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ABSTRACT

Challenges remain in providing interpretable explanations for neural network
reasoning in explainable AI (xAI). Existing methods like Integrated Gradients
produce noisy maps, and LIME, while intuitive, may deviate from the model’s
reasoning. We introduce a framework that uses hierarchical segmentation tech-
niques for faithful and interpretable explanations of Convolutional Neural Net-
works (CNNs). Our method constructs model-based hierarchical segmentations
that maintain the model’s reasoning fidelity and allow both human-centric and
model-centric segmentation. This approach can be combined with various xAI
methods and provides multiscale explanations that help identify biases and im-
prove understanding of neural network decision-making. Experiments show
that our framework, xAiTrees, delivers highly interpretable and faithful model
explanations, not only surpassing traditional xAI methods but shedding new
light on a novel approach to enhancing xAI interpretability. Code at: https:
//anonymous.4open.science/r/reasoning_with_trees-F3E1.

1 INTRODUCTION

In modern deep learning applications, especially in healthcare and finance, there is a growing need
for transparency and explanation. Understanding a model’s rationale is crucial before relying on
its predictions. This need arises from biases present at various stages of model development and
deployment. While some biases help in learning data distribution (Goyal & Bengio, 2022), others
may indicate data imbalance, incorrect correlations, or prejudices in data collection.

To meet the demand for explanation, Explainable Artificial Intelligence (xAI) provides methods
that clarify models’ decision-making processes. In healthcare, tools like GradCAM (Selvaraju
et al., 2017), which shows heatmaps of important image regions, and LRP (Bach et al., 2015),
which attributes importance to features (pixels), help in understanding deep learning models across
various applications (Borys et al., 2023; Dharshini et al., 2023; Chaddad et al., 2023), including
ultrasound (Born et al., 2021) and X-ray (Abeyagunasekera et al., 2022) imaging. These techniques
were crucial during the recent Covid-19 outbreaks, aiding in the diagnosis process (Lu et al., 2022;
Haghanifar et al., 2022). However, these methods are approximations of model behavior. Different
techniques prioritize either faithfulness to the model’s behavior or human interpretability, posing a
challenge in balancing the two.

Object-structure-based visualizations enhance human interpretation by decomposing images in ways
that mimic human perception, grouping objects by attributes like color, texture, and edges (Hubel
& Wiesel, 1959). Techniques such as LIME (Ribeiro et al., 2016) and KernelSHAP (Lundberg &
Lee, 2017) have used this approach effectively, segmenting images into meaningful parts to improve
interpretability. However, the size of segmented regions affects the information extracted: small
regions can be hard to interpret, while large regions may miss fine details. Additionally, using a
segmentation framework introduces human bias, which aids comprehension but may reduce fidelity
to the model’s actual behavior.

In this paper, we explore the trade-off between explaining Convolutional Neural Networks (CNNs)
with model faithfulness and human interpretability. We introduce a framework that combines hierar-
chical segmentation with region-based explanation methods, creating a human-friendly multiscale
visualization, inspired by the Multiscale Interpretable Visualization (Ms-IV) technique (Rodrigues
et al., 2024). Unlike traditional region-based xAI techniques that segment images into a fixed number
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Figure 1: Explanations of six image classes predicted by VGG-16 and Resnet18 models trained on
ImageNet. We compare well-known xAI method explanations with one configuration of xAiTrees:
Tree-Occ. Methods such as Integrated Gradients are noisy and difficult to interpret. Shapes such as
the grades and the fence seem to be better highlighted by Tree-Occ, which is helpful for interpreta-
tion. When compared to highly interpretable methods like LIME, Tree-Occ avoids the mistake of
highlighting the cat when the models predict classes such as dishwasher, saltshaker, and hamper.

of levels, xAiTrees leverages hierarchical segmentation to maintain varying degrees of abstraction
within object structures. Additionally, to enhance our understanding of human-based segmentation
and its relationship with model knowledge, we propose a model-based segmentation using pixel-wise
xAI methods to reveal the model’s “vision”. Through the experiments with these two approaches —
human-based and model-based hierarchical segmentation explanations — we assess several aspects
of explainability: the fidelity to the model’s behavior, the effectiveness in detecting bias within the
models, and the ease of interpretability. The key contributions of this paper include:

1. A hierarchical segmentation explanation framework aimed at integrating the importance of
multiscale regions in the model’s predictions, xAiTrees;

2. An integrated model-based segmentation approach within the framework xAiTrees, offering
more faithful explanations to the model;

3. A quantitative comparison with established xAI techniques and a qualitative assessment
against human-analysis for bias identification.

In this work, we demonstrate through extensive experimentation and analysis, both quantitative and
qualitative, that our proposed framework significantly enhances explainability and interpretability.
By conducting a comprehensive evaluation and comparison with state-of-the-art xAI visualization
methods, we provide robust evidence that our framework offers superior performance. The results
highlight the efficacy of our approach in making complex models more transparent and understandable,
addressing key challenges in the field of explainable artificial intelligence. We organize the paper
as follows: in Section 2, we present some prior research on xAI. Section 3 outlines the preliminary
concepts used in our framework, while in Section 4 we provide a detailed explanation of our
methodology. In Section 5 we present and discuss our experimental results. Finally, we conclude and
discuss possible future research directions in Section 7.

2 RELATED WORK

Classification problems and xAI: One fundamental task in machine learning is classification. The
basic concept involves working with a training dataset, denoted as DS = (Ii, GTi)i∈[1,NbIm], which
consists of pairs of images Ii and their associated labels GTi. Each label belongs to one of a set of
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classes represented by c ∈ [1,NbClasses]. The goal is to train a model, denoted as Ξ, to effectively
distinguish between different classes within the dataset.

In this configuration, we express Ξ as Ξ = Ξclassif ◦Ξenc , the combination of two elements: an Ξenc ,
responsible for converting each input image Ii into a feature vector, and a Ξclassif , which analyzes
these features to classify the images. The outcome of this process, referred to as the “logit” for image
Ii, is a vector outi ∈ RNbClasses that signifies the activation levels across various classes. Typically,
we apply a Softmax layer to outi to determine the class with the highest activation, ideally aligning
with the ground truth label GTi for perfect classification.

Pixel-wise explanations: In neural networks, optimizing the model Ξ involves the backpropagation
process. Exploiting this process, certain explainable Artificial Intelligence (xAI) methods like
Integrated Gradients (Sundararajan et al., 2017), Guided-Backpropagation (Springenberg et al., 2015),
and Deconvolution (Zeiler & Fergus, 2014) utilize it to identify input features that enhance the
response of a specific class, aiming to maximize the value of a particular position in the output vector
outi. Consequently, attribution maps are generated, illustrating pixel-level explanations, as depicted
in Figure 1 for Integrated Gradients (IG).

Region-based explanations: Additional techniques like Sensitivity Analysis (Zeiler & Fergus,
2014), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017) utilize occlusions of image
regions to assess the network’s sensitivity to each region within an image. These methods provide
explanations at a region level rather than a pixel level, as illustrated in Figure 1 for LIME. More
recently, a region-based technique, XRAI (Kapishnikov et al., 2019), proposed to combine Integrated
Gradients (Sundararajan et al., 2017) and perturbation-based approaches to generate saliency maps as
explanations.

Concept-based explanations: However, many of these techniques focus on explaining individual
samples separately, which limits our understanding of how the model behaves globally across
various scenarios. That is why methods like TCAV (Kim et al., 2018), ACE (Ghorbani et al., 2019),
Explanatory graphs (Zhang et al., 2018), LGNN (Tan et al., 2022), and Ms-IV (Rodrigues et al.,
2024) aim to comprehend the overall behavior of the model. In particular, Ms-IV also considers the
impact of occlusions, not on individual predictions, but on the model’s output space.

3 PRELIMINARIES

To ensure a thorough understanding of the sequel, we provide in this section the general techniques
and metrics employed during this work. In subsection A, we provide a brief overview of the selected
hierarchical segmentation techniques, highlighting their significance. In subsection B, we shortly
present the occlusion-based metrics used in the construction of our methodology.

A. Segmentation techniques: As an important step for our framework, we employ image segmen-
tation algorithms that decompose images into more interpretable structures, enabling better human
understanding and interpretation. We specifically employ hierarchical segmentation techniques due to
their capability to decompose images into multiple levels of detail, from fine to coarse, mirroring how
humans naturally perceive objects: initially observing the overall structure before delving into the
finer details. A hierarchical segmentation algorithm produces a merging tree, that indicates how two
given regions merge. In this paper, we use the tree structures available in the Higra package (Perret
et al., 2019; 2018) : Binary Partition Tree (BPT) and Hierarchical watershed. See details in A.1.

B. Occlusion-based metrics: In this work, we use two metrics to generate our segmentation based
on the model explainability: (i) Occlusion, which is the impact of occluding an image region on its
classification output, and (ii) CaOC which is the intra-class impact of occluding an image region.
For (i), we assess how the output of a model changes when an image region is occluded. For (ii),
we employ a sliding metric that ranks images based on the highest activations for a given class. We
then measure the movement in this ranking after occluding a region of the image, determining the
intra-class impact of the occlusion (detailed in A.2). Although the main experimentation uses these
methods, we present in A.7 a framework’s variation using LIME to show xAiTrees versatility with
other types of xAI techniques. Explanations example in Figure 3 (a).
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Figure 2: Our framework xAiTrees operates through four key steps: 1. Generate a segmentation
hierarchy using either the image’s edge map for human-based segmentation or pixel-wise importance
based on xAI techniques for model-based segmentation. 2. Systematically occlude each region of the
segmentation to evaluate its impact on the model’s decision, obtaining an occlusion attribute for each
region. 3. Assess the persistence of the occlusion attribute using a shaping approach (Xu et al., 2015;
2016). 4. Aggregate the contributions of each region from the highest to the lowest level of the tree
to create a comprehensive multiscale visualization.

4 METHODOLOGY

In this section, we outline our four-step methodology (Figure 2): (1) hierarchical segmentation, (2)
attribute computation, (3) tree shaping, and (4) hierarchical visualization. In step 1, we convert the
data into a hierarchical representation, creating various regions at different scales in the image. In
step 2, we evaluate some xAI-based attributes (B) on the regions. In step 3, we assess the importance
of the region attributes. Finally, in step 4, we explain how to generate a visualization map from the
importance of the attributes.

1. Hierarchical segmentation:

Intuitively, any hierarchical segmentation algorithm works by iteratively merging first the pixels, then
the regions, according to a similarity criterion. In this paper, we test two ways for measuring the
similarity: human-based and model-based.

• The human-based approach relies on the Structured Edge Detection (SED) algorithm (Dollár &
Zitnick, 2014), which captures complex edge patterns and produces precise edge maps, in accordance
with human intuition.
• The model-based approach uses a visual representation of the image’s pixels most influential in
a model’s decision. Although less intuitive for humans, this approach helps to understand how the
model reasons. We test pixel-wise explainable AI methods: Integrated Gradients (IG) (Sundararajan
et al., 2017), Guided-Backpropagation (Springenberg et al., 2015), Input x Gradient (Shrikumar et al.,
2017), and Saliency (Simonyan & Zisserman, 2015) (all from Captum framework). The methods
were chosen for their state-of-the-art, pixel-wise importance attribution.

Using such a similarity criterion, we obtain a hierarchical segmentation, which can be represented as
a tree T, completing the first step of our pipeline. See Figure 2, first column.

2. Attribute computation: The segmentation tree generated in the previous step provides many
segments. We assess the model’s response on each segmented region in the tree, for all regions large
enough. We apply a metric to evaluate the occlusion impact caused by each region. These occlusion
scores reveal the influence of each segmented regions on the model’s output. The metric employed to
assess the impact of regions can be any occlusion-based metric. See Figure 2, second column.
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3. Tree shaping: To assess the importance of the nodes’ attributes, it is not enough to simply take the
regions with the highest attributes: there are too many of them. Instead, we rely on a process called
shaping (Xu et al., 2015; 2016). The main idea is to look at the undirected, vertices-weighted graph
G, whose vertices are the node of T, whose edges are formed by the parent-children relationship in
T, and whose weights are the attributes of the nodes. We now look at the level-sets of G. A vertex
of G (a node of T) is important according to its persistence in the level sets of G. More precisely, a
connected component is born when a local maximum of the attribute appear; when two connected
components merge, one of the two maxima disappear, and the time of life of this maximum is its
persistence. We can compute such persistence by building a new tree T’ on G, T’ is the tree of all the
connected component of the upper-level sets of G. The persistence of a node of T is easily computed
on T’ by computing the length of the branch it belongs to. We refer to Xu et al. (2015; 2016) for
more details. See Figure 2, third column.

4. Construction of the hierarchical visualization: With T’ from the previous step, we now produce
a visualization of the important regions. Using the persistence of a node directly for visualization
can yield conflicting results for interpretation. Consider an example where we want to generate
explanations for a model that classifies images of dogs. The persistence might indicate that eyes are
the primary features for correct classification. If the image under scrutiny shows a dog with its owner,
the persistence might erroneously highlight the eyes of both the human and the dog as relevant, which
is misleading since only the dog’s eyes should matter (in an ideal, unbiased model). To avoid such
effect, we recursively sum the persistence of each node from the root to the leaves of T’. This ensures
that smaller segments inherit the importance of their parent nodes. In our example, if the parent
segment of the eyes is the entire face, the dog’s face carries importance for the model’s decision,
while the human face does not. By adding the dog’s facial region information to the eye segments,
we ensure the dog’s eyes are prioritized over the human eyes and, therefore, become more prominent
in the explanation. This process aggregates the importance of various scales of the image into the
pixels, resulting in a hierarchical, multi-scale, visualization. We show an example in Figure 3 (b). We
use this aggregated persistence as the final score for each region of the hierarchical segmentation. We
select a minimum importance score, and retain the regions accordingly. We superpose the retained
region on the original image to generate the Final visualization (Figure 2, fourth column).

(a) (b)

Figure 3: (a) Explanation obtained using Tree-LIME – xAiTrees combined to LIME instead of
occlusion to score regions. We show here the adaptability of the framework to different xAI techniques.
Due to the high time consumption of Tree-LIME (A.5 Table 14), we present some preliminary results
in A.7. (b) Example of the method’s behavior with the same structure inside and outside a hierarchy.
The cat’s eyes were replicated outside the cat’s face. However, the importance of each region is the
combination of the importance of each hierarchy part. Therefore, the cat’s eyes inside the face (an
important hierarchy region) score higher, as evidenced by the lighter regions in the right image.

5 EXPERIMENTS AND RESULTS

We evaluated the methods using two architectures, VGG-16 (Simonyan & Zisserman, 2015) and
ResNet18 (He et al., 2016), trained on three datasets: Cat vs. Dog (Cukierski, 2016) (RGB images
with a size of 224x224), CIFAR-10 (Krizhevsky, 2009; Krizhevsky et al., 2009) (RGB images with a
size of 32x32), and ImageNet (Deng et al., 2009) (RGB images). Explanations were generated for
512 images from the Cat vs. Dog dataset, 10,000 images from the CIFAR-10 dataset, and 100,000
images from the ImageNet test set. A detailed description of the methods’ parameters and datasets
is provided in A.3, A.4 and A.5. We organize our experiments and results into two categories:
quantitative and qualitative analysis. In the quantitative analysis, we conduct a series of experiments
utilizing the metrics discussed in Section 3 to assess the impact of image region occlusion of various
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explainable frameworks. During our qualitative analysis, we delve into a more subjective examination,
evaluating the human interpretability of the explanations generated by the models. The experiments
were conducted on GPU (NVIDIA Quadro RTX 8000 48GB).

5.1 QUANTITATIVE EVALUATIONS

We selected state-of-the-art region-based methods as baseline (B) to be compared: Occlusion, Grad-
CAM, LIME, Ms-IV, and XRAI (configuration of each method in A.4). Although ACE presents
good concept-based explanations, we only use it in the human evaluation experiments because, as
a global explanation method, it is not directly comparable to the local ones in these quantitative
experiments (more details in A.6). We compare the baseline methods with two configurations of
our proposed methodology (more configurations in A.3 and A.5): C1 and C2. This is done to
explore variations in the configuration of our methodology, including variations in the size of minimal
regions in the visualizations, pixel weights for graph construction in segmentation, and methods for
generating hierarchical segmentation. In C1, we present results for minimal regions of 500 pixels
(Cat vs. Dog and ImageNet) and 64 pixels (CIFAR-10), utilizing edges and Integrated Gradients
(IG) as pixel weights, and the watershed-by-area hierarchical segmentation. This configuration was
selected for its stability across different minimal region sizes in the datasets, and its visualizations
were used for human evaluation. While C2 presents results for minimal regions of 200 pixels (Cat
vs. Dog and ImageNet) and 4 pixels (CIFAR-10), using edges and Guided Backpropagation (BP)
as pixel weights, and the BPT tree. This configuration yielded the highest performance. In A.5, we
provide comprehensive results for other configurations. Here, we propose four main quantitative
evaluations, (i and ii) inspired by feature removal (Covert et al., 2021) and (iii and iv) inspired
by Performance Information Curves (PICs) (Kapishnikov et al., 2019): (i) Exclusion of important
regions; (ii) Inclusion of important regions; (iii) Softmax Information Curve (SIC); and (iv) Accuracy
Information Curve (AIC). For (i) and (ii), we used the McNemar test (McNemar, 1947) to compare
each method with the best configuration and determine whether there were statistically significant
differences between the results. The details are discussed below:

Exclusion of important regions: Given that each region-based explainable AI (xAI) method
identifies important regions that explain the prediction of a model, we performed occlusion of these
regions, in order to measure the impact of each selection. For methods that assign scores to regions,
we masked the 25% highest scores (this excludes LIME, which inherently provides information to
directly mask each region – a detailed explanation is included in A.6).

The first idea for the metric was to calculate the impact on the logits after occlusion. However, any
kind of perturbation can affect the logits and not necessarily the classification. In this particular case,
since we are dealing with a classification problem, we consider the class change as the main evidence
that an important image region has been occluded. Therefore, the values from Table 1 Ch. is the
percentage of class changing images, Same is the percentage of images with same class prediction
but with reduced logits (reduced classification certainty), and Total is the percentage of all images
with the class negatively impacted by the removal of important regions (sum of Ch. and Same).

In Table 1, we present results (Ch., Same, Total) for each explainable technique (B – Baseline, C1,
and C2 – our proposition) applied to a network (VGG or ResNet) classifying images from a dataset
(Cat vs. Dogs, Cifar10, or ImageNet). Higher Ch. values indicate that the identified regions are
more class-representative. High Same values complement Ch., suggesting that the best results are
shown by higher Ch. and Same values. Thus, while Total sums Ch. and Same, the optimal result is
reflected by initially higher Ch. and then higher Same values.

We can observe from the experiments in Table 1 that baseline methods such as Occlusion achieved
Total values above 80%. However, the best results, based on Ch. being the most critical factor,
were achieved using our methodology, specifically the C2 configurations. Our techniques had the
highest percentages of class changes in Cat vs. Dog images, with over 60% indicated by Ch.. For
smaller images (CIFAR-10), the class change exceeded 80%. Finally, for ImageNet, that has a bigger
amount of images, it reached over than 70%. Among the baseline methods, LIME and XRAI had
the best results. This experiment demonstrates the superiority of our C1 and C2 configurations over
state-of-the-art baselines in identifying the most impactful regions within an image. By achieving
notably higher percentages of class changes (Ch.) followed by classification certainty (Same), in
scenarios such as Cat vs. Dog images, CIFAR-10, and ImageNet datasets, our methodologies exhibit
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Table 1: Percentage of images with the original class changed after the exclusion of selected
explanation regions. We test two configurations of our methodology (C1 and C2 – other configurations
in Supplementary Materials) against four region-based baseline methods, Occlusion, Grad-CAM,
LIME, Ms-IV, and XRAI, in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog,
CIFAR10, and ImageNet. We expect higher percentage of class change (Ch.) when the region is
excluded. Same column shows images maintaining the original class when the output was reduced,
and Total is the sum of class change (Ch.) and class reduction (Same). We compare the each method
to the best configuration (BP-TreeB-Occ) showing the p-score in brackets (Mcnemar test).

Cat vs. Dog Cifar10 Imagenet
VGG ResNet VGG ResNet VGG ResNet% of images

Ch. Same Total Ch. Same Total Ch. Same Total Ch. Same Total Ch. Same Total Ch. Same Total
Occlusion 0.05(0.0) 0.93 (0.0) 0.98 0.06 (0.0) 0.89 (0.0) 0.95 0.26 (0.0) 0.60 (0.0) 0.86 0.30 (0.0) 0.62 (0.0) 0.92 0.39 (0.0) 0.60 (0.0) 0.99 0.39 (0.0) 0.59 (0.0) 0.98

Grad-CAM 0.07(0.0) 0.82 (0.0) 0.89 0.13 (0.0) 0.83 (0.0) 0.96 0.14 (0.0) 0.42 (0.0) 0.56 0.90 (0.0) 0.09(0.0) 0.99 0.25 (0.0) 0.65 (0.0) 0.90 0.68 (0.0) 0.30 (0.0) 0.98
LIME 0.07 (0.0) 0.83 (0.0) 0.90 0.07 (0.0) 0.76 (0.0) 0.83 0.84 (0.0) 0.14 (0.0) 0.98 0.82 (2.4-5) 0.16 (0.17) 0.98 0.34 (0.0) 0.61 (0.0) 0.95 0.38 (0.0) 0.55 (0.0) 0.93
Ms-IV 0.06(0.0) 0.76 (0.0) 0.82 0.07 (0.0) 0.66 (0.0) 0.73 0.30 (0.0) 0.42 (0.0) 0.72 0.33 (0.0) 0.47 (0.0) 0.80 0.44 (0.0) 0.49 (0.0) 0.93 0.48 (0.0) 0.43 (0.0) 0.91

B

XRAI 0.04 (0.0) 0.85 (0.0) 0.89 0.06 (0.0) 0.79 (0.0) 0.85 0.52 (0.0) 0.35 (0.0) 0.87 0.50 (0.0) 0.40 (0.0) 0.90 0.41 (0.0) 0.52 (0.0) 0.93 0.45 (0.0) 0.46 (0.0) 0.91
TreeW-CaOC 0.16 (0.0) 0.48 (2.0-5) 0.64 0.22 (0.0) 0.41 (0.15) 0.63 0.12 (0.0) 0.16 (0.0) 0.28 0.15 (0.0) 0.19 (2.8-9) 0.34 0.23 (0.0) 0.51 (0.0) 0.74 0.26 (0.0) 0.46 (0.0) 0.72

TreeW-Occ 0.31 (0.0) 0.63 (3.2-4 0.94 0.35 (1.3-11) 0.60 (0.01) 0.95 0.60 (0.0) 0.15 (0.0) 0.75 0.60 (0.0) 0.15 (0.0) 0.65 0.40 (0.0) 0.56 (0.0) 0.96 0.44 (0.0) 0.51 (0.0) 0.95
IG-TreeW-CaOC 0.29 (0.0) 0.46 (0.0) 0.75 0.21(0.0) 0.45 (7.61-13) 0.66 0.20 (0.0) 0.29 (0.0) 0.49 0.23 (0.0) 0.33 (0.38) 0.56 0.26 (0.0) 0.52 (0.0) 0.78 0.30 (0.0) 0.46 (0.0) 0.86

C1

IG-TreeW-Occ 0.43 (1.7-11) 0.54 (5.3-10) 0.97 0.32 (1.14-13) 0.61 (2.3-14) 0.93 0.73 (0.0) 0.21 (0.0) 0.94 0.73 (0.0) 0.22 (0.0) 0.95 0.43 (0.0) 0.53 (0.0) 0.96 0.48 (0.0) 0.48 (0.0) 0.96
TreeB-CaOC 0.35 (0.0) 0.39 (0.1) 0.74 0.27 (0.0) 0.42 (0.09) 0.69 0.15 (0.0) 0.26 (0.0) 0.41 0.17 (0.0) 0.31(0.0) 0.48 0.23 (0.0) 0.49 (0.0) 0.72 0.25 (0.0) 0.44 (0.0) 0.69

TreeB-Occ 0.51 (3.9-5) 0.44 (0.06) 0.95 0.41 (2.0-6) 0.52 (0.28) 0.93 0.81 (0.0) 0.12 (0.0) 0.93 0.76 (0.0) 0.17 (0.0) 0.93 0.57 (0.0) 0.38 (0.0) 0.95 0.60 (0.0) 0.35 (0.0) 0.95
BP-TreeB-CaOC 0.56 (5.7-6) 0.32 (0.001) 0.88 0.39 (2.2-16) 0.39 (4.5-7) 0.78 0.09 (0.0) 0.34 (1.7-9) 0.43 0.11 (0.0) 0.39 (0.03) 0.50 0.11 (0.0) 0.36 (0.0) 0.47 0.10 (0.0) 0.31 (0.0) 0.41

C2

BP-TreeB-Occ 0.63 0.35 0.98 0.55 0.37 0.92 0.88 0.10 0.98 0.80 (0.0) 0.16 0.96 0.71 (0.0) 0.16 (0.0) 0.87 0.74 (0.0) 0.13 (0.0) 0.87

robustness and effectiveness across various image classification tasks. These findings underscore
the significance of our approach in providing more accurate insights into the interpretability of deep
neural networks.

We present the results of a second experiment in Table 2. To address the issue of reduced precision
on explanations resulting from methods selecting the entire image as important, potentially leading to
class changes upon occlusion, we introduce a novel metric, termed Pixel Impact Rate (PIR). This
metric quantifies the impact on class activation per occluded pixel. Complementing the percentage of
class change, PIR distinguishes whether changes are caused by complete or near-complete occlusion
of the image (details in A.5 Equation 2). Higher PIR values indicate that each occluded pixel has
a significant average impact, suggesting that concealing larger portions or the entire image leads
to lower PIR, indicating less precision in the concealed area. Table 2 displays for each network,
explainable technique, and dataset the average (avg) and standard deviation (std) of PIR.

Regarding the results of the PIR experiments displayed in Table 2, configuration C2, particularly
BP-TreeB-CaOC, showed the best average PIR values. The baseline methods Occlusion and XRAI
also presented good PIR values. Based on these results, we can highlight the distinct effectiveness
of these methods in preserving region specificity, thereby increasing the impact of occluded pixels.
However, it is also important to consider the method’s stability across different images, which can
be assessed through the standard deviation (std) of PIR. A smaller std is preferable, as it indicates
higher precision across all images. Configuration C1 seems superior to C2 in terms of consistency.

Inclusion of important regions: Additional experimentation was conducted to demonstrate a
method’s capability to identify an image region with sufficient information for the original class. The

Table 2: Pixel Impact Rate (PIR) of the chosen regions. The metric is the rate of the impact under
occlusion (difference between the original class output and the output under occlusion) by the number
of pixels of the occlusion mask. We test two configurations of our methodology (C1 and C2 – other
configurations in Supplementary Materials) against four region-based baseline methods, Occlusion,
Grad-CAM, LIME, Ms-IV, and XRAI, in two architectures, VGG-16 and ResNet18, and datasets,
Cat vs. Dog, CIFAR10, and ImageNet. We expect higher values, on average, for PIR, meaning each
occluded pixel has a high impact.

Cat vs. Dog Cifar10 Imagenet
VGG ResNet VGG ResNet VGG ResNetPIR

avg std avg std avg std avg std avg std avg std
Occlusion 4.60e-03 4.05e-03 1.50e-03 1.28e-03 8.95e-02 1.48e-01 9.67e-02 1.35e-01 1.16e-02 1.13e-02 8.02e-03 7.03e-03

Grad-CAM 1.12e-03 1.02e-03 2.76e-04 2.07e-04 6.39e-03 1.34e-02 5.38e-03 1.46e-03 3.05e-03 3.16e-03 1.11e-03 8.02e-04
LIME 9.03e-04 1.10e-03 3.47e-04 3.89e-04 6.75e-03 3.27e-03 6.41e-03 3.25e-03 2.11e-03 2.50e-03 1.58e-03 1.75e-03
Ms-IV 4.30e-04 4.74e-04 1.83e-04 2.45e-04 1.16e-02 1.44e-02 1.18e-02 1.33e-02 9.73e-04 1.10e-03 7.21e-04 7.59e-04

B

XRAI 1.16e-03 9.92e-04 4.44e-04 6.32e-04 2.09e-02 1.77e-02 1.92e-02 2.02e-02 3.05e-03 1.09e-02 2.04e-03 5.90e-03
Tree-CaOC 3.61e-04 4.70e-04 1.92e-04 2.86e-04 4.73e-03 1.02e-02 5.56e-03 1.05e-02 1.16e-03 1.60e-03 1.10e-03 1.47e-03

Tree-Occ 3.66e-04 5.30e-04 1.69e-04 2.52e-04 9.20e-03 1.32e-02 9.88e-03 1.21e-02 1.10e-03 1.50e-03 1.05e-03 1.39e-03
IG-Tree-CaOC 3.04e-04 3.48e-04 2.26e-04 3.09e-04 9.55e-03 1.30e-02 9.51e-03 1.27e-02 1.54e-03 1.83e-03 1.46e-03 1.66e-03C1

IG-Tree-Occ 3.10e-04 3.61e-04 2.11e-04 3.05e-04 1.69e-02 1.56e-02 1.63e-02 1.40e-02 1.52e-03 1.72e-03 1.46e-03 1.58e-03
TreeB-CaOC 2.16e-04 2.91e-04 1.26e-04 2.26e-04 8.92e-03 1.90e-02 1.12e-02 2.09e-02 7.20e-04 1.08e-03 6.76e-04 9.63e-04

TreeB-Occ 2.26e-04 3.32e-04 1.03e-04 1.81e-04 1.14e-02 2.06e-02 1.15e-02 2.00e-02 5.83e-04 8.19e-04 5.13e-04 7.27e-04
BP-TreeB-CaOC 5.23e-03 3.59e-02 2.58e-03 1.81e-02 1.94e-01 3.87e-01 1.94e-01 3.52e-01 1.43e-02 7.37e-02 1.19e-02 5.15e-02C2

BP-TreeB-Occ 8.64e-04 1.60e-02 1.18e-03 8.90e-03 1.10e-01 4.34e-01 1.18e-01 4.14e-01 4.51e-03 3.43e-02 3.25e-03 2.35e-02
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goal of this experiment is to determine whether the selected important region, when the only one
left unoccluded in the image, can maintain the classification in its expected class. This experiment
elucidates the critical role of these identified regions, providing strong evidence that they indeed
contain essential information for accurate classification. We occluded all regions in the images except
for the one selected by each method. We then calculated the percentage of images that changed class.
The results are presented in Table 3 (a). Lower percentages indicate better performance, as they
mean that a smaller percentage of images changed class, demonstrating that the chosen regions were
sufficient to preserve the class for most of the images.

The metric presented in Table 3 (a) highlights the capability of both LIME and our methodology
C1 and C2 to identify regions that can sufficiently describe the class. However, our configuration,
BP-TreeB-Occ, is still able to outperform LIME results, with, in some cases, less than half the number
of images changing class. This shows that our configuration produces more essential information for
class attribution. Some additional insights we obtained from these experiments include the following:
Occlusion combined with our methodology appears to achieve superior results for local explanations
(explaining individual images). Generally, using “model”-based segmentation leads to more faithful
explanations. Our methodology outperformed traditional xAI methods used as baselines, including
LIME. However, LIME showed consistently good results across all tests.

Table 3: (a) Percentage of images with the original class changed after the inclusion (exclusively) of
this same regions. We test two configurations of our methodology (C1 and C2 – other configurations
in Supplementary Materials) against five region-based baseline methods, Occlusion, Grad-CAM,
LIME, Ms-IV, and XRAI, in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog,
CIFAR10, and ImageNet. We expect lower when the region in included. We compare each method to
the best configuration (BP-TreeB-Occ) showing the p-score in brackets (Mcnemar test). (b) Human
evaluation results for the tasks of bias (i) Detection and (ii) Identification. We proposed five image
explanations (from the biased class) for each method and model trained with dataset bias: (1) dogs
and only cats on cushions, (2) cats and only dogs with grids, and (3) dogs and only cats with humans.
We present the percentage of volunteers that were able to: detect the bias Detection (i) by indicating
the bias or the focus on the background; and identify the bias Identification (ii) by indicating the bias.
We also present the percentage of people that did not understand the explanations (Not identified)
and that found the explanation focusing on the Animal. We expect higher results for detection and
identification, and lower for not identified and animal. Methods such as Ms-IV, ACE and Tree-CaOC
(that are concept-aware) perform better. However, Tree-CaOC, using human-based segmentation
presented the best results for the three biased-datasets detection and identification.

Cat vs. Dog Cifar10 Imagenet% of images
VGG ResNet VGG ResNet VGG ResNet

Occlusion 0.47 (0.0) 0.50 (0.0) 0.89 (0.0) 0.89 (0.0) 0.99 (0.0) 0.99 (0.0)
Grad-CAM 0.51 (0.0) 0.30 (2.35-5) 0.86 (0.0) 0.0 (0.0) 0.99 (0.0) 0.87 (0.0)

LIME 0.16 (2.02-10) 0.30 (6.44-5) 0.44 (0.14) 0.49 (2.62-9) 0.93 (0.0) 0.95 (0.0)
Ms-IV 0.20 (3.11-14) 0.54 (0.0) 0.78 (0.0) 0.81 (0.0) 0.88 (0.0) 0.92 (0.0)

B

XRAI 0.32 (0.0) 0.41 (2.03-14) 0.70 (0.0) 0.74 (0.0) 0.96 (0.0) 0.97 (0.0)
Tree-CaOC 0.26 (0.0) 0.32 (3.54-7) 0.80 (0.0) 0.85 (0.0) 0.96 (0.0) 0.97 (0.0)

Tree-Occ 0.17 (0.0) 0.23 (0.0) 0.54 (0.0) 0.61 (0.0) 0.90 (0.0) 0.91 (0.0)
IG-Tree-CaOC 0.41 (8.12-11 0.43 (0.05) 0.84 (0.0) 0.83 (0.0) 0.98 (0.0) 0.99 (0.0)

C1

IG-Tree-Occ 0.19 (1.37-12) 0.42 (0.0) 0.68 (0.0) 0.69 (0.0) 0.92 (0.0) 0.93 (0.0)
TreeB-CaOC 0.16 (1.8-9) 0.22 (0.15) 0.79 (0.0) 0.81 (0.0) 0.95 (0.0) 0.96 (0.0)

TreeB-Occ 0.11 (0.0) 0.19 (8.44-7) 0.44 (0.0) 0.51 (0.0) 0.72 (0.0) 0.74 (0.0)
BP-TreeB-CaOC 0.38 (3.7-5) 0.28 (0.79) 0.87 (0.02) 0.86 (0.01) 0.97 (0.0) 0.98 (0.0)

C2

BP-TreeB-Occ 0.04 0.18 0.45 0.53 0.51 (0.0) 0.50 (0.0)

(a)

IG Grad-CAM Occ LIME Ms-IV ACE Tree-Occ Tree-CaOC IG-Tree-Occ IG-Tree-CaOC

Detection (i) 24.4 0.0 31.7 14.6 31.7 0.0 19.5 47.4 12.5 0.0
Identification (ii) 12.2 0.0 9.7 7.3 14.6 0.0 2.4 21.1 0.0 0.0

Not identified 34.1 2.4 36.6 36.6 26.8 30.0 24.4 26.3 35.0 12.5Bias 1

Animal 41.5 97.6 31.7 48.8 41.4 70.0 56.1 26.3 52.5 87.5
Detection (i) 7.3 0.0 0.0 7.3 24.4 58.5 56.4 57.9 42.1 29.2

Identification (ii) 2.4 0.0 0.0 7.3 19.5 43.9 41.0 47.4 34.2 26.8
Not identified 12.2 0.0 17.1 31.7 26.8 39.0 30.8 31.6 34.2 36.6Bias 2

Animal 81.1 100.0 86.6 61.0 48.8 2.4 12.8 10.5 23.7 34.1
Detection (i) 35.0 17.1 43.9 51.2 29.3 9.8 41.1 56.4 50.0 55.0

Identification (ii) 19.5 12.2 32.4 36.6 17.1 4.9 10.3 33.3 22.5 37.5
Not identified 36.6 12.2 26.8 43.9 46.3 63.4 51.3 38.5 47.5 42.5Bias 3

Animal 29.3 70.8 29.3 4.9 24.4 26.9 7.7 5.2 2.5 2.5

(b)

SIC/AIC for hierarchy evaluation: As explained in Section 4, the hierarchy of our explanation
is combined by summing up importance regions values. Therefore, to select different hierarchies
it suffices to filter by different scores. In this line, we evaluate our methodology by imposing
different thresholds for the explanations. Inspired by the metrics Softmax Information Curve
(SIC) and Accuracy Information Curve (AIC) proposed by Kapishnikov et al. (2019) we calcu-
lated the Softmax and Accuracy curves by including only selected image regions as model input.
To preserve the original data distribution, we integrated these important regions back into a blurred
version of the original image (details in A.5). The regions were selected based on thresholds
of 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 13%, 21%, 34%, 50%, and 75% percent, representing the
most significant region values according to each evaluated xAI method. These thresholds, represented
on the x-axis, indicate the percentage of important regions required to affect accuracy and class
activations. Figure 4 shows the results for 1,000 randomly selected images (due to time consumption
restrictions – time analysis in A.5) from the ImageNet dataset and VGG16 model, with additional
results for ImageNet and Resnet-18, and the Cat vs. Dog dataset provided in A.5.
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Figure 4: Softmax (a) and Accuracy (b) when including regions filtered by different percentage
thresholds of most important scores. We evaluate each threshold as a hierarchy level in eight
configurations of xAiTrees (C1 and C2), in a bottom-up approach (from smaller highly important
regions to the bigger structures). We compare these configurations to the baselines: LIME, XRAI,
Grad-CAM, Ms-IV, and Occlusion, by filtering the maps using the same threshold. The curves are
averaged across 1,000 randomly selected images from Imagenet dataset. AUC values are included in
the graphs. BP-TreeB-Occ and BP-TreeB-CaOC considerably surpassed the other curves. However,
we notice a good early behavior of the methods except for Grad-CAM, Ms-IV and Occlusion.

Based on Figure 4, the methods BP-TreeB-CaOC, BP-TreeB-Occ, XRAI, and LIME achieved the high-
est AUC scores, in that order. When considering more restrictive levels of the hierarchy (using 0.5%
and 1.0% thresholds), most methods—except for Grad-CAM, Ms-IV, and Occlusion—performed
well. This indicates that xAiTrees configurations, along with LIME and XRAI, were able to accurately
identify the most important regions. We observed that the C2 configurations performed slightly
better than C1. However, since C2 showed greater variation in PIR results (Table 2), suggesting that
some explanations from these methods might highlight larger regions as important (thus diluting
the per-pixel impact), we chose to use the C1 group for qualitative experiments. This decision was
made to minimize the size of important regions and facilitate human analysis. Additionally, for
human analysis, we did not filter the explanations. However, the hierarchy levels are reflected in the
brightness of each region, making them easily distinguishable.

5.2 QUALITATIVE ANALYSIS

As qualitative experiments, we want to visually evaluate the explanations for different interpretability
tasks. In this section, we perform experiments to (i) identify reasons for misclassification of images,
and (ii) evaluate explanations through the human interpretation of biased-trained networks.

Comparison of misclassified images: We searched for examples that were misclassified by models
(VGG-16 and Resnet18) trained on ImageNet (Deng et al., 2009). Figure 1 shows the explanations
generated by Integrated Gradients, Grad-CAM, Occlusion, LIME, and Tree-Occ (500 pixels minimal
region) of six images incorrectly classified. In Figure 1, the first column displays classes (such as
chime, fence, dishwasher, among others) alongside examples of misclassified images. These images
should have been classified as cat or dog. We then apply methods used in previous quantitative
comparisons to generate visual explanations for why these images were misclassified. The figure
illustrates that methods like Integrated Gradients, Grad-CAM, and Occlusion (Occ) may cause
confusion in precisely identifying what caused the misclassification and may lead to poor human
interpretation (we properly evaluate this in next experiment Human evaluation in bias analysis).
Although LIME and our proposed Tree-Occ method can pinpoint interesting regions, the Tree-Occ
method better illustrates the motivation behind misclassified results, as evident in the last column.
For instance, in the fence example, it highlights the diamond pattern found on fences, while in the
dishwasher example, it focuses solely on the sink region, disregarding the cat. Considering the
hierarchical characteristic of our methodology, we can perform a deeper analysis of the explanations
by selecting regions by the percentage of importance to be visualized. Examples in A.6.

Human evaluation in bias analysis: As previously mentioned, we used the configuration C1 for
human-interpretation evaluation. We trained three Resnet18 models subjected to data bias: (a) Bias
1 – a model trained with dogs and only cats on cushions; (b) Bias 2 – a model with cats and only
dogs with grids; (c) Bias 3 – and a model with dogs and only cats with humans (details of validation
accuracy and visualizations in A.6). We presented the same five image visualizations (from corrected
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classified images by the biased class) for the baseline methods and the methods from C1. We intended
to verify if: (i) humans can detect the wrong focus given based on a class prediction (Detection); and
(ii) humans can recognize which was the cause of the bias (Identification).

To test (i) and (ii), for each Bias (a,b, or c) type we produce for each of the xAI methods an explanation
image. By presenting five image explanations (the same images) for each of the xAI methodologies,
we asked volunteers, based on the explanations provided, what they think the highlighted regions
referred to (generated explanations and extra experiments in A.6).

Table 3 presents the results of evaluating 41 individuals from diverse continents (South America,
Europe, and Asia), fields (Human, Biological, and Exact sciences), and levels of AI expertise (ranging
from no knowledge to expert, with over half being non-experts). We show some participants’ statistics
in A.6. The experiment aims to identify effective methods for revealing trained-with biases. For
each xAI method (IG, Grad-CAM, Occ, LIME, Ms-IV, ACE, Tree-Occ, Tree-CaOC, IG-Tree-Occ,
IG-Tree-CaOC) used to explain biases (1, 2, and 3), we show the percentage of participants who
detected, identified, or did not identify the bias in the explanation. Detection indicates perceiving the
xAI explanation as either background or reflecting the bias, while Identification denotes successful
interpretation of the explanation as the induced bias. Not Identification refers to being unable to
interpret the explanation. Higher percentages in the Identification row are desirable. If not, we
prioritize high values in the Detection row. Lower values in the Not Identification or Animal rows
indicate clearer human interpretation of our trained-with bias.

We can observe that the results of Table 3 demonstrate that IG and Grad-CAM explanations had
some difficulties during interpretation. Their results obtained a lot of Not identified and/or Animal,
meaning that the highlighted explanations were not clear to be our imposed biases. We remarked
that the best results of detection and identification were found by methods that were linked to
contextual information (or global explanations) such as Ms-IV, ACE, Tree-CaOC, and IG-Tree-CaOC.
This occurs due to the nature of the method, which reflects, more globally, the model’s knowledge.
However, this seems not always to be enough for humans to provide a complete interpretation of
the model’s knowledge. Once again Tree-CaOC, one of our configurations, presented the highest
results for all three Bias for detecting and identifying, by combining global-aware metric (CaOC)
and a human-based segmentation (edge detection). In these experiments, we demonstrate that our
method excels compared to other studies in a crucial aspect of explainable AI: human interpretability.

6 LIMITATIONS

The computational time is a limitation when using time-expensive methods to attribute region scores.
We show the time comparison including the baseline methods in A.5 Table 14. That is why we limited
our analysis to Tree-Occ and Tree-CaOC. The method needs adaptations to be used in different tasks
such as learning representations or to be applied to other modalities such as texts. These adaptations
are discussed in A.7. The proposed version of xAiTrees framework is dependent on the base methods
used. Therefore, by using an edge-based segmentation method, we will not obtain a semantic-based
explanation, i.e., the final technique will inherit the limitations of the base methods. Future works
will be focused on semantic segmentation.

7 CONCLUSION

In this paper, we present a framework, xAiTrees, aimed at integrating multiscale region importance in
model predictions, providing more faithful and interpretable explanations. Our approach outperforms
traditional xAI methods like LIME, especially in identifying impactful and precise regions, in
datasets such as Cat vs. Dog, CIFAR-10, and ImageNet. Qualitative analysis demonstrates that our
Tree-Occ method better elucidates misclassification motivations and provides clearer, hierarchical
interpretations of model predictions. Techniques like Tree-CaOC, merging global-aware metrics with
human-based segmentation, excel in detection and identification tasks, achieving superior results
in human interpretability. In summary, our framework delivers highly interpretable and faithful
model explanations, significantly aiding in bias detection and identification, and demonstrating its
effectiveness in the field of explainable AI. Therefore, potentially aiding to reduce the societal negative
impact that could be generated by deep learning models in high-risk decision-making process.
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A APPENDIX

A.1 A. SEGMENTATION TECHNIQUES

As an important step for our framework, we employ segmentation techniques so we can decompose
images, based on specific attributes, into more interpretable structures, enabling better human
understanding and interpretation. We specifically employ hierarchical segmentation techniques due to
their capability to decompose images into multiple levels of detail, mirroring how humans naturally
perceive objects: initially observing the overall structure before delving into the finer details.

Trees: A tree is an acyclic graph, consisting of nodes that connect to zero or more other nodes. It
starts with a “root” node that branches out to other nodes, ending in “leaves” with no children. In
image representation, the root node represents the entire image, and each leaf represents a pixel,
resulting in as many leaves as pixels. The structure between the root and leaves groups pixels into
clusters at each level based on similarity metrics, with each level abstracting the one below. Using
a segmentation tree, we can make cuts at various levels to obtain different numbers and sizes of
segmented regions.

Binary Partition Tree (BPT): A Binary Partition Tree (BPT) is a data structure in which each node
represents a region of the image. Similarly, the tree starts with a root node representing the entire
image and branches out through a series of binary splits until reaching the leaf nodes, representing
the individual pixels. Different from the tree, in which a node could have multiple splits, in the BPT
each split, divides a region into two smaller sub-regions based on a criterion.

Watershed: This algorithm (Cousty et al., 2008) constructs a hierarchical segmentation tree based on
a minimum-spanning forest rooted in the local minima of an edge-weighted graph. In this context,
local minima are points in the graph where the surrounding edge weights are higher, representing the
lowest values in their neighborhood. These minima serve as starting points for the segmentation. The
algorithm iteratively merges regions beginning from these local minima, guided by the edge weights
that indicate dissimilarity between adjacent pixels. By progressively combining these regions, the
algorithm builds the segmentation tree, effectively capturing the hierarchical structure of the image.

A.2 B. OCCLUSION-BASED METRICS:

Here, we discuss the metrics used to generate our segmentation based on the model explainability
(block B in Figure 2). We present two metrics: (i) Occlusion, which is the impact of occluding an
image region on its classification output, and (ii) CaOC which is the intra-class impact of occluding
an image region. For (i), we assess how the output of a model changes when an image region is
occluded. For (ii), we employ a sliding metric that ranks images based on the highest activations for
a given class. We then measure the movement in this ranking after occluding a region of the image,
determining the intra-class impact of the occlusion.

Occlusion: Let us say we have a model Ξ producing an output outi for an image Ii. By concealing
portions of this image, creating a new image I■

i , we obtain a different model output out■i . The
significance of the occluded area concerning a particular class c is assessed by comparing the outputs:

∣∣∣outi,c − out■i,c

∣∣∣ . (1)

If there is a significant difference, it indicates that the model strongly relies on this region for class
activation, meaning that these regions have a high impact on the model’s decision.

CAOC: In the Ms-IV method, introduced by Rodrigues et al. (Rodrigues et al., 2024), CaOC employs
rankings to assess how occlusions affect the model’s output space. A ranking is a sequence of objects
ordered according to a specific criterion, from the object most aligned with it to the least aligned.
Suppose the criterion is to maximize class c. In that case, the first index i in this sequence represents
the object (in our case, the image Ii) with the highest activation for class c in the output outi. If we
define a function argsort to obtain the indices of an ordered sequence of objects, we can derive the
sequence of image indices that maximize class c: Seqc = argsort (out.,c, decreasing), with out.,c
the vector of outputs for class c of a set of input images (Ii)i∈[1,NbIm].
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CaOC computes an initial ranking Seqc for a subset of images DS ′ ⊂ DS, and then a subsequent
ranking Seq ′c after occluding one region of image Ii ∈ DS ′. The significance of this occluded image
region for the model is determined by the difference in the positions of this image in the rankings
given by

∣∣position (
Seq i,c, Ii

)
− position

(
Seq ′i,c, Ii

)∣∣ .
This metric aims to assess the impact of occluding image regions not only against the original output
outi but also against the outputs of a range of images. Incorporating the model’s output space into
the analysis ensures that explanations consider the broader context (global model’s behavior). Hence,
we can characterize it as globally aware, even when explaining a single sample.

A.3 TESTED FRAMEWORK’S CONFIGURATION

We tested four different sizes of minimal region for filtering the initial segmentation. For Cat vs. Dog
and ImageNet datasets: 200, 300, 400, and 500 pixels. For CIFAR-10: 4, 16, 32 and 64 pixels.

For the model-based segmentation and datasets Cat vs. Dog and CIFAR10, we tested four xAI
techniques to generation the initial graph G on Figure 2: Integrated Gradients (IG), Guided-
Backpropagation (BP), Input X Gradient (I X G), and Saliency (S). Given the number of images
(time of computation), for ImageNet dataset we tested only Integrated Gradients (IG), Guided-
Backpropagation (BP).

We tested three algorithms to construct the hierarchical segmentation: Binary Partition Tree (BPT),
Watershed with Area, and Watershed with Volume.

We tested two different occlusion based metrics to obtain the impact of regions used to shape the
hierarchical tree: CaOC and OCC.

When we refer to Tree-CaOC or TreeW-CaOC, we mean the human-based segmentation (edges’
map) using Watershed area and CaOC as occlusion metric. When we refer to IG-Tree-Occ or IG-
TreeW-Occ, we mean the model-based segmentation (using Integrated Gradients (IG) attributions)
using Watershed area and Occ (simple occlusion – Equation (1)) as occlusion metric. When we refer
to BP-TreeB-Occ, we mean the model-based segmentation (using Guided Backpropagation (BP)
attributions) using BPT and Occ as occlusion metric.

A.4 PARAMETERS OF THE BASELINE METHODS

For Grad-CAM method, we used the last convolutional layer of each architecture with layer Grad-
CAM from captum framework. For Occlusion (from Captum framework) we used, for Cat vs. Dog
and ImageNet, step of 3x7x7 and sliding window of 3x14x14. Since CIFAR10 is much smaller, the
step was 3x2x2 and sliding window of 3x4x4. For LIME, we used the standard configuration for Cat
vs. Dog and ImageNet (Quickshift kernel size of 4) and, Quickshift kernel size of 2 for CIFAR10. All
the other methods followed the standard configuration. For Ms-IV, we used the original configuration
from the paper (Rodrigues et al., 2024). For XRAI, we used the original implementation (Kapishnikov
et al., 2019) of the fast version.

A.5 QUANTITATIVE EVALUATIONS

Models’ description: Table 4 shows the number of images in train and validation sets for Cat
vs. Dog and CIFAR10 datasets. We also include the train and validation accuracies for the models
ResNet18 and VGG-16 used in the quantitative evaluations.

Cat vs. Dog models were trained with initial weights from ImageNet, learning rate 1e − 7, cross-
entropy loss, the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

CIFAR10 models were adapted to receive 32x32 input images, and they were trained with initial
weights from ImageNet, learning rate 1e− 2, cross-entropy loss and the stochastic gradient descent
optimizer (code from Phan (2021)).

The ImageNet models used the pre-trained weights from the PyTorch implementation.
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Table 4: Number of images and accuracy on train and validation sets for ResNet18 and VGG-16
models. We train the models with two different dataset: Cat vs. Dog and CIFAR10.

Train Val.
Num. images Acc. (%) Num. images Acc. (%)

ResNet18 98.21 97.86Cat vs. Dog VGG-16 19,891 99.04 5,109 98.61
ResNet18 99.56 92.53CIFAR10 VGG-16 50,000 99.84 10,000 93.54

Table 5: Percentage of images with the original class changed after the exclusion of selected
explanation regions for Cat vs. Dog dataset. Highlighted in blue are the configurations presented in
the main paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400
and 500 pixels, segmentation based on Edges, Integrated Gradients (IG), Guided-Backpropagation
(BP), Input X Gradients (I X G) and Saliency. We tested three different strategies to for the first
hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute.
Same column shows images maintaining the original class when the output was reduced, and Total
is the sum of class change (Ch.) and class reduction (Same).

Cat vs. Dog
VGG ResNet

Edges IG BP I X G Saliency Edges IG BP I X G Saliency% of images

Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same
CaOC 0.35 0.39 0.32 0.15 0.56 0.32 0.26 0.12 0.46 0.38 0.27 0.42 0.12 0.29 0.39 0.39 0.10 0.21 0.28 0.43BPT Occ 0.51 0.44 0.33 0.23 0.63 0.35 0.27 0.19 0.64 0.35 0.41 0.52 0.17 0.34 0.55 0.37 0.13 0.30 0.39 0.55
CaOC 0.15 0.48 0.23 0.45 0.21 0.46 0.22 0.46 0.15 0.49 0.20 0.44 0.18 0.45 0.16 0.50 0.17 0.46 0.17 0.46Watershed area Occ 0.30 0.66 0.42 0.55 0.41 0.56 0.42 0.55 0.31 0.62 0.34 0.61 0.31 0.63 0.32 0.64 0.30 0.63 0.31 0.63
CaOC 0.18 0.48 0.16 0.49 0.12 0.46 0.18 0.47 0.13 0.50 0.18 0.44 0.17 0.46 0.12 0.49 0.17 0.45 0.18 0.45

200

Watershed volume Occ 0.33 0.64 0.33 0.61 0.31 0.64 0.37 0.57 0.32 0.63 0.33 0.62 0.29 0.65 0.25 0.69 0.30 0.65 0.32 0.64
CaOC 0.36 0.38 0.22 0.07 0.56 0.30 0.17 0.07 0.46 0.38 0.28 0.41 0.07 0.19 0.39 0.37 0.06 0.13 0.30 0.41BPT Occ 0.50 0.46 0.23 0.13 0.61 0.34 0.17 0.11 0.58 0.41 0.41 0.53 0.09 0.27 0.48 0.39 0.07 0.20 0.38 0.53
CaOC 0.16 0.49 0.25 0.43 0.22 0.45 0.24 0.46 0.15 0.50 0.20 0.42 0.20 0.44 0.17 0.47 0.18 0.47 0.19 0.45Watershed area Occ 0.30 0.65 0.43 0.53 0.42 0.55 0.42 0.55 0.31 0.63 0.35 0.59 0.30 0.63 0.32 0.62 0.30 0.63 0.31 0.62
CaOC 0.17 0.51 0.18 0.49 0.15 0.43 0.19 0.48 0.14 0.51 0.20 0.41 0.18 0.44 0.12 0.48 0.18 0.45 0.18 0.44

300

Watershed volume Occ 0.32 0.63 0.34 0.60 0.30 0.64 0.36 0.57 0.32 0.61 0.34 0.61 0.29 0.64 0.26 0.69 0.30 0.64 0.32 0.63
CaOC 0.36 0.39 0.15 0.05 0.51 0.29 0.10 0.05 0.43 0.40 0.29 0.42 0.04 0.16 0.35 0.37 0.04 0.11 0.29 0.41BPT Occ 0.47 0.48 0.15 0.09 0.54 0.37 0.10 0.08 0.51 0.47 0.41 0.52 0.06 0.23 0.42 0.39 0.05 0.14 0.36 0.55
CaOC 0.16 0.49 0.26 0.46 0.25 0.43 0.24 0.46 0.17 0.50 0.21 0.41 0.20 0.44 0.18 0.46 0.20 0.46 0.21 0.42Watershed area Occ 0.30 0.64 0.43 0.53 0.42 0.54 0.42 0.55 0.31 0.62 0.34 0.61 0.32 0.61 0.32 0.61 0.30 0.63 0.31 0.63
CaOC 0.18 0.49 0.20 0.47 0.16 0.45 0.22 0.45 0.16 0.50 0.21 0.40 0.19 0.45 0.13 0.47 0.19 0.42 0.20 0.44

400

Watershed volume Occ 0.33 0.63 0.35 0.60 0.30 0.64 0.38 0.57 0.31 0.62 0.34 0.61 0.30 0.64 0.25 0.69 0.29 0.63 0.33 0.63
CaOC 0.35 0.40 0.11 0.04 0.45 0.29 0.07 0.03 0.40 0.42 0.30 0.41 0.04 0.13 0.31 0.34 0.04 0.11 0.29 0.42BPT Occ 0.45 0.49 0.12 0.06 0.49 0.36 0.07 0.04 0.47 0.49 0.41 0.51 0.04 0.17 0.38 0.38 0.04 0.11 0.37 0.54
CaOC 0.16 0.48 0.29 0.46 0.26 0.42 0.25 0.47 0.18 0.48 0.22 0.41 0.21 0.45 0.20 0.46 0.20 0.46 0.21 0.42Watershed area Occ 0.31 0.63 0.43 0.54 0.41 0.55 0.41 0.54 0.31 0.63 0.35 0.60 0.32 0.61 0.34 0.61 0.30 0.62 0.30 0.66
CaOC 0.19 0.48 0.20 0.47 0.16 0.44 0.22 0.45 0.18 0.51 0.22 0.39 0.20 0.46 0.14 0.47 0.18 0.43 0.22 0.43

500

Watershed volume Occ 0.33 0.63 0.34 0.61 0.29 0.66 0.38 0.56 0.32 0.60 0.33 0.61 0.30 0.64 0.25 0.68 0.29 0.64 0.32 0.63

Exclusion of important regions: Given that each region-based explainable AI (xAI) method
identifies important regions in an image to explain the prediction of a model, we performed occlusion
of these regions to measure the impact of each selection and evaluate the methods.

Except for LIME, which proposes a ranking of the most important image segments, the methods
we used as a baseline provide values for measuring the importance of pixels, which in visualization
is similar to regions or segmentation for humans. However, if we select all the positive importance
values provided by these methods, we are likely to cover a large part of the image. By selecting
regions with only the top 25% higher values, we reduce the size of the mask. In fact, different datasets
and models will show different visualization behaviors, so we chose to define a high threshold that is
fixed (not specific to a single dataset) and common to all methods in order to have a fair comparison.
Therefore, for methods that assign scores to regions, we masked the 25% highest scores.

We present, in Tables 5, 6, and 7, the complete experiments of different configurations of our
framework for the datasets Cat vs. Dog, CIFAR10, and ImageNet respectively.

PIR values: To address the issue of unhelpful explanations resulting from methods selecting the
entire image as important, potentially leading to class changes upon occlusion, we introduce a novel
metric termed Pixel Impact Rate (PIR). The idea of PIR is to evaluate the impact per pixel/per
image:

PIR(expi) =

∣∣outi,class_orig − out■i,class_orig

∣∣
num_pixels_exp

(2)
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Table 6: Percentage of images with the original class changed after the exclusion of selected
explanation regions for CIFAR10 dataset. Highlighted in blue are the configurations presented in
the main paper. We tested hierarchies constructed by filtering out smaller regions than 4, 16, 32
and 64 pixels, segmentation based on Edges, Integrated Gradients (IG), Guided-Backpropagation
(BP), Input X Gradients (I X G) and Saliency. We tested three different strategies to for the first
hierarchical segmentation: BPT, watershed with area attribute, and watershed with volume attribute.
Same column shows images maintaining the original class when the output was reduced, and Total
is the sum of class change (Ch.) and class reduction (Same).

CIFAR10
VGG ResNet

Edges IG BP I X G Saliency Edges IG BP I X G Saliency% of images

Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same
CaOC 0.15 0.26 0.08 0.34 0.09 0.34 0.06 0.34 0.18 0.37 0.17 0.31 0.09 0.40 0.11 0.39 0.08 0.40 0.19 0.42BPT Occ 0.81 0.12 0.91 0.08 0.88 0.10 0.91 0.07 0.85 0.14 0.76 0.17 0.83 0.13 0.80 0.16 0.82 0.14 0.81 0.18
CaOC 0.16 0.34 0.27 0.32 0.27 0.33 0.27 0.33 0.26 0.33 0.18 0.40 0.24 0.37 0.24 0.37 0.25 0.37 0.25 0.36Watershed area Occ 0.72 0.22 0.74 0.23 0.75 0.22 0.76 0.22 0.73 0.24 0.70 0.25 0.74 0.24 0.73 0.25 0.76 0.23 0.74 0.25
CaOC 0.16 0.34 0.26 0.33 0.27 0.33 0.26 0.34 0.26 0.34 0.18 0.40 0.24 0.37 0.23 0.38 0.25 0.37 0.24 0.37

4

Watershed volume Occ 0.73 0.21 0.73 0.24 0.72 0.25 0.75 0.23 0.72 0.25 0.71 0.24 0.74 0.25 0.72 0.26 0.75 0.23 0.74 0.25
CaOC 0.08 0.11 0.07 0.11 0.09 0.17 0.05 0.09 0.18 0.31 0.12 0.12 0.09 0.14 0.11 0.20 0.07 0.11 0.21 0.38BPT Occ 0.55 0.09 0.70 0.07 0.78 0.10 0.63 0.06 0.79 0.17 0.55 0.09 0.64 0.09 0.69 0.13 0.57 0.09 0.76 0.21
CaOC 0.16 0.33 0.22 0.35 0.22 0.35 0.22 0.35 0.22 0.35 0.18 0.39 0.25 0.38 0.23 0.39 0.25 0.37 0.25 0.37Watershed area Occ 0.71 0.21 0.75 0.22 0.75 0.22 0.76 0.21 0.72 0.24 0.70 0.24 0.75 0.24 0.74 0.25 0.76 0.23 0.74 0.24
CaOC 0.16 0.33 0.22 0.35 0.21 0.36 0.23 0.34 0.22 0.35 0.19 0.39 0.24 0.38 0.22 0.40 0.26 0.37 0.25 0.37

16

Watershed volume Occ 0.72 0.21 0.73 0.24 0.72 0.24 0.75 0.22 0.72 0.24 0.71 0.24 0.74 0.24 0.71 0.27 0.75 0.23 0.74 0.24
CaOC 0.03 0.03 0.04 0.04 0.07 0.09 0.03 0.03 0.16 0.17 0.07 0.05 0.07 0.05 0.10 0.11 0.06 0.04 0.18 0.22BPT Occ 0.39 0.03 0.44 0.05 0.62 0.09 0.40 0.03 0.70 0.15 0.40 0.04 0.44 0.05 0.56 0.09 0.38 0.05 0.70 0.18
CaOC 0.15 0.28 0.21 0.36 0.19 0.37 0.20 0.36 0.21 0.35 0.18 0.34 0.23 0.40 0.21 0.41 0.23 0.40 0.23 0.40Watershed area Occ 0.69 0.20 0.75 0.22 0.74 0.22 0.75 0.21 0.72 0.24 0.68 0.22 0.74 0.23 0.73 0.25 0.75 0.23 0.73 0.25
CaOC 0.16 0.29 0.20 0.36 0.19 0.37 0.20 0.36 0.21 0.35 0.18 0.34 0.23 0.40 0.21 0.41 0.23 0.40 0.23 0.40

32

Watershed volume Occ 0.70 0.20 0.72 0.24 0.70 0.25 0.74 0.22 0.72 0.24 0.69 0.22 0.73 0.25 0.69 0.28 0.75 0.23 0.73 0.25
CaOC 0.01 0.00 0.02 0.01 0.04 0.04 0.01 0.01 0.07 0.05 0.04 0.02 0.05 0.02 0.08 0.05 0.04 0.02 0.11 0.08BPT Occ 0.25 0.00 0.23 0.02 0.42 0.05 0.19 0.01 0.50 0.06 0.27 0.02 0.25 0.02 0.38 0.05 0.21 0.02 0.53 0.07
CaOC 0.12 0.16 0.20 0.29 0.18 0.27 0.20 0.28 0.22 0.30 0.15 0.19 0.23 0.33 0.21 0.34 0.22 0.34 0.22 0.36Watershed area Occ 0.60 0.15 0.73 0.21 0.73 0.21 0.75 0.20 0.70 0.23 0.60 0.15 0.73 0.22 0.72 0.23 0.74 0.22 0.70 0.25
CaOC 0.12 0.16 0.19 0.31 0.18 0.30 0.20 0.29 0.21 0.28 0.15 0.18 0.22 0.36 0.21 0.37 0.22 0.35 0.22 0.34

64

Watershed volume Occ 0.60 0.14 0.71 0.22 0.68 0.23 0.73 0.21 0.70 0.22 0.60 0.15 0.71 0.24 0.67 0.27 0.73 0.23 0.71 0.24

Table 7: Percentage of images with the original class changed after the exclusion of selected
explanation regions for Imagenet dataset. Highlighted in blue are the configurations presented in the
main paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and
500 pixels, segmentation based on Edges, Integrated Gradients (IG), and Guided-Backpropagation
(BP). We tested three different strategies to for the first hierarchical segmentation: BPT, watershed
with area attribute, and watershed with volume attribute. Same column shows images maintaining
the original class when the output was reduced, and Total is the sum of class change (Ch.) and class
reduction (Same).

Imagenet
VGG ResNet

Edges IG BP Edges IG BP% of images

Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same
CaOC 0.23 0.49 0.00 0.02 0.11 0.36 0.25 0.44 0.01 0.04 0.10 0.31BPT Occ 0.57 0.38 0.35 0.01 0.71 0.16 0.60 0.35 0.50 0.02 0.74 0.13
CaOC 0.26 0.51 0.27 0.51 0.27 0.51 0.27 0.45 0.31 0.45 0.30 0.45Watershed area Occ 0.42 0.55 0.44 0.54 0.45 0.52 0.48 0.50 0.50 0.47 0.52 0.46
CaOC 0.26 0.51 0.26 0.51 0.25 0.52 0.28 0.46 0.31 0.44 0.28 0.46

200

Watershed volume Occ 0.44 0.54 0.39 0.59 0.38 0.60 0.49 0.49 0.47 0.51 0.45 0.53
CaOC 0.22 0.46 0.00 0.01 0.10 0.30 0.24 0.42 0.01 0.02 0.09 0.25BPT Occ 0.55 0.38 0.20 0.01 0.64 0.17 0.58 0.35 0.32 0.01 0.65 0.13
CaOC 0.24 0.51 0.27 0.52 0.26 0.51 0.27 0.45 0.31 0.45 0.29 0.45Watershed area Occ 0.41 0.56 0.43 0.54 0.44 0.53 0.46 0.51 0.50 0.48 0.51 0.46
CaOC 0.24 0.51 0.26 0.52 0.25 0.52 0.27 0.46 0.30 0.45 0.28 0.46

300

Watershed volume Occ 0.42 0.54 0.38 0.59 0.37 0.61 0.47 0.49 0.46 0.51 0.43 0.54
CaOC 0.21 0.42 0.00 0.01 0.09 0.25 0.23 0.38 0.00 0.02 0.08 0.21BPT Occ 0.54 0.37 0.13 0.00 0.58 0.16 0.57 0.34 0.22 0.01 0.59 0.13
CaOC 0.24 0.51 0.26 0.52 0.25 0.52 0.26 0.46 0.31 0.46 0.29 0.46Watershed area Occ 0.40 0.56 0.43 0.54 0.44 0.53 0.45 0.51 0.49 0.48 0.50 0.47
CaOC 0.24 0.51 0.25 0.52 0.24 0.52 0.26 0.46 0.30 0.46 0.27 0.46

400

Watershed volume Occ 0.42 0.54 0.38 0.59 0.36 0.61 0.46 0.50 0.45 0.52 0.42 0.55
CaOC 0.21 0.38 0.09 0.00 0.08 0.22 0.22 0.35 0.16 0.01 0.07 0.18BPT Occ 0.52 0.35 0.00 0.01 0.53 0.16 0.55 0.33 0.00 0.01 0.53 0.12
CaOC 0.23 0.51 0.26 0.52 0.25 0.52 0.26 0.46 0.30 0.46 0.29 0.46Watershed area Occ 0.40 0.56 0.43 0.53 0.44 0.53 0.44 0.51 0.48 0.48 0.50 0.47
CaOC 0.23 0.51 0.25 0.52 0.24 0.53 0.26 0.46 0.29 0.46 0.27 0.47

500

Watershed volume Occ 0.41 0.54 0.37 0.59 0.36 0.60 0.46 0.50 0.44 0.52 0.42 0.55

where expi is the explanation or image i, outi,class_orig is the original logit corresponding to the
analyzed class, out■i,class_orig is the logit after the perturbation, and num_pixels_exp is the number
of occluded pixels.
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This metric quantifies the impact on class activation per occluded pixel. Complementing the per-
centage of class change, PIR distinguishes whether changes are primarily caused by complete or
near-complete occlusion of the image. Higher PIR values indicate that each occluded pixel has a
significant average impact, suggesting that concealing larger portions or the entire image leads to
lower PIR, indicating less precision in the concealed area.

Tables 8, 9, and 10 display for each network, and tested configurations of our framework, the average
(avg) and standard deviation (std) of PIR, for the datasets Cat vs. Dog, CIFAR10, and ImageNet
respectively.

Inclusion of important regions: Additional experimentation was conducted to demonstrate a
method’s capability to identify an image region with sufficient information for the original class. The
goal of this experiment is to determine whether the selected important region, when the only one
left unoccluded in the image, can maintain the classification in its expected class. This experiment
elucidates the critical role of these identified regions, providing strong evidence that they indeed
contain essential information for accurate classification. We occluded all regions in the images except
for the one selected by each method. We then calculated the percentage of images that changed class.
We present the results from the three datasets, Cat vs. Dog, CIFAR10, and ImageNet, and all the
tested framework configurations in Tables 11, 12, and 13, respectively. Lower percentages indicate
better performance, meaning that a smaller percentage of images changed class, demonstrating that
the chosen regions were sufficient to preserve the class for most of the images.

SIC and AIC for hierarchy evaluation: Inspired by the metrics Softmax Information Curve
(SIC) and Accuracy Information Curve (AIC) proposed by Kapishnikov et al. (2019) we cal-
culated the Softmax and Accuracy curves by including only selected image regions as model
input. We used the parameters from the original paper: maintaining 10% of the origi-
nal pixels and using linear interpolation to generate the blur. We used the thresholds of
0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 13%, 21%, 34%, 50%, and 75% percent, representing the
most significant region values according to each evaluated xAI method. Instead of using the image
entropy values as the x-axis we used the thresholds. Figure 5 presents the curves for the mean of
1,000 randomly selected ImageNet images, and Figure 6 presents the results for 512 analyzed images
from the Cat vs. Dog dataset.
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Table 11: Percentage of images with the original class changed after the inclusion (exclusively) of
selected explanation regions for Cat vs. Dog dataset. Highlighted in blue are the configurations
presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than
200, 300, 400 and 500 pixels, segmentation based on Edges, Integrated Gradients (IG), Guided-
Backpropagation (BP), Input X Gradients (I X G) and Saliency. We tested three different strategies
to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with
volume attribute. We expect smaller rate values of class change.

Cat vs. Dog
VGG ResNet% of images

Edges IG BP I X G Saliency Edges IG BP I X G Saliency
CaOC 0.16 0.49 0.38 0.49 0.37 0.22 0.45 0.28 0.47 0.35BPT Occ 0.11 0.18 0.04 0.24 0.11 0.19 0.40 0.18 0.43 0.31
CaOC 0.30 0.45 0.39 0.46 0.42 0.34 0.47 0.43 0.45 0.49Watershed area Occ 0.22 0.22 0.26 0.24 0.31 0.30 0.49 0.41 0.49 0.52
CaOC 0.27 0.44 0.43 0.50 0.45 0.34 0.47 0.49 0.46 0.50

200

Watershed volume Occ 0.24 0.30 0.36 0.28 0.29 0.30 0.50 0.46 0.47 0.50
CaOC 0.19 0.49 0.37 0.49 0.36 0.22 0.49 0.28 0.49 0.30BPT Occ 0.10 0.27 0.05 0.35 0.10 0.17 0.46 0.22 0.48 0.25
CaOC 0.30 0.43 0.39 0.44 0.43 0.33 0.46 0.40 0.44 0.47Watershed area Occ 0.18 0.20 0.25 0.24 0.29 0.24 0.46 0.40 0.43 0.47
CaOC 0.28 0.45 0.43 0.45 0.45 0.31 0.46 0.46 0.45 0.46

300

Watershed volume Occ 0.21 0.29 0.34 0.27 0.29 0.25 0.49 0.45 0.45 0.45
CaOC 0.21 0.49 0.39 0.49 0.36 0.22 0.50 0.29 0.50 0.29BPT Occ 0.10 0.34 0.07 0.40 0.11 0.18 0.48 0.25 0.49 0.27
CaOC 0.26 0.41 0.38 0.44 0.42 0.31 0.47 0.38 0.44 0.46Watershed area Occ 0.17 0.19 0.21 0.22 0.29 0.24 0.43 0.36 0.40 0.45
CaOC 0.27 0.44 0.43 0.46 0.45 0.33 0.47 0.43 0.47 0.46

400

Watershed volume Occ 0.19 0.26 0.30 0.28 0.28 0.22 0.47 0.41 0.44 0.43
CaOC 0.20 0.49 0.41 0.49 0.35 0.22 0.50 0.31 0.50 0.29BPT Occ 0.08 0.38 0.11 0.43 0.12 0.16 0.49 0.29 0.50 0.26
CaOC 0.26 0.41 0.37 0.44 0.41 0.32 0.43 0.35 0.41 0.46Watershed area Occ 0.17 0.19 0.22 0.22 0.28 0.23 0.42 0.32 0.40 0.42
CaOC 0.25 0.45 0.42 0.44 0.42 0.32 0.44 0.42 0.45 0.45

500

Watershed volume Occ 0.19 0.28 0.31 0.26 0.29 0.22 0.45 0.37 0.42 0.41

Table 12: Percentage of images with the original class changed after the inclusion (exclusively)
of selected explanation regions for CIFAR10 dataset. Highlighted in blue are the configurations
presented in the main paper. We tested hierarchies constructed by filtering out smaller regions
than 4, 16, 32 and 64 pixels, segmentation based on Edges, Integrated Gradients (IG), Guided-
Backpropagation (BP), Input X Gradients (I X G) and Saliency. We tested three different strategies
to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with
volume attribute. We expect smaller rate values of class change.

CIFAR10
VGG ResNet% of images

Edges IG BP I X G Saliency Edges IG BP I X G Saliency
CaOC 0.79 0.86 0.87 0.87 0.86 0.81 0.86 0.86 0.87 0.86BPT Occ 0.44 0.38 0.45 0.30 0.66 0.51 0.46 0.53 0.41 0.70
CaOC 0.80 0.89 0.88 0.89 0.88 0.83 0.88 0.87 0.88 0.88Watershed area Occ 0.55 0.81 0.81 0.81 0.81 0.59 0.81 0.79 0.80 0.80
CaOC 0.80 0.89 0.88 0.89 0.88 0.83 0.88 0.88 0.88 0.88

4

Watershed volume Occ 0.53 0.82 0.82 0.81 0.80 0.58 0.81 0.80 0.81 0.79
CaOC 0.83 0.85 0.86 0.87 0.83 0.86 0.86 0.85 0.87 0.83BPT Occ 0.54 0.41 0.43 0.44 0.60 0.61 0.51 0.54 0.54 0.63
CaOC 0.80 0.87 0.87 0.87 0.87 0.83 0.87 0.86 0.87 0.87Watershed area Occ 0.54 0.77 0.76 0.77 0.77 0.59 0.78 0.76 0.77 0.77
CaOC 0.80 0.87 0.87 0.87 0.86 0.83 0.87 0.87 0.87 0.86

16

Watershed volume Occ 0.53 0.78 0.78 0.77 0.76 0.58 0.78 0.77 0.77 0.76
CaOC 0.87 0.87 0.87 0.88 0.83 0.89 0.88 0.85 0.89 0.81BPT Occ 0.62 0.59 0.52 0.62 0.61 0.68 0.64 0.60 0.68 0.62
CaOC 0.80 0.85 0.85 0.86 0.85 0.83 0.85 0.85 0.86 0.86Watershed area Occ 0.53 0.73 0.73 0.73 0.74 0.59 0.74 0.72 0.74 0.74
CaOC 0.79 0.86 0.85 0.86 0.85 0.83 0.85 0.85 0.86 0.85

32

Watershed volume Occ 0.52 0.75 0.75 0.74 0.72 0.58 0.75 0.75 0.75 0.73
CaOC 0.89 0.89 0.88 0.89 0.86 0.90 0.89 0.87 0.90 0.86BPT Occ 0.71 0.74 0.66 0.77 0.67 0.75 0.77 0.72 0.79 0.69
CaOC 0.80 0.84 0.83 0.85 0.83 0.85 0.83 0.82 0.84 0.83Watershed area Occ 0.54 0.68 0.67 0.68 0.71 0.61 0.69 0.67 0.68 0.71
CaOC 0.80 0.84 0.84 0.85 0.83 0.84 0.83 0.83 0.83 0.83

64

Watershed volume Occ 0.54 0.71 0.73 0.70 0.69 0.61 0.71 0.72 0.70 0.69
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Table 13: Percentage of images with the original class changed after the inclusion (exclusively)
of selected explanation regions for Imagenet dataset. Highlighted in blue are the configurations
presented in the main paper. We tested hierarchies constructed by filtering out smaller regions than
200, 300, 400 and 500 pixels, segmentation based on Edges, Integrated Gradients (IG), and Guided-
Backpropagation (BP). We tested three different strategies to for the first hierarchical segmentation:
BPT, watershed with area attribute, and watershed with volume attribute. We expect smaller rate
values of class change.

Imagenet
VGG ResNet% of images

Edges IG BP Edges IG BP
CaOC 0.95 1.00 0.97 0.96 1.00 0.98BPT Occ 0.72 0.69 0.51 0.74 0.57 0.50
CaOC 0.98 0.99 0.98 0.98 0.99 0.99Watershed area Occ 0.92 0.93 0.91 0.93 0.94 0.90
CaOC 0.98 0.99 0.99 0.98 0.99 0.99

200

Watershed volume Occ 0.91 0.97 0.97 0.92 0.96 0.96
CaOC 0.94 1.00 0.97 0.95 1.00 0.98BPT Occ 0.72 0.82 0.55 0.74 0.72 0.55
CaOC 0.97 0.98 0.98 0.98 0.99 0.98Watershed area Occ 0.92 0.93 0.90 0.92 0.94 0.90
CaOC 0.97 0.99 0.99 0.97 0.99 0.99

300

Watershed volume Occ 0.91 0.96 0.96 0.91 0.96 0.96
CaOC 0.94 1.00 0.97 0.95 1.00 0.98BPT Occ 0.73 0.88 0.59 0.75 0.81 0.60
CaOC 0.97 0.98 0.97 0.97 0.99 0.98Watershed area Occ 0.91 0.93 0.90 0.92 0.93 0.89
CaOC 0.97 0.99 0.98 0.97 0.99 0.99

400

Watershed volume Occ 0.90 0.96 0.96 0.91 0.96 0.96
CaOC 0.94 0.92 0.98 0.94 0.86 0.98BPT Occ 0.74 1.00 0.63 0.75 1.00 0.63
CaOC 0.96 0.98 0.97 0.97 0.99 0.98Watershed area Occ 0.90 0.92 0.89 0.91 0.93 0.89
CaOC 0.96 0.98 0.98 0.97 0.99 0.98

500

Watershed volume Occ 0.89 0.96 0.96 0.90 0.96 0.96
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Figure 5: Softmax (a,c) and Accuracy (b,d) when including regions filtered by different percentage
thresholds of most important scores, for VGG16 (a,b) and ResNet-18 (c,d) models. We evaluate
each threshold as a hierarchy level in eight configurations of xAiTrees (C1 and C2), in a bottom-
up approach (from smaller highly important regions to the bigger structures). We compare these
configurations to the baselines: LIME, XRAI, Grad-CAM, Ms-IV, and Occlusion, by filtering the
maps using the same threshold. The curves are an aggregation by the average of 1,000 randomly
selected images from Imagenet dataset. AUC values are included in the graphs. BP-TreeB-Occ and
BP-TreeB-CaOC considerably surpassed the other curves. However, we notice a good early behavior
of the methods except for Grad-CAM, Ms-IV and Occlusion.
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Figure 6: Softmax (a,c) and Accuracy (b,d) when including regions filtered by different percentage
thresholds of most important scores, for VGG16 (a,b) and ResNet-18 (c,d) models. We evaluate
each threshold as a hierarchy level in eight configurations of xAiTrees (C1 and C2), in a bottom-
up approach (from smaller highly important regions to the bigger structures). We compare these
configurations to the baselines: LIME, XRAI, Grad-CAM, Ms-IV, and Occlusion, by filtering the
maps using the same threshold. The curves are an aggregation by the average of 512 images from
Cat vs. Dog dataset. AUC values are included in the graphs.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Time analysis: Table 14 shows the execution times to explain an image (averaged from 100
randomly selected cat vs. dog images). Tree-Occ is a much faster option for providing explanations
than SOTA methods such as XRAI. However, the execution time of the xAiTrees framework is
related to the choice of scoring method used to assign importance to regions (CaOC, Occ, or LIME),
therefore methods such as LIME that take more time to generate explanations will increase the time
of xAiTrees, as shown in the Tree-LIME example.

Table 14: Execution times to explain an image (averaged from 100 randomly selected cat vs. dog
images).

Mean time
100 images LIME XRAI Grad-CAM Occ. Ms-IV TreeB

Occ
BP-TreeB

Occ
TreeW

Occ
IG-TreeW

Occ

VGG Mean 7.87 11.97 0.009 6.65 0.27 0.60 0.65 0.76 1.31
Avg. 0.82 1.25 0.0002 2.47 0.03 0.08 0.09 0.10 0.08

ResNet Mean 5.64 10.19 0.007 3.41 0.17 0.50 0.57 0.58 0.84
Avg. 0.40 1.36 0.0002 0.03 0.07 0.06 0.05 0.06 0.07

TreeB
CaOC

BP-TreeB
CaOC

TreeW
CaOC

IG-TreeW
CaOC

TreeB
LIME

BP-TreeB
LIME

TreeW
LIME

IG-TreeW
LIME

VGG Mean 0.71 0.81 0.87 1.53 31.91 41.07 49.96 54.98 -
Avg. 0.11 0.11 0.13 0.10 7.56 8.24 11.11 3.25 -

ResNet Mean 0.60 0.68 0.73 1.04 19.44 27.01 31.58 44.46 -
Avg. 0.08 0.08 0.10 0.07 4.75 3.99 6.99 2.90 -
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A.6 QUALITATIVE ANALYSIS

Models’ description: Table 15 shows the number of images in the train set for three Cat vs. Dog
ResNet18 biased models. For Bias 1 the biased class is composed of only cats on top of cushions.
For Bias 2 the biased class is composed of only dogs next to grades. For Bias 3 the biased class
is composed of only cats with humans. We also include the accuracy percentage per class when
predicting a non-biased validation set composed by 5,109 images.

The biased models were trained with initial weights from Imagenet, learning rate 5e−7, cross-entropy
loss, the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

Table 15: Number of images (for a normal and an induced biased class) for training three biased
ResNet18 models. We also present the accuracy of the models when predicting each class image
from a non-biased validation dataset (5,109 images).

Normal class Acc. orig. val
normal (%) Bias class Acc. orig. val

bias (%)
Bias 1 138 86.91 69 84.82
Bias 2 85 97.97 56 37.81
Bias 3 161 86.28 46 80.96

Comparison of misclassified images: Considering the hierarchical characteristic of our methodol-
ogy, we can perform a deeper analysis of the explanations by selecting regions by the percentage of
importance to be visualized, as shown in Figure 7. In the last level of the dishwasher example, the
model seems to focus on the cat’s dish after having focused on the sink (in the previous level).

Figure 7: Different visualization levels on the explanation hierarchy. We illustrate a deeper analysis
of the explanations of four images from Figure 1 using Tree-Occ (minimal region size of 500 pixels).
We can note the evolution of the importance in the images’ shapes, for examples: in the hamper
image, although the hamper is the most important, the cat has also an important that disappears at
the more selective level (Tree-Occ 0.75); in the dishwasher the initial explanations show the sink as
important but at the most selective level, the cat’s dish is the only one remaining. This analysis can
be helpful to understand the reasoning behind predictions.

Human evaluation in bias analysis: As mentioned on the paper, we used the configuration C1
for human-interpretation evaluation compared to baseline techniques: IG, Grad-CAM, OCC, LIME,
Ms-IV, ACE. We presented the same five image visualizations (from corrected classified images by
the biased class) for the baseline methods and the methods from C1.

The idea was to analyze the impact of the visualizations on people from different backgrounds.
We limited ourselves to people over the age of 18 and recorded their self-identification as expert,
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non-expert, field of expertise, and country. We show some statistics of each group of 41 people that
participated in our evaluation.

Expertise areas:

• 48.8% of people from computer science;
• 17.1% of people from human sciences;
• 19.5% of people from life sciences;
• 9.8% of people from exact sciences (not in Computer Science);
• 4.9% of people from none of the above.

Graduate degree:

• 20.0% of PhDs;
• 32.5% of Masters;
• 30.0% of Bachelor’s degree;
• 17.5% of High school diploma.

AI expertise:

• 22.0% None;
• 36.6% Basic;
• 9.8% Intermediate;
• 7.3% Advanced;
• 24.4% Expert (working with AI).

We intended to verify if: (i) humans can detect the wrong focus given based on a class prediction
(Detection); and (ii) humans can recognize which was the cause of the bias (Identification).

To test (i) and (ii), for each Bias type we produce for each of the xAI methods an explanation image.
By presenting five image explanations (the same images) for each of the xAI methodologies, we
asked volunteers, based on the explanations provided, what did they think the highlighted regions
referred to. The five image explanations are presented in Figure 8 for each Bias type (1-(a), 2-(b),
and 3-(c)).

Here, we display the text provided to the volunteers for this experiment:
[FORM] Part I - Determining the focus of the images: For each question, we provide two rows of
images:

• The first row displays the original images, each representing a specific class.
• The second row showcases an image for each image from the first row, highlighting the

important parts for the class.

[IMPORTANT] What is a class?
A class refers to a category or type of object, animal, or characteristic depicted in the images. For
instance, a class of cat images would include images featuring cats, while a class of dog images
would comprise images featuring dogs. Similarly, a class of cartoon images would include images
characterized by cartoon-like features. In essence, a class represents a distinct category used to
classify and organize images based on their content or characteristics.
Throughout the questions, our objective is to identify the common important parts present in the
images of the first row, as indicated by the corresponding images in the second row.
If no common important parts are identified for most of the images, the answer should be Not
identified.

And for each method visualization:
For the following three questions, the second row of images displays significant image components
to the class of the animal.
What are the significant components of the images highlighted, as depicted in the second row of
images?
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To test ACE similarly as we did with the other methods, we highlight the top five concepts found
(described as sufficient in the original ACE paper (Ghorbani et al., 2019)) in the same five selected
images. However, we also show the visualizations of the ten most activated images for the top five
found concepts in Figure 9.

In our final qualitative experiment, using the same methods as the previous human evaluation, we
presented four image explanation visualizations for non-biased models to determine xAI model pref-
erences. The images are presented in Figure 10. We presented the following explanation and question:
[FORM] Part II: Choosing the best representation:
For the next questions, you will be asked to answer which image number do you prefer to describe
the class we indicate.
You should choose the image that seems to highlight class features in an easier way to understand.
Which image do you think better shows representative parts of the animal?

For the two first images (Figures 10 (a) and (b)), over 70% preferred Tree-Occ and Tree-CaOC over
others. For the third image (Figure 10 (c)), IG was preferred by 26.5%, followed by Tree-OCC and
Occlusion with 20.6%. Grad-CAM was preferred in the fourth image (Figure 10 (d)), with 60.6%,
followed by Tree-CaOC with 18.2%. The visualizations suggest a preference for explanations that
highlight the complete concept (cat or dog) rather than focusing on specific small animals’ regions.
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(a) Cushions (b) Grids

(c) Humans

Figure 8: Explanations of visualizations used on our human-based evaluations for bias detection
and identification, of all the ten compared methods: IG, Grad-CAM, OCC, LIME, Ms-IV, ACE,
Tree-MsIV, Tree-Occ, IG-Tree-Msiv, and IG-Tree-Occ. We showed the same five image explanations
for all the methods.
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(a) Cushions (b) Grids

(c) Humans

Figure 9: Original explanations of the top 5 concepts generated by ACE for the three biased models.
Instead of showing the 10 most concepts’ activated images we draw these five top concepts on the 5
selected images from Figure 8 to have a fairer comparison with the other methods.

A.7 POSSIBLE ADAPTATIONS OF THE FRAMEWORK

Regarding the adaptability of the framework for using other xAI methods to score regions, we present
in Table 16 preliminary results of the exclusion of important regions experiment (Section 5 and A.5)
by using LIME in the place of Occlusion and CaOC. The results demonstrate Tree-LIME improves
the class change under important regions’ occlusion for the Cat vs. Dog dataset (compared to Table 1).
We also show two image explanations generated by Tree-LIME in Figure 11. We do not include this
variation in all the experiments due to the time consumption (Table 14). However, these preliminary
results demonstrate Tree-LIME can increase the class change (Ch.) reaching higher percentages than
the best configuration presented in the main paper.

Regarding the adaptability of the framework to other tasks such as learning representations, one sug-
gestion would be calculating the distance between the two learned representations (original and after
occlusion) to attribute regions’ scores instead of verifying the logits different as in classification tasks.
The type of distance applied should be tested. A more sophisticated evaluation of impact (scoring the
hierarchy regions) would be to include a network to quantify the quality of the representation for the
task at hand.
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(a) (b)

(c) (d)

Figure 10: Explanations of visualizations used on our human-based evaluations for preference
analysis, of all the ten compared methods: IG, Grad-CAM, OCC, LIME, Ms-IV, ACE, Tree-MsIV,
Tree-Occ, IG-Tree-Msiv, and IG-Tree-Occ. We showed the same five image explanations for all the
methods.

Table 16: Percentage of images with the original class changed after the exclusion of selected
explanation regions. We tested TreeW, IG-TreeW, TreeB, and BP-TreeB combined to LIME (instead
of using occlusion to score regions) in two architectures, VGG-16 and ResNet18, for the Cat vs. Dog
dataset. We compare the results of the four configurations to the best configuration using Occlusion
(BP-TreeB-Occ) showing the p-score in brackets (Mcnemar test). We expect a higher percentage
of class change (Ch.) when the region is excluded. Same column shows images maintaining the
original class when the output was reduced, and Total is the sum of class change (Ch.) and class
reduction (Same).

Cat vs. Dog
VGG ResNet% of images

Ch. Same Total Ch. Same Total
TreeW-LIME 0.34 (0.0) 0.64 (0.0) 0.98 0.43 (1.2-4) 0.56 (7.2-10) 0.98

IG-TreeW-LIME 0.45 (2.2-9) 0.54 (2.7-10) 0.99 0.43 (2.0-4) 0.55 (2.5-9) 0.98
TreeB -LIME 0.57 (0.05) 0.42 (0.01) 0.98 0.64 (2.3-3) 0.35 (0.34) 0.99

BP-TreeB-LIME 0.70 (2.2-9) 0.29 (2.7-10) 0.99 0.77 (2.0-4) 0.21 (2.5-9) 0.98
BP-TreeB-Occ 0.63 0.35 0.98 0.55 0.37 0.92

Figure 11: Examples of Tree-LIME demonstrating the adaptability of xAiTrees framework.

Concerning other modalities, such as text as input, we could consider a tokenization process as the
segmentation. A first idea would be to define a tokenization algorithm that can learn merge rules
and use them to construct the segmentation tree. Each node in this tree can be considered a segment.
Another idea would be to use grammar rules to define parts of a sentence, such as nouns, verbs, and
declinations. However, this approach would be focused on a specific language.
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