REASONING WITH TREES: INTERPRETING CNNS USING HIERARCHIES

Anonymous authors

Paper under double-blind review

Abstract

Challenges remain in providing interpretable explanations for neural network reasoning in explainable AI (xAI). Existing methods like Integrated Gradients produce noisy maps, and LIME, while intuitive, may deviate from the model's reasoning. We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs). Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity and allow both human-centric and model-centric segmentation. This approach can be combined with various xAI methods and provides multiscale explanations that help identify biases and improve understanding of neural network decision-making. Experiments show that our framework, *xAiTrees*, delivers highly interpretable and faithful model explanations, not only surpassing traditional xAI methods but shedding new light on a novel approach to enhancing xAI interpretability. Code at: https://anonymous.4open.science/r/reasoning_with_trees-F3E1.

023 024 025

026

003 004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

In modern deep learning applications, especially in healthcare and finance, there is a growing need for transparency and explanation. Understanding a model's rationale is crucial before relying on its predictions. This need arises from biases present at various stages of model development and deployment. While some biases help in learning data distribution (Goyal & Bengio, 2022), others may indicate data imbalance, incorrect correlations, or prejudices in data collection.

To meet the demand for explanation, Explainable Artificial Intelligence (xAI) provides methods 033 that clarify models' decision-making processes. In healthcare, tools like GradCAM (Selvaraju 034 et al., 2017), which shows heatmaps of important image regions, and LRP (Bach et al., 2015), which attributes importance to features (pixels), help in understanding deep learning models across 036 various applications (Borys et al., 2023; Dharshini et al., 2023; Chaddad et al., 2023), including 037 ultrasound (Born et al., 2021) and X-ray (Abeyagunasekera et al., 2022) imaging. These techniques 038 were crucial during the recent Covid-19 outbreaks, aiding in the diagnosis process (Lu et al., 2022; Haghanifar et al., 2022). However, these methods are approximations of model behavior. Different techniques prioritize either faithfulness to the model's behavior or human interpretability, posing a 040 challenge in balancing the two. 041

Object-structure-based visualizations enhance human interpretation by decomposing images in ways that mimic human perception, grouping objects by attributes like color, texture, and edges (Hubel & Wiesel, 1959). Techniques such as LIME (Ribeiro et al., 2016) and KernelSHAP (Lundberg & Lee, 2017) have used this approach effectively, segmenting images into meaningful parts to improve interpretability. However, the size of segmented regions affects the information extracted: small regions can be hard to interpret, while large regions may miss fine details. Additionally, using a segmentation framework introduces human bias, which aids comprehension but may reduce fidelity to the model's actual behavior.

In this paper, we explore the trade-off between explaining Convolutional Neural Networks (CNNs)
 with model faithfulness and human interpretability. We introduce a framework that combines hierar chical segmentation with region-based explanation methods, creating a human-friendly multiscale
 visualization, inspired by the Multiscale Interpretable Visualization (Ms-IV) technique (Rodrigues et al., 2024). Unlike traditional region-based xAI techniques that segment images into a fixed number

Figure 1: Explanations of six image classes predicted by VGG-16 and Resnet18 models trained on ImageNet. We compare well-known xAI method explanations with one configuration of xAiTrees: Tree-Occ. Methods such as Integrated Gradients are noisy and difficult to interpret. Shapes such as the grades and the fence seem to be better highlighted by Tree-Occ, which is helpful for interpretation. When compared to highly interpretable methods like LIME, Tree-Occ avoids the mistake of highlighting the cat when the models predict classes such as dishwasher, saltshaker, and hamper.

of levels, xAiTrees leverages hierarchical segmentation to maintain varying degrees of abstraction within object structures. Additionally, to enhance our understanding of human-based segmentation and its relationship with model knowledge, we propose a *model-based segmentation* using pixel-wise xAI methods to reveal the model's "vision". Through the experiments with these two approaches — 083 human-based and model-based hierarchical segmentation explanations — we assess several aspects of explainability: the fidelity to the model's behavior, the effectiveness in detecting bias within the 085 models, and the ease of interpretability. The key contributions of this paper include:

- 1. A hierarchical segmentation explanation framework aimed at integrating the importance of multiscale regions in the model's predictions, xAiTrees;
- 2. An integrated model-based segmentation approach within the framework xAiTrees, offering more faithful explanations to the model;
- 3. A quantitative comparison with established xAI techniques and a qualitative assessment against human-analysis for bias identification.

092 In this work, we demonstrate through extensive experimentation and analysis, both quantitative and qualitative, that our proposed framework significantly enhances explainability and interpretability. 094 By conducting a comprehensive evaluation and comparison with state-of-the-art xAI visualization 095 methods, we provide robust evidence that our framework offers superior performance. The results 096 highlight the efficacy of our approach in making complex models more transparent and understandable, addressing key challenges in the field of explainable artificial intelligence. We organize the paper 098 as follows: in Section 2, we present some prior research on xAI. Section 3 outlines the preliminary concepts used in our framework, while in Section 4 we provide a detailed explanation of our 099 methodology. In Section 5 we present and discuss our experimental results. Finally, we conclude and 100 discuss possible future research directions in Section 7. 101

102 103

054

055 056

073

074

075

076

077 078 079

081

082

084

087

090

091

RELATED WORK 2

104

105

Classification problems and xAI: One fundamental task in machine learning is classification. The 106 basic concept involves working with a training dataset, denoted as $\mathcal{DS} = (\mathcal{I}_i, GT_i)_{i \in [1, NbIm]}$, which 107 consists of pairs of images \mathcal{I}_i and their associated labels GT_i . Each label belongs to one of a set of classes represented by $c \in [1, NbClasses]$. The goal is to train a model, denoted as Ξ , to effectively distinguish between different classes within the dataset.

In this configuration, we express Ξ as $\Xi = \Xi^{classif} \circ \Xi^{enc}$, the combination of two elements: an Ξ^{enc} , responsible for converting each input image \mathcal{I}_i into a feature vector, and a $\Xi^{classif}$, which analyzes these features to classify the images. The outcome of this process, referred to as the "logit" for image \mathcal{I}_i , is a vector **out**_i $\in \mathbb{R}^{NbClasses}$ that signifies the activation levels across various classes. Typically, we apply a *Softmax* layer to **out**_i to determine the class with the highest activation, ideally aligning with the ground truth label GT_i for perfect classification.

Pixel-wise explanations: In neural networks, optimizing the model Ξ involves the backpropagation process. Exploiting this process, certain explainable Artificial Intelligence (xAI) methods like Integrated Gradients (Sundararajan et al., 2017), Guided-Backpropagation (Springenberg et al., 2015), and Deconvolution (Zeiler & Fergus, 2014) utilize it to identify input features that enhance the response of a specific class, aiming to maximize the value of a particular position in the output vector **out**_i. Consequently, attribution maps are generated, illustrating pixel-level explanations, as depicted in Figure 1 for Integrated Gradients (IG).

Region-based explanations: Additional techniques like Sensitivity Analysis (Zeiler & Fergus, 2014), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017) utilize occlusions of image regions to assess the network's sensitivity to each region within an image. These methods provide explanations at a region level rather than a pixel level, as illustrated in Figure 1 for LIME. More recently, a region-based technique, XRAI (Kapishnikov et al., 2019), proposed to combine Integrated Gradients (Sundararajan et al., 2017) and perturbation-based approaches to generate saliency maps as explanations.

Concept-based explanations: However, many of these techniques focus on explaining individual samples separately, which limits our understanding of how the model behaves globally across various scenarios. That is why methods like TCAV (Kim et al., 2018), ACE (Ghorbani et al., 2019), Explanatory graphs (Zhang et al., 2018), LGNN (Tan et al., 2022), and Ms-IV (Rodrigues et al., 2024) aim to comprehend the overall behavior of the model. In particular, Ms-IV also considers the impact of occlusions, not on individual predictions, but on the model's output space.

- 136 137
- 138 139

3 PRELIMINARIES

140 141

142 143

144

145

To ensure a thorough understanding of the sequel, we provide in this section the general techniques and metrics employed during this work. In subsection **A**, we provide a brief overview of the selected hierarchical segmentation techniques, highlighting their significance. In subsection **B**, we shortly present the occlusion-based metrics used in the construction of our methodology.

146 **A. Segmentation techniques:** As an important step for our framework, we employ image segmen-147 tation algorithms that decompose images into more interpretable structures, enabling better human 148 understanding and interpretation. We specifically employ hierarchical segmentation techniques due to 149 their capability to decompose images into multiple levels of detail, from fine to coarse, mirroring how 150 humans naturally perceive objects: initially observing the overall structure before delving into the 151 finer details. A hierarchical segmentation algorithm produces a merging tree, that indicates how two 152 given regions merge. In this paper, we use the tree structures available in the Higra package (Perret et al., 2019; 2018) : Binary Partition Tree (BPT) and Hierarchical watershed. See details in A.1. 153

154 **B.** Occlusion-based metrics: In this work, we use two metrics to generate our segmentation based 155 on the model explainability: (i) Occlusion, which is the impact of occluding an image region on its 156 classification output, and (ii) CaOC which is the intra-class impact of occluding an image region. 157 For (i), we assess how the output of a model changes when an image region is occluded. For (ii), 158 we employ a sliding metric that ranks images based on the highest activations for a given class. We 159 then measure the movement in this ranking after occluding a region of the image, determining the intra-class impact of the occlusion (detailed in A.2). Although the main experimentation uses these 160 methods, we present in A.7 a framework's variation using LIME to show xAiTrees versatility with 161 other types of xAI techniques. Explanations example in Figure 3 (a).

Figure 2: Our framework xAiTrees operates through four key steps: 1. Generate a segmentation 179 hierarchy using either the image's edge map for human-based segmentation or pixel-wise importance based on xAI techniques for model-based segmentation. 2. Systematically occlude each region of the 181 segmentation to evaluate its impact on the model's decision, obtaining an occlusion attribute for each 182 region. 3. Assess the persistence of the occlusion attribute using a shaping approach (Xu et al., 2015; 2016). 4. Aggregate the contributions of each region from the highest to the lowest level of the tree 183 to create a comprehensive multiscale visualization.

186 187

4 METHODOLOGY

188 189 190

191

193

194

195

In this section, we outline our four-step methodology (Figure 2): (1) hierarchical segmentation, (2) attribute computation, (3) tree shaping, and (4) hierarchical visualization. In step 1, we convert the 192 data into a hierarchical representation, creating various regions at different scales in the image. In step 2, we evaluate some xAI-based attributes (**B**) on the regions. In step 3, we assess the importance of the region attributes. Finally, in step 4, we explain how to generate a visualization map from the importance of the attributes.

196 1. Hierarchical segmentation: 197

Intuitively, any hierarchical segmentation algorithm works by iteratively merging first the pixels, then the regions, according to a similarity criterion. In this paper, we test two ways for measuring the 199 similarity: human-based and model-based. 200

• The human-based approach relies on the Structured Edge Detection (SED) algorithm (Dollár & 201 Zitnick, 2014), which captures complex edge patterns and produces precise edge maps, in accordance 202 with human intuition. 203

• The model-based approach uses a visual representation of the image's pixels most influential in 204 a model's decision. Although less intuitive for humans, this approach helps to understand how the 205 model reasons. We test pixel-wise explainable AI methods: Integrated Gradients (IG) (Sundararajan 206 et al., 2017), Guided-Backpropagation (Springenberg et al., 2015), Input x Gradient (Shrikumar et al., 207 2017), and Saliency (Simonyan & Zisserman, 2015) (all from Captum framework). The methods 208 were chosen for their state-of-the-art, pixel-wise importance attribution. 209

Using such a similarity criterion, we obtain a hierarchical segmentation, which can be represented as 210 a tree **T**, completing the first step of our pipeline. See Figure 2, first column. 211

212 **2.** Attribute computation: The segmentation tree generated in the previous step provides many 213 segments. We assess the model's response on each segmented region in the tree, for all regions large enough. We apply a metric to evaluate the occlusion impact caused by each region. These occlusion 214 scores reveal the influence of each segmented regions on the model's output. The metric employed to 215 assess the impact of regions can be any occlusion-based metric. See Figure 2, second column.

216 **3. Tree shaping:** To assess the importance of the nodes' attributes, it is not enough to simply take the 217 regions with the highest attributes: there are too many of them. Instead, we rely on a process called 218 shaping (Xu et al., 2015; 2016). The main idea is to look at the undirected, vertices-weighted graph 219 G, whose vertices are the node of **T**, whose edges are formed by the parent-children relationship in 220 \mathbf{T} , and whose weights are the attributes of the nodes. We now look at the level-sets of G. A vertex of G (a node of T) is important according to its persistence in the level sets of G. More precisely, a 221 connected component is born when a local maximum of the attribute appear; when two connected 222 components merge, one of the two maxima disappear, and the time of life of this maximum is its 223 persistence. We can compute such persistence by building a new tree \mathbf{T} on G, \mathbf{T} is the tree of all the 224 connected component of the upper-level sets of G. The persistence of a node of **T** is easily computed 225 on T' by computing the length of the branch it belongs to. We refer to Xu et al. (2015; 2016) for 226 more details. See Figure 2, third column. 227

4. Construction of the hierarchical visualization: With T' from the previous step, we now produce 228 a visualization of the important regions. Using the persistence of a node directly for visualization 229 can yield conflicting results for interpretation. Consider an example where we want to generate 230 explanations for a model that classifies images of dogs. The persistence might indicate that eyes are 231 the primary features for correct classification. If the image under scrutiny shows a dog with its owner, 232 the persistence might erroneously highlight the eyes of both the human and the dog as relevant, which 233 is misleading since only the dog's eyes should matter (in an ideal, unbiased model). To avoid such 234 effect, we recursively sum the persistence of each node from the root to the leaves of **T'**. This ensures 235 that smaller segments inherit the importance of their parent nodes. In our example, if the parent 236 segment of the eyes is the entire face, the dog's face carries importance for the model's decision, 237 while the human face does not. By adding the dog's facial region information to the eye segments, we ensure the dog's eyes are prioritized over the human eyes and, therefore, become more prominent 238 in the explanation. This process aggregates the importance of various scales of the image into the 239 pixels, resulting in a hierarchical, multi-scale, visualization. We show an example in Figure 3 (b). We 240 use this aggregated persistence as the final score for each region of the hierarchical segmentation. We 241 select a minimum importance score, and retain the regions accordingly. We superpose the retained 242 region on the original image to generate the Final visualization (Figure 2, fourth column). 243

Figure 3: (a) Explanation obtained using Tree-LIME – *xAiTrees* combined to LIME instead of occlusion to score regions. We show here the adaptability of the framework to different xAI techniques. Due to the high time consumption of Tree-LIME (A.5 Table 14), we present some preliminary results in A.7. (b) Example of the method's behavior with the same structure inside and outside a hierarchy. The cat's eyes were replicated outside the cat's face. However, the importance of each region is the combination of the importance of each hierarchy part. Therefore, the cat's eyes inside the face (an important hierarchy region) score higher, as evidenced by the lighter regions in the right image.

258 259 260

261

251

252

253

254

255

256

257

5 EXPERIMENTS AND RESULTS

262 We evaluated the methods using two architectures, VGG-16 (Simonyan & Zisserman, 2015) and 263 ResNet18 (He et al., 2016), trained on three datasets: Cat vs. Dog (Cukierski, 2016) (RGB images 264 with a size of 224x224), CIFAR-10 (Krizhevsky, 2009; Krizhevsky et al., 2009) (RGB images with a 265 size of 32x32), and ImageNet (Deng et al., 2009) (RGB images). Explanations were generated for 266 512 images from the Cat vs. Dog dataset, 10,000 images from the CIFAR-10 dataset, and 100,000 267 images from the ImageNet test set. A detailed description of the methods' parameters and datasets is provided in A.3, A.4 and A.5. We organize our experiments and results into two categories: 268 quantitative and qualitative analysis. In the quantitative analysis, we conduct a series of experiments 269 utilizing the metrics discussed in Section 3 to assess the impact of image region occlusion of various

explainable frameworks. During our qualitative analysis, we delve into a more subjective examination,
 evaluating the human interpretability of the explanations generated by the models. The experiments
 were conducted on GPU (NVIDIA Quadro RTX 8000 48GB).

273 274

275 276

5.1 QUANTITATIVE EVALUATIONS

We selected state-of-the-art region-based methods as baseline (**B**) to be compared: Occlusion, Grad-277 CAM, LIME, Ms-IV, and XRAI (configuration of each method in A.4). Although ACE presents 278 good concept-based explanations, we only use it in the human evaluation experiments because, as 279 a global explanation method, it is not directly comparable to the local ones in these quantitative 280 experiments (more details in A.6). We compare the baseline methods with two configurations of 281 our proposed methodology (more configurations in A.3 and A.5): C1 and C2. This is done to 282 explore variations in the configuration of our methodology, including variations in the size of minimal 283 regions in the visualizations, pixel weights for graph construction in segmentation, and methods for 284 generating hierarchical segmentation. In C1, we present results for minimal regions of 500 pixels 285 (Cat vs. Dog and ImageNet) and 64 pixels (CIFAR-10), utilizing edges and Integrated Gradients (IG) as pixel weights, and the watershed-by-area hierarchical segmentation. This configuration was 286 selected for its stability across different minimal region sizes in the datasets, and its visualizations 287 were used for human evaluation. While C2 presents results for minimal regions of 200 pixels (Cat 288 vs. Dog and ImageNet) and 4 pixels (CIFAR-10), using edges and Guided Backpropagation (BP) 289 as pixel weights, and the BPT tree. This configuration yielded the highest performance. In A.5, we 290 provide comprehensive results for other configurations. Here, we propose four main quantitative 291 evaluations, (i and ii) inspired by feature removal (Covert et al., 2021) and (iii and iv) inspired 292 by Performance Information Curves (PICs) (Kapishnikov et al., 2019): (i) Exclusion of important 293 regions; (ii) Inclusion of important regions; (iii) Softmax Information Curve (SIC); and (iv) Accuracy 294 Information Curve (AIC). For (i) and (ii), we used the McNemar test (McNemar, 1947) to compare 295 each method with the best configuration and determine whether there were statistically significant 296 differences between the results. The details are discussed below:

Exclusion of important regions: Given that each region-based explainable AI (xAI) method identifies important regions that explain the prediction of a model, we performed occlusion of these regions, in order to measure the impact of each selection. For methods that assign scores to regions, we masked the 25% highest scores (this excludes LIME, which inherently provides information to directly mask each region – a detailed explanation is included in A.6).

The first idea for the metric was to calculate the impact on the *logits* after occlusion. However, any kind of perturbation can affect the *logits* and not necessarily the classification. In this particular case, since we are dealing with a classification problem, we consider the class change as the main evidence that an important image region has been occluded. Therefore, the values from Table 1 **Ch.** is the percentage of class changing images, **Same** is the percentage of images with same class prediction but with reduced *logits* (reduced classification certainty), and **Total** is the percentage of all images with the class negatively impacted by the removal of important regions (sum of **Ch.** and **Same**).

In Table 1, we present results (Ch., Same, Total) for each explainable technique (B – Baseline, C1, and C2 – our proposition) applied to a network (VGG or ResNet) classifying images from a dataset (Cat vs. Dogs, Cifar10, or ImageNet). Higher Ch. values indicate that the identified regions are more class-representative. High Same values complement Ch., suggesting that the best results are shown by higher Ch. and Same values. Thus, while Total sums Ch. and Same, the optimal result is reflected by initially higher Ch. and then higher Same values.

315 We can observe from the experiments in Table 1 that baseline methods such as **Occlusion** achieved 316 Total values above 80%. However, the best results, based on Ch. being the most critical factor, 317 were achieved using our methodology, specifically the C2 configurations. Our techniques had the 318 highest percentages of class changes in Cat vs. Dog images, with over 60% indicated by Ch.. For 319 smaller images (CIFAR-10), the class change exceeded 80%. Finally, for ImageNet, that has a bigger 320 amount of images, it reached over than 70%. Among the baseline methods, LIME and XRAI had 321 the best results. This experiment demonstrates the superiority of our C1 and C2 configurations over state-of-the-art baselines in identifying the most impactful regions within an image. By achieving 322 notably higher percentages of class changes (Ch.) followed by classification certainty (Same), in 323 scenarios such as Cat vs. Dog images, CIFAR-10, and ImageNet datasets, our methodologies exhibit

342

343

344

363 364

365

366

367

368

369

324 Table 1: Percentage of images with the original class changed after the exclusion of selected 325 explanation regions. We test two configurations of our methodology (C1 and C2 – other configurations 326 in Supplementary Materials) against four region-based baseline methods, Occlusion, Grad-CAM, LIME, Ms-IV, and XRAI, in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog, 327 CIFAR10, and ImageNet. We expect higher percentage of class change (Ch.) when the region is 328 excluded. Same column shows images maintaining the original class when the output was reduced, 329 and Total is the sum of class change (Ch.) and class reduction (Same). We compare the each method 330 to the best configuration (**BP-TreeB-Occ**) showing the p-score in brackets (Mcnemar test). 331

				Cat	vs. Dog					Ci	far10					Ima	genet		
	% of images		VGG			ResNet			VGG			ResNet			VGG			ResNet	
		Ch.	Same	Total	Ch.	Same	Total	Ch.	Same	Total	Ch.	Same	Total	Ch.	Same	Total	Ch.	Same	Total
	Occlusion	0.05(0.0)	0.93 (0.0)	0.98	0.06 (0.0)	0.89 (0.0)	0.95	0.26 (0.0)	0.60 (0.0)	0.86	0.30 (0.0)	0.62 (0.0)	0.92	0.39 (0.0)	0.60 (0.0)	0.99	0.39 (0.0)	0.59 (0.0)	0.98
j j	Grad-CAM	0.07(0.0)	0.82 (0.0)	0.89	0.13 (0.0)	0.83 (0.0)	0.96	0.14 (0.0)	0.42 (0.0)	0.56	0.90 (0.0)	0.09(0.0)	0.99	0.25 (0.0)	0.65 (0.0)	0.90	0.68 (0.0)	0.30 (0.0)	0.98
в	LIME	0.07 (0.0)	0.83 (0.0)	0.90	0.07 (0.0)	0.76 (0.0)	0.83	0.84 (0.0)	0.14 (0.0)	0.98	0.82 (2.4-5)	0.16 (0.17)	0.98	0.34 (0.0)	0.61 (0.0)	0.95	0.38 (0.0)	0.55 (0.0)	0.93
	Ms-IV	0.06(0.0)	0.76 (0.0)	0.82	0.07 (0.0)	0.66 (0.0)	0.73	0.30 (0.0)	0.42 (0.0)	0.72	0.33 (0.0)	0.47 (0.0)	0.80	0.44 (0.0)	0.49 (0.0)	0.93	0.48 (0.0)	0.43 (0.0)	0.91
1	XRAI	0.04 (0.0)	0.85 (0.0)	0.89	0.06 (0.0)	0.79 (0.0)	0.85	0.52 (0.0)	0.35 (0.0)	0.87	0.50 (0.0)	0.40 (0.0)	0.90	0.41 (0.0)	0.52 (0.0)	0.93	0.45 (0.0)	0.46 (0.0)	0.91
	TreeW-CaOC	0.16 (0.0)	0.48 (2.0-5)	0.64	0.22 (0.0)	0.41 (0.15)	0.63	0.12 (0.0)	0.16 (0.0)	0.28	0.15 (0.0)	0.19 (2.8-9)	0.34	0.23 (0.0)	0.51 (0.0)	0.74	0.26 (0.0)	0.46 (0.0)	0.72
CL	TreeW-Occ	0.31 (0.0)	0.63 (3.2-4	0.94	0.35 (1.3-11)	0.60 (0.01)	0.95	0.60 (0.0)	0.15 (0.0)	0.75	0.60 (0.0)	0.15 (0.0)	0.65	0.40 (0.0)	0.56 (0.0)	0.96	0.44 (0.0)	0.51 (0.0)	0.95
~	IG-TreeW-CaOC	0.29 (0.0)	0.46 (0.0)	0.75	0.21(0.0)	0.45 (7.61-13)	0.66	0.20 (0.0)	0.29 (0.0)	0.49	0.23 (0.0)	0.33 (0.38)	0.56	0.26 (0.0)	0.52 (0.0)	0.78	0.30 (0.0)	0.46 (0.0)	0.86
	IG-TreeW-Occ	0.43 (1.7-11)	0.54 (5.3-10)	0.97	0.32 (1.14-13)	0.61 (2.3-14)	0.93	0.73 (0.0)	0.21 (0.0)	0.94	0.73 (0.0)	0.22 (0.0)	0.95	0.43 (0.0)	0.53 (0.0)	0.96	0.48 (0.0)	0.48 (0.0)	0.96
	TreeB-CaOC	0.35 (0.0)	0.39 (0.1)	0.74	0.27 (0.0)	0.42 (0.09)	0.69	0.15 (0.0)	0.26 (0.0)	0.41	0.17 (0.0)	0.31(0.0)	0.48	0.23 (0.0)	0.49 (0.0)	0.72	0.25 (0.0)	0.44 (0.0)	0.69
C	TreeB-Occ	0.51 (3.9-5)	0.44 (0.06)	0.95	0.41 (2.0-6)	0.52 (0.28)	0.93	0.81 (0.0)	0.12 (0.0)	0.93	0.76 (0.0)	0.17 (0.0)	0.93	0.57 (0.0)	0.38 (0.0)	0.95	0.60 (0.0)	0.35 (0.0)	0.95
C2	BP-TreeB-CaOC	0.56 (5.7-6)	0.32 (0.001)	0.88	0.39 (2.2-16)	0.39 (4.5-7)	0.78	0.09 (0.0)	0.34 (1.7-9)	0.43	0.11 (0.0)	0.39 (0.03)	0.50	0.11 (0.0)	0.36 (0.0)	0.47	0.10 (0.0)	0.31 (0.0)	0.41
	BP-TreeB-Occ	0.63	0.35	0.98	0.55	0.37	0.92	0.88	0.10	0.98	0.80 (0.0)	0.16	0.96	0.71 (0.0)	0.16 (0.0)	0.87	0.74 (0.0)	0.13 (0.0)	0.87
	BP-TreeB-Occ	0.63	0.35	0.98	0.55	0.37	0.92	0.88	0.10	0.98	0.80 (0.0)	0.16	0.96	0.71 (0.0)	0.16 (0.0))) 0.87	0) 0.87 <u>0.74 (0.0)</u>)) 0.87 <u>0.74 (0.0)</u> 0.13 (0.0)

robustness and effectiveness across various image classification tasks. These findings underscore the significance of our approach in providing more accurate insights into the interpretability of deep neural networks.

We present the results of a second experiment in Table 2. To address the issue of reduced precision 345 on explanations resulting from methods selecting the entire image as important, potentially leading to 346 class changes upon occlusion, we introduce a novel metric, termed Pixel Impact Rate (PIR). This 347 metric quantifies the impact on class activation per occluded pixel. Complementing the percentage of 348 class change, PIR distinguishes whether changes are caused by complete or near-complete occlusion 349 of the image (details in A.5 Equation 2). Higher PIR values indicate that each occluded pixel has 350 a significant average impact, suggesting that concealing larger portions or the entire image leads 351 to lower PIR, indicating less precision in the concealed area. Table 2 displays for each network, 352 explainable technique, and dataset the average (avg) and standard deviation (std) of PIR.

Regarding the results of the PIR experiments displayed in Table 2, configuration C2, particularly
BP-TreeB-CaOC, showed the best average PIR values. The baseline methods Occlusion and XRAI
also presented good PIR values. Based on these results, we can highlight the distinct effectiveness
of these methods in preserving region specificity, thereby increasing the impact of occluded pixels.
However, it is also important to consider the method's stability across different images, which can
be assessed through the standard deviation (std) of PIR. A smaller std is preferable, as it indicates
higher precision across all images. Configuration C1 seems superior to C2 in terms of consistency.

Inclusion of important regions: Additional experimentation was conducted to demonstrate a method's capability to identify an image region with sufficient information for the original class. The

Table 2: Pixel Impact Rate (PIR) of the chosen regions. The metric is the rate of the impact under occlusion (difference between the original class output and the output under occlusion) by the number of pixels of the occlusion mask. We test two configurations of our methodology (C1 and C2 – other configurations in Supplementary Materials) against four region-based baseline methods, Occlusion, Grad-CAM, LIME, Ms-IV, and XRAI, in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog, CIFAR10, and ImageNet. We expect higher values, on average, for PIR, meaning each occluded pixel has a high impact.

			Cat v	s. Dog			Cifa	nr10			Imaș	genet	
	PIR	VC	GG	Res	Net	V	GG	Res	Net	ve	iG .	Res	Net
		avg	std										
	Occlusion	4.60e-03	4.05e-03	1.50e-03	1.28e-03	8.95e-02	1.48e-01	9.67e-02	1.35e-01	1.16e-02	1.13e-02	8.02e-03	7.03e-03
	Grad-CAM	1.12e-03	1.02e-03	2.76e-04	2.07e-04	6.39e-03	1.34e-02	5.38e-03	1.46e-03	3.05e-03	3.16e-03	1.11e-03	8.02e-04
в	LIME	9.03e-04	1.10e-03	3.47e-04	3.89e-04	6.75e-03	3.27e-03	6.41e-03	3.25e-03	2.11e-03	2.50e-03	1.58e-03	1.75e-03
	Ms-IV	4.30e-04	4.74e-04	1.83e-04	2.45e-04	1.16e-02	1.44e-02	1.18e-02	1.33e-02	9.73e-04	1.10e-03	7.21e-04	7.59e-04
	XRAI	1.16e-03	9.92e-04	4.44e-04	6.32e-04	2.09e-02	1.77e-02	1.92e-02	2.02e-02	3.05e-03	1.09e-02	2.04e-03	5.90e-03
	Tree-CaOC	3.61e-04	4.70e-04	1.92e-04	2.86e-04	4.73e-03	1.02e-02	5.56e-03	1.05e-02	1.16e-03	1.60e-03	1.10e-03	1.47e-03
CI	Tree-Occ	3.66e-04	5.30e-04	1.69e-04	2.52e-04	9.20e-03	1.32e-02	9.88e-03	1.21e-02	1.10e-03	1.50e-03	1.05e-03	1.39e-03
CI	IG-Tree-CaOC	3.04e-04	3.48e-04	2.26e-04	3.09e-04	9.55e-03	1.30e-02	9.51e-03	1.27e-02	1.54e-03	1.83e-03	1.46e-03	1.66e-03
	IG-Tree-Occ	3.10e-04	3.61e-04	2.11e-04	3.05e-04	1.69e-02	1.56e-02	1.63e-02	1.40e-02	1.52e-03	1.72e-03	1.46e-03	1.58e-03
	TreeB-CaOC	2.16e-04	2.91e-04	1.26e-04	2.26e-04	8.92e-03	1.90e-02	1.12e-02	2.09e-02	7.20e-04	1.08e-03	6.76e-04	9.63e-04
m	TreeB-Occ	2.26e-04	3.32e-04	1.03e-04	1.81e-04	1.14e-02	2.06e-02	1.15e-02	2.00e-02	5.83e-04	8.19e-04	5.13e-04	7.27e-04
C2	BP-TreeB-CaOC	5.23e-03	3.59e-02	2.58e-03	1.81e-02	1.94e-01	3.87e-01	1.94e-01	3.52e-01	1.43e-02	7.37e-02	1.19e-02	5.15e-02
	PD TreeP Oce	9 64o 04	1.60 02	1 190 02	9 000 02	1 100 01	4 240 01	1 190 01	4.140.01	4 510 02	2 420 02	2 250 02	2 250 02

378 goal of this experiment is to determine whether the selected important region, when the only one 379 left unoccluded in the image, can maintain the classification in its expected class. This experiment 380 elucidates the critical role of these identified regions, providing strong evidence that they indeed 381 contain essential information for accurate classification. We occluded all regions in the images except 382 for the one selected by each method. We then calculated the percentage of images that changed class. The results are presented in Table 3 (a). Lower percentages indicate better performance, as they 383 mean that a smaller percentage of images changed class, demonstrating that the chosen regions were 384 sufficient to preserve the class for most of the images. 385

386 The metric presented in Table 3 (a) highlights the capability of both LIME and our methodology 387 C1 and C2 to identify regions that can sufficiently describe the class. However, our configuration, 388 **BP-TreeB-Occ**, is still able to outperform LIME results, with, in some cases, less than half the number of images changing class. This shows that our configuration produces more essential information for 389 class attribution. Some additional insights we obtained from these experiments include the following: 390 **Occlusion** combined with our methodology appears to achieve superior results for local explanations 391 (explaining individual images). Generally, using "model"-based segmentation leads to more faithful 392 explanations. Our methodology outperformed traditional xAI methods used as baselines, including 393 LIME. However, LIME showed consistently good results across all tests. 394

205

419

Table 3: (a) Percentage of images with the original class changed after the inclusion (exclusively) of 396 this same regions. We test two configurations of our methodology (C1 and C2 – other configurations 397 in Supplementary Materials) against five region-based baseline methods, Occlusion, Grad-CAM, 398 LIME, Ms-IV, and XRAI, in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog, 399 CIFAR10, and ImageNet. We expect lower when the region in included. We compare each method to 400 the best configuration (BP-TreeB-Occ) showing the p-score in brackets (Mcnemar test). (b) Human 401 evaluation results for the tasks of bias (i) Detection and (ii) Identification. We proposed five image 402 explanations (from the biased class) for each method and model trained with dataset bias: (1) dogs 403 and only cats on cushions, (2) cats and only dogs with grids, and (3) dogs and only cats with humans. 404 We present the percentage of volunteers that were able to: detect the bias **Detection (i)** by indicating 405 the bias or the focus on the background; and identify the bias **Identification** (ii) by indicating the bias. We also present the percentage of people that did not understand the explanations (Not identified) 406 and that found the explanation focusing on the Animal. We expect higher results for detection and 407 identification, and lower for not identified and animal. Methods such as Ms-IV, ACE and Tree-CaOC 408 (that are concept-aware) perform better. However, Tree-CaOC, using human-based segmentation 409 presented the best results for the three biased-datasets detection and identification. 410

SIC/AIC for hierarchy evaluation: As explained in Section 4, the hierarchy of our explanation 420 is combined by summing up importance regions values. Therefore, to select different hierarchies 421 it suffices to filter by different scores. In this line, we evaluate our methodology by imposing 422 different thresholds for the explanations. Inspired by the metrics Softmax Information Curve 423 (SIC) and Accuracy Information Curve (AIC) proposed by Kapishnikov et al. (2019) we calcu-424 lated the Softmax and Accuracy curves by including only selected image regions as model input. 425 To preserve the original data distribution, we integrated these important regions back into a blurred 426 version of the original image (details in A.5). The regions were selected based on thresholds 427 of 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 13%, 21%, 34%, 50%, and 75% percent, representing the 428 most significant region values according to each evaluated xAI method. These thresholds, represented on the x-axis, indicate the percentage of important regions required to affect accuracy and class 429 activations. Figure 4 shows the results for 1,000 randomly selected images (due to time consumption 430 restrictions – time analysis in A.5) from the ImageNet dataset and VGG16 model, with additional 431 results for ImageNet and Resnet-18, and the Cat vs. Dog dataset provided in A.5.

441 Figure 4: Softmax (a) and Accuracy (b) when including regions filtered by different percentage 442 thresholds of most important scores. We evaluate each threshold as a hierarchy level in eight 443 configurations of xAiTrees (C1 and C2), in a bottom-up approach (from smaller highly important 444 regions to the bigger structures). We compare these configurations to the baselines: LIME, XRAI, 445 Grad-CAM, Ms-IV, and Occlusion, by filtering the maps using the same threshold. The curves are 446 averaged across 1,000 randomly selected images from Imagenet dataset. AUC values are included in the graphs. BP-TreeB-Occ and BP-TreeB-CaOC considerably surpassed the other curves. However, 447 we notice a good early behavior of the methods except for Grad-CAM, Ms-IV and Occlusion. 448

450 Based on Figure 4, the methods BP-TreeB-CaOC, BP-TreeB-Occ, XRAI, and LIME achieved the high-451 est AUC scores, in that order. When considering more restrictive levels of the hierarchy (using 0.5%452 and 1.0% thresholds), most methods—except for Grad-CAM, Ms-IV, and Occlusion—performed 453 well. This indicates that xAiTrees configurations, along with LIME and XRAI, were able to accurately 454 identify the most important regions. We observed that the C2 configurations performed slightly 455 better than C1. However, since C2 showed greater variation in PIR results (Table 2), suggesting that 456 some explanations from these methods might highlight larger regions as important (thus diluting 457 the per-pixel impact), we chose to use the C1 group for qualitative experiments. This decision was 458 made to minimize the size of important regions and facilitate human analysis. Additionally, for human analysis, we did not filter the explanations. However, the hierarchy levels are reflected in the 459 brightness of each region, making them easily distinguishable. 460

462 5.2 QUALITATIVE ANALYSIS

449

461

463

As qualitative experiments, we want to visually evaluate the explanations for different interpretability tasks. In this section, we perform experiments to (i) identify reasons for misclassification of images, and (ii) evaluate explanations through the human interpretation of biased-trained networks.

Comparison of misclassified images: We searched for examples that were misclassified by models 467 (VGG-16 and Resnet18) trained on ImageNet (Deng et al., 2009). Figure 1 shows the explanations 468 generated by Integrated Gradients, Grad-CAM, Occlusion, LIME, and Tree-Occ (500 pixels minimal 469 region) of six images incorrectly classified. In Figure 1, the first column displays classes (such as 470 chime, fence, dishwasher, among others) alongside examples of misclassified images. These images 471 should have been classified as cat or dog. We then apply methods used in previous quantitative 472 comparisons to generate visual explanations for why these images were misclassified. The figure 473 illustrates that methods like Integrated Gradients, Grad-CAM, and Occlusion (Occ) may cause 474 confusion in precisely identifying what caused the misclassification and may lead to poor human 475 interpretation (we properly evaluate this in next experiment Human evaluation in bias analysis). 476 Although LIME and our proposed Tree-Occ method can pinpoint interesting regions, the Tree-Occ 477 method better illustrates the motivation behind misclassified results, as evident in the last column. For instance, in the fence example, it highlights the diamond pattern found on fences, while in the 478 dishwasher example, it focuses solely on the sink region, disregarding the cat. Considering the 479 hierarchical characteristic of our methodology, we can perform a deeper analysis of the explanations 480 by selecting regions by the percentage of importance to be visualized. Examples in A.6. 481

Human evaluation in bias analysis: As previously mentioned, we used the configuration C1 for
human-interpretation evaluation. We trained three Resnet18 models subjected to data bias: (a) Bias
1 – a model trained with dogs and only cats on cushions; (b) Bias 2 – a model with cats and only
dogs with grids; (c) Bias 3 – and a model with dogs and only cats with humans (details of validation accuracy and visualizations in A.6). We presented the same five image visualizations (from corrected

classified images by the biased class) for the baseline methods and the methods from C1. We intended to verify if: (i) humans can detect the wrong focus given based on a class prediction (Detection); and (ii) humans can recognize which was the cause of the bias (Identification).

To test (i) and (ii), for each **Bias** (a,b, or c) type we produce for each of the xAI methods an explanation image. By presenting five image explanations (the same images) for each of the xAI methodologies, we asked volunteers, based on the explanations provided, what they think the highlighted regions referred to (generated explanations and extra experiments in A.6).

Table 3 presents the results of evaluating 41 individuals from diverse continents (South America, 494 Europe, and Asia), fields (Human, Biological, and Exact sciences), and levels of AI expertise (ranging 495 from no knowledge to expert, with over half being non-experts). We show some participants' statistics 496 in A.6. The experiment aims to identify effective methods for revealing trained-with biases. For 497 each xAI method (IG, Grad-CAM, Occ, LIME, Ms-IV, ACE, Tree-Occ, Tree-CaOC, IG-Tree-Occ, 498 IG-Tree-CaOC) used to explain biases (1, 2, and 3), we show the percentage of participants who 499 detected, identified, or did not identify the bias in the explanation. **Detection** indicates perceiving the 500 xAI explanation as either background or reflecting the bias, while **Identification** denotes successful 501 interpretation of the explanation as the induced bias. Not Identification refers to being unable to 502 interpret the explanation. Higher percentages in the Identification row are desirable. If not, we 503 prioritize high values in the Detection row. Lower values in the Not Identification or **Animal** rows indicate clearer human interpretation of our trained-with bias. 504

505 We can observe that the results of Table 3 demonstrate that IG and Grad-CAM explanations had 506 some difficulties during interpretation. Their results obtained a lot of Not identified and/or Animal, 507 meaning that the highlighted explanations were not clear to be our imposed biases. We remarked 508 that the best results of detection and identification were found by methods that were linked to 509 contextual information (or global explanations) such as Ms-IV, ACE, Tree-CaOC, and IG-Tree-CaOC. This occurs due to the nature of the method, which reflects, more globally, the model's knowledge. 510 However, this seems not always to be enough for humans to provide a complete interpretation of 511 the model's knowledge. Once again Tree-CaOC, one of our configurations, presented the highest 512 results for all three **Bias** for detecting and identifying, by combining global-aware metric (CaOC) 513 and a human-based segmentation (edge detection). In these experiments, we demonstrate that our 514 method excels compared to other studies in a crucial aspect of explainable AI: human interpretability. 515

516 517

518

6 LIMITATIONS

519 The computational time is a limitation when using time-expensive methods to attribute region scores. 520 We show the time comparison including the baseline methods in A.5 Table 14. That is why we limited 521 our analysis to Tree-Occ and Tree-CaOC. The method needs adaptations to be used in different tasks 522 such as learning representations or to be applied to other modalities such as texts. These adaptations 523 are discussed in A.7. The proposed version of xAiTrees framework is dependent on the base methods used. Therefore, by using an edge-based segmentation method, we will not obtain a semantic-based 524 explanation, *i.e.*, the final technique will inherit the limitations of the base methods. Future works 525 will be focused on semantic segmentation. 526

527 528

529

7 CONCLUSION

530 In this paper, we present a framework, *xAiTrees*, aimed at integrating multiscale region importance in 531 model predictions, providing more faithful and interpretable explanations. Our approach outperforms 532 traditional xAI methods like LIME, especially in identifying impactful and precise regions, in 533 datasets such as Cat vs. Dog, CIFAR-10, and ImageNet. Qualitative analysis demonstrates that our 534 Tree-Occ method better elucidates misclassification motivations and provides clearer, hierarchical interpretations of model predictions. Techniques like Tree-CaOC, merging global-aware metrics with 536 human-based segmentation, excel in detection and identification tasks, achieving superior results 537 in human interpretability. In summary, our framework delivers highly interpretable and faithful model explanations, significantly aiding in bias detection and identification, and demonstrating its 538 effectiveness in the field of explainable AI. Therefore, potentially aiding to reduce the societal negative impact that could be generated by deep learning models in high-risk decision-making process.

540 REFERENCES

566

567

568

569

577

578

579 580

581

542	Sudil Hasitha Piyath Abeyagunasekera, Yuyin Perera, Kenneth Chamara, Udari Kaushalya, Prasanna
543	
040	Sumathipala, and Oshada Senaweera. Lisa : Enhance the explainability of medical images unifying
544	current XAI techniques. In International conference for Convergence in Technology (I2CT), pp.
545	
345	1-9, 2022. 1
546	

- Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Muller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PLoS One*, 10(7):1–46, 2015. doi: 10.1371/journal.pone.0130140. 1
- Jannis Born, Nina Wiedemann, Manuel Cossio, Charlotte Buhre, Gabriel Brändle, Konstantin Leidermann, Julie Goulet, Avinash Aujayeb, Michael Moor, Bastian Rieck, and Karsten Borgwardt.
 Accelerating detection of lung pathologies with explainable ultrasound image analysis. *Applied Sciences*, 11(2), 2021. 1
- Katarzyna Borys, Yasmin Alyssa Schmitt, Meike Nauta, Christin Seifert, Nicole Krämer, Christoph M
 Friedrich, and Felix Nensa. Explainable AI in medical imaging: An overview for clinical practitioners beyond saliency-based XAI approaches. *European Journal of Radiology*, 2023. 1
- Ahmad Chaddad, Jihao Peng, Jian Xu, and Ahmed Bouridane. Survey of explainable ai techniques in
 healthcare. Sensors, 23(2), 2023. 1
- Jean Cousty, Gilles Bertrand, Laurent Najman, and Michel Couprie. Watershed cuts: Minimum spanning forests and the drop of water principle. *IEEE transactions on pattern analysis and machine intelligence*, 31(8):1362–1374, 2008. 14
- Ian C. Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: a unified framework for
 model explanation. *Journal of Machine Learning Research*, 22(209), 2021. 6
 - Will Cukierski. Dogs vs. cats redux: Kernels edition. https://www.kaggle.com/ competitions/dogs-vs-cats-redux-kernels-edition/data, 2016. Accessed: 2024-05-20. 5
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 248–255. Ieee, 2009. 5, 9
- 573 S. Priya Dharshini, K. Ram Kumar, S. Venkatesh, K. Narasimhan, and K. Adalarasu. An overview of interpretability techniques for explainable artificial intelligence (XAI) in deep learning-based medical image analysis. In *International Conference on Advanced Computing and Communication Systems (ICACCS)*, volume 1, pp. 175–182, 2023. 1
 - Piotr Dollár and C Lawrence Zitnick. Fast edge detection using structured forests. *IEEE transactions* on pattern analysis and machine intelligence, 37(8):1558–1570, 2014. 4
 - Amirata Ghorbani, James Wexler, James Zou Y, and Been Kim. Towards automatic concept-based explanations. In Advances in Neural Information Processing Systems, volume 32, pp. 1–10, 2019. 3, 29
- Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition. In
 Proceedings of the Royal Society A, volume 478, pp. 1–49, 2022. 1
- Arman Haghanifar, Mahdiyar Molahasani Majdabadi, Younhee Choi, S. Deivalakshmi, and Seokbum
 Ko. Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning. *Multimedia Tools and Applications*, 81:30615–30645, 2022. 1
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90. 5
- 593 David H. Hubel and Torsten N. Wiesel. Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 148:574–591, 1959. 1

594 595 596	Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Vi'egas, and Michael Terry. Xrai: Better attributions through regions. In <i>18th International Conference on Computer Vision (ICCV)</i> , pp. 4947–4956, 2019. 3, 6, 8, 15, 18
598 599 600 601	Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B. Viégas, and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV). In <i>35th International Conference on Machine Learning (ICML)</i> , pp. 2668–2677, 2018. 3
602 603	Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009. 5
605 606 607	Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). Technical report, Canadian Institute for Advanced Research, 2009. URL https://www.cs.toronto.edu/~kriz/cifar.html. 5
608 609 610	Siyuan Lu, Ziquan Zhu, Juan Manuel Gorriz, Shui-Hua Wang, and Yu-Dong Zhang. Nagnn: Classification of covid-19 based on neighboring aware representation from deep graph neural network. <i>International Journal of Intelligent Systems</i> , 37:1572–159, 2022. 1
611 612 613 614	Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In 31st International Conference on Neural Information Processing Systems (NeurIPS), pp. 4768–4777, 2017. doi: 10.5555/3295222.3295230. 1, 3
615 616 617	Quinn McNemar. Note on the sampling error of the difference between correlated proportions or percentages. <i>Psychometrika</i> , 12(2):153–157, June 1947. doi: 10.1007/bf02295996. URL https://doi.org/10.1007/bf02295996. 6
618 619 620 621	Benjamin Perret, Giovanni Chierchia, Jean Cousty, Silvio Jamil Ferzoli Guimaraes, Yukiko Kenmochi, and Laurent Najman. Higra (hierarchical graph analysis) documentation. https://higra.readthedocs.io/, 2018. Accessed = 2024-03-07. 3
622 623	Benjamin Perret, Giovanni Chierchia, Jean Cousty, Silvio Jamil Ferzoli Guimaraes, Yukiko Kenmochi, and Laurent Najman. Higra: Hierarchical graph analysis. <i>SoftwareX</i> , 10:100335, 2019. 3
625 626 627	Huy Phan. Pytorch models trained on cifar-10 dataset. https://github.com/huyvnphan/ PyTorch_CIFAR10, 2021. URL https://doi.org/10.5281/zenodo.4431043. Ac- cessed: 2024-05-20. 15
628 629 630	Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the predictions of any classifier. In <i>22nd International Conference on Knowledge Discovery and Data Mining (KDD)</i> , pp. 1135–1144, 2016. doi: 10.1145/2939672.2939778. 1, 3
631 632 633	Caroline Mazini Rodrigues, Nicolas Boutry, and Laurent Najman. Unsupervised discovery of interpretable visual concepts. <i>Information Sciences</i> , 661:1–26, 2024. 1, 3, 14, 15
634 635 636 637	Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local- ization. In <i>16th International Conference on Computer Vision (ICCV)</i> , pp. 618–626, 2017. doi: 10.1109/ICCV.2017.74. 1
639 640 641	Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation differences. In <i>International Conference on Machine Learning (ICML)</i> , volume 70, pp. 3145–3153, 2017. 4
642 643 644 645	 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In <i>3rd International Conference on Learning Representations (ICLR)</i>, pp. 1–14, 2015. 4, 5
646 647	Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. In <i>3rd International Conference on Learning Representations</i> (<i>ICLR</i>), pp. 1–14, 2015. 3, 4

648 649 650	Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In <i>34th International Conference on Machine Learning (ICML)</i> , pp. 3319–3328, 2017. doi: 10.5555/3305890.3306024. 3, 4
652 653	Randy Tan, Lei Gao, Naimul Khan, and Ling Guan. Interpretable artificial intelligence through locality guided neural networks. <i>Neural Networks</i> , 155:58–73, 2022. 3
654 655 656	Yongchao Xu, Thierry Géraud, and Laurent Najman. Connected filtering on tree-based shape-spaces. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 38(6):1126–1140, 2015. 4, 5
657 658 659	Yongchao Xu, Edwin Carlinet, Thierry Géraud, and Laurent Najman. Hierarchical segmentation using tree-based shape space. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 39:1–14, 04 2016. doi: 10.1109/TPAMI.2016.2554550. 4, 5
660 661	Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In <i>13th European Conference on Computer Vision (ECCV)</i> , pp. 818–833, 2014. 3
662 663 664 665 666	Quanshi Zhang, Ruiming Cao, Feng Shi, Ying Nian Wu, and Song-Chun Zhu. Interpreting CNN knowledge via an explanatory graph. In <i>Conference on Artificial Intelligence (AAAI)</i> , pp. 4454–4463, 2018. doi: 10.5555/3504035.3504581. 3
667 668 669	
670 671 672	
673 674 675	
676 677	
678 679 680	
681 682	
683 684 685	
686 687	
688 689 690	
691 692 693	
694 695 696	
697 698 699 700 701	

702 A APPENDIX

704 705

A.1 A. SEGMENTATION TECHNIQUES

As an important step for our framework, we employ segmentation techniques so we can decompose images, based on specific attributes, into more interpretable structures, enabling better human understanding and interpretation. We specifically employ hierarchical segmentation techniques due to their capability to decompose images into multiple levels of detail, mirroring how humans naturally perceive objects: initially observing the overall structure before delving into the finer details.

Trees: A tree is an acyclic graph, consisting of nodes that connect to zero or more other nodes. It starts with a "root" node that branches out to other nodes, ending in "leaves" with no children. In image representation, the root node represents the entire image, and each leaf represents a pixel, resulting in as many leaves as pixels. The structure between the root and leaves groups pixels into clusters at each level based on similarity metrics, with each level abstracting the one below. Using a segmentation tree, we can make *cuts* at various levels to obtain different numbers and sizes of segmented regions.

Binary Partition Tree (BPT): A Binary Partition Tree (BPT) is a data structure in which each node represents a region of the image. Similarly, the tree starts with a root node representing the entire image and branches out through a series of binary splits until reaching the leaf nodes, representing the individual pixels. Different from the tree, in which a node could have multiple splits, in the BPT each split, divides a region into two smaller sub-regions based on a criterion.

Watershed: This algorithm (Cousty et al., 2008) constructs a hierarchical segmentation tree based on a minimum-spanning forest rooted in the local minima of an edge-weighted graph. In this context, local minima are points in the graph where the surrounding edge weights are higher, representing the lowest values in their neighborhood. These minima serve as starting points for the segmentation. The algorithm iteratively merges regions beginning from these local minima, guided by the edge weights that indicate dissimilarity between adjacent pixels. By progressively combining these regions, the algorithm builds the segmentation tree, effectively capturing the hierarchical structure of the image.

730 731

732

A.2 B. OCCLUSION-BASED METRICS:

Here, we discuss the metrics used to generate our segmentation based on the model explainability
(block B in Figure 2). We present two metrics: (i) *Occlusion*, which is the impact of occluding an
image region on its classification output, and (ii) CaOC which is the intra-class impact of occluding
an image region. For (i), we assess how the output of a model changes when an image region is
occluded. For (ii), we employ a sliding metric that ranks images based on the highest activations for
a given class. We then measure the movement in this ranking after occluding a region of the image,
determining the intra-class impact of the occlusion.

740 *Occlusion:* Let us say we have a model Ξ producing an output **out**_i for an image \mathcal{I}_i . By concealing 741 portions of this image, creating a new image $\mathcal{I}_i^{\blacksquare}$, we obtain a different model output **out**_i^{\blacksquare}. The 742 significance of the occluded area concerning a particular class c is assessed by comparing the outputs:

743

744

745 746

$$\left|\mathbf{out}_{i,c} - \mathbf{out}_{i,c}^{\blacksquare}\right|. \tag{1}$$

If there is a significant difference, it indicates that the model strongly relies on this region for classactivation, meaning that these regions have a high *impact* on the model's decision.

749 **CAOC:** In the Ms-IV method, introduced by Rodrigues *et al.* (Rodrigues *et al.*, 2024), CaOC employs 750 rankings to assess how occlusions affect the model's output space. A *ranking* is a sequence of objects 751 ordered according to a specific criterion, from the object most aligned with it to the least aligned. 752 Suppose the criterion is to maximize class *c*. In that case, the first index *i* in this sequence represents 753 the object (in our case, the image \mathcal{I}_i) with the highest activation for class *c* in the output **out**_{*i*}. If we 754 define a function *argsort* to obtain the indices of an ordered sequence of objects, we can derive the 755 sequence of image indices that maximize class *c*: $Seq_c = argsort(out_{.,c}, decreasing)$, with $out_{.,c}$ 756 the vector of outputs for class *c* of a set of input images $(\mathcal{I}_i)_{i \in [1, NbIm]}$. ⁷⁵⁶ CaOC computes an initial ranking Seq_c for a subset of images $\mathcal{DS}' \subset \mathcal{DS}$, and then a subsequent ranking Seq'_c after occluding one region of image $\mathcal{I}_i \in \mathcal{DS}'$. The significance of this occluded image region for the model is determined by the difference in the positions of this image in the rankings given by $|position(Seq_{i,c},\mathcal{I}_i) - position(Seq'_{i,c},\mathcal{I}_i)|$.

This metric aims to assess the impact of occluding image regions not only against the original output out_i but also against the outputs of a range of images. Incorporating the model's output space into the analysis ensures that explanations consider the broader context (global model's behavior). Hence, we can characterize it as globally aware, even when explaining a single sample.

764 765 766

767

A.3 TESTED FRAMEWORK'S CONFIGURATION

We tested four different sizes of minimal region for filtering the initial segmentation. For Cat vs. Dog
 and ImageNet datasets: 200, 300, 400, and 500 pixels. For CIFAR-10: 4, 16, 32 and 64 pixels.

For the model-based segmentation and datasets Cat vs. Dog and CIFAR10, we tested four xAI techniques to generation the initial graph G on Figure 2: Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradient (I X G), and Saliency (S). Given the number of images (time of computation), for ImageNet dataset we tested only Integrated Gradients (IG), Guided-Backpropagation (BP).

We tested three algorithms to construct the hierarchical segmentation: Binary Partition Tree (BPT),
Watershed with Area, and Watershed with Volume.

We tested two different occlusion based metrics to obtain the impact of regions used to shape the hierarchical tree: CaOC and OCC.

When we refer to Tree-CaOC or TreeW-CaOC, we mean the human-based segmentation (edges' map) using Watershed area and CaOC as occlusion metric. When we refer to IG-Tree-Occ or IG-TreeW-Occ, we mean the model-based segmentation (using Integrated Gradients (IG) attributions) using Watershed area and Occ (simple occlusion – Equation (1)) as occlusion metric. When we refer to BP-TreeB-Occ, we mean the model-based segmentation (using Guided Backpropagation (BP) attributions) using BPT and Occ as occlusion metric.

786 787

788

A.4 PARAMETERS OF THE BASELINE METHODS

789 For Grad-CAM method, we used the last convolutional layer of each architecture with layer Grad-790 CAM from captum framework. For Occlusion (from Captum framework) we used, for Cat vs. Dog 791 and ImageNet, step of 3x7x7 and sliding window of 3x14x14. Since CIFAR10 is much smaller, the 792 step was 3x2x2 and sliding window of 3x4x4. For LIME, we used the standard configuration for Cat 793 vs. Dog and ImageNet (Quickshift kernel size of 4) and, Quickshift kernel size of 2 for CIFAR10. All 794 the other methods followed the standard configuration. For Ms-IV, we used the original configuration 795 from the paper (Rodrigues et al., 2024). For XRAI, we used the original implementation (Kapishnikov 796 et al., 2019) of the fast version.

797 798

800

799 A.5 QUANTITATIVE EVALUATIONS

Models' description: Table 4 shows the number of images in train and validation sets for Cat
vs. Dog and CIFAR10 datasets. We also include the train and validation accuracies for the models
ResNet18 and VGG-16 used in the quantitative evaluations.

Cat vs. Dog models were trained with initial weights from ImageNet, learning rate 1e - 7, crossentropy loss, the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

CIFAR10 models were adapted to receive 32x32 input images, and they were trained with initial weights from ImageNet, learning rate 1e - 2, cross-entropy loss and the stochastic gradient descent optimizer (code from Phan (2021)).

The ImageNet models used the pre-trained weights from the PyTorch implementation.

Table 4: Number of images and accuracy on train and validation sets for ResNet18 and VGG-16
 models. We train the models with two different dataset: Cat vs. Dog and CIFAR10.

		Traiı	n	Val.	
		Num. images	Acc. (%)	Num. images	Acc. (%)
Cat vs. Dog	ResNet18	19,891	98.21	5,109	97.86
	VGG-10	,	99.04	· · · · · · · · · · · · · · · · · · ·	98.61
CIFAR10	ResNet18	50.000	99.56	10.000	92.53
CHARIO	VGG-16	50,000	99.84	10,000	93.54

Table 5: Percentage of images with the original class changed after the **exclusion** of selected explanation regions for Cat vs. Dog dataset. Highlighted in blue are the configurations presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels, segmentation based on **Edges**, Integrated Gradients (**IG**), Guided-Backpropagation (**BP**), Input X Gradients (**I X G**) and **Saliency**. We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute. **Same** column shows images maintaining the original class when the output was reduced, and **Total** is the sum of class change (**Ch.**) and class reduction (**Same**).

												Cat vs	. Dog									
	% of images						V	GG									Re	sNet				
	// or images		Ec	lges	Ch	IG	Ch	BP	Ch	XG	Sal	iency	E	lges	Ch	IG	Ch	BP	Ch	XG	Sali	iency
		CoOC	0.35	0.20	0.32	0 15	0.56	0.32	0.26	o 12	0.46	0.39	0.27	0.42	0.12	0.20	0.20	0.20	0.10	o 21	0.28	0.42
	BPT	Occ	0.55	0.39	0.32	0.15	0.50	0.32	0.20	0.12	0.40	0.35	0.27	0.42	0.12	0.29	0.59	0.39	0.10	0.21	0.28	0.45
		CaOC	0.15	0.48	0.23	0.45	0.21	0.46	0.22	0.46	0.15	0.49	0.20	0.44	0.18	0.45	0.16	0.50	0.17	0.46	0.17	0.46
200	Watershed area	Occ	0.30	0.66	0.42	0.55	0.41	0.56	0.42	0.55	0.31	0.62	0.34	0.61	0.31	0.63	0.32	0.64	0.30	0.63	0.31	0.63
	W. (CaOC	0.18	0.48	0.16	0.49	0.12	0.46	0.18	0.47	0.13	0.50	0.18	0.44	0.17	0.46	0.12	0.49	0.17	0.45	0.18	0.45
	watersned volume	Occ	0.33	0.64	0.33	0.61	0.31	0.64	0.37	0.57	0.32	0.63	0.33	0.62	0.29	0.65	0.25	0.69	0.30	0.65	0.32	0.64
	DDT	CaOC	0.36	0.38	0.22	0.07	0.56	0.30	0.17	0.07	0.46	0.38	0.28	0.41	0.07	0.19	0.39	0.37	0.06	0.13	0.30	0.41
	DII	Occ	0.50	0.46	0.23	0.13	0.61	0.34	0.17	0.11	0.58	0.41	0.41	0.53	0.09	0.27	0.48	0.39	0.07	0.20	0.38	0.53
300	Watershed area	CaOC	0.16	0.49	0.25	0.43	0.22	0.45	0.24	0.46	0.15	0.50	0.20	0.42	0.20	0.44	0.17	0.47	0.18	0.47	0.19	0.45
200	watershed area	Occ	0.30	0.65	0.43	0.53	0.42	0.55	0.42	0.55	0.31	0.63	0.35	0.59	0.30	0.63	0.32	0.62	0.30	0.63	0.31	0.62
	Watershed volume	CaOC	0.17	0.51	0.18	0.49	0.15	0.43	0.19	0.48	0.14	0.51	0.20	0.41	0.18	0.44	0.12	0.48	0.18	0.45	0.18	0.44
		Occ	0.32	0.63	0.34	0.60	0.30	0.64	0.36	0.57	0.32	0.61	0.34	0.61	0.29	0.64	0.26	0.69	0.30	0.64	0.32	0.63
	BPT	CaOC	0.36	0.39	0.15	0.05	0.51	0.29	0.10	0.05	0.43	0.40	0.29	0.42	0.04	0.16	0.35	0.37	0.04	0.11	0.29	0.41
		Occ	0.47	0.48	0.15	0.09	0.54	0.37	0.10	0.08	0.51	0.47	0.41	0.52	0.06	0.23	0.42	0.39	0.05	0.14	0.36	0.55
400	Watershed area	Occ	0.10	0.49	0.20	0.40	0.23	0.45	0.24	0.40	0.17	0.50	0.21	0.41	0.20	0.44	0.18	0.40	0.20	0.40	0.21	0.42
		CaOC	0.18	0.04	0.45	0.33	0.42	0.45	0.72	0.35	0.16	0.50	0.21	0.01	0.10	0.01	0.13	0.01	0.10	0.05	0.20	0.05
	Watershed volume	Occ	0.33	0.63	0.35	0.60	0.30	0.64	0.38	0.57	0.31	0.62	0.34	0.61	0.30	0.64	0.25	0.69	0.29	0.63	0.33	0.63
		CaOC	0.35	0.40	0.11	0.04	0.45	0.29	0.07	0.03	0.40	0.42	0.30	0.41	0.04	0.13	0.31	0.34	0.04	0.11	0.29	0.42
	BPT	Occ	0.45	0.49	0.12	0.06	0.49	0.36	0.07	0.04	0.47	0.49	0.41	0.51	0.04	0.17	0.38	0.38	0.04	0.11	0.37	0.54
500	Watanahadaanaa	CaOC	0.16	0.48	0.29	0.46	0.26	0.42	0.25	0.47	0.18	0.48	0.22	0.41	0.21	0.45	0.20	0.46	0.20	0.46	0.21	0.42
200	watersned area	Occ	0.31	0.63	0.43	0.54	0.41	0.55	0.41	0.54	0.31	0.63	0.35	0.60	0.32	0.61	0.34	0.61	0.30	0.62	0.30	0.66
	Watershed volume	CaOC	0.19	0.48	0.20	0.47	0.16	0.44	0.22	0.45	0.18	0.51	0.22	0.39	0.20	0.46	0.14	0.47	0.18	0.43	0.22	0.43
	water sneu volume	Occ	0.33	0.63	0.34	0.61	0.29	0.66	0.38	0.56	0.32	0.60	0.33	0.61	0.30	0.64	0.25	0.68	0.29	0.64	0.32	0.63

Exclusion of important regions: Given that each region-based explainable AI (xAI) method identifies important regions in an image to explain the prediction of a model, we performed occlusion of these regions to measure the impact of each selection and evaluate the methods.

Except for LIME, which proposes a ranking of the most important image segments, the methods we used as a baseline provide values for measuring the importance of pixels, which in visualization is similar to regions or segmentation for humans. However, if we select all the positive importance values provided by these methods, we are likely to cover a large part of the image. By selecting regions with only the top 25% higher values, we reduce the size of the mask. In fact, different datasets and models will show different visualization behaviors, so we chose to define a high threshold that is fixed (not specific to a single dataset) and common to all methods in order to have a fair comparison. Therefore, for methods that assign scores to regions, we masked the 25% highest scores.

We present, in Tables 5, 6, and 7, the complete experiments of different configurations of our framework for the datasets Cat vs. Dog, CIFAR10, and ImageNet respectively.

PIR values: To address the issue of unhelpful explanations resulting from methods selecting the
 entire image as important, potentially leading to class changes upon occlusion, we introduce a novel
 metric termed Pixel Impact Rate (PIR). The idea of PIR is to evaluate the impact per pixel/per
 image:

 $PIR(exp_i) = \frac{|\mathbf{out}_{i,class_orig} - \mathbf{out}_{i,class_orig}|}{num_pixels_exp}$ (2)

Table 6: Percentage of images with the original class changed after the **exclusion** of selected explanation regions for CIFAR10 dataset. Highlighted in blue are the configurations presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than 4, 16, 32 and 64 pixels, segmentation based on **Edges**, Integrated Gradients (**IG**), Guided-Backpropagation (**BP**), Input X Gradients (**I X G**) and **Saliency**. We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute. **Same** column shows images maintaining the original class when the output was reduced, and **Total** is the sum of class change (**Ch.**) and class reduction (**Same**).

												CIP	INIU									
	% of images						V	GG									Re	sNet				
	70 of images		Ec	iges	1	G	1	3P	I	X G	Sal	iency	Ec	lges	1	G]	3P	13	K G	Sali	iency
			Ch.	Same	Ch.	Same	Ch.	Same	Ch.	Same	Ch.	Same	Ch.	Same								
	DDT	CaOC	0.15	0.26	0.08	0.34	0.09	0.34	0.06	0.34	0.18	0.37	0.17	0.31	0.09	0.40	0.11	0.39	0.08	0.40	0.19	0.42
	DII	Occ	0.81	0.12	0.91	0.08	0.88	0.10	0.91	0.07	0.85	0.14	0.76	0.17	0.83	0.13	0.80	0.16	0.82	0.14	0.81	0.18
4	Watershed area	CaOC	0.16	0.34	0.27	0.32	0.27	0.33	0.27	0.33	0.26	0.33	0.18	0.40	0.24	0.37	0.24	0.37	0.25	0.37	0.25	0.36
-	Watersheu area	Occ	0.72	0.22	0.74	0.23	0.75	0.22	0.76	0.22	0.73	0.24	0.70	0.25	0.74	0.24	0.73	0.25	0.76	0.23	0.74	0.25
	Watershed volume	CaOC	0.16	0.34	0.26	0.33	0.27	0.33	0.26	0.34	0.26	0.34	0.18	0.40	0.24	0.37	0.23	0.38	0.25	0.37	0.24	0.37
	water shear voranie	Occ	0.73	0.21	0.73	0.24	0.72	0.25	0.75	0.23	0.72	0.25	0.71	0.24	0.74	0.25	0.72	0.26	0.75	0.23	0.74	0.25
	RPT	CaOC	0.08	0.11	0.07	0.11	0.09	0.17	0.05	0.09	0.18	0.31	0.12	0.12	0.09	0.14	0.11	0.20	0.07	0.11	0.21	0.38
	511	Occ	0.55	0.09	0.70	0.07	0.78	0.10	0.63	0.06	0.79	0.17	0.55	0.09	0.64	0.09	0.69	0.13	0.57	0.09	0.76	0.21
16	Watershed area	CaOC	0.16	0.33	0.22	0.35	0.22	0.35	0.22	0.35	0.22	0.35	0.18	0.39	0.25	0.38	0.23	0.39	0.25	0.37	0.25	0.37
	vince area	Occ	0.71	0.21	0.75	0.22	0.75	0.22	0.76	0.21	0.72	0.24	0.70	0.24	0.75	0.24	0.74	0.25	0.76	0.23	0.74	0.24
	Watershed volume	CaOC	0.16	0.33	0.22	0.35	0.21	0.36	0.23	0.34	0.22	0.35	0.19	0.39	0.24	0.38	0.22	0.40	0.26	0.37	0.25	0.37
		Occ	0.72	0.21	0.73	0.24	0.72	0.24	0.75	0.22	0.72	0.24	0.71	0.24	0.74	0.24	0.71	0.27	0.75	0.23	0.74	0.24
	BPT	CaOC	0.03	0.03	0.04	0.04	0.07	0.09	0.03	0.03	0.16	0.17	0.07	0.05	0.07	0.05	0.10	0.11	0.06	0.04	0.18	0.22
		Occ	0.39	0.03	0.44	0.05	0.62	0.09	0.40	0.03	0.70	0.15	0.40	0.04	0.44	0.05	0.56	0.09	0.38	0.05	0.70	0.18
32	Watershed area	CaOC	0.15	0.28	0.21	0.36	0.19	0.37	0.20	0.36	0.21	0.35	0.18	0.34	0.23	0.40	0.21	0.41	0.23	0.40	0.23	0.40
		Occ	0.69	0.20	0.75	0.22	0.74	0.22	0.75	0.21	0.72	0.24	0.68	0.22	0.74	0.23	0.73	0.25	0.75	0.23	0.73	0.25
	Watershed volume	CaOC	0.16	0.29	0.20	0.36	0.19	0.37	0.20	0.36	0.21	0.35	0.18	0.34	0.23	0.40	0.21	0.41	0.23	0.40	0.23	0.40
		Occ	0.70	0.20	0.72	0.24	0.70	0.25	0.74	0.22	0.72	0.24	0.69	0.22	0.75	0.25	0.69	0.28	0.75	0.23	0.73	0.25
	BPT	CaOC	0.01	0.00	0.02	0.01	0.04	0.04	0.01	0.01	0.07	0.05	0.04	0.02	0.05	0.02	0.08	0.05	0.04	0.02	0.11	0.08
		Occ	0.25	0.00	0.23	0.02	0.42	0.05	0.19	0.01	0.50	0.06	0.27	0.02	0.25	0.02	0.38	0.05	0.21	0.02	0.53	0.07
64	Watershed area	Cauc	0.12	0.16	0.20	0.29	0.18	0.27	0.20	0.28	0.22	0.30	0.15	0.19	0.23	0.33	0.21	0.34	0.22	0.34	0.22	0.30
		Occ	0.60	0.15	0.73	0.21	0.73	0.21	0.75	0.20	0.70	0.23	0.60	0.15	0.73	0.22	0.72	0.23	0.74	0.22	0.70	0.25
	Watershed volume	CaOC	0.12	0.16	0.19	0.31	0.18	0.30	0.20	0.29	0.21	0.28	0.15	0.18	0.22	0.36	0.21	0.37	0.22	0.35	0.22	0.34
		Occ	0.60	0.14	0.71	0.22	0.68	0.23	0.73	0.21	0.70	0.22	0.60	0.15	0./1	0.24	0.67	0.27	0.73	0.23	0.71	0.24

Table 7: Percentage of images with the original class changed after the **exclusion** of selected explanation regions for Imagenet dataset. Highlighted in blue are the configurations presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels, segmentation based on **Edges**, Integrated Gradients (**IG**), and Guided-Backpropagation (**BP**). We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute. **Same** column shows images maintaining the original class when the output was reduced, and **Total** is the sum of class change (**Ch.**) and class reduction (**Same**).

								Imag	genet					
	% of images				V	GG					Re	sNet		
	70 of images		Ec	lges]	G	1	BP	Ec	lges]	IG	I	BP
			Ch.	Same	Ch.	Same	Ch.	Same	Ch.	Same	Ch.	Same	Ch.	Same
	RPT	CaOC	0.23	0.49	0.00	0.02	0.11	0.36	0.25	0.44	0.01	0.04	0.10	0.31
	DII	Occ	0.57	0.38	0.35	0.01	0.71	0.16	0.60	0.35	0.50	0.02	0.74	0.13
200	Watershed area	CaOC	0.26	0.51	0.27	0.51	0.27	0.51	0.27	0.45	0.31	0.45	0.30	0.45
200	water sneu area	Occ	0.42	0.55	0.44	0.54	0.45	0.52	0.48	0.50	0.50	0.47	0.52	0.46
	Watershed volume	CaOC	0.26	0.51	0.26	0.51	0.25	0.52	0.28	0.46	0.31	0.44	0.28	0.46
	water sileu volume	Occ	0.44	0.54	0.39	0.59	0.38	0.60	0.49	0.49	0.47	0.51	0.45	0.53
	DDT	CaOC	0.22	0.46	0.00	0.01	0.10	0.30	0.24	0.42	0.01	0.02	0.09	0.25
	DET	Occ	0.55	0.38	0.20	0.01	0.64	0.17	0.58	0.35	0.32	0.01	0.65	0.13
300	Watershed area	CaOC	0.24	0.51	0.27	0.52	0.26	0.51	0.27	0.45	0.31	0.45	0.29	0.45
300	water sneu area	Occ	0.41	0.56	0.43	0.54	0.44	0.53	0.46	0.51	0.50	0.48	0.51	0.46
	Watershed volume	CaOC	0.24	0.51	0.26	0.52	0.25	0.52	0.27	0.46	0.30	0.45	0.28	0.46
	water sneu volume	Occ	0.42	0.54	0.38	0.59	0.37	0.61	0.47	0.49	0.46	0.51	0.43	0.54
	врт	CaOC	0.21	0.42	0.00	0.01	0.09	0.25	0.23	0.38	0.00	0.02	0.08	0.21
	DII	Occ	0.54	0.37	0.13	0.00	0.58	0.16	0.57	0.34	0.22	0.01	0.59	0.13
400	Watershed area	CaOC	0.24	0.51	0.26	0.52	0.25	0.52	0.26	0.46	0.31	0.46	0.29	0.46
400	water sheu area	Occ	0.40	0.56	0.43	0.54	0.44	0.53	0.45	0.51	0.49	0.48	0.50	0.47
	Watershed volume	CaOC	0.24	0.51	0.25	0.52	0.24	0.52	0.26	0.46	0.30	0.46	0.27	0.46
	water sileu volume	Occ	0.42	0.54	0.38	0.59	0.36	0.61	0.46	0.50	0.45	0.52	0.42	0.55
	RPT	CaOC	0.21	0.38	0.09	0.00	0.08	0.22	0.22	0.35	0.16	0.01	0.07	0.18
	DII	Occ	0.52	0.35	0.00	0.01	0.53	0.16	0.55	0.33	0.00	0.01	0.53	0.12
500	Watershed area	CaOC	0.23	0.51	0.26	0.52	0.25	0.52	0.26	0.46	0.30	0.46	0.29	0.46
500	water sileu al ea	Occ	0.40	0.56	0.43	0.53	0.44	0.53	0.44	0.51	0.48	0.48	0.50	0.47
	Watershed volume	CaOC	0.23	0.51	0.25	0.52	0.24	0.53	0.26	0.46	0.29	0.46	0.27	0.47
	water sheu volume	Occ	0.41	0.54	0.37	0.59	0.36	0.60	0.46	0.50	0.44	0.52	0.42	0.55

916 where exp_i is the explanation or image *i*, $out_{i,class_orig}$ is the original *logit* corresponding to the 917 analyzed class, $out_{i,class_orig}$ is the *logit* after the perturbation, and *num_pixels_exp* is the number of occluded pixels.

This metric quantifies the impact on class activation per occluded pixel. Complementing the per centage of class change, PIR distinguishes whether changes are primarily caused by complete or
 near-complete occlusion of the image. Higher PIR values indicate that each occluded pixel has a
 significant average impact, suggesting that concealing larger portions or the entire image leads to
 lower PIR, indicating less precision in the concealed area.

Tables 8, 9, and 10 display for each network, and tested configurations of our framework, the average
 (avg) and standard deviation (std) of PIR, for the datasets Cat vs. Dog, CIFAR10, and ImageNet respectively.

Inclusion of important regions: Additional experimentation was conducted to demonstrate a method's capability to identify an image region with sufficient information for the original class. The goal of this experiment is to determine whether the selected important region, when the only one left unoccluded in the image, can maintain the classification in its expected class. This experiment elucidates the critical role of these identified regions, providing strong evidence that they indeed contain essential information for accurate classification. We occluded all regions in the images except for the one selected by each method. We then calculated the percentage of images that changed class. We present the results from the three datasets, Cat vs. Dog, CIFAR10, and ImageNet, and all the tested framework configurations in Tables 11, 12, and 13, respectively. Lower percentages indicate better performance, meaning that a smaller percentage of images changed class, demonstrating that the chosen regions were sufficient to preserve the class for most of the images.

SIC and AIC for hierarchy evaluation: Inspired by the metrics Softmax Information Curve (SIC) and Accuracy Information Curve (AIC) proposed by Kapishnikov et al. (2019) we cal-culated the Softmax and Accuracy curves by including only selected image regions as model input. We used the parameters from the original paper: maintaining 10% of the origi-nal pixels and using linear interpolation to generate the blur. We used the thresholds of 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 13%, 21%, 34%, 50%, and 75\% percent, representing the most significant region values according to each evaluated xAI method. Instead of using the image entropy values as the x-axis we used the thresholds. Figure 5 presents the curves for the mean of 1,000 randomly selected ImageNet images, and Figure 6 presents the results for 512 analyzed images from the Cat vs. Dog dataset.

Tab] met mas	le 8: Pixel Imr ric is the rate c sk. We tested h	bierar	(nn) 40	, mput, hed wit	A Ulau th volur	me attri	ibute. V	We expe	ert high	er valu	es, on ;	s unicio average	avg),	for PIF	v 101 ul č , mear	r IIISU II Ning ead	ch occh	uded pi	xel has	a high	1, wau impact	
with	harea attribute	e, and	on (br) l waters																			
												Cat vs.	Dog									
	PIR		Ed	ges	3	Ŀ	B K	66	IX	ť	Salie	ncv	Ede	sa	9		BF	v et	IX	5	Salien	c
			avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
	DDT	CaOC	2.16e-04	2.91e-04	1.73e-02	7.79e-02	5.23e-03	3.59e-02	1.75e-02	8.72e-02	1.62e-04	2.15e-04	1.26e-04	2.26e-04	3.60e-03	2.25e-02	2.58e-03	1.81e-02	3.47e-03	2.17e-02 1	30e-04 2	.63e-04
	DLI	Occ	2.26e-04	3.32e-04	2.93e-03	3.24e-02	8.64e-04	1.60e-02	3.71e-03	4.11e-02	1.65e-04	2.25e-04	1.03e-04	1.81e-04	1.49e-03	1.39e-02	1.18e-03	8.90e-03	1.79e-03	1.79e-02 1	.04e-04 2	38e-04
200	Watershed area	CaOC	6.46e-04	1.05e-03	5.43e-04	7.83e-04	6.15e-04	9.65e-04	5.48e-04	7.56e-04	5.69e-04	8.33e-04	3.02e-04	5.17e-04	3.34e-04	5.25e-04	3.62e-04	6.36e-04	3.57e-04	5.56e-04 3	.13e-04 4	l.91e-04
007		Occ	6.33e-04	1.11e-03	4.16e-04	5.01e-04	4.69e-04	7.79e-04	4.34e-04	5.49e-04	4.62e-04	6.98e-04	2.63e-04	4.58e-04	3.35e-04	5.32e-04	2.90e-04	4.50e-04	3.30e-04	4.80e-04 2	.96e-04 4	l.62e-04
	Watershed volume	CaOC	6.17e-04	1.09e-03	5.33e-04	8.06e-04	5.41e-04	9.04e-04	5.55e-04	8.54e-04	4.17e-04	5.97e-04	2.94e-04	5.11e-04	3.36e-04	5.69e-04	3.61e-04	6.90e-04	3.82e-04	5.79e-04 2	83e-04 5	6.08e-04
		Occ	5.31e-04	1.02e-03	4.02e-04	4.88e-04	4.66e-04	6.96e-04	4.35e-04	7.50e-04	4.06e-04	6.97e-04	2.34e-04	3.96e-04	3.30e-04	5.75e-04	2.84e-04	5.67e-04	3.28e-04	5.03e-04 2	.39e-04	
	DDT	CaOC	2.01e-04	2.62e-04	1.43e-02	6.83e-02	1.93e-03	1.73e-02	1.49e-02	7.99e-02	1.62e-04	2.17e-04	1.07e-04	1.67e-04	2.08e-03	1.73e-02	1.38e-03	1.24e-02	3.27e-03	2.23e-02 9	.35e-05 1	.35e-04
	I IO	Occ	2.22e-04	3.22e-04	2.82e-03	3.27e-02	3.42e-04	3.15e-03	2.07e-03	2.73e-02	1.75e-04	2.40e-04	9.79e-05	1.63e-04	3.04e-04	3.29e-03	1.23e-03	7.41e-03	1.72e-03	1.78e-02 9	.74e-05 2	.07e-04
200	Wetnehod amo	CaOC	4.60e-04	6.14e-04	4.08e-04	5.48e-04	4.57e-04	6.28e-04	4.60e-04	5.98e-04	4.43e-04	5.85e-04	2.72e-04	4.83e-04	2.89e-04	4.54e-04	2.87e-04	4.23e-04	2.75e-04	4.00e-04 2	57e-04 4	l.06e-04
nne		Occ	4.67e-04	7.36e-04	3.62e-04	4.39e-04	4.11e-04	5.70e-04	4.00e-04	4.89e-04	4.08e-04	6.17e-04	2.05e-04	3.44e-04	2.61e-04	4.20e-04	2.33e-04	3.31e-04	2.58e-04	3.59e-04 2	.19e-04 3	.33e-04
	Watershed volume	CaOC	4.30e-04	6.09e-04	4.05e-04	5.25e-04	4.48e-04	7.33e-04	4.40e-04	6.06e-04	3.83e-04	5.51e-04	2.55e-04	4.51e-04	2.85e-04	4.80e-04	2.77e-04	5.02e-04	2.90e-04	3.86e-04 2	.14e-04 3	.11e-04
		Occ	4.34e-04	7.04e-04	3.58e-04	4.39e-04	4.16e-04	6.69e-04	3.86e-04	6.18e-04	3.20e-04	4.23e-04	2.08e-04	3.71e-04	2.41e-04	4.30e-04	2.21e-04	4.21e-04	2.52e-04	3.91e-04 1	95e-04 3	6.24e-04
	RPT	CaOC	1.90e-04	2.72e-04	1.07e-02	6.12e-02	1.92e-03	1.35e-02	1.32e-02	7.72e-02	1.60e-04	2.06e-04	9.56e-05	1.26e-04	1.46e-03	1.12e-02	1.58e-03	1.31e-02	2.47e-03	1.99e-02 9	27e-05 1	.26e-04
		Occ	2.23e-04	3.41e-04	2.63e-03	3.24e-02	3.78e-04	3.03e-03	1.22e-03	1.76e-02	1.82e-04	2.43e-04	9.51e-05	1.35e-04	4.84e-04	3.89e-03	1.39e-03	8.44e-03	1.43e-03	1.73e-02 9	.03e-05 1	.87e-04
400	Watershed area	CaOC	4.07e-04	5.23e-04	3.59e-04	4.40e-04	3.87e-04	4.51e-04	3.87e-04	4.85e-04	3.74e-04	4.38e-04	2.24e-04	3.32e-04	2.58e-04	4.20e-04	2.55e-04	3.92e-04	2.57e-04	3.37e-04 2	40e-04 3	6.48e-04
2		Occ	4.06e-04	6.05e-04	3.44e-04	4.25e-04	3.70e-04	4.66e-04	3.56e-04	4.29e-04	3.34e-04	4.23e-04	1.87e-04	3.01e-04	2.33e-04	3.98e-04	2.10e-04	3.22e-04	2.27e-04	3.35e-04 2	.02e-04 3	6.27e-04
	Watershed volume	CaOC	3.81e-04	5.50e-04	3.43e-04	4.40e-04	3.66e-04	4.59e-04	3.80e-04	4.43e-04	3.09e-04	3.67e-04	2.21e-04	3.30e-04	2.57e-04	4.36e-04	2.68e-04	4.70e-04	2.67e-04	3.62e-04 1	.88e-04 2	58e-04
		Occ	3.59e-04	4.74e-04	3.33e-04	4.00e-04	3.51e-04	4.57e-04	3.47e-04	5.85e-04	2.88e-04	3.36e-04	1.75e-04	2.76e-04	2.25e-04	4.40e-04	1.91e-04	3.58e-04	2.13e-04	3.38e-04 1	.76e-04 3	.08e-04
	RPT	CaOC	1.86e-04	2.71e-04	9.72e-03	5.64e-02	1.30e-03	9.98e-03	1.16e-02	7.14e-02	1.45e-04	1.30e-04	9.20e-05	1.16e-04	1.30e-03	1.07e-02	1.47e-03	1.25e-02	1.91e-03	1.73e-02 8	59e-05 1	.11e-04
		Occ	2.12e-04	3.13e-04	2.64e-03	3.24e-02	3.78e-04	3.03e-03	2.29e-03	3.22e-02	1.65e-04	1.76e-04	8.66e-05	1.07e-04	2.64e-04	2.32e-03	8.62e-04	5.83e-03	9.64e-04	1.44e-02 7	.79e-05 8	8.43e-05
200	Waterchad area	CaOC	3.61e-04	4.70e-04	3.04e-04	3.48e-04	3.67e-04	4.44e-04	3.30e-04	3.86e-04	3.34e-04	3.94e-04	1.92e-04	2.86e-04	2.26e-04	3.09e-04	2.11e-04	2.99e-04	2.35e-04	3.13e-04 2	.03e-04 2	70e-04
200		Occ	3.66e-04	5.30e-04	3.10e-04	3.61e-04	3.45e-04	4.40e-04	3.29e-04	3.71e-04	3.18e-04	3.28e-04	1.69e-04	2.52e-04	2.11e-04	3.05e-04	1.80e-04	2.46e-04	2.13e-04	3.10e-04 1	.68e-04 2	
	Watershed volume	CaOC	3.50e-04	5.09e-04	2.92e-04	3.11e-04	3.26e-04	4.08e-04	3.43e-04	3.94e-04	2.74e-04	3.40e-04	1.97e-04	2.99e-04	2.27e-04	3.27e-04	2.20e-04	3.36e-04	2.43e-04	3.25e-04 1	84e-04 2	.47e-04
		Occ	3.21e-04	4.17e-04	3.14e-04	3.75e-04	3.22e-04	3.98e-04	3.21e-04	3.97e-04	2.89e-04	3.43e-04	1.62e-04	2.60e-04	1.93e-04	3.08e-04	1.61e-04	2.53e-04	2.02e-04	3.17e-04 1	57e-04 2	71e-04

opagati ute, anc																				
										CIFA	R10									
					Ŋ	5G									Res	Net				
	Eds	es	I	G	B	Ρ	IX	G	Salie	ncy	Edg	set	IC		B	4	IX	G	Salie	ncy
	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
CaOC	8.92e-03	1.90e-02	2.04e-01	3.87e-01	1.94e-01	3.87e-01	1.92e-01	3.56e-01	3.06e-02	6.51e-02	1.12e-02	2.09e-02	2.38e-01	3.78e-01	1.94e-01	3.52e-01	2.26e-01	3.68e-01	3.11e-02	5.15e-02
Occ	1.14e-02	2.06e-02	1.33e-01	4.93e-01	1.10e-01	4.34e-01	1.35e-01	5.10e-01	2.01e-02	4.91e-02	1.15e-02	2.00e-02	1.64e-01	4.96e-01	1.18e-01	4.14e-01	1.62e-01	4.99e-01	2.03e-02	3.54e-02
CaOC	1.64e-02	3.61e-02	7.94e-02	1.36e-01	8.56e-02	1.45e-01	7.86e-02	1.34e-01	7.42e-02	1.37e-01	1.94e-02	3.41e-02	6.37e-02	1.03e-01	6.37e-02	1.03e-01	6.33e-02	1.03e-01	6.01e-02	9.98e-02
Occ	1.85e-02	3.77e-02	9.70e-02	1.66e-01	9.65e-02	1.71e-01	9.22e-02	1.60e-01	8.97e-02	1.54e-01	2.00e-02	3.46e-02	6.47e-02	1.08e-01	6.29e-02	1.08e-01	6.47e-02	1.09e-01	6.37e-02	1.05e-01
CaOC	1.67e-02	3.69e-02	7.08e-02	1.20e-01	7.63e-02	1.28e-01	7.17e-02	1.23e-01	6.49e-02	1.20e-01	1.91e-02	3.39e-02	5.84e-02	9.73e-02	5.79e-02	9.37e-02	6.07e-02	9.97e-02	5.47e-02	9.33e-02
Occ	1.79e-02	3.72e-02	9.41e-02	1.67e-01	9.39e-02	1.72e-01	9.08e-02	1.58e-01	8.21e-02	1.46e-01	1.94e-02	3.45e-02	6.21e-02	1.03e-01	6.25e-02	1.05e-01	6.40e-02	1.06e-01	5.74e-02	9.44e-02
CaOC	2.74e-03	7.32e-03	1.06e-01	3.00e-01	1.01e-01	3.00e-01	1.07e-01	3.06e-01	9.35e-03	1.43e-02	3.49e-03	8.13e-03	1.36e-01	3.29e-01	1.02e-01	2.71e-01	1.26e-01	3.21e-01	1.14e-02	1.56e-02
Occ	6.67e-03	9.48e-03	9.94e-02	4.34e-01	8.11e-02	3.77e-01	9.90e-02	4.38e-01	1.51e-02	1.80e-02	6.62e-03	1.00e-02	9.70e-02	3.91e-01	6.95e-02	3.09e-01	1.02e-01	4.06e-01	1.55e-02	1.75e-02
CaOC	1.44e-02	2.80e-02	2.92e-02	4.60e-02	3.05e-02	4.81e-02	2.97e-02	4.70e-02	2.92e-02	4.73e-02	1.74e-02	2.85e-02	3.05e-02	3.91e-02	2.97e-02	3.95e-02	3.06e-02	3.95e-02	3.03e-02	3.99e-02
Occ	1.73e-02	2.99e-02	4.02e-02	5.16e-02	3.86e-02	5.13e-02	4.01e-02	5.06e-02	4.14e-02	5.31e-02	1.88e-02	3.06e-02	3.66e-02	4.37e-02	3.49e-02	4.26e-02	3.68e-02	4.29e-02	3.73e-02	4.29e-02
CaOC	1.44e-02	2.78e-02	2.85e-02	4.62e-02	2.76e-02	4.47e-02	2.94e-02	4.58e-02	2.65e-02	4.38e-02	1.70e-02	2.84e-02	2.91e-02	3.90e-02	2.86e-02	3.84e-02	3.02e-02	3.92e-02	2.83e-02	3.75e-02
Occ	1.67e-02	2.94e-02	3.81e-02	5.04e-02	3.67e-02	5.03e-02	3.93e-02	5.05e-02	3.72e-02	4.97e-02	1.81e-02	2.94e-02	3.55e-02	4.24e-02	3.48e-02	4.32e-02	3.64e-02	4.23e-02	3.47e-02	4.05e-02
CaOC	9.45e-04	3.75e-03	6.20e-02	2.33e-01	5.91e-02	2.35e-01	6.72e-02	2.48e-01	4.69e-03	8.17e-03	1.34e-03	4.39e-03	8.33e-02	2.68e-01	6.43e-02	2.28e-01	8.73e-02	2.84e-01	5.45e-03	8.49e-03
Occ	4.00e-03	6.38e-03	6.25e-02	3.46e-01	5.66e-02	3.13e-01	6.23e-02	3.48e-01	1.11e-02	1.08e-02	4.06e-03	6.66e-03	5.69e-02	3.00e-01	4.76e-02	2.57e-01	6.58e-02	3.31e-01	1.09e-02	1.02e-02
CaOC	1.02e-02	1.88e-02	1.66e-02	2.44e-02	1.62e-02	2.41e-02	1.64e-02	2.32e-02	1.65e-02	2.37e-02	1.23e-02	1.98e-02	1.85e-02	2.24e-02	1.75e-02	2.17e-02	1.88e-02	2.28e-02	1.89e-02	2.31e-02
Occ	1.41e-02	2.12e-02	2.57e-02	2.78e-02	2.47e-02	2.75e-02	2.55e-02	2.66e-02	2.71e-02	2.90e-02	1.53e-02	2.20e-02	2.50e-02	2.54e-02	2.33e-02	2.48e-02	2.54e-02	2.58e-02	2.63e-02	2.63e-02
CaOC	1.01e-02	1.87e-02	1.60e-02	2.36e-02	1.55e-02	2.36e-02	1.65e-02	2.37e-02	1.55e-02	2.32e-02	1.22e-02	1.98e-02	1.81e-02	2.25e-02	1.73e-02	2.20e-02	1.88e-02	2.31e-02	1.78e-02	2.24e-02
Occ	1.36e-02	2.03e-02	2.50e-02	2.76e-02	2.39e-02	2.75e-02	2.55e-02	2.68e-02	2.48e-02	2.75e-02	1.49e-02	2.15e-02	2.48e-02	2.57e-02	2.36e-02	2.54e-02	2.58e-02	2.62e-02	2.45e-02	2.50e-02
CaOC	2.74e-04	1.57e-03	3.06e-02	1.59e-01	2.57e-02	1.54e-01	3.14e-02	1.59e-01	1.66e-03	4.27e-03	5.26e-04	2.09e-03	4.34e-02	1.96e-01	3.30e-02	1.74e-01	4.71e-02	2.09e-01	2.01e-03	4.47e-03
Occ	2.33e-03	4.46e-03	2.80e-02	2.31e-01	2.93e-02	2.18e-01	2.81e-02	2.36e-01	6.56e-03	7.59e-03	2.45e-03	4.60e-03	2.88e-02	2.08e-01	2.66e-02	1.91e-01	3.51e-02	2.38e-01	6.63e-03	7.37e-03
CaOC	4.73e-03	1.02e-02	9.20e-03	1.32e-02	8.43e-03	1.27e-02	9.47e-03	1.30e-02	1.02e-02	1.41e-02	5.56e-03	1.05e-02	9.88e-03	1.21e-02	9.23e-03	1.18e-02	1.03e-02	1.26e-02	1.06e-02	1.32e-02
Occ	9.55e-03	1.30e-02	1.69e-02	1.56e-02	1.62e-02	1.50e-02	1.75e-02	1.56e-02	1.82e-02	1.66e-02	9.51e-03	1.27e-02	1.63e-02	1.40e-02	1.53e-02	1.39e-02	1.65e-02	1.42e-02	1.72e-02	1.53e-02
CaOC	4.65e-03	1.01e-02	9.23e-03	1.30e-02	8.38e-03	1.23e-02	9.64e-03	1.33e-02	9.16e-03	1.31e-02	5.46e-03	1.04e-02	1.02e-02	1.24e-02	9.66e-03	1.22e-02	1.05e-02	1.28e-02	9.71e-03	1.25e-02
Occ	9.32e-03	1.26e-02	1.69e-02	1.56e-02	1.59e-02	1.54e-02	1.76e-02	1.58e-02	1.67e-02	1.57e-02	9.33e-03	1.25e-02	1.63e-02	1.42e-02	1.55e-02	1.43e-02	1.68e-02	1.44e-02	1.62e-02	1.47e-02
õ	2	c 9.32e-03	c 9.32e-03 1.26e-02	c 9.32e-03 1.26e-02 1.69e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.76e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.76e-02 1.58e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.76e-02 1.58e-02 1.67e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.76e-02 1.58e-02 1.67e-02 1.57e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.76e-02 1.58e-02 1.57e-02 1.57e-02 9.33e-03	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.76e-02 1.58e-02 1.57e-02 1.57e-02 9.33e-03 1.25e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.59e-02 1.54e-02 1.54e-02 1.57e-02 1.57e-02 1.57e-02 9.33e-03 1.25e-02 1.63e-02	c 9.32e-03 1.26e-02 1.69e-02 1.56e-02 1.54e-02 1.54e-02 1.56e-02 1.57e-02 1.67e-02 1.57e-02 9.33e-03 1.55e-02 1.63e-02 1.42e-02	c 9.32e-03 1.26e-02 1.69e-02 1.59e-02 1.54e-02 1.54e-02 1.58e-02 1.58e-02 1.57e-02 1.57e-02 9.33e-03 1.25e-02 1.42e-02 1.42e-02 1.55e-02	c 9.32e-03 1.26e-02 1.56e-02 1.56e-02 1.54e-02 1.54e-02 1.58e-02 1.57e-02 1.57e-02 1.57e-02 9.33e-03 1.25e-02 1.53e-02 1.55e-02 1.43e-02	c 9.33e-03 1.26e-02 1.69e-02 1.59e-02 1.59e-02 1.54e-02 1.58e-02 1.58e-02 1.57e-02 1.57e-02 5.3e-03 1.25e-02 1.53e-02 1.55e-02 1.53e-02 1.58e-02 1.58e-02	c 9.33e-03 126e-02 169e-02 1.59e-02 1.59e-02 1.58e-02 1.58e-02 1.58e-02 1.57e-02 1.57e-02 1.57e-02 1.57e-02 1.53e-03 1.25e-02 1.45e-02 1.45e-02 1.44e-02 1.44e-02	c 9.32e-03 126e-02 1.69e-02 1.59e-02 1.54e-02 1.54e-02 1.58e-02 1.67e-02 1.57e-02 5.7e-02 9.33e-03 1.25e-02 1.43e-02 1.54e-02 1.54e-02 1.44e-02 1.54e-02 1.54e

Table metric mask. and G with v	We tested hierarchies uided-Backpropagatic olume attribute. We e	-												
								Imag	genet					
	PIR				Ŋ	Ð					Res	Net		
			Ed	ges	Ĭ	ť	B		Ed	ges	I	5	B	
			avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
	BPT	CaOC	7.20e-04 5 83e-04	1.08e-03 8 19e-04	1.12e-02 1 85e-03	7.68e-02	1.43e-02 4 51e-03	7.37e-02 3.43e-02	6.76e-04 5 13e-04	9.63e-04 7 27e-04	9.66e-03 1 30e-03	5.60e-02 1 35e-02	1.19e-02 3.75e-03	5.15e-02 235e-02
000		CaOC	2.15e-03	3.63e-03	3.07e-03	4.29e-03	2.76e-03	4.07e-03	1.78e-03	2.77e-03	2.48e-03	3.12e-03	2.11e-03	2.80e-03
200	Watershed area	000	1.97e-03	3.36e-03	3.04e-03	4.00e-03	2.67e-03	3.74e-03	1.67e-03	2.58e-03	2.46e-03	2.88e-03	2.04e-03	2.55e-03
	Wotonchod wolland	CaOC	1.97e-03	3.40e-03	2.85e-03	4.16e-03	2.58e-03	3.92e-03	1.67e-03	2.65e-03	2.33e-03	3.06e-03	1.95e-03	2.74e-03
	watersheu volulile	Occ	1.74e-03	3.09e-03	2.96e-03	3.90e-03	2.75e-03	3.69e-03	1.49e-03	2.40e-03	2.39e-03	2.79e-03	2.05e-03	2.52e-03
	врт	CaOC	5.63e-04	8.29e-04	8.18e-03	6.40e-02	1.11e-02	6.01e-02	5.26e-04	7.45e-04	7.31e-03	4.88e-02	9.30e-03	4.51e-02
	DFI	Occ	5.16e-04	6.70e-04	9.02e-04	1.48e-02	4.34e-03	3.24e-02	4.54e-04	5.93e-04	7.61e-04	9.12e-03	3.09e-03	2.17e-02
300	Watarchad araa	CaOC	1.65e-03	2.54e-03	2.27e-03	2.97e-03	2.07e-03	2.84e-03	1.47e-03	2.11e-03	2.01e-03	2.43e-03	1.70e-03	2.15e-03
	water sheu area	Occ	1.52e-03	2.35e-03	2.22e-03	2.75e-03	1.98e-03	2.62e-03	1.39e-03	1.99e-03	1.99e-03	2.24e-03	1.64e-03	2.01e-03
	Watanchad valuma	CaOC	1.52e-03	2.38e-03	2.10e-03	2.90e-03	1.92e-03	2.71e-03	1.38e-03	2.02e-03	1.90e-03	2.37e-03	1.58e-03	2.12e-03
	watershen volume	Occ	1.35e-03	2.16e-03	2.14e-03	2.68e-03	2.02e-03	2.58e-03	1.25e-03	1.85e-03	1.92e-03	2.17e-03	1.65e-03	1.95e-03
	ЪТ	CaOC	4.57e-04	6.86e-04	6.42e-03	5.48e-02	9.36e-03	5.30e-02	4.21e-04	6.06e-04	5.98e-03	4.32e-02	7.55e-03	4.08e-02
	1 10	Occ	4.67e-04	5.82e-04	5.00e-04	1.03e-02	4.14e-03	3.23e-02	4.08e-04	5.05e-04	4.55e-04	6.85e-03	2.75e-03	2.03e-02
400	Watershed area	CaOC	1.35e-03	1.96e-03	1.81e-03	2.25e-03	1.68e-03	2.18e-03	1.26e-03	1.74e-03	1.70e-03	1.99e-03	1.45e-03	1.78e-03
2		000	1.27e-03	1.84e-03	1.78e-03	2.12e-03	1.61e-03	2.02e-03	1.20e-03	1.62e-03	1.69e-03	1.88e-03	1.39e-03	1.64e-03
	Watershed volume	CaOC	1.25e-03	1.85e-03	1.69e-03	2.19e-03	1.56e-03	2.12e-03	1.18e-03	1.66e-03	1.62e-03	1.97e-03	1.35e-03	1.76e-03
		Occ	1.14e-03	1.69e-03	1.71e-03	2.04e-03	1.61e-03	1.98e-03	1.08e-03	1.52e-03	1.63e-03	1.81e-03	1.39e-03	1.61e-03
	RDT	CaOC	3.75e-04	5.76e-04	3.13e-04	8.14e-03	7.97e-03	4.78e-02	3.44e-04	5.07e-04	3.07e-04	6.29e-03	3.67e-03	3.14e-02
	1 177	Occ	4.25e-04	5.20e-04	5.34e-03	4.88e-02	7.91e-03	4.75e-02	3.69e-04	4.42e-04	5.12e-03	3.96e-02	6.23e-03	3.67e-02
200	Watershad area	CaOC	1.16e-03	1.60e-03	1.54e-03	1.83e-03	1.41e-03	1.77e-03	1.10e-03	1.47e-03	1.46e-03	1.66e-03	1.25e-03	1.51e-03
8	Match Silva al va	Occ	1.10e-03	1.50e-03	1.52e-03	1.72e-03	1.37e-03	1.65e-03	1.05e-03	1.39e-03	1.46e-03	1.58e-03	1.22e-03	1.38e-03
	Watershed volume	CaOC	1.07e-03	1.51e-03	1.44e-03	1.78e-03	1.31e-03	1.72e-03	1.02e-03	1.39e-03	1.40e-03	1.64e-03	1.17e-03	1.15e-03
		0 0	9.84e-04	1.38e-03	1.46e-03	1.66e-03	1.34e-03	1.58e-03	9.48e-04	1.30e-03	1.42e-03	1.54e-03	1.20e-03	1.36e-03

Table 11: Percentage of images with the original class changed after the **inclusion** (exclusively) of selected explanation regions for Cat vs. Dog dataset. Highlighted in blue are the configurations presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels, segmentation based on Edges, Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradients (I X G) and Saliency. We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute. We expect smaller rate values of class change.

_							Coty	Dog				
	% of images		VGG ResNet									
			Edges	IG	BP	IXG	Saliency	Edges	IG	BP	IXG	Saliency
	DDT	CaOC	0.16	0.49	0.38	0.49	0.37	0.22	0.45	0.28	0.47	0.35
	DFI	Occ	0.11	0.18	0.04	0.24	0.11	0.19	0.40	0.18	0.43	0.31
200	Watershed eree	CaOC	0.30	0.45	0.39	0.46	0.42	0.34	0.47	0.43	0.45	0.49
200	water sheu area	Occ	0.22	0.22	0.26	0.24	0.31	0.30	0.49	0.41	0.49	0.52
	Watershed volume	CaOC	0.27	0.44	0.43	0.50	0.45	0.34	0.47	0.49	0.46	0.50
	water she volume	Occ	0.24	0.30	0.36	0.28	0.29	0.30	0.50	0.46	0.47	0.50
	BPT	CaOC	0.19	0.49	0.37	0.49	0.36	0.22	0.49	0.28	0.49	0.30
	DII	Occ	0.10	0.27	0.05	0.35	0.10	0.17	0.46	0.22	0.48	0.25
300	Watershed area Watershed volume	CaOC	0.30	0.43	0.39	0.44	0.43	0.33	0.46	0.40	0.44	0.47
		Occ	0.18	0.20	0.25	0.24	0.29	0.24	0.46	0.40	0.43	0.47
		CaOC	0.28	0.45	0.43	0.45	0.45	0.31	0.46	0.46	0.45	0.46
		Occ	0.21	0.29	0.34	0.27	0.29	0.25	0.49	0.45	0.45	0.45
	BPT	CaOC	0.21	0.49	0.39	0.49	0.36	0.22	0.50	0.29	0.50	0.29
		Occ	0.10	0.34	0.07	0.40	0.11	0.18	0.48	0.25	0.49	0.27
400	Watershed area	CaUC	0.20	0.41	0.38	0.44	0.42	0.31	0.47	0.38	0.44	0.46
			0.17	0.19	0.21	0.22	0.29	0.24	0.45	0.30	0.40	0.43
	Watershed volume		0.27	0.44	0.45	0.40	0.43	0.33	0.47	0.45	0.47	0.40
			0.19	0.20	0.30	0.28	0.28	0.22	0.47	0.41	0.44	0.43
	BPT		0.20	0.49	0.41	0.49	0.33	0.22	0.30	0.31	0.50	0.29
		CaOC	0.08	0.38	0.11	0.43	0.12	0.10	0.49	0.29	0.30	0.20
500	Watershed area		0.20	0.19	0.27	0.22	0.41	0.32	0.43	0.33	0.41	0.40
		CaOC	0.17	0.19	0.42	0.22	0.28	0.23	0.44	0.32	0.45	0.42
	Watershed volume		0.23	0.45	0.42	0.74	0.42	0.32	0.44	0.42	0.42	0.43
		ou	0.17	0.20	0.51	0.20	0.27	0.22	0.45	0.57	0.42	0.41

Table 12: Percentage of images with the original class changed after the **inclusion** (exclusively) of selected explanation regions for CIFAR10 dataset. Highlighted in blue are the configurations presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than 4, 16, 32 and 64 pixels, segmentation based on Edges, Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradients (I X G) and Saliency. We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute. We expect smaller rate values of class change.

	% of images			CIFAR10									
				VGG					ResNet				
				Edges	IG	BP	I X G	Saliency	Edges	IG	BP	IXG	Saliency
		врт	CaOC	0.79	0.86	0.87	0.87	0.86	0.81	0.86	0.86	0.87	0.86
		<i>D</i> 11	Occ	0.44	0.38	0.45	0.30	0.66	0.51	0.46	0.53	0.41	0.70
	4	Watershed area	CaOC	0.80	0.89	0.88	0.89	0.88	0.83	0.88	0.87	0.88	0.88
	-	i attraction of the the	Occ	0.55	0.81	0.81	0.81	0.81	0.59	0.81	0.79	0.80	0.80
		Watershed volume	CaOC	0.80	0.89	0.88	0.89	0.88	0.83	0.88	0.88	0.88	0.88
			Occ	0.53	0.82	0.82	0.81	0.80	0.58	0.81	0.80	0.81	0.79
		ВРТ	CaOC	0.83	0.85	0.86	0.87	0.83	0.86	0.86	0.85	0.87	0.83
16		211	Occ	0.54	0.41	0.43	0.44	0.60	0.61	0.51	0.54	0.54	0.63
	16	Watershed area Watershed volume	CaOC	0.80	0.87	0.87	0.87	0.87	0.83	0.87	0.86	0.87	0.87
			Occ	0.54	0.77	0.76	0.77	0.77	0.59	0.78	0.76	0.77	0.77
			CaOC	0.80	0.87	0.87	0.87	0.86	0.83	0.87	0.87	0.87	0.86
			Occ	0.53	0.78	0.78	0.77	0.76	0.58	0.78	0.77	0.77	0.76
		BPT	CaOC	0.87	0.87	0.87	0.88	0.83	0.89	0.88	0.85	0.89	0.81
	-		Occ	0.62	0.59	0.52	0.62	0.61	0.68	0.64	0.60	0.68	0.62
-	32	Watershed area	CaUC	0.80	0.85	0.85	0.80	0.85	0.83	0.85	0.85	0.80	0.86
			Occ	0.53	0.73	0.73	0.73	0.74	0.59	0.74	0.72	0.74	0.74
		Watershed volume	Cauc	0.79	0.86	0.85	0.80	0.85	0.83	0.85	0.85	0.86	0.85
				0.52	0.75	0.75	0.74	0.72	0.58	0.75	0.75	0.75	0.73
		BPT	CaUC	0.89	0.89	0.88	0.89	0.86	0.90	0.89	0.87	0.90	0.86
	-		CoOC	0.71	0.74	0.00	0.77	0.07	0.75	0.77	0.72	0.79	0.69
(64	Watershed area	CaUC	0.80	0.84	0.85	0.85	0.85	0.85	0.85	0.82	0.84	0.85
			CoOC	0.54	0.08	0.67	0.08	0.71	0.61	0.69	0.07	0.08	0.71
		Watershed volume		0.80	0.84	0.84	0.83	0.85	0.84	0.85	0.85	0.85	0.85
			UCC	0.54	0.71	0.73	0.70	0.09	0.01	0.71	0.72	0.70	0.69

1190

1191

1192

1193

1194

1195 1196

1197

1198

1199

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1222

1223

1224

1225

1226

120

Table 13: Percentage of images with the original class changed after the inclusion (exclusively) of selected explanation regions for Imagenet dataset. Highlighted in blue are the configurations presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels, segmentation based on Edges, Integrated Gradients (IG), and Guided-Backpropagation (BP). We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute. We expect smaller rate values of class change.

Imagenet ResNet % of images VGG Edges IG BP Edges IG BP CaOC 0.95 1.00 0.97 0.96 1.00 0.98 BPT Occ 0.72 0.69 0.51 0.74 0.57 0.50 CaOC 0.98 0.99 0.98 0.98 0.99 0.99 200 Watershed area 0.92 0.93 0.91 0.93 0.94 0.90 Occ CaOC 0.98 0.99 0.99 0.98 0.99 0.99 Watershed volume 0.91 0.97 0.97 0.92 0.96 0.96 Occ 0.94 0.97 0.95 0.98 CaOC 1.00 1.00 BPT Occ 0.72 0.82 0.55 0.74 0.72 0.55 0.99 0.97 0.98 0.98 CaOC 0.980.98 300 Watershed area Occ 0.92 0.93 0.90 0.92 0.94 0.90 CaOC 0.97 0.99 0.99 0.97 0.99 0.99 Watershed volume 0.91 0.91 0.96 0.96 0.96 0.96 Occ 0.98 CaOC 0.94 1.00 0.97 0.95 1.00 BPT 0.73 0.59 0.75 Occ 0.88 0.81 0.60 CaOC 0.97 0.98 0.97 0.97 0.99 0.98 400 Watershed area 0.93 0.91 0.90 0.92 0.93 0.89 Occ CaOC 0.97 0.99 0.98 0.97 0.99 0.99 Watershed volume Occ 0.90 0.96 0.96 0.91 0.96 0.96 CaOC 0.94 0.92 0.98 0.94 0.86 0.98 BPT 0.75 Occ 074 1.00 0.63 1.000.63 CaOC 0.96 0.98 0.97 0.97 0.99 0.98 500 Watershed area Occ 0.90 0.92 0.89 0.91 0.93 0.89 CaOC 0.98 0.98 0.97 0.99 0.96 0.98 Watershed volume Occ 0.89 0.96 0.96 0.90 0.96 0.96

1236

1237

1238

1239 1240

Figure 5: Softmax (a,c) and Accuracy (b,d) when including regions filtered by different percentage thresholds of most important scores, for VGG16 (a,b) and ResNet-18 (c,d) models. We evaluate each threshold as a hierarchy level in eight configurations of xAiTrees (C1 and C2), in a bottomup approach (from smaller highly important regions to the bigger structures). We compare these configurations to the baselines: LIME, XRAI, Grad-CAM, Ms-IV, and Occlusion, by filtering the maps using the same threshold. The curves are an aggregation by the average of 1,000 randomly selected images from Imagenet dataset. AUC values are included in the graphs. BP-TreeB-Occ and BP-TreeB-CaOC considerably surpassed the other curves. However, we notice a good early behavior of the methods except for Grad-CAM, Ms-IV and Occlusion.

Figure 6: Softmax (a,c) and Accuracy (b,d) when including regions filtered by different percentage thresholds of most important scores, for VGG16 (a,b) and ResNet-18 (c,d) models. We evaluate each threshold as a hierarchy level in eight configurations of *xAiTrees* (C1 and C2), in a bottomup approach (from smaller highly important regions to the bigger structures). We compare these configurations to the baselines: LIME, XRAI, Grad-CAM, Ms-IV, and Occlusion, by filtering the maps using the same threshold. The curves are an aggregation by the average of 512 images from Cat vs. Dog dataset. AUC values are included in the graphs.

Time analysis: Table 14 shows the execution times to explain an image (averaged from 100 randomly selected cat vs. dog images). Tree-Occ is a much faster option for providing explanations than SOTA methods such as XRAI. However, the execution time of the xAiTrees framework is related to the choice of scoring method used to assign importance to regions (CaOC, Occ, or LIME), therefore methods such as LIME that take more time to generate explanations will increase the time of xAiTrees, as shown in the Tree-LIME example.

Table 14: Execution times to explain an image (averaged from 100 randomly selected cat vs. dog images).

	T							True D	DD Two D	T W	IC The W
N 10	.00 im	ages	LIME	XRAI	Grad-CAM	Occ.	Ms-IV	Осс	ыр-тгеев Осс	Occ	Occ
VC		Mean	7.87	11.97	0.009	6.65	0.27	0.60	0.65	0.76	1.31
VG	30	Avg.	0.82	1.25	0.0002	2.47	0.03	0.08	0.09	0.10	0.08
Dee	NI-4	Mean	5.64	10.19	0.007	3.41	0.17	0.50	0.57	0.58	0.84
Kes	sinet	Avg.	0.40	1.36	0.0002	0.03	0.07	0.06	0.05	0.06	0.07
			TreeB	BP-TreeB	TreeW	IG-TreeW	TreeB	BP-TreeB	TreeW	IG-TreeW	
			CaOC	CaOC	CaOC	CaOC	LIME	LIME	LIME	LIME	
VC		Mean	0.71	0.81	0.87	1.53	31.91	41.07	49.96	54.98	-
VG	30	Avg.	0.11	0.11	0.13	0.10	7.56	8.24	11.11	3.25	-
Dec	Not	Mean	0.60	0.68	0.73	1.04	19.44	27.01	31.58	44.46	-
Kes	sivet	Avg.	0.08	0.08	0.10	0.07	4.75	3.99	6.99	2.90	-

1404 A.6 QUALITATIVE ANALYSIS 1405

1406 **Models' description:** Table 15 shows the number of images in the train set for three Cat vs. Dog 1407 ResNet18 biased models. For **Bias 1** the biased class is composed of only cats on top of cushions. For **Bias 2** the biased class is composed of only dogs next to grades. For **Bias 3** the biased class 1408 is composed of only cats with humans. We also include the accuracy percentage per class when 1409 predicting a non-biased validation set composed by 5,109 images. 1410

1411 The biased models were trained with initial weights from Imagenet, learning rate 5e-7, cross-entropy 1412 loss, the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

Table 15: Number of images (for a normal and an induced biased class) for training three biased 1414 ResNet18 models. We also present the accuracy of the models when predicting each class image 1415 from a non-biased validation dataset (5,109 images). 1416

	Normal class	Acc. orig. val normal (%)	Bias class	Acc. orig. val bias (%)
Bias 1	138	86.91	69	84.82
Bias 2	85	97.97	56	37.81
Bias 3	161	86.28	46	80.96

Comparison of misclassified images: Considering the hierarchical characteristic of our methodology, we can perform a deeper analysis of the explanations by selecting regions by the percentage of importance to be visualized, as shown in Figure 7. In the last level of the dishwasher example, the model seems to focus on the cat's dish after having focused on the sink (in the previous level).

1443 1444

1445

1446

1447

1449

1413

1424

1425

1426

1427

Figure 7: Different visualization levels on the explanation hierarchy. We illustrate a deeper analysis of the explanations of four images from Figure 1 using Tree-Occ (minimal region size of 500 pixels). We can note the evolution of the importance in the images' shapes, for examples: in the hamper image, although the hamper is the most important, the cat has also an important that disappears at 1448 the more selective level (Tree-Occ 0.75); in the dishwasher the initial explanations show the sink as important but at the most selective level, the cat's dish is the only one remaining. This analysis can be helpful to understand the reasoning behind predictions.

1450 1451

1452 **Human evaluation in bias analysis:** As mentioned on the paper, we used the configuration C1 1453 for human-interpretation evaluation compared to baseline techniques: IG, Grad-CAM, OCC, LIME, 1454 Ms-IV, ACE. We presented the same five image visualizations (from corrected classified images by 1455 the biased class) for the baseline methods and the methods from C1. 1456

The idea was to analyze the impact of the visualizations on people from different backgrounds. 1457 We limited ourselves to people over the age of 18 and recorded their self-identification as expert,

58 59	non-expert, field of expertise, and country. We show some statistics of each group of 41 people that participated in our evaluation.
50 51	Expertise areas:
52	
63	• 48.8% of people from computer science;
64	• 17.1% of people from human sciences;
5	• 19.5% of people from life sciences;
	• 9.8% of people from exact sciences (not in Computer Science);
	• 4.9% of people from none of the above.
	Graduate degree:
	• 20.0% of PhDs;
	• 32.5% of Masters:
	• 30.0% of Bachelor's degree.
	• 17.5% of High school diploma
	Al expertise:
	• 22.0% None;
	• 36.6% Basic;
	• 9.8% Intermediate;
	• 7.3% Advanced;
	• 24.4% Expert (working with AI).
	By presenting five image explanations (the same images) for each of the xAI methodologies, we asked volunteers, based on the explanations provided, what did they think the highlighted regions referred to. The five image explanations are presented in Figure 8 for each Bias type (1-(a), 2-(b), and 3-(c)).
	Here, we display the text provided to the volunteers for this experiment:
	[FORM] Part I - Determining the focus of the images: For each question, we provide two rows of
	images:
	• The first row displays the original images, each representing a specific class.
	• The second row showcases an image for each image from the first row, highlighting the
	important parts for the class.
	[IMPORTANT] What is a class?
	A class refers to a category or type of object, animal, or characteristic depicted in the images. For
	instance, a class of cat images would include images featuring cats, while a class of dog images
	would comprise images featuring dogs. Similarly, a class of cartoon images would include images
	characterized by cartoon-like features. In essence, a class represents a distinct category used to classify and organize images based on their content or characteristics.
	Throughout the questions, our objective is to identify the common important parts present in the
	images of the first row, as indicated by the corresponding images in the second row.
	If no common important parts are identified for most of the images, the answer should be Not
	If no common important parts are identified for most of the images, the answer should be not
	identified.
	And for each method visualization:
	And for each method visualization: For the following three questions, the second row of images displays significant image components to the class of the animal
	And for each method visualization: For the following three questions, the second row of images displays significant image components to the class of the animal. What are the significant components of the images highlighted, as depicted in the second row of

To test ACE similarly as we did with the other methods, we highlight the top five concepts found (described as sufficient in the original ACE paper (Ghorbani et al., 2019)) in the same five selected images. However, we also show the visualizations of the ten most activated images for the top five found concepts in Figure 9. In our final qualitative experiment, using the same methods as the previous human evaluation, we presented four image explanation visualizations for non-biased models to determine xAI model pref-erences. The images are presented in Figure 10. We presented the following explanation and question: [FORM] Part II: Choosing the best representation: For the next questions, you will be asked to answer which image number do you prefer to describe the class we indicate. You should choose the image that seems to highlight class features in an easier way to understand. Which image do you think better shows representative parts of the animal? For the two first images (Figures 10 (a) and (b)), over 70% preferred Tree-Occ and Tree-CaOC over others. For the third image (Figure 10 (c)), IG was preferred by 26.5%, followed by Tree-OCC and Occlusion with 20.6%. Grad-CAM was preferred in the fourth image (Figure 10 (d)), with 60.6%, followed by Tree-CaOC with 18.2%. The visualizations suggest a preference for explanations that highlight the complete concept (cat or dog) rather than focusing on specific small animals' regions.

Figure 8: Explanations of visualizations used on our human-based evaluations for bias detection and identification, of all the ten compared methods: IG, Grad-CAM, OCC, LIME, Ms-IV, ACE, Tree-MsIV, Tree-Occ, IG-Tree-Msiv, and IG-Tree-Occ. We showed the same five image explanations for all the methods.

1620	usies, reverso to
1621	🛋 🚚 🖏 🐲 🛸 🛸 🐳 📥 🦥 🦣 🖉
1622	
1623	
1624	
1625	
1626	
1627	
1628	
1629	
1621	
1632	
1633	🚳 📰 👹 🛤 😻 🖉 🖉 📓 🖉 🖉 🥐 🖉 🖉 🖉 🖉 🖉
1634	
1635	
1636	(a) Cushions (b) Grids
1637	
1638	
1639	
1640	ad 🦓 🧠 🌨 🖉 🖉 🍫 🌉 🦛
1641	
1642	
1643	
1644	
1645	
1646	
1647	
1640	
1650	
1651	
1652	(c) Humans
1653	Figure 9: Original explanations of the top 5 concepts generated by ACE for the three biased models.
1654	Instead of showing the 10 most concepts' activated images we draw these five top concepts on the 5
1655	selected images from Figure 8 to have a fairer comparison with the other methods.
1656	
1657	
1658	
1659	A.7 POSSIBLE ADAPTATIONS OF THE FRAMEWORK
1660	
1661	Regarding the adaptability of the framework for using other xAI methods to score regions, we present
1662	in Table 16 preliminary results of the exclusion of important regions experiment (Section 5 and A.5)
1663	by using LIME in the place of Occlusion and CaOC. The results demonstrate Tree-LIME improves
1665	the class enange under important regions' occlusion for the Cat vs. Dog dataset (compared to Table 1).
C001	variation in all the experiments due to the time consumption (Table 14). However, these preliminary
1667	results demonstrate Tree-LIME can increase the class change (Ch.) reaching higher percentages than
1668	the best configuration presented in the main paper.
1669	Regarding the adaptability of the framework to other tasks such as learning representations, one sug
1670	gestion would be calculating the distance between the two learned representations (original and after
1671	occlusion) to attribute regions' scores instead of verifying the <i>logits</i> different as in classification tasks.
1672	The type of distance applied should be tested. A more sophisticated evaluation of impact (scoring the
1673	hierarchy regions) would be to include a network to quantify the quality of the representation for the
	task at hand.

Figure 10: Explanations of visualizations used on our human-based evaluations for preference analysis, of all the ten compared methods: IG, Grad-CAM, OCC, LIME, Ms-IV, ACE, Tree-MsIV, Tree-Occ, IG-Tree-Msiv, and IG-Tree-Occ. We showed the same five image explanations for all the methods.

Table 16: Percentage of images with the original class changed after the exclusion of selected explanation regions. We tested TreeW, IG-TreeW, TreeB, and BP-TreeB combined to LIME (instead of using occlusion to score regions) in two architectures, VGG-16 and ResNet18, for the Cat vs. Dog dataset. We compare the results of the four configurations to the best configuration using Occlusion (BP-TreeB-Occ) showing the p-score in brackets (Mcnemar test). We expect a higher percentage of class change (Ch.) when the region is excluded. Same column shows images maintaining the original class when the output was reduced, and Total is the sum of class change (Ch.) and class reduction (Same).

1702				A 1	D			
1702				Cat vs	s. Dog			
1703	% of images		VGG		ResNet			
1704		Ch.	Same	Total	Ch.	Same	Total	
1705	TreeW-LIME	0.34 (0.0)	0.64 (0.0)	0.98	0.43 (1.2-4)	0.56 (7.2-10)	0.98	
1706	IG-TreeW-LIME	0.45 (2.2-9)	0.54 (2.7-10)	0.99	0.43 (2.0-4)	0.55 (2.5-9)	0.98	
1707	TreeB -LIME	0.57 (0.05)	0.42 (0.01)	0.98	0.64 (2.3-3)	0.35 (0.34)	0.99	
1708	BP-TreeB-LIME	0.70 (2.2-9)	0.29 (2.7-10)	0.99	0.77 (2.0-4)	0.21 (2.5-9)	0.98	
1709	BP-TreeB-Occ	0.63	0.35	0.98	0.55	0.37	0.92	

Figure 11: Examples of Tree-LIME demonstrating the adaptability of xAiTrees framework.

Concerning other modalities, such as text as input, we could consider a tokenization process as the segmentation. A first idea would be to define a tokenization algorithm that can learn merge rules and use them to construct the segmentation tree. Each node in this tree can be considered a segment. Another idea would be to use grammar rules to define parts of a sentence, such as nouns, verbs, and declinations. However, this approach would be focused on a specific language.