2019) or CMA-Clip (Liu et al., 2021) might perform better, but of course
these models come with the added compute cost of having to jointly process all image-text pairs with
the model instead of embedding the text and images separately.

One mistake we observed frequently in Color|Shape with Imagen is it preferring the color of the
larger object in the image; e.g. scoring “A gray sphere" over “A yellow sphere" in Figure 4. We
hypothesize that it is helpful for denoising at high noise levels when the text conditioning provides
the color for a large region of the image, even when the color is associated with the wrong shape. In
the pair task, the full color information for both objects is always provided, which avoids this issue,
and perhaps explains why accuracies at pair tasks are much higher.

5 Conclusion and Future Work

We have proposed a method that enables diffusion models to be used as zero-shot classifiers and
developed ways of improving its efficiency to make it usable. Our experiments demonstrate strong
results on image classification. Furthermore, we show Imagen and Stable Diffusion are remarkably
robust to misleading textures, achieving state-of-the-art results on cue-conflict dataset. While existing
analysis of diffusion models usually studies generated images qualitatively, our framework provides
a way of quantitatively evaluating text-to-image generative models through evaluating them on
controlled classification tasks. We showcase this through our study on attribute binding, where we
find that diffusion models are sometimes able to bind attributes while CLIP does not appear to have
this ability. Similar experiments could be used in the future to study other properties of pre-trained
diffusion models, such as toxicity or bias.
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Our paper is complementary to concurrent work from Li et al. (2023), who use Stable Diffusion as a
zero-shot classifier and explore some different tasks like relational reasoning. While their approach is
similar to ours, they perform different analysis, and their results are slightly worse than ours due to
them using a simple hand-tuned class pruning method and no timestep weighting.

We hope our findings will inspire future work in using text-to-image diffusion models as foundation
models for tasks other than generation. One direction is fine-tuning diffusion models on downstream
tasks; given the strong zero-shot performance of Imagen and Stable Diffusion, a natural next step is
evaluating them after further supervised training. As models become larger, another key question for
further study is how do the scaling laws (Hestness et al., 2017; Kaplan et al., 2020) of contrastive vs
generative pre-training compare. Additionally, we are interested in applying our analysis to other
generative models to study to what extent our results are a consequence of generative pre-training
generally compared to diffusion pre-training specifically.

Ultimately, our method does not produce a practical classifier, as it requires substantial compute when
scoring many classes. Instead, we see the main value of this work is in revealing more about the
abilities of large pre-trained diffusion models and providing a method for enabling future fine-grained
studies of diffusion model abilities. In total, our results suggest that generative pre-training may be a
useful alternative to contrastive pre-training for text-image self-supervised learning.
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A Model Details.

Imagen details: Imagen is a text-conditioned diffusion model that comprises of a frozen T5 (Raffel
et al., 2020) language encoder that encodes an input prompt into a sequence of embeddings, a 64× 64
image diffusion model, and two cascaded super-resolution diffusion models that generate 256× 256
and 1024× 1024 images. Unlike Stable Diffusion, it operates directly on pixels instead of in a latent
space. For our experiments, we use the 64× 64 model which has 2B parameters and is trained using
a batch size of 2048 for 2.5M training steps on a combination of internal datasets, with around 460M
image-text pairs, and the publicly available Laion dataset (Schuhmann et al., 2021), with 400M
image-text pairs.

Stable Diffusion details. We use Stable diffusion v1.4 which is a latent text-to-image diffusion
model. It uses the pre-trained text encoder from CLIP to encode text and a pre-trained variational
autoencoder to map images to a latent space. The model has 890M parameters and takes 512x512-
resolution images as input. It was trained on various subsets of Laion-5B, including a portion filtered
to only contain aesthetic images, for 1.2M steps using batch size of 2048.

CLIP details: CLIP encodes image features using a ViT-like transformer (Dosovitskiy et al., 2021)
and uses a causal language model to get the text features. After encoding the image and text features
to a latent space with identical dimensions, it evaluates a similarity score between these features.
CLIP is pre-trained using contrastive learning. Here, we compare to the largest CLIP model (with
a ViT-L/14@224px as the image encoder). The model is smaller than Imagen (400M parameters),
but is trained for longer (12.8B images processed vs 5.B). While Imagen was trained primarily as a
generative model, CLIP was primarily engineered to be transferred effectively to downstream tasks.

B Weighting Functions Details.

Learned Weighting Function: While for most experiments we use a heuristic weighting function
forwt, we also explored learning an effective weighting function (although this is not truly zero-shot).
To do this, we aggregate scores for each image x and class yk into 20 buckets, with each bucket
covering a small slice of timestep values:

bi(x, yk) = Eε,t∼U [0.05i,0.05(i+1)]‖x− x̃θ
(
xt,φ(yk), t

)
‖22

where we estimate the expectation with Monte Carlo sampling (typically around 100 samples). We
then learn a 20-feature linear model with parameters [v0, ...,v19] over these buckets:

pv(y = yk|x) =
exp(

∑19
i=0−vibi(x, yk))∑

yj∈[yK ] exp(
∑19
i=0−vibi(x, yj))

trained with standard maximum likelihood over the data. At test-time we use the weighting

wt = vbt/0.05c

We generally found that (1) learned weighting functions are pretty similar across datasets, and (2) the
weighting functions are transferable: the vs learned on one dataset get good accuracy when evaluated
on other ones. On average, learned weights produced around 1% higher accuracy on zero-shot
classification tasks, but we omitted the results from the main paper because using learned weights is
not truly zero-shot.

Comparison of Weighting Functions. We compare the learned weighting functions with several
heuristic functions on the Caltech101 dataset. We chose Caltech101 because it is high-resolution
(SD performs poorly on low-resolution datasets), contains a diversity of image classes, was not used
when we developed the heuristic weighting function, and only has 100 classes, so it is much faster to
evaluate models on than ImageNet. We compare the following functions:

• VDM: wt = SNR′(t), the derivative of the signal to noise ratio with respect to t. This
weighting scheme from Variational Diffusion Models (Kingma et al., 2021) directly trains
the model on a lower bound of the likelihood.

• Simple: wt = SNR(t). This “simple" loss from Ho et al. (2020) results in a model that
produces better images according to human judgements and FID scores, even though it
results in worse likelihoods.
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Weighting Imagen Stable Diffusion

VDM 62.0 71.9
Simple 56.1 71.4
Heuristic 68.9 73.0
Learned 70.2 73.1

Table 4: Percent accuracy for models on Caltech101 with different weighting schemes

• Heuristic: wt = exp (−6t). Our hand-engineered weighting function; we found this by
searching for a simple weighting function that works well on CIFAR-100, although we
found empirically it generalizes very well to other datasets.

• Learned: Learning an effective weighting function on a held-out set of examples as de-
scribed above.

Results are shown in Table 4. The heuristic weighting function outperforms Simple and VDM for
both models. Interestingly, SD appears to be more robust to the choice of weighting function than
Imagen. Mechanistically, the reason is that “Simple” and “VDM” weighting put more weight on
earlier timesteps than “Heuristic” and Imagen tends to be an inaccurate classifier at very small noise
levels. We intuitively believe this is a consequence of pixel vs latent diffusion. The learned weighting
only does slightly better than heuristic weighting despite not being truly zero-shot. We found similar
results to hold on other datasets.

C Details on Attribute Binding Tasks and Prompts

We use the relational dataset from Lewis et al. (2022) for the attribute binding experi-
ments. Each image consists of two objects of different shapes and colors; for tasks in-
volving size we filter out examples where both objects are the same size. Each image
contains two objects with different attributes shape ∈ {cube, sphere, cylinder}, color ∈
{blue, cyan, blue, brown, gray, green, purple, red, yellow}, size ∈ {small, large}, and position ∈
{left, right}.
Given a task (e.g. Shape|Size), we construct a task-specific description for an object as follows:

“On the {position} is a " if Position tasks else “A "+
“size " if Size task else “"+
“color " if Color task else “"+
“shape." if Shape task else “object."

For recognition and binding tasks, we randomly select one of the two objects in the image to be
the positive example and then use its description as the positive prompt. For pair tasks, we join the
descriptions for both objects together with “and" (removing the period from the first description and
lowercasing the second one) for the positive prompt.

To construct a negative example for recognition tasks, we replace the positive attribute with a random
attribute not in the image. For binding tasks, we replace one of positive description’s attributes with
the other object’s attribute (e.g., for Shape|Color, we replace shape).

For pair tasks, there is a choice in how the two objects are ordered (e.g. “On the left is a cube and on
the right is a sphere" vs “On the right is a sphere and on the left is a cube". We follow the preference
of stating the leftmost position/shape/color/size first in that order. For example, this means we will
always start with “On the left..." rather than “On the right...". Similarly, the negative example for
Color,Size in Figure 4 is “A large yellow object and small gray object" rather than “A small gray
object and a large yellow object" because we prefer to first put the leftmost color over the leftmost
size.

We experimented with a variety of other prompts, but found none to work substantially better than
these simple ones.
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Figure 5: Model reliability diagram comparing confidence measures of Imagen on CIFAR-100. The
number of model calls used in Algorithm 1 produces better-calibrated confidences than using the
actual scores for different classes.

D Calibration

It is desirable for classifiers, especially when used in the zero-shot setting with possibly out-of-domain
examples, to be well calibrated. In other words, if a classifier predicts a label ỹi with probability p,
the true label should be ỹi roughly 100 · p% of the time. However, the diffusion model classifier does
not directly produce probabilities for classes. While p(yi = yk|xi) should roughly be proportional
to the expectation in Equation (2) when exponentiated (i.e. we can apply a softmax to the average
weighted scores to get probabilities), in practice our estimates of the expectations are very noisy and
do not provide well-calibrated scores.

We propose a simple alternative that takes advantage of early pruning: we use the total number of
diffusion model calls used for the image as a calibration measure. The intuition is that a harder
example will require more scores to determine the argmin class with good statistical significance.

More details on the two calibration methods are below:

Temperature-scaled raw scores. We use syk(x) to denote the weighted average squared error for
class yk on image x, i.e., the Monte-Carlo estimate for the re-weighted VLB in equation 2. We turn
these scores into an estimated probability by applying a softmax with temperature:

pθ(y = yk|x) =
exp(−syk(x)/τ)∑

yj∈[yK ] exp (−syj (x)/τ)

Note that this approach requires good score estimates for each class, so it is not compatible with the
class pruning method presented in Section 3.1.

Platt-scaled number of scores. Our other confidence method relies on the total number of scores
needed to eliminate all other classes as candidates. Let ỹ(x) denote the predicted class for example x
and n(x) be the total number of calls to x̃θ used to obtain the prediction when running Algorithm 1.
Then we estimate

pθ(y = ỹ(x)|x) = sigmoid(−n(x)/τ + β)

We learn τ (and β for Platt scaling) on a small held-out set of examples.

We show reliability diagrams (DeGroot & Fienberg, 1983) and report Expected Calibration Error
(Guo et al., 2017) (ECE) for the methods in Figure 5. Using a small held-out set of examples, we
apply temperature scaling (Guo et al., 2017) for the score-based confidences and Platt scaling (Platt
et al., 1999) for the number-of-scores confidences, (see Appendix D for details). Number of scores is
fairly well-calibrated, showing it is possible to obtain reasonable confidences from diffusion model
classifiers despite them not providing a probability distribution over classes.

E Imagen’s Super-resolution Models

Imagen is a cascaded diffusion model (Ho et al., 2022) consisting of a 64× 64 low-resolution model
and two super-resolution models, one that upsample the image from 64× 64 to 256× 256 and one
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Figure 6: Example generated images from Stable Diffusion and Imagen for generating photos with
text.

that upsamples from 256× 256 to 1024× 1024. However, we found only the 64× 64 model to work
well as a zero-shot classifier. The super-resolution models condition on a low-resolution input image,
which means they denoise effectively regardless of the input prompt and thus aren’t as sensitive to the
class label. For example, unlike with Figure 3, high-resolution denoising with different text prompts
produces images imperceptibly different to the human eye because they all agree with the same low
resolution image. Imagen’s super-resolution models are trained with varying amount of Gaussian
noise added to the low-resolution input image (separate from the noise added to the high-resolution
image being denoised). We were able to alleviate the above issue somewhat by using a large amount
of such noise, but ultimately did not achieve very strong results with the high-resolution models. For
example, the 64× 64 to 256× 256 model achieves an accuracy of 16.1% on ImageNet.

We further experimented with combining the low-resolution model’s scores with the 64 × 64 to
256× 256 model’s. To do this, we used the learned weighting scheme detailed in Appendix B, but
with learning 40 weights: 20 for the low resolution model and 20 for the super-resolution model.
However, we found the learned weighting scheme put almost no weight on the super-resolution
model’s scores, and did not perform significantly better than the low-resolution model did on its own.
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