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Abstract
We study the problem of learning the topology
of a directed Gaussian Graphical Model under
the equal-variance assumption, where the graph
has n nodes and maximum in-degree d. Prior
work has established that O(d log n) samples are
sufficient for this task. However, an important
factor that is often overlooked in these analyses
is the dependence on the condition number of the
covariance matrix of the model. Indeed, all al-
gorithms from prior work require a number of
samples that grows polynomially with this condi-
tion number. In many cases this is unsatisfactory,
since the condition number could grow polyno-
mially with n, rendering these prior approaches
impractical in high-dimensional settings. In this
work, we provide an algorithm that recovers the
underlying graph and prove that the number of
samples required is independent of the condition
number. Furthermore, we establish lower bounds
that nearly match the upper bound up to a d-factor,
thus providing an almost tight characterization of
the true sample complexity of the problem. More-
over, under a further assumption that all the vari-
ances of the variables are bounded, we design a
polynomial-time algorithm that recovers the un-
derlying graph, at the cost of an additional poly-
nomial dependence of the sample complexity on
d. We complement our theoretical findings with
simulations on synthetic datasets that confirm our
predictions.

1. Introduction and Background
A common problem that arises in many scientific disciplines
is inferring the underlying dependency structure of a vector
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of observations (Duncan, 2014). In particular, this is one of
the fundamental goals of causal inference, where the empha-
sis is on discovering cause-and-effect relationships between
variables. Perhaps the most popular way of approaching this
problem is through the formalization of Directed Acyclic
Graph (DAG) models, or Bayesian Networks, where vari-
ables are sampled sequentially, with the order induced by a
DAG G(Lauritzen, 1996; Wainwright et al., 2008). These
models have been widely adopted in the social sciences,
starting from their introduction in the seminal work (Pearl
et al., 2000). They have also found applicability in fields
as diverse as human geography (Malioutov et al., 2006; Ao
& Chang, 2020), the environment (Grace et al., 2007), and
ecology (Byrnes et al., 2011). The problem of determining
G from observations of the variables is referred to in the
literature as causal structure learning.

In the general case, some popular approaches for solving
this problem include the PC algorithm (Spirtes et al., 2001)
and Greedy Equivalence Search (GES) (Chickering, 2002b).
However, these often require strict assumptions, such as
strong faithfulness (Uhler et al., 2013), or encounter compu-
tational issues. Indeed, in general, the problem of recovering
the true Bayesian Network is NP-hard (Chickering, 1996).

The problem becomes more structured using the formal-
ization of Structural Equation Models (SEMs), where each
variable is equal to a function of its parents with some added
independent noise. Identifiability for these models has been
established when the functions are sufficiently non-linear or
when the noise is non-Gaussian (Peters et al., 2014; Shimizu
et al., 2006). For linear Gaussian SEMs, which is the fo-
cus of this work, finding the graph in general is impossi-
ble. Identifiability was established in (Peters & Bühlmann,
2014), under the additional assumption that all εi have the
same variance (equal variances assumption). A subsequent
flurry of works (Ghoshal & Honorio, 2017b;a; 2018; Chen
et al., 2019; Gao et al., 2020; 2022) established upper and
lower bounds on the number of samples needed (sample
complexity) for inferring the graph in the high dimensional
sparse setting where the maximum in-degree of any node
is bounded by d and the number of nodes n >> d. Often,
the goal in these works is to obtain sample complexity that
scales as O(d log n).

However, an important factor that is often overlooked in
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prior work is the role of the condition number κ of the
covariance matrix of observations. Indeed, all previous anal-
yses typically assume some type of condition that implies a
bound on κ, independent of n. However, in many interest-
ing examples and simple examples, κ scales polynomially
with the number of nodes n. This would imply that all al-
gorithms in prior work require poly(n) samples, which is
problematic in high-dimensional settings. For example, in
the directed path graph or the tree graph, κ grows polynomi-
ally with n, but the structure can clearly be identified easily
using O(log n) samples. Thus, a natural question that arises
is whether it is even information theoretically possible to
design an algorithm that is truly high-dimensional, with a
sample complexity independent of the condition number.

In this work, we answer this question in the affirmative. In
particular, we design and analyze an algorithm that achieves
graph recovery with sample complexity independent of the
condition number while at the same time retaining the opti-
mal O(d log n) scaling. We identify a key quantity τ(G) of
the graph (see (2)) that determines this sample complexity,
which is always upper bounded by the condition number κ.
Furthermore, we provide a lower bound for the sample com-
plexity of any algorithm, which also contains τ and matches
our upper bound up to a single factor of d (this d-factor dis-
crepancy of the upper and lower bound is a known limitation
of all prior lower bound approaches for Markov Random
Fields (Wang et al., 2010; Misra et al., 2020; Kelner et al.,
2020)). Thus, we obtain an almost tight characterization
of the optimal sample complexity of the problem. Another
natural question is whether we can design an efficient al-
gorithm that solves the problem without condition number
assumptions. To this end, we provide such an algorithm,
which works under the natural assumption that the max-
imum variance of a node is bounded by a constant. We
also show that this is a strictly weaker assumption than the
boundedness of the condition number.

In terms of techniques, the problem of learning a DAG is
information-theoretically different in nature from that of
learning undirected graphical models due to the combinato-
rial nature involved in finding the right topological ordering
of the nodes. Despite that, our approach brings together a
variety of tools from the literature on learning directed as
well as undirected graphical models. We hope this serves as
an inspiration for further fruitful investigations that would
uncover connections between the two problems.

The rest of the paper is organized as follows. Section 1.1
discusses prior work related to the problem, and Section 1.2
contains some preliminary definitions and facts about the
model. The main Algorithm that achieves information-
theoretic discovery is given in Section 2.1, with the matching
lower bound following in Section 2.2. An efficient Algo-
rithm is presented in 2.3. For completeness, we provide a

more detailed technical comparison of our results with prior
work in Section 2.4. Finally, we give a proof sketch for the
main results in Section 3 and simulation results in Section
4.

1.1. Prior work

There is a long line of work that focuses on recovering
the underlying directed acyclic graph (DAG) in structural
equation models. A popular approach is the PC algorithm
(Spirtes et al., 2001), which runs in polynomial time if the
graph is sparse. (Robins et al., 2003) shows that it is point-
wise but not uniformly consistent under the classical faith-
fulness assumption on the underlying distribution. (Zhang
& Spirtes, 2012; Kalisch & Bühlman, 2007) show uniform
consistency under the strong faithfulness assumption, which
can be sometimes restrictive (Uhler et al., 2013). Other ap-
proaches include score-based model selection(Spiegelhalter
et al., 1993; Heckerman et al., 1995; Chickering, 2002b;a),
where searching for a graph can be cast as an optimization
problem.

Closer to our work is a line of research that considers learn-
ing structural equation models (SEMs). Various works
show identifiability when the functions are sufficiently non-
linear (Peters et al., 2014) or when they are linear and the
noise is non-Gaussian (Shimizu et al., 2006). In general,
when the noise is Gaussian, it is impossible to determine
the direction of the edges, which makes the problem non-
identifiable. (Peters & Bühlmann, 2014) proved identifia-
bility under the equal variances assumption, followed by an
investigation on the optimal sample complexity (Ghoshal
& Honorio, 2017a;b; Chen et al., 2019; Gao et al., 2020;
Gao & Aragam, 2021; Gao et al., 2022). In particular, in
(Gao et al., 2022) they provide an algorithm that requires
O(d log n) samples. As we mentioned earlier, all these prior
analyses assume that the condition number is bounded, and
the sample complexity is implicitly dependent on that with a
polynomial rate. Another notable work is (Gao et al., 2023).
This paper focuses on support recovery in a linear regres-
sion setting where the underlying design satisfies additional
structural constraints. The authors provide an alternative ap-
proach to Best Subset Selection and show it performs better
in a setting where there is no generalized path cancellation.

Finally, another popular branch of the literature consid-
ers learning undirected Markov Random Fields (MRFs)
(Bresler, 2015; Vuffray et al., 2020; 2016; Lokhov et al.,
2018; Klivans & Meka, 2017; Wu et al., 2019; Misra et al.,
2020). In general, this problem possesses an inherent con-
vexity and can be solved by neighborhood regression, which
is why it is considered easier than the directed case. In
the special case where the underlying distribution is Gaus-
sian, the so-called undirected Gaussian Graphical Model
(GGM), a variety of algorithms have been proposed when
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the underlying graph is sparse, based on estimating the co-
variance matrix(Meinshausen & Bühlmann, 2006; Yuan &
Lin, 2007; Cai et al., 2011; Anandkumar et al., 2012; Cai
et al., 2016; Johnson et al., 2012; Friedman et al., 2008).
Under minimal assumptions, (Wang et al., 2010) proved
a sample complexity lower bound of Ω((1/βmin) log n),
where βmin is the minimum normalized edge strength of the
model. (Misra et al., 2020) provides an algorithm that suc-
ceeds with O((d/βmin) log n) samples, and (Kelner et al.,
2020) designs a computationally efficient alternative with
similar sample complexity under the additional assumption
of walk-summability (Malioutov et al., 2006). An interest-
ing folklore question is to compare the complexity of the
problems of identifying the undirected and directed graphs
of Gaussian models(Gao et al., 2022). Our work can thus be
seen as establishing a separation between these two tasks,
which are governed by different quantities, βmin in the case
of undirected and τ in the case of directed models. Finally,
a related line of work studies Gaussian models with the ad-
ditional assumption that the topology is a tree, see e.g.(Tan
et al., 2010; 2011).

1.2. Preliminaries and Problem Settings

Let G = (V,E) be a Directed Acyclic Graph (DAG) on n
nodes, where the maximum in-degree of a node is bounded
by d. For i, j ∈ V , we sometimes write i→ j if (i, j) ∈ E
is a directed edge. As discussed in Section 1, G can be
thought of as the fixed ground truth graph that we seek to
identify. We denote by pa(i) = {j ∈ V : j → i} the parent-
set of node i. By assumption, |pa(i)| ≤ d for all i ∈ V . A
topological order of the nodes inG is any permutation of the
nodes π : V 7→ [n] such that if i→ j implies π(i) < π(j).
Since G does not have directed cycles, this ordering always
exists but is not necessarily unique. With each node i in G,
we associate a random variableXi ∈ R. A vector of random
variables (X1, X2, . . . , Xn) ∈ Rn, is generated according
to DAG G if the following structural equation holds

Xi =
∑
j∈π(i)

bjiXj + εi , (1)

where εi ∼ N (0, σ2) is i.i.d. Gaussian noise of equal
variance. In particular, if a node i has no parents, Xi is just
N (0, 1). The above model is the so-called equal variances
model. We note that when this assumption is not satisfied,
it might be impossible to identify the DAG, even up to the
Markov Equivalence Class. For details see E.1. For a set I ,
we denote XI to be the vector of (Xi) for i ∈ I .

We can collect all coefficients bji in a matrix B ∈ Rn×n,
so that Bij = bij is non-zero only if i → j. If we index
the rows and columns of B according to a topological or-
dering, we can think of B as being upper triangular, and the

following relation holds

X = B⊤X + σϵ ,

where X is the vector of random variables indexed by the
same topological order, and ε is a standard n-dimensional
Gaussian vector. This has the straightforward implication
that the covariance Σ and inverse covariance Θ of vector X
can be written as

Θ = σ−2(I−B)(I−B)⊤,Σ = σ2((I−B)−1)⊤(I−B)−1

It is clear that σ simply controls the scale of all variables in
the problem and doesn’t affect structure recovery. Therefore,
for simplicity in the remainder of this work, we assume that
σ = 1. If σ was unknown, our results extend straightfor-
wardly. Algorithm 1 has the same sample complexity but
with an added first step to estimate the smallest variance.
The number of samples in Algorithm 2 would scale by σ−2.
More details can be found in Supplementary E.3. We make
the following assumption throughout this work.

Assumption 1.1.

min
i∈V,j∈pa(i)

|bji| ≥ bmin > 0

Assumption 1.1 places a lower bound on the minimum
strength of an edge between two nodes. This lower bound
is essential information-theoretically, if we want to detect
the presence of each edge. In this paper, we assume bmin

and the sparsity d are known to the learner. We discuss ex-
tending our result to the case when bmin and d are unknown
in the Appendix E.3. More specifically, we can perform the
full Algorithm 1 if bmin is unknown but the guarantee alters.
We can also perform the first phase of our Algorithm 1 if d
is unknown.

We also define for a graph G the following quantity τ(G),
which is the maximum sum of squares of the coefficients
for the out-edges of a node.

τ = τ(G) := 1 +max
j

∑
l:j→l

b2jl (2)

We will see in the sequel how τ(G) arises naturally in both
the upper and lower bounds on the sample complexity of
the problem.

2. Results
In Section 2.1 we present an algorithm based on neigh-
borhood selection and analyze its sample complexity. In
Section 2.2 we present an information theoretic lower bound
that matches this sample complexity up to a factor of d. Fi-
nally, in Section 2.3 we provide a polynomial time algorithm
with slightly worse sample complexity.
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2.1. Information Theoretic Recovery

The algorithm is split into two phases, as shown below.

Algorithm 1 Estimating the DAG Information Theoretically

input Samples (X(1), X(2), . . . , X(m))
output Topology Ĝ

1: Phase 1: Finding the Topological Ordering
2: T = []

3: Find allXi with V̂ar(Xi) ≤ (1+b2min/2) and put i ∈ T
4: while |T | < n do
5: M = ∅
6: for i ∈ [n]\T do
7: for J ⊆ T, |J | = d do
8: βJ ← Regress Xi on XJ

9: MSE ← 1
m

∑
j

(
X

(j)
i −X

(j)
J βJ

)2
10: if MSE ≤ 1 + b2min/2 then
11: T ← T .append(i)
12: end if
13: end for
14: end for
15: end while
16: Phase 2: Finding the parents
17: for i ∈ T do
18: S ← nodes in T before i
19: for J ⊆ S, |J | = min(|S|, d) do
20: PASSED← True
21: for K ∈ S\J ,|K| ≤ min(|S| − |J |, d) do
22: βJ∪K ← Regress Xi on XJ∪K
23: if ∃k ∈ K : |β̂k| ≥ bmin/2 then
24: PASSED← False, break.
25: end if
26: end for
27: if PASSED = True then
28: β̂ ← regress Xi on XJ

29: pa(i)← {j ∈ J : |β̂j | ≥ bmin

2 } , break.
30: end if
31: end for
32: end for

In Phase 1, we aim to find the topological order. A fun-
damental property of the equal-variances model is that the
variance increases along directed paths. Thus, the strategy
is to start with the node of smallest variance. Intuitively, we
want to keep adding the node with the smallest conditional
variance, conditioned on the nodes we have already added.
One approach for computing this variance is by using the
conditional variance formula for Gaussians, as is done in
prior work (Chen et al., 2019; Gao et al., 2022). One impor-
tant challenge in our setting though is that the expression
for this conditional variance involves covariance matrices
with arbitrarily bad condition numbers. Prior analyses in
(Chen et al., 2019; Gao et al., 2022) bound the estimation

error for these matrices, which leads to a sample complexity
that depends on a condition number assumption. Instead, in
our analysis we take advantage of the relation between this
conditional variance and the mean squared error of regress-
ing the node with the previous nodes in the ordering, which
results in significant gains in sample complexity.

Thus, for Phase 1, we still calculate the conditional vari-
ances as in (Gao et al., 2022) and (Chen et al., 2019). We
observe that for any node i and any set J , if J contains
all the parents of i, then Var[Xi|XJ ] = 1. Otherwise, the
conditional variance is larger than 1+ b2min. Thus, there is a
gap between these two cases (see Proposition A.1) which
helps us distinguish between them.

Phase 1 of the algorithm outputs an a list T , a valid topolog-
ical order of all the nodes. In line 2, we initialize T as an
empty list. We know that the first node in the topological
order has no parent, thus it has a variance of 1, the smallest
variance among all random variables. Therefore, in line 3,
we choose i such that Xi has a small empirical variance to
be the first in the list.

Let us now discuss lines 4 to 15 of Algorithm 1. Suppose,
inductively, that we have identified the correct T for each
iteration. In that case, all the nodes in T appear earlier in
the topological order than V \T . This means that in the next
iteration, the node that comes right after T in the topological
order has all its parents in T . We call that node i. Therefore,
the conditional variance, Var[Xi|XT ], is 1 (see Proposition
A.1), and we can choose the one with smallest conditional
variance accordingly.

However, we cannot directly calculate the conditional vari-
ance on XT or even estimate it with bounded accuracy
by vanilla OLS. If we do so, we need O(n) samples,
which is larger than our target O(log n) samples, to esti-
mate the conditional variance of Xi given XT . Neverthe-
less, we can take advantage of the sparsity of the graph,
i.e. |pa(i)| ≤ d. By conditional independence, we have
Var[Xi|Xpa(i)] = Var[Xi|XT ] = 1. Therefore, instead of
calculating the conditional variance Var[Xi|XT ], we can
calculate Var[Xi|XJ ] for all ≤ d-element subsets J of T .
Hence, lines 7 to 13 do the following: For all i, we loop
through J ⊆ T, |J | ≤ d to find the subset that makes the
empirical conditional variance smaller than 1 + b2min/2. If
we find such i, we append to topological order. We repeat
this procedure until there is no node outside T .

After finding a topological ordering in the first phase, the
second phase aims to recover the parents of each node,
in order to completely determine the topology. Here, we
draw inspiration from a technique developed in (Misra et al.,
2020) for undirected Graphical Models. For any vertex i,
we would like to figure out which of the candidate subsets
of size at most d that come before it is the correct parent set.
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The only guarantee we have in this sample-starved setting is
that linear regression with O(d) covariates has small error.
Thus, for any such candidate parent set A, we perform a
series of regressions of i with covariate set A ∪ B, where
B ranges over all subsets of d nodes before i again. If for
at least one of these sets B, some regression coefficient of
a variable in Xj ∈ B comes out sufficiently large, then
we know that A does not contain all parents and hence
we reject it. The reason is that conditioned on the parent
set, Xi should be independent of all other variables that
come before it in the ordering. On the other hand, if for all
sets B, the only large coefficients come from variables in
set A, then we know that A contains all parents of i. We
then pick the parents of i as the variables of A with large
coefficients. A detailed description of this procedure is given
in Algorithm 1. We remark that, for the second phase of
finding the parents, it is possible to use as an alternative the
Best Subset Selection algorithm. Even though the authors in
(Gao et al., 2023) do not consider the equal variances model,
it is possible to use their analysis about support recovery
together with some additional steps to obtain similar sample
complexity guarantees for the second phase of finding the
parents.

The next result provides an upper bound on the number of
samples required by Algorithm 1 to find the correct topol-
ogy with high probability (proof: A.) Note that Algorithm 1
requires knowledge of the parameters σ, d, bmin. In Supple-
mentary E.3, we present an adaptive version of this algo-
rithm with similar sample complexity guarantees.

Theorem 2.1. Suppose we run Algorithm 1 using m in-
dependent samples generated from a DAG G according to
(17). If Assumption 1.1 holds, then there exists an absolute
constant C > 0, such that the following guarantees hold.

• Phase 1 of Algorithm 1 succeeds in finding a correct
topological ordering of the nodes with probability at
least 1− δ, provided that

m ≥ C 1

b4min

(d log(n/d) + log(1/δ))

• Provided that Phase 1 of Algorithm 1 succeeds in find-
ing a correct ordering, Phase 2 finds the correct parent
set for each node with probability at least 1− δ, pro-
vided that

m ≥ C τ(G)
b2min

(d log(n/d) + log(1/δ))

Notice that we obtain separate characterizations for the sam-
ples required to find the correct topological ordering and the
correct parent sets. We remark that for the task of finding
the ordering, it suffices to assume that the noise is sub-
gaussian (for details see Supplementary E.4). The only

relevant quantities for finding the topology are n, d, bmin,
with no dependence on κ. An additional relevant quan-
tity for the sample complexity of determining the parent
set is τ(G). We note here that this is always better than a
condition number bound, as the following Lemma suggests.

Lemma 2.2. For any probabilistic model of the form (17)
with DAG G, we have τ(G) ≤ κ.

The proof of this lemma can be seen in Appendix D. Thus,
our bound is stronger than the ones obtained using condition
number assumptions (Chen et al., 2019; Gao et al., 2022).
Furthermore, there are also cases where τ(G) is a constant
and κ grows exponentially with n. For example, if we have
the DAG X1 → X2 → · · · → Xn and bi,i+1 = k >
1, then the condition number is at least kn−1 but τ(G) is
constant. A related construction involving trees with similar
guarantees is given in the proof of Lemma 2.5.

For the bound τ(G), in Section 2.2, we show that this de-
pendence on τ is necessary. For more detailed discussion
and comparisons of this result with that of prior work, we
refer the reader to Section 2.4.

2.2. Information Theoretic Lower Bound

In Section 2.1 we presented an algorithm that suc-
ceeds with high probability as long as it is given
O(max(b−4

min, τb
−2
min)d log(n/d)) samples. We now present

a lower bound on the sample complexity of any algorithm,
which matches the upper bound up to a factor of d. Thus, we
obtain a fine-grained characterization of the optimal sample
complexity for this problem.

Our general strategy will be to define a family of distri-
butions as in (17), each indexed by a different topology
and then apply Fano’s inequality (Yu, 1997). Each family
will instantiate some part of the difficulty of the problem,
which corresponds to some term in the sample complexity.
Concretely, we can prove (in Appendix B) the following.

Theorem 2.3. We can construct a family of DAGs G satis-
fying Assumption 1.1 with the following property: suppose
one DAG G ∈ G is picked uniformly at random from G
and m independent samples X(1), . . . , X(m) are generated
according to G. Then, any estimator e : Rmn → G that
takes as input these samples satisfies

P
[
e
(
X(1), . . . , X(m)

)
̸= G

]
≥ 1

2

as long as m ≤ Cmax(b−4
min, τb

−2
min) log(n), where C > 0

is an absolute constant.

Thus, Algorithm 1 is minimax optimal up to a factor of
d. Each of the two terms in the max reflects the difficulty
of finding the correct topology and finding the parent set,
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respectively. Hence, we essentially characterize the com-
plexity of these two problems separately up to a d-factor.
This is explained in more detail in the Supplementary Mate-
rial. For a more detailed comparison of this result with prior
work see Section 2.4.

2.3. Efficient Algorithm with Bounded Variance

The runtime of Algorithm 1 is O(n2d+2), which even for
small values of the maximum degree becomes impractical.
We are thus in search of a computationally efficient alter-
native, which will also enjoy favorable sample complexity
guarantees. One important observation about structure learn-
ing is its similarity with Sparse Linear Regression (SLR),
where one is tasked with estimating the regression vector
in a linear regression problem, assuming at most d of its n
entries are non-zero. Information theoretically, O(d log n)
samples are sufficient to estimate the vector. However, it is
conjectured that no polynomial time algorithm can succeed
under general designs using o(n) samples (Kelner et al.,
2024). The connection with our problem comes from the
fact that finding the parents of each node basically involves
solving a SLR problem where the non-zero coefficients
correspond to the parents of the node. Given this close con-
nection, it seems unlikely that a polynomial time algorithm
succeeds in finding the DAG using o(n) samples, at least in
the general case.

We thus need to pose extra assumptions in order to make
the problem tractable. One common assumption, which is
also present in prior work (Ghoshal & Honorio, 2017b), is
that all individual variances are bounded by a constant.

Assumption 2.4. For all i, Var (Xi) ≤ R2.

This can be seen as a mild assumption, as it rules out patho-
logical cases where the variance of some nodes grows with
the size of the DAG, a situation that could be considered
unrealistic in most applications. It is also worth noting that
this assumption is strictly weaker than a condition number
bound. In particular, we can prove that a condition number
bound implies a bound on the maximum variance, but the
converse is not necessarily true (proof in Appendix D.2).

Lemma 2.5. (i) Suppose we have variables X1, . . . , Xn

generated according to (17) and let κ be the condition
number of their covariance matrix. Then Var (Xi) ≤
κ for all i.

(ii) For every α ∈ (0, 1), there exists a sequence of DAGs
{Gn}n indexed by the number of nodes, with maximum
varianceRn and condition number κn, such thatRn =
O(1) but κn = Ω(nα).

Our strategy for finding the DAG is to use Lasso to discover
the neighborhood of each graph. We use the mean squared

error of the Lasso to determine the next node in the ordering.
Afterwards, to find the parents of each node, we regress on
nodes that appear before it in the topological ordering. The
details appear in Algorithm 2, where λ is the regularization
parameter.

Algorithm 2 Efficient algorithm for recovering the topology

input Samples (X(1), X(2), . . . , X(m))
output Topology Ĝ

1: T ←
[
i : V̂ar(Xi) ≤ (1 + b2min/2)

]
2: while |T | < n do
3: M = ∅
4: for i ∈ [n]\T do
5: Choose λ = O(

√
log(n/δ)R/

√
m)

6: β̂ ← LASSO regression of Xi on XT

7: MSE ← 1
m

∑
j

(
X

(j)
i −X

(j)
T β̂

)2
8: if MSE ≤ 1 + b2min/2 then
9: M ←M ∪ {i}

10: pa(i)← {j ∈ J : |β̂j | ≥ bmin/2}
11: end if
12: end for
13: T ← T .append(M )
14: end while

Below we present an upper bound on the sample complexity
of Algorithm 2 (proof is in Appendix C.)

Theorem 2.6. Under Assumptions 1.1 and 2.4, there is
an absolute constant C such that Algorithm 2 run with m
samples recovers the correct DAG with probability at least
1− δ, as long as

m ≥ C(R2 · log(n/δ) · d4 · τ3 · b−4
min)

Moreover, Algorithm 2 runs in time poly(n,m, τ,R).

A comparison with prior work follows in the next Section.

2.4. Discussion and Comparison

For completeness of presentation, we now offer a more
detailed technical comparison of our results with the most
relevant prior work.

Regarding upper bounds on the sample complexity,
(Ghoshal & Honorio, 2017b) obtain a sample complexity of
O(k4 log n), where k is the size of the maximum Markov
blanket, which could be much larger than the maximum
in-degree. Furthermore, they need to assume that the in-
finity norm of Θ is bounded, which is a form of condition
number assumption that we do not require. In (Chen et al.,
2019) they obtain an improvedO(d2 log n) dependence, but
they also need an upper bound on the maximum variance
of each node in the graph. Finally, (Gao et al., 2022) intro-
duce an algorithm that needsO(M5d log n) samples, which
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has the optimal dependence on d and n, but also depends
on M , which is an upper bound on the square root of the
condition number of κ of Σ. In contrast, Algorithm 1 needs
O(max(b−4

min, τb
−2
min)d log(n/d)) samples, which is also op-

timal in the dependence on n and d, but only depends on τ ,
which is smaller than κ by Lemma 2.5.

The quantity τ is information theoretically necessary, as
Theorem 2.3 implies an Ω(max(b−4

min, τb
−2
min) log(n)) lower

bound. The only lower bound in prior work that is directly
comparable to ours is the one in (Gao et al., 2022). Using
our notation, Theorem 3.1 from their work establishes the
lower bound Ω(max(d log(n/d)M2−1 , b−2

min log n)). It is clear that
our bound has the improved b−4

min factor compared to b−2
min

of (Gao et al., 2022). At first glance, it seems that their
bound Ω(d log(n/d)M2−1 ) is stronger by a d factor. However, we
can show (see Appendix D.6.) that M2− 1 ≥ db2min always
holds, which means that the bound in (Gao et al., 2022) re-
duces to logn

b2min
, which is strictly worse than the lower bound

in Theorem 2.3. In fact, this d-factor discrepancy between
upper and lower bounds is a known limitation in the lit-
erature on learning undirected GGMs (Wang et al., 2010;
Misra et al., 2020; Kelner et al., 2020). Thus, improving the
lower bound for our problem could have significant impli-
cations for other related questions as well. Also, (Ghoshal
& Honorio, 2017a) establishes general lower bounds for
Bayesian Networks where the conditional distributions are
exponential families. However, when instantiated in the
equal variances model, these results scale as k logn

w2
max

, where
wmax is the maximum L2-norm of the coefficients vector
of the parents of a node. Thus, this bound is of the order of
log n and fails to capture the dependence on τ .

Our result also gives us the opportunity to compare the
problems of learning directed and undirected graphs in rel-
atively equal footing. In (Misra et al., 2020), they propose
an algorithm that uses (d/βmin) log n samples to find the
undirected graph, where βmin is the minimum normalized
edge strength. Thus, we can view τ as the analog of βmin

for directed graphs.

Regarding the efficient algorithm, the most relevant prior
work to compare with is (Ghoshal & Honorio, 2018). They
perform L1-regularized Gaussian MLE and their analysis
assumes that the inverse covariance matrix of the variables is
upper bounded in L1-norm. This assumption is qualitatively
different from the ones we make, which makes the two
results incomparable.

In addition, Algorithm 1 needs knowledge of d, bmin to
perform. We give a modification of the algorithm when σ2,
d or bmin are unknown to the learner, and we refer the reader
to Appendix E.3, where a similar guarantee (for Phase 2) is
obtained with a similar order of sample complexity.

We also note that Algorithm 1 is not directly comparable

to the PC algorithm (Spirtes et al., 2001). Although PC
algorithm does not require the structural equation as Equa-
tion (17), the faithfulness assumption is not always satisfied
because of the path cancellation. We also performed ex-
perimental simulation for the PC algorithm, and the result
shows that the PC algorithm behaves worse than Algorithms
1, 2, and (Gao et al., 2022) even for the case of small n, d.
Further comparison and discussion can be found in Section
E.2 in the supplementary material.

Finally, Phase 1 of Algorithm 1 can be extended to the case
when εi are only centered sub-Gaussian with equal variance
(see Section E.4).

3. Proof Sketch of the Analysis
Before presenting the proof sketch for Theorem 1, we would
like to highlight the technical novelty that leads to an al-
gorithm with sample complexity that is independent of the
condition number. The general technique is to use the gap
between conditional variances if some parents are missing
from the conditioning set. For Algorithm 1, we conduct a
more detailed analysis of the conditional variance to achieve
a better sample complexity. Specifically, we use concentra-
tion properties of the OLS error for both Phase 1 and Phase 2
in Algorithm 1. For Phase 1, the analysis of the conditional
variance is sufficient to make the claim in Theorem 1, which
is a bound already free of conditional number. However, for
Phase 2, the variance gap only leads to O(d log(n) · τ(G)2

β4
min

)

sample complexity, where the ratio τ(G)2

β4
min

is not informa-
tion optimal. Therefore, we shift the method to additionally
examine the OLS coefficients in (Misra et al., 2020) to distin-
guish the correct parent set. Therefore, we can then sharpen
the sample complexity to O(log(n)/d · τ(G)

β2
min

) by using this
method. For Algorithm 2, we employ LASSO regression
and also utilize the technique of examining the MSE and
the coefficients. For the MSE part (similar to Phase 1 in
Algorithm 1), we can reuse the proof in Theorem 2.1, and
we replace the analysis for Phase 2 in Algorithm 1 with
LASSO results for the coefficients in (Wainwright, 2019).

We now provide a proof sketch for Theorem 2.1 (for Algo-
rithm 1) and Theorem 2.6 (for Algorithm 2), which can be
analyzed using the same basic principles. Suppose we have
a variable Xi and a subset I ⊆ [n] \ {i} with |I| ≤ d. Since
our algorithms operate inductively, we will always assume
that all nodes in I come before i in the topological ordering.
The basic observation comes from analyzing the regression

β̂ := argmin
β

1

m

m∑
j=1

(
X

(j)
i − β

⊤X
(j)
I

)2
β∗ := argmin

β
E

[(
X

(j)
i − β

⊤X
(j)
I

)2]
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In particular, we care about the empirical and population
Mean Squared Error (MSE) of this regression, which is

M̂SE(Xi, XI) =
1

m

m∑
j=1

(
X

(j)
i − β̂

⊤X
(j)
I

)2
MSE(Xi, XI) = E

[(
X

(j)
i − (β∗)⊤X

(j)
I

)2]
Since all the variables are Gaussian, we can also write

MSE(Xi, XI) = Var (Xi|XI)

In order to estimate the conditional variance Var (Xi|XI),
previous analyses ((Chen et al., 2019; Gao et al., 2022)) use
the well known identity

Var (Xi|XI) = Σii − ΣiIΣ
−1
II ΣIi ,

where we use the indices to denote subsets of the rows
and columns. They proceed by estimating each of these
subblocks of the covariance matrix, which requires condi-
tion number assumptions. Instead, we use the observation
that this conditional variance is equal to the MSE of the
regression of Xi with XI . Using simple properties of our
model, we can establish that M̂SE(Xi, XI) will be close
to MSE(Xi, XI) when using O(d log n) samples, with no
dependence on the condition number.

Continuing with the proof, we distinguish between two
possible cases:

• If pa(i) ⊆ I , then clearly Var (Xi|XI) =
Var

(
Xi|Xpa(i)

)
= Var(εi) = 1, by conditional in-

dependence of Xi from all previous nodes, given the
parents.

• If pa(i) \ I ̸= ∅, meaning that some parents are
omitted from I , then Var

(
Xi|Xpa(i)

)
= Var(ϵi) +

Var
(∑

j∈pa(i) bjiXj |XI

)
> 1.

Thus, our ability to distinguish between these two cases
depends on how big the variance gap between them is. A
smaller gap would make the task harder. We now explain
why the tasks of finding the ordering and finding the parents
have different variance gaps, which will result in different
factors appearing in the sample complexity of each task.

3.1. Phase 1: Finding the topological ordering

Algorithm 1 works inductively. Suppose we have found the
first r nodes in the ordering, which is the subset Tr. For
every i /∈ Tr, i should be the next node in the ordering only
if all of its parents lie in Tr. If it does, then there exists
a subset I ⊆ Tr with |I| = d such that Var(Xi|XI) =
1. On the other hand, if there exists j /∈ Tr such that

j → i, then for every I ⊆ Tr we have Var(Xi|XI) ≥
Var(bjiϵj + ϵi|XI) = b2ij + 1 ≥ 1 + b2min, where we used
the fact that j comes after I in the ordering. Thus, we
can see that the variance difference between the two cases
is at least b2min. The empirical variance behaves like a chi-
squared distribution, which is subexponential. Thus, in order
to distinguish between these two cases, we need O(b−4

min)
samples. This is how the first bound of Theorem 2.1 arises.

3.2. Phase 2: Finding the parents

After we find the ordering, we turn to locate the parents
for each node i. Let Bi be the nodes before i in the or-
dering. Suppose a subset I ⊆ Bi contains all the parents
of i. Then Var(Xi|XI) = 1. Now suppose there exists
j ∈ pa(i) with j /∈ I . As we observed earlier, in that case
Var(Xi|XI) ≥ 1+Var(bjiXj |XI) = 1+ b2jiVar(Xj |XI).
The situation now is different because I could also con-
tain some descendants of j. In general, we establish the
following Lemma.

Lemma 3.1. For any i ∈ [n] and any I ⊆ [n] \ {i}, we
have Var(Xi|XI) ≥ 1 + b2min/τ .

Thus, τ arises exactly as a lower bound in the conditional
variance of a node if we also condition on some of its descen-
dants. From Lemma 3.1 it becomes clear that the variance
gap is now lower bounded by b2min/τ . Thus, by imple-
menting this strategy of finding the parents, we would need
O(τ2/b4min) samples to distinguish the true parent set, but
it does not give the optimal dependence on τ or bmin.

To obtain the optimal dependence, we instead use a strategy
that was employed in (Misra et al., 2020) to learn undirected
GGMs. Specifically, instead of using the MSE to distinguish
the correct parent set, we use the coefficients computed by
the regression. The idea is that if a subset I contains all
the parents, then if we regress Xi with XI∪J for any other
J ⊆ Bi, the coefficients of the regression vector in J will
be small. On the other hand, if there exists j ∈ pa(i) with
j /∈ I , then there exists a set J with j ∈ I , such that I ∪ J
includes all parents. Thus, if we regress Xi with XI∪J ,
the coefficient for Xj will be large. So, this becomes our
distinguishing criterion for the correct neighborhood. It
turns out that if we have O(τ/b2min) samples, the accuracy
with which we can compute the coefficients in the regression
is sufficient to make that distinction. Hence, we obtain the
optimal sample complexity.

4. Simulation Results
To validate our findings, we run Algorithm 1, Algorithm 2,
and the algorithm in (Gao et al., 2022) on synthetic datasets
generated by DAGs) and compare their performance. The
samples are generated i.i.d. from a randomly generated
DAGG, which is constructed as follows: (1) Draw a random
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permutation of {0, 1, . . . , n− 1} as σ(0), . . . , σ(n− 1).

(2) For each node σ(j), choose σ(0), . . . , σ(j − 1) as a
parent of σ(j) i.i.d. with probability min( d

j+2 ,
1
2 ). Then,

truncate the parent set to at most d nodes.

(3) For each edge i → j, we assign bi,j i.i.d. uniformly
sampled from [−bmax,−bmin] ∪ [bmin, bmax] where 0 <
bmin < bmax are tunable parameters.

We note that this is similar to the topology that was chosen
in (Gao et al., 2022) to simulate their algorithm. After
sampling the graph, we generate m independent samples
according to the model specified by equation (17).

Figure 1. Growth of condition number, τ and maximum variance
as n grows, averaged over 1000 random graphs with same d =
4, bmin = 0.5, bmax = 1.

Figure 2. Accuracy results for three algorithms. The blue lines
represent the algorithm in (Gao et al., 2022), the orange line is Alg.
1, and the green line is Alg. 2. The x-axis represents the number
of samples m, and the y-axis represents the accuracy.
Figure 2 shows the results of running the three Algorithms
with an increasing number of nodes n = 10, 15, 20, 25,
degree d = 4, bmin = 0.5, bmax = 1, and an increasing
number of samplesm = 200, 400, 600, 800, 1000. For each
combination of parameters n, d, m, the accuracy is tested
by generating 45 random graphs, running all three algo-
rithms on them, and calculating the fraction of successful
recoveries of the graph.

We also present a plot (Figure 3) of the average number of
false positive (reported but not in the ground truth) edges for
the graph with the 95% confidence intervals. We observe
that the number of false positive edges in Algorithms 1, 2,

and (Gao et al., 2020) have a trend of decreasing to zero, and
Algorithms 1, 2 converge faster then (Gao et al., 2020) when
the number of samples exceeds 600. More simulations and
code, including comparisons with the PC algorithm, can be
found in Supplementary Materials E.2, F, and G.

Figure 3. False positive results for three algorithms. We still use
blue lines to represent the algorithm in (Gao et al., 2022), the
orange line is Alg. 1, and the green line is Alg. 2. The x-axis
represents the number of samples m, and the y-axis represents the
average false positive edges. Also, the shade represents the 95%
confidence region (centered with mean and ±2σ error region) of
each case.

The first thing to notice is that our algorithms seem to be
less accurate than (Gao et al., 2022) for a small number of
samples (up to around 400 samples). On the other hand,
our methods clearly outperform (Gao et al., 2022) once the
number of samples becomes large enough, with the latter
even failing to be consistent. One possible explanation for
this behavior is that the sample complexity of Algorithms 1
and 2 have a worse constant than (Gao et al., 2022). For
Algorithm 1, in order to find the parents, we iterate over
all d-sized subsets both to find the candidate neighborhood
and to test it with respect to all other neighborhoods, while
(Gao et al., 2022) simply choose the subset with the smallest
conditional variance, which could result in a better constant.
But if the number of samples becomes even slightly larger
than 400, especially for larger n, the effect of the condi-
tion number begins to show, as (Gao et al., 2022) fails to
converge to the truth. Indeed, in Figure 1, we have plotted
the growth of the average condition number κ, τ(G), and
maximum variance R as n increases. It is clear that κ grows
superlinearly, τ grows sublinearly, and R grows linearly.
This could explain the deteriorating performance of (Gao
et al., 2022) when κ increases, compared to our methods,
which remain consistent.

The experiments were run using Python with numpy and
scikit-learn package on an 11th Gen Intel Core i7-
11800H 2.30 GHz CPU with 16GB of memory.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Specifically, this paper presents new
algorithms for learning a specific type of Bayesian Network,
a graphical model that occurs in many disciplines. Although
these algorithms are novel, this paper contains theoretical
results. We have discussed the related work and open direc-
tions, which mainly focus on the theoretical aspects of the
problem. The data generated for the empirical experiments
are synthetic and do not have any privacy issues. We do
not exclude the possibility that there are potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proof of Theorem 2.1
The Algorithm consists of two parts: finding the topological order and finding the parents. We use the notation i ⪯ j ( i ≺ j
) to denote that i comes (strictly) before j in the topological ordering. ⪰ and ≻ are defined similarly.

We will sometimes use the notation a← b when we want to apply some Lemma that has variable b with the value a. e.g. in
the proof of Theorem 2.1, we use Lemma A.3, we are going to take δ in the Lemma A.3 as δ/(2N), where this δ is the δ in
Theorem 2.1

As we have explained in Section 3, the general approach in both phases of the algorithm is to use the Mean Squared Error
(MSE) of linear regression to estimate the conditional variance of a node given some subset of nodes that appear before it in
the ordering. The variance gap between correct and incorrect subsets of nodes will be different in each phase, which gives
rise to different sample complexities for finding the ordering and finding the parents. We give the details for each phase
below. Without loss of generality, n ≥ 2, bmin ≤ 1√

3
in the above discussion.

A.1. Finding the ordering

Algorithm 1 builds the topological ordering iteratively by finding at each step the next node in the topological order. Suppose
inductively that the first t nodes form a valid topological ordering, for some t < n and let T be this subset of nodes. We will
show that Algorithm 1 correctly identifies the t+ 1-th node in the ordering. To achieve that, it considers all other nodes
i ∈ [n] \ T and calculates the conditional variance of i given subsets J ⊆ T with |J | ≤ d. This is the step where previous
analyses ((Chen et al., 2019; Gao et al., 2022) introduce condition number assumptions, in order to estimate this conditional
variance. Instead, we will use the MSE of linear regression to estimate this conditional variance. Indeed, we can show that
the empirical and true MSE are close to each other using a number of samples that is independent of the condition number.

The Empirical mean squared error consists of two parts. We can write it as

M̂SE =
1

m

m∑
j=1

(X
(j)
i −X

(j)
J βJ)

2

=
1

m

∑
j

(X
(j)
i −X

(j)
J β∗

J)
2

︸ ︷︷ ︸
variance error

+
1

m

∑
j

(X
(j)
J β̂J −X(j)

J β∗
J)

2

︸ ︷︷ ︸
beta error

+2
1

m

∑
j

(X
(j)
i −X

(j)
J β∗

J)(X
(j)
J β̂T −X(j)

T β∗
J)

In the above, we have identified the two key quantities of the error, which we call the Emprirical Variance Error (call it V E)
and Empirical Beta Error (call it BE) accordingly. By Cauchy-Schwartz inequality, we have

V E2 +BE2 − 2
√
V E ·BE ≤ M̂SE ≤ V E2 +BE2 + 2

√
V E ·BE

In order to decide whether i can be the next node in the ordering, we have to determine whether all parents of i are contained
in T or not. The following Lemma shows that, in the population case (infinite samples) there is way to distinguish between
these two cases by looking at the conditional variance.

Proposition A.1. (1) If T contains all the parents, then there exists some J ⊆ T and |J | ≤ d such that the conditional
variance of Xi|xJ is 1.

(2) If T does not contain all the parents, then there exists a parent that is not in T , so for any coefficient vector βT each
Xi − XTβT is a Gaussian random variable that has variance at least 1 + b2min. Specifically, for any J ⊆ T , for any
coefficient βJ , Xi −XJβJ also has variance ≥ 1 + b2min.

Proof. This property is also proved in (Gao et al., 2022) , but for completeness we provide a proof. We first prove Property
A.1. The first point follows immediately from the definition. For the second point, let k be the last parent of i in the
topological order. By the preceding discussion, it follows that k /∈ T . Let Tk be the set of nodes that is prior to k. So

13
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T ⊆ Tk Then, we have

Var(Xi − xTβT ) = EXTk
[Var(Xi −XTk

βT |XTk
)] + Var[E(Xi −XTβT )|XTk

] (3)

≥ EXTk
[Var(Xi −XTβT |XTk

)] = EXTk
[Var(Xi|XTk

)] (4)

= EXTk
[EXk

[Var(Xi|XTk∪{k})]] + EXTk
[Var[EXk

(Xi|Xk)|XTk
]] (5)

= 1 + EXTk
[Var(bk→iXk)|XTk

] = 1 + b2k→i ≥ 1 + b2min (6)

We explain each line: (4) is by the law of total variance, (5) is because the variance is greater then zero and XTβT is a
constant under the condition of XTk

because T ⊆ Tk, (6) is again by law of total variance, (7) is because while conditioning
on XTk

and Xk, all parents of i are conditioned. Thus the variance of Xi is 1 because of the model. Also, the expected
value of Xi condition on XTk

and Xk is Xi =
∑
j bj→iXj =

∑
j ̸=k bj→iXj + bk→iXk. Since conditioning on XTk

, that
is all prior nodes than k, the value

∑
j ̸=k bj→iXj is a constant, so the conditional variance of E(Xi|Xk) is the same as that

of bk→iXk, which by the definition of the model is b2k→i times 1, which is b2k→i.

The preceding property holds in the population setting. We would like to establish a similar separation using finite samples.
This is done using the following Lemmas. The first one quantifies how large BE is when the set J might or might not
contain all parents of node i. To state it, it will be helpful to we extend the meaning of the ground truth coefficient: since

the joint distribution (XJ , Xi) is a multivariate Gaussian distribution with covariance matrix
(
ΣJJ ΣJi
ΣiJ Σii

)
we can always

write
E [Xi|XJ ] = (β∗)⊤XJ

where β∗ = Σ−1
JJΣJi. We call this vector β∗ the population coefficients of Xi with respect to XJ . The reason is that if

we performed linear regression of Xi on XJ with infinite samples, the result would be β∗
J and the conditional variance is

Σii − ΣiJΣ
−1
JJΣJi. If J contains all of i’s parents and none of its descendants, then we have the population coefficiens of

Xi wrt XJ are exaclty the coefficients bj→i.

Lemma A.2. (For beta error.) In Algorithm 1, let J ⊆ [n] \ {i} with |J | = k ≤ d and Var(Xi|XJ) = V 2, β∗ be the
populations coefficients of Xi w.r.t. XJ and let β̂J be the result of linear regression of Xi on XJ using m independent
samples X(1), . . . , X(m) drawn from this distribution. Then, there is a universal constant CB = 4, such that for any
ε < 1/2, δ < 1/2, if we are given m ≥ CB(log(1/δ))/ε samples, then

1

m

m∑
j=1

(X
(j)
T (β∗

J − β̂J))2 ≤ εV 2

with at least 1− δ probability.

Thus, this shows that BE will be relatively small if J contains all parents. The next Lemma will be used to argue that V E
will also be small in that case. It’s proof is standard and uses the subexponential property for the χ2 distribution.

Lemma A.3. (For variance error.) Let Y1, Y2, . . . , Ym be i.i.d. Gaussian random variables with variance σ2. Then, there
is a universal constant CV = 6 such that for any ε < 1/2, δ < 1, if we are given m ≥ CV (log(2/δ)/ε2) samples, then with
at least 1− δ probability, we have

(1− ε)σ2 ≤ 1

m

m∑
i=1

Y 2
m ≤ (1 + ε)σ2

The proof of the Lemma A.2 is presented in Section D.3 and the proof for Lemma A.3 is in Section D.4. We are now ready
to prove the first assertion of Theorem 2.1, which says that Phase 1 of Algorithm 1 correctly identifies the topology with
high probability. Aided with these two lemma, we return to the proof of Theorem 2.1

Proof. Let’s define N = n(
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
), which is an upper bound of the number of linear regressions performed

in Phase 1 of Algorithm 1. We would like to argue that all of these regressions succeed with high probability, so we employ
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a union bound. This involves bounding logN , which we now do. Since we have n >> d, we have N < 2n
(
n
d

)
and thus by

Stirling Formula,

logN ≤ log 2 + (d+ 1) log n− d log(d/e) = 2 + (d+ 1) log(n/d) + d+ log d < 5d log(n/d).

Now let’s assume inductively that Algorithm 1 has identified the first t nodes in the ordering correclty and let T be this
subset of nodes. The Algorithm then examines every i ∈ [n] \ T to determine if it is the next in the ordering. There are two
possible cases.

T contains all the parents of i. If T contains all the parents of i, then i can be used as the t+ 1-th node in the ordering.
We prove that Algorithm 1 will indeed select it. By definition, there exists a J ⊆ T with |J | ≤ d that contains all the parents.
We want to upper bound the MSE of regressing Xi on XJ . To apply A.3, we notice that X(j)

i −X
(j)
J β∗

J are i.i.d. N (0, 1)
random variables.

Suppose it holds that
V E ≤ 1 + b2min/8 , BE ≤ b4min/64. (7)

Then, wherever bmin < 2 (which we can wlog assume ) the empirical MSE can be bounded as

MSE ≤ V E +BE + 2
√
V E ·BE ≤ 1 + b2min/8 + b4min/64 + 2

√
1 + b2min/8 · b

2
min/8 < 1 + b2min/2. (8)

Thus, the condition in the If statement of line 9 of Algorithm 1 would be satisfied, which means i would be selected as the
next node. We now establish that (7) holds with high probability. We first notice that Var(Xi|XJ) = Var(ϵi) = 1. Thus,
we can apply Lemma A.2 by plugging in δ ← δ/(2N), ε = b4min/64. We also notice that X(j)

i −X
(j)
J β∗

J are i.i.d. N (0, 1)
random variables by definition of the model. Thus, we can apply Lemma A.3 by plugging in δ ← δ/(2N), ε = b2min/8. ,
By a union bound, these two lemmas give that with probability at least 1− δ/N , (7) holds for all regressions in Phase 1, as
long as the number of samples satisfies

m ≥ max
(
CB(k + log(2N/δ))/(b4min/64), CV log(4N/δ)/(b2min/8)

2
)
.

Therefore, if we chooseC = 5120 ≥ max(1280CB , 640CV ),m > C(d log(n/d)+log(1/δ))/b4min will imply the previous
bound on m.

T does not contain all parents of i We want to establish that i will not be selected as the next node. Let J ⊆ T be any
subset of T that is considered by the algorithm for i. By Property A.1 we have

Var(Xi|XT ) ≥ 1 + b2min ,

Thus, the law of total variance yields

Var(Xi|XJ) = EXJ\T [Var(Xi|XT )] + E[Var(Xi|XT\J)|XJ ] ≥ EXJ\T [Var(Xi|XT )] ≥ 1 + b2min.

Letting V 2 = Var(Xi|XJ), our goal will be to lower bound the empirical MSE. Suppose the following holds

V E ≥ (1− b2min/8)V
2 , BE ≤ (b4min/64)V

2 , (9)

then this would imply (the third inequality is due to the monotonicity of V E.)

MSE

V 2
≥ V E +BE − 2

√
V E ·BE > V E − 2

√
V E ·BE ≥ 1− b2min/8− 2

√
1− b2min/8 · b

2
min/8 > 1− 3

8
b2min.

Thus, since V 2 > 1 + b2min, this would imply for bmin >
1√
3

(again, we can w.l.o.g. assume this),

MSE ≥ (1− 3

8
b2min)V

2 > 1 + b2min/2.

That would mean that the condition in the If statement of line 9 of Algorithm 1 is not satisfied, which means i will not be
selected as the next node. Establishing that (9) holds with probability at least 1− δ then involves a similar application of
LemmasA.2 and A.3 to the one we saw in the previous case, which we omit.
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A.2. Finding the parents

The next phase focuses on finding the parents of each node i, assuming we know the subset T of nodes that come before it
in the topological ordering. Here, we can make a connection between the linear regression problem for the directed graphs
and the one for undirected ones. In particular, we focus on the marginal distribution of (Xi, XT ), which is itself coming
from a Bayesnet, which is obtained from the original Bayesnet by keeping all nodes up to i in the ordering.

We start by proving some preliminary properties of the inverse covariance of a Bayesnet model in the following lemma:

Lemma A.4. Let (X1, X2, . . . , Xn) be a multivariate Gaussian, with covariance matrix Σ and inverse covariance matrix
Θ = Σ−1, distributed according to model 17. Then we have: for i ̸= j,

Θij = bi→j + bj→i +
∑
l

bi→lbj→l,

and for any i,
Θii = 1 +

∑
j

b2i→j .

Proof. We can show it by calculating the likelihood of X = (X1, X2, . . . , Xn): it is exp(− 1
2X

⊤ΘX) because of the joint
Gaussianity. Let σ(1), σ(2), . . . , σ(n) be the topological order. By the Bayes rule, the likelihood of X = (X1, X2, . . . , Xn)
is also

p(X1, X2, . . . , Xn) =

n∏
j=1

p(Xσ(i)|Xσ(1),...,Xσ(i−1)
)

=

n∏
j=1

exp

−1

2
(Xσ(i) −

i−1∑
j=1

bσ(i−1)→σ(i)Xσ(i−1))
2


= exp

−1

2

n∑
i=1

(Xσ(i) −
i−1∑
j=1

bσ(i−1)→σ(i)Xσ(i−1))
2


= exp

−1

2

n∑
i=1

(Xi −
∑
j→i

bj→iXj)
2


.

So, we have

X⊤ΘX =

n∑
i=1

(Xi −
∑
j→i

bj→iXj)
2.

Therefore, Θii is the coefficient of X2
i , in the above sum. We get a contribution of 1 from the term (Xi −

∑
j→i bj→iXj)

2,
and a contribution of the sum of b2i→j from the sum of (Xj −

∑
k→j bk→jXj)

2. i.e. Θii = 1 +
∑
j b

2
i→j .

Similarly, Θij is the coefficient of 2XiXj . We have a contribution of bi→j if i is a parent of j, coming from the sum
of (Xj −

∑
k→j bk→jXj)

2, or bj→i if j is a parent of i, coming from the sum of (Xi −
∑
k→i bk→iXj)

2. Also, for
each common child l of i, j, we get a contribution bi→lbj→l in the sum of (Xl −

∑
k→j bk→lXl)

2. Overall, Θij =
bi→j + bj→i +

∑
l bi→lbj→l.

Now we combine these observations with a lemma in (Misra et al., 2020), which is stated for arbitrary undirected Gaussian
Graphical Models. It quantifies the accuracy of estimating the coefficients in OLS for a node, if we regress it with a small
subset of nodes that contains its Markov Blanket. We will apply it to the marginal distribution of (Xi, XT ).

Lemma A.5. (For general L0 constrained sparse linear regression) (Proposition 2 in (Misra et al., 2020)) Suppose we
have a multivariate n-dimensional zero-mean Gaussian model with inverse covariance matrix Θ, and m i.i.d. samples from
this model, where

m ≥ 2d+
8

ε2
d log(n) +

4

ε2
log(

2d

δ
),
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For a node i, let π(i) be the neighbors of i in the undirected graphical model induced by Θ. Suppose A ⊆ [n] \ {i} with
|A| ≤ 2d and π(i) ⊆ A. Then the OLS coefficients β̂ when we regress Xi on XA using m samples satisfy with probability
at least 1− δ the following bound : ∀j ∈ A, ∣∣∣∣β̂ij − Θij

Θii

∣∣∣∣ ≤ ε√1 +
Θjj
Θii

We now make the connection with our DAG model more precise. As discussed earlier, let i be some node and the set of the
node before i in the ordering is T . We consider the marginal distribution of (XT , Xi), which is still a Bayesnet. Let Θ be
the inverse covariance matrix of (XT , Xi). Since i is the last node in the ordering for this smaller Bayesnet, it is easy to see
that its Markov Blanket π(i), if the joint distribution is viewed as an undirected Graphical Model induced by Θ, is exactly
equal to the set of parents pa(i) in the DAG. This can be inferred for example from Lemma A.4 by noticing that Θij is
non-zero if and only if bji ̸= 0 (since i has no children in this marginal distribution).

This allows us to apply Lemma A.5 to find the parents of i and gives rise to the following Corollary.

Corollary A.6. Let i be a node and T be the subset of nodes that come before i in the ordering. Suppose we use m i.i.d.
samples to regress Xi on XJ , where J ⊆ T , |J | ≤ d and pa(i) ⊆ J . Let β̂ be the coefficients output by the regression.
Suppose

m ≥ 64d log(n) · τ · b−2
min

Then, with probability at least 1− δ we have that for all j ∈ pa(i),

|β̂ji| > bmin/2

and for all j /∈ pa(i)

|β̂ji| < bmin/4

Proof. By the preceding observations, we can apply Lemma A.5 to analyze the regression. If Θ is the inverse covariance
matrix of the joint distribution of (Xi, XT ), then by Lemma A.4, since Xi is the last node, we have Θij is bj→i, Θii = 1
and Θjj = 1 +

∑
j≺k⪯i b

2
j→k.

Thus |Θij/Θii| = |bji| ≥ bmin if j ∈ pa(i). Also, if j /∈ pa(i), then |Θij/Θii| = 0. Thus, by applying Lemma A.5, we

need to ensure ε
√
1 +

∑
j≺k⪯i b

2
j→k ≤ bmin/2 for all i, j. So, it suffices to have ε < bmin/(2

√
τ). By union bound, we

need, δ ← δ/n. To determine the sample complexity, we plug these values in Lemma A.5

m ≥ 2d+
8

(bmin/2
√
τ)2

d log n+
4

(bmin/2
√
τ)2

log(2dn).

Where we take m = 64d log(n) · τ · b−2
min suffices, and this finishes the proof.

Below we give the details of the proof of the second half of Theorem 1:

Proof. We first prove that for all i and prior nodes T in the topological ordering, Algorithm 1 correctly identifies a subset J
that contains pa(i). The strategy is similar to (Misra et al., 2020). For every candidate J ⊆ T with |T | = d, we iterate over
all other K ⊆ T with |K| = d and regress Xi on XJ∪K .

• Suppose pa(i) ⊆ J . Then, for all other K, for each j ∈ K we have |β̂ji| < bmin/2 with prob ≥ 1− δ by Lemma A.6,
so the condition in line 17 of Algorithm 1 doesn’t hold and J is accepted as a true superset of the parents.

• Suppose there is a j ∈ pa(i) with j /∈ J . Then, there exists a K with j ∈ K and pa(i) ⊆ J ∪K. Then, regressing
with J ∪K will yield |β̂ji| > bmin/2 by Lemma A.6, leading to the condition in line 17 to be satisfied. Thus, set J is
rejected.

After we find a superset J of the parents, we can simply remove the nodes with small β coefficients in the regression and
appeal to Lemma A.6 again for correctness in an identical fashion.
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B. Proof of Lower Bound (Theorem 2.3)
The standard testing setting involves a family of distributions indexed by a set V . A random variable V is drawn uniformly at
random from V and X is generated according to the distribution corresponding to V . Note that X could be one or multiple
samples from this distribution. Then, an algorithm that takes as input X and guesses V is denoted by V̂ . We use Corollary
9.4.2 from (Duchi, 2016), which is a version of Fano’s Inequality for testing.

Lemma B.1. Assume that V is uniform on V . For any Markov chain V → X → V̂ ,

P (V = V̂ ) ≥ 1− I(V ;X) + log 2

log |V |
.

In our case, the set V corresponds to a set of graphs G = {G1, G2, . . . , Gk} that we would like to distinguish from each
other. V denotes a graph chosen uniformly at random among V . Let QV denote the distribution of one sample drawn
from graph V and Q⊗m

V denotes the product distribution on m i.i.d. samples drawn from V . The mapping X → V̂ is the
estimator of the graph from the samples for a model. From Equation (9.4.5) in (Duchi, 2016), we have

I(V ;X) ≤ 1

|V|2
∑

V,V ′∈V
KL(Q⊗m

V ||Q⊗m
V ′ ) =

m

|V|2
∑

G,G′∈G
KL(QV ||QV ′)

(This is due to the tensorization of KL for product distributions.) Therefore, if we can construct a family of |G| graphs
such that for any G,G′ ∈ G, we have KL(QG||QG′) ≤ α, then we need at least m ≥ log(|G|)/2−log 2

α samples to obtain
prediction probability ≥ 1/2. We consider the following ensembles:

Ensemble for log(n)/b4min. Assume 2 divides n, consider G = {G0, G1, G1, G2, . . . , Gn/2}. As Figure 4 shows, all
graphs are defined on random variables Y1, Y2, . . . , Yn/2 and Z1, . . . , Zn/2. G0 is a direct matching of Yi → Zi, with each
edge having weight bmin. Gk is kth model and is equal to G0, except that the edge between Yk and Zk is reversed.

Figure 4. Schematic graph for the ensemble. Every Gi for j ≥ 1 is obtained from G0 by reversing one edge in the matching of model G0,
e.g. G1 is just reversing Y1 → Z1 in G0.

We notice that this model is a product measure of n/2 disjoint pairs of variables. Therefore, any two models differ in at most
two edges. Let (Y,Z) be the joint distribution of a two variable DAG with edge Y → Z with weight bmin. Then, by the
preceding observations, for any two models Gi, Gj , their KL divergence is no more then 2×KL((Y, Z)||(Z, Y )). Next,
we calculate this distance.

First, the distribution of (Y1, Z1) has the multivariate Gaussian distribution of covariance matrix

Σ1 =

(
1 bmin

bmin 1 + b2min

)
.

Similarly, (Z, Y ) follows a multivariate Gaussian distribution of covariance matrix

Σ2 =

(
1 + b2min bmin

bmin 1

)
.
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Therefore, the KL distance is

KL((Y, Z)||(Z, Y )) =
1

2

(
log
|Σ1|
|Σ2|

− 2 + Tr(Σ−1Σ2)

)
=

1

2

(
−2 + Tr

(
1 + b2min + b4min b3min

−b3min 1− b2min

))
=

1

2
b4min

So, in this case, any two models has KL distance at most b4min, and this implies that with probability ≥ 1/2 we need at least
(log(n/2)/2− log 2)/b4min = log(n/8)/(2b4min) samples to find the right model.

Ensemble for log(n)τ/b2min. Assume 3 divides n, consider G = {G0, G1, G1, G2, . . . , Gn/3}. Our graphs now consist
of independent blocks on variables Xi, Yi, Zi. As Figure 5 shows, in G0 the topology of each triplet is Xi → Yi, Xi →
Zi, Yi → Zi. The weights are: Xi → Zi with bmin weight, Xi → Yi with B weight, and Yi → Zi with b1 weight for some
B > b1 > bmin > 0. For Gi with i > 1, the topology is the same as G0 but we change exactly one of the triangles XiYiZi:
it becomes Xi → Zi with no edge, Xi → Yi with B weight, and Yi to Zi with b1 + Bbmin

1+B2 weight.

Figure 5. Schematic graph for the ensemble. Every model Gi with i ≥ 1 is obtained from G0 by switching one triangle to a chain, i.e. G1

is just changing the triangle X1Y1Z1 to a chain X1 → Y1 → Z1.

Let (X,Y, Z) be the distribution of the DAG with topology X → Z with bmin weight, X → Y with B weight, and Y → Z
with b1 weight. Let (X ′, Y ′, Z ′) be the distribution of the DAG with topology X ′ → Y ′ with B weight, and Y ′ → Z ′

with b1 + bmin

1+B2 weight. Similar to the observations for the previous ensemble, the KL distance between any two models is
bounded by 2 ·KL((X,Y, Z)||(X ′, Y ′, Z ′)).

The distribution of (X,Y, Z) has the multivariate Gaussian distribution of covariance matrix

Σ1 =

 1 B Bb1 + bmin

B 1 +B2 b1 +B2b1 +Bbmin

Bb1 + bmin b1 +B2b1 +Bbmin 1 + (Bb1 + bmin)
2 + b21

 .

The distribution of (X ′, Y ′, Z ′) is a multivariate Gaussian distribution of covariance matrix

Σ2 =

 1 B Bb1 +
B2bmin

1+B2

B 1 +B2 b1 +B2b1 +Bbmin

Bb1 +
B2bmin

1+B2 b1 +B2b1 +Bbmin 1 + (b1 +
Bbmin

1+B2 )
2(B2 + 1)

 .

Therefore, we can calculate |Σ1| = |Σ2| = 1 (because it is the inverse of a product of two upper triangle matrix with
diagonal 1: Notice that |Σ1| = |((I −B)−1)⊤(I −B)−1| = |((I −B)−1)⊤| · |(I −B)−1| = 1 · 1 = 1) and

Σ−1
1 Σ2 =

1 +
b2min

1+B2 0 −bmin
bminb1
1+B2 1 bminB

1+B2

−bmin

1+B2 0 1

 ,Σ−1
2 Σ1 =

 1 0 bmin

− bmin(bminB+b1+B
2b1)

(1+B2)2 1 − bmin(B+Bb2min+B
3+bminb1+b1bminB

2)
(1+B2)2

bmin

1+B2 0 1 +
b2min

1+B2


19



Learning Gaussian DAG Models without Condition Number Bounds

Both of the traces are 3 +
b2min

1+B2 . Therefore,

KL((X,Y, Z)||(X ′, Y ′, Z ′)) =
1

2

(
log
|Σ1|
|Σ2|

− 3 + Tr(Σ−1Σ2)

)
=

1

2

(
−3 + 3 +

b2min

1 +B2

)
= b2min/(1 +B2)

So, in this case, any two models has KL distance at most b2min/(1 +B2) = b2min/τ , and this implies that with probability
≥ 1/2, we need at least (log(n/3)/2− log 2)τ/b2min = log(n/12)τ/(2b2min) samples to find the correct topology.

Thus, from both ensembles, Theorem 2.3 follows.

C. Analysis of Efficient Algorithm (Theorem 2.6)
We give the full version for Algorithm 2 below.

Algorithm 3 Efficient algorithm for recovering the topology

input Samples (X(1), X(2), . . . , X(m))
output Topology Ĝ

1: T ←
[
i : V̂ar(Xi) ≤ (1 + b2min/2)

]
2: while |T | < n do
3: M = ∅
4: for i ∈ [n]\T do
5: Choose λ = O(

√
log(n/δ)R/

√
m)

6: β̃ ← LASSO regression of Xi on XT

7: J ← {k||β̃k| ≥ bmin/2}, if |J | > d then go to line 4.
8: Perform OLS for Xi on XJ , get coefficient β̂.

9: MSE ← 1
m

∑
j

(
X

(j)
i −X

(j)
J β̂

)2
10: if MSE ≤ 1 + b2min/2 then
11: M ←M ∪ {i}
12: pa(i)← {j ∈ J : |β̂j | ≥ bmin/2}
13: end if
14: end for
15: T ← T .append(M )
16: end while

In line 6, we perform the LASSO algorithm to find the next vertex for the topological order as well as to find the parents.
For any node i and subset T that appears before i in the ordering, we are optimizing the Lagrangian LASSO:

β̂ = argmin
β∈R|T |

{
1

2N

N∑
i=1

(X
(j)
i − β

⊤X
(j)
T )2 + λ∥β∥1

}
(10)

For a vector β and a subset S of coordinates, we use βS to denote the subvector corresponding to the coordinates in S. As
usual, let β∗ be the population coefficients of Xi with respect to XT . The following Theorem from (Wainwright, 2019)
provides guarantees about the estimation error of the LASSO.

Lemma C.1. (Combination of Theorems 7.18, 7.19 in (Wainwright, 2019)) Consider the Lagrangian Lasso where XT is
generated i.i.d. fromN (0,Σ). The independent noise for each sample isw(j) = X

(j)
i −β∗⊤X

(j)
T . Choose the regularization

parameter λ ≥ 2
N maxk∈T

∣∣∣∑m
j=1 w

(j)X
(j)
k

∣∣∣. For any θ∗ ∈ Rd, with probability at least 1− e−m/32

1−e−m/32 any optimal solution

θ̂ satisfies the bound ∥∥∥β̂ − β∗
∥∥∥2
2
≤ 9216

λ2

κ̄2
|S|+ 128

λ

κ̄
∥β∗

Sc∥1 + 12800
ρ2(Σ)

κ̄

log n

m
∥β∗

Sc∥21 (11)
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valid for any subset S with cardinality |S| ≤ 1
25600

κ̄
ρ2(Σ)

m
logn . Here, ρ2(Σ) is the maximum diagonal entry of Σ and κ̄ is

the smallest eigenvalue of Σ.

There is a twist in the algorithm after computing the LASSO. First of all, if the output vector has more than d “large”
coefficients, this clearly means that T does not contain the full neighborhood and thus i is not the next node in the ordering.
If it has at most d “large” coefficients, instead of just calculating the MSE using the output of the LASSO, we run an
additional OLS to verify whether i is the next node in the ordering. Then, we will use the property A.1 to judge whether we
have the correct parents. Specifically, if i is the next node after T , then LASSO will find the correct parent set J (not a
superset) and the expected MSE after the OLS is 1. If i is not the next node after T , then for any J ⊆ T , the expected MSE
after the OLS is 1 + b2min. Since the sample complexity for Theorem 2.1 is upper bounded by that of 2.6, this verifying
process is going to be successful with high probability: we can see this by repeating the proof of Theorem 2.1. The reason
we use OLS instead of Lasso is that it is harder to argue about the MSE of Lasso when not all parents are involved.

Therefore, the only task is to guarantee that LASSO will determine the true parents for any i that is next in the topological
order of T . In order to have that, we need the L2 norm of the distance of β̃ and β∗ to be smaller than bmin/2. Applying
Lemma C.1 above for LASSO in our algorithm, we need to select λ and m appropriately for this to hold. Therefore, it
suffices to choose λ,m so that the following inequalities hold simultaneously:

1

25600

κ̄

ρ2(Σ)

m

log n
≥|S| ≥ d (12)

9216
λ2

κ̄2
|S| ≤b

2
min

16
(13)

128
λ

κ̄
W1 ≤

b2min

16
(14)

12800
R2 log n

κ̄N
W 2

1 ≤
b2min

16
(15)

Equation (12) requires |S| to be large enough, and Equations (13), (14) and (15) require
∥∥∥β̃ − β∗

∥∥∥2 smaller than b2min/4,
which achieves the guarantee. Also, here we introduce W1 to be the maximum L1 norm of the coefficient vector correspond-
ing to the parents of each node: that is,

W1 = max
i

∑
j→i

|bj→i|.

Now, we bound the variables one by one. By our assumption, we have ρ2(Σ) < R2, W1 ≤ d
√
τ (because bi→j ≤

√
τ ) and

by Cauchy-Schwartz inequality, κ̄ ≥ 1
(d+1)·τ ≥

1
2d·τ . We apply the following lemma for all XT since the sub-Bayesnet has

the same model as the whole Bayesnet:

Lemma C.2. Assume we have the Bayesnet as Equation (17). Let κ̄ is the smallest eigenvalue of the covariance matrix of
X1, X2, . . . , Xn. Then, we have κ̄ ≥ 1

(d+1)τ .

Proof. We argue by Cauchy-Schwartz inequality. Let Σ be the covariance matrix of X1, X2, . . . , Xn, and Θ = Σ−1. So
the least eigenvalue of Σ is the largest eigenvalue of Θ. Let x = (x1, x2, . . . , xn) and ||x|| = 1, so that we have xTΘx =∑n
i=1(

∑n
j=1 xi − bj→ixj)

2 (by the proof of Lemma A.4.) By Cauchy-Schwartz inequality, we have
∑n
i=1(

∑n
j=1 xi −

bj→ixj)
2 ≤

∑n
i=1(d+ 1)

∑n
j=1 x

2
j (1 +

∑n
i=1 b

2
i→j) ≤ (d+ 1)τ. Thus, we have ∥Θ∥op ≤ (d+ 1)τ. Since Σ = Θ−1, we

have the least eigenvalue of Σ is no less than 1
(d+1)τ .

Also, to bound λ, we need the following Lemma, whose proof is given in Section D.5.

Lemma C.3. Let Zi be a random variable of Xi · Yi where Xi, Yi are independent N (0, 1). Then, there is a universal
constant Cλ = 32, such that for any ε < 1/2, δ < 1/2 given m ≥ Cλ(log(2/δ))/ε2, we have that the following holds:

P

(∣∣∣∣∣ 1m
m∑
i=1

Zi

∣∣∣∣∣ > ε

)
≤ δ
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First, we calculate an m to make all inequalities hold for |S| ≥ d that satisfy equation (12). This requires that m ≥
51200 · d2 · τ ·R2 · log(n).

Also, since we have assumed that for each i, the variance of Xi is ≤ R, thus, for each k,
∑m
j=1 w

(j)X
(j)
k has each w(j)

is sampled independently from N (0, 1) and X(j)
k is sampled independently from N (0,Var(Xk)), where Var(Xk) ≤ R2.

Therefore, because we need to execute n2 LASSOs, so we need to substitute δ ← δ/n2 in Lemma C.3, in order to apply a
union bound. Therefore, by Lemma C.3 and union bound, we substitute ε← λ/(2R) and δ ← δ/4n2 (the reason for the
extra factor of 4 is to accommodate some failure probability for the accuracy of r, V E,BE and for the failure of Lemma

C.1). Thus, it suffices to have m ≥ 128 log(8n2/δ)/λ2. Equivalently, this can be written as λ ≤
√

128 log(8n2/δ)R√
m

Solving (13), (14), (15) and substituting the bound for κ̄, |S|,W1, we have

9216
128 log(8n2/δ)R2

m
(4dτ)2d ≤b

2
min

16

128

√
128 log(8n2/δ)R√

m
d2τ1.5 ≤b

2
min

16

12800
R2 log n

m
d3τ2 ≤b

2
min

16

Thus, we can choose m ≥ 232 · log(n/δ) · d4 · τ3 ·R2 · b−4
min to satisfy the bounds above. This finishes the proof for Theorem

2.6.

D. Additional Proofs
D.1. Proof for Lemma 2.2

By Lemma A.4, the diagonal entry of Θ is
Θii = 1 +

∑
i→j

b2i→j

So, by choosing x to be a standard basis vector, we get that there exist x1, x2 such that

x⊤1 Θx1 = min
i
|Θii| , x⊤2 Θx2 = max

i
|Θii|

It is clear that
max
i
|Θii| ≥ τ

by definition. Also, by choosing the diagonal element of the last node in the topological ordering, it is clear that

min
i
|Θii| = 1

Therefore, the condition number of Θ is at least τ , and the same holds for Σ.

D.2. Proof for Lemma 2.5

For (1) Let Σ be the covariance matrix, then consider all unit vector x, x⊤Σx ranges from 1 (choose the first vertex in the
topological order) to maxiVar(Xi) = R. Also, we know that the smallest and largest eigenvalues of Σ (λmin and λmax)
satisfy that λmin = min∥x∥=1 x

⊤Σx and λmax = max∥x∥=1 x
⊤Σx. So we have λmin ≤ 1 and λmax ≥ R and thus the

condition number of Σ is at least R.

For (2) We consider a directed rooted tree with branching factor 2 with variables (X1, . . . , Xn). Consider root X1 ∼
N (0, 1). And for any i, Xi has two children X2i+1 and X2i+1 with recurrence X2i = λxi + ε2i and X2i+1 = λxi + ε2i+1

where ε2i, ε2i+1 are i.i.d. N (0, 1). Assume the tree has height h, and thus n = 2h+1 − 1. Choose some λ ∈ ( 1√
2
, 1).

For any leaf (Xi for i ≥ 2h), we can write Xi = εi + λε⌊i/2⌋ + λ2ε⌊i/4⌋ + · · · + λhε⌊i/2h⌋. Therefore, its variance is
1 + λ2 + · · ·+ λ2h < 1

1−λ2 .
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On the other hand, to lower bound the condition number, we need to find two different values of x⊤Σx for some ∥x∥ = 1.
If we choose x to be the unit vector with X1 coordinate to be 1, the variance is 1. We can also choose x to be 1/

√
2h for

coordinates corresponding to leaves and 0 otherwise. Then, x⊤Σx corresponds to the variance of the linear combination
1√
2h
(X2h + · · ·+X2h+1−1). We are going to prove that the variance is

Var(X2h + · · ·+X2h+1−1) = 1 + (2λ2) + (2λ2)2 + · · ·+ (2λ2)h. (16)

If this holds, the condition number is at least (2λ2)h+1−1
(2λ2−1)(1−λ) ≥

nlog2(2λ2)−1
(2λ2−1)(1−λ) . By choosing λ = 2(α−1)/2 we can get the

desired bound.

Now we prove (16). Suppose Vℓ is the conditional variance of 1√
2ℓ
(X2ℓ + · · ·+X2ℓ+1−1) conditioned on X1, for any value

of ℓ. We have V1 to be the conditional variance of 1√
2
(X2 +X3) on X1, which is 2/2 = 1. We consider a recurrence. By

the law of total variance

Var(
1
√
2
h
(X2h + · · ·+X2h+1−1)|X1)

=Var(
1
√
2
h
(X2h + · · ·+X2h+1−1)|X2, X3) + Var(

1
√
2
h
(E[X2h + · · ·+X2h+1−1|X2, X3]|X1)

The first part we can write as

1

2
Var(

1
√
2
h−1

(X2h + · · ·+X2h+2h−1−1 +X2h+2h−1 + . . . , X2h+1−1)|X2, X3)

Notice that X2h , . . . , X2h+2h−1−1 are the leaves of the subtree rooted at X2, and X2h+2h−1 , . . . , X2h+1−1 are the leaves of
the subtree rooted at X3. Both subtrees with root X2 and with root X3 have the same topology as a tree of height h− 1. So
this term can be written as

1

2
Var(

1
√
2
h−1

(X2h + · · ·+X2h+2h−1−1 +X2h+2h−1 + . . . , X2h+1−1)|X2, X3)

=
1

2
(Var(

1
√
2
h−1

(X2h + · · ·+X2h+2h−1−1|X2)) + Var(
1

√
2
h−1

(X2h+2h−1 + . . . , X2h+1−1)|X3))

=
1

2
(Vh−1 + Vh−1) = Vh−1

For the second term, we have for every 2h ≤ i < 2h + 2h−1, E[Xi|X2] = λh−1X2 (the other noise on this branch is mean
zero, and the coefficient of X2 is λh−1.) For identical reasons, for every 2h + 2h−1 ≤ i < 2h+1, E[Xi|X3] = λh−1X3.
Therefore, we have

Var(
1
√
2
h
(E[X2h + · · ·+X2h+1−1|X2, X3]|X1)

=Var(
1
√
2
h
(E[X2h + · · ·+X2h+2h−1−1|X2] + E[X2h+2h−1 + . . . , X2h+1−1|X3])|X1)

=Var(
1
√
2
h
(2hλh−1X2 + 2h−1λh−1X3)|X1) = (2λ2)h−1 × 1

2
Var(V2 + V3|V1) = (2λ2)h−1

So, by induction, we have Vh = 1+ (2λ2)2 + · · ·+ (2λ2)h−1. Finally, for all 2h ≤ i < 2h+1, we have E[Xi|X1] = λhX1.
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This yields

Var(
1
√
2
h
(X2h + · · ·+X2h+1−1))

=Vh +Var(
1
√
2
h
E[(X2h + · · ·+X2h+1−1)]|X1)

=Vh +Var(
1
√
2
h
× (2λ)hX1) = Vh + (2λ2)h = 1 + (2λ2) + · · ·+ (2λ2)h .

This finishes the proof.

D.3. Proof of Lemma A.2

We will use the following standard result about concentration of the chi-square distribution.

Lemma D.1. For Chi-square distribution, we have the following concentration inequality: if t ∼ χ2
k

P(t > (1 + ε)k) ≤ (
1 + ε

eε
)k/2

and
P(t < (1− ε)k) ≤ ((1− ε)eε)k/2

This is a folklore bound and can be proved by using the MGF of the chi-squared distribution. Now we present the proof of
A.2.

Proof of Lemma A.2. We know that β̂ − β∗ is a multivariate zero-mean Gaussian with covariance matrix

(
∑m
j=1X

(j)
J X

(j)
J

⊤
)−1. This follows from the closed form solution of OLS. So we know that the sum

m∑
j=1

((
X

(j)
J

)⊤
(β∗
J − β̂J)

)2

= (β∗
J − β̂J)⊤

m∑
j=1

X
(j)
J X

(j)
J

⊤
(β∗
J − β̂J)

follows a V 2χ2
k distribution. By Lemma D.1, take ε← 4 log(1/δ)

k + 1, we have

P(t > (1 + ε)k ≤(1 + ε

eε
))k/2 =

(
2 + 4 log (1/δ)/k

(1/δ4/k)e

)k/2
= δ · (2 + 4 log (1/δ)/k

e/δ2/k
)k/2

Let x = (1/δ)2/k, we just need that 2 + 2 ln(x) ≤ ex. This inequality holds for any x > 1 and can be proved by taking
derivatives. So accordingly, m can be (4 log(1/δ) + 2k)/ε.

D.4. Proof for Lemma A.3

We will use Lemma D.1. We know that
∑m
i=1 Y

2
m follows the distribution σ2χ2

m, so we just choose m such that the
probability of χ2

m ≥ (1+ ε)m and χ2
m ≥ (1+ ε)m are both at most δ/2. Since (1− ε)eε < 1+ε

eε , we can focus on the upper
bound. We need m to be ( 1+εeε )m/2 < δ/2, which gives m ≥ 2 log(2/δ)

ε−ln(1+ε) . Since ε < 1/2, we have ε− ln(1 + ε) > 1
3ε

2. So
we have m ≥ 6 log(2/δ)/ε2.

D.5. Proof for Lemma C.3

We cite a lemma of (van de Geer & Lederer, 2013):

Lemma D.2. (Theorem 1) Let X1, . . . , Xn be independent random variables with values in R and with mean zero. Suppose
that for some constants σ and K, one has

1

n

n∑
i=1

E |Xi|m ≤
m!

2
Km−2σ2, m = 2, 3, . . .
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Then for all t > 0,

P

(
1√
n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ σ√2t+ Kt√
n

)
≤ 2 exp(−t).

First we calculate the moments of Zi. We can easily calculate E|Zi|k = (E|Xi|k)2 =
2kΓ( k+1

2 )2

π . Let F (k) = 2kΓ( k+1
2 )2

π·k! .
We have F (2) = 1

2 , F (3) = 4
3π < 1/2, and we also have that F (k + 2)/F (k) = k

k+2 < 1, so we have F (k) < 1/2 for all
integers k ≥ 2. This establish σ = 1,K = 1 in the Lemma. Therefore, by the lemma we have

P

(
1

m

∣∣∣∣∣
m∑
i=1

Zi

∣∣∣∣∣ ≥
√

2t

m
+

t

m

)
≤ 2 exp(−t).

We take t = log(2/δ) and m such that
√

2t
m + t

m ≤ ε. Since ε < 1/2, it suffice that
√

2t
m < ε/4, which implies

m ≥ 32 log(2/δ)/ε2 suffices.

D.6. Comparison with (Gao et al., 2022)

As mentioned in Section 2.4, our lower bound is at least as good as the one provided in (Gao et al., 2022). To argue about
that, we need to prove that M2 − 1 ≥ db2min, where κ ≤

√
M .

Without loss of generality, we assume the variance to be 1, or otherwise, we just scale the covariance matrix Recall that,
the adjacency matrix B = {bij} is lower triangular after sorted by topological order, and the inverse covariance matrix is
Θ = (I −B)(I −B)⊤. Therefore, the inverse covariance matrix is having 1 as its determinant (because the determinant of
both IB and (I −B)⊤ are 1 since they are lower/upper triangular), and thus the smallest eigenvalue is at most 1.

On the other hand, suppose Xi has d parents Xj1 , . . . , Xjd . We can write Xi =
∑d
k=1Xjkbjk→i + ε. We take X2

i +∑d
k=1X

2
jk

= 1. We can lower bound that

X⊤ΘX =

n∑
i=1

(Xi −
∑
j→i

bj→iXj)
2 ≥ (Xi −

d∑
k=1

Xjkbjk→i)
2.

By Cauchy Schwartz, we have the upper bound

(Xi −
d∑
k=1

Xjkbjk→i)
2 ≤ (1 +

d∑
k=1

b2jk→i)(X
2
i +

d∑
k=1

X2
jk
) = 1 +

d∑
k=1

b2jk→i.

This inequality can be achieved if

Xi =
1√

1 +
∑d
k=1 b

2
jk→i

, Xjk =
−bjk→i√

1 +
∑d
k=1 b

2
jk→i

∀1 ≤ k ≤ d.

So, we proved that the maximum eigenvalue of Θ is at least 1 +
∑d
k=1 b

2
jk→i ≥ 1 + db2min. Therefore, since the least

eigenvalue of Θ is at most 1, the ratio between the maximum and minimum eigenvalue of Θ is at least 1 + db2min, or, the
condition number is at least 1 + db2min. So, we have concluded M ≥

√
1 + db2min.

E. Discussion and Extension.
E.1. Identifiability for non-equal variance

By calculating the conditional variance, one can identify the topological order of the DAG and thus identify the topology.
However, we here give an example where the equal variance assumption is violated and one cannot find the topology of the
DAG, even up to the same Markov Equivalence Class.
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Let b be a small positive number. Consider two different DAGs G1, G2, on variables X,Y, Z and X ′, Y ′, Z ′, respectively.
The topology of G1 is X → Y, Y → Z and the topology of G2 is X ′ → Z ′, Z ′ → Y ′, X ′ → Y ′. These two DAGs belong
in different Markov Equivalence Classes. The variables in G1 satisfy the relations with equal variance:

X = ε1, Y = bX + ε2, Z = bY + ε3

where ε1, ε2, ε3 are drawn i.i.d. from N (0, 1) distribution. Therefore, we can calculate the covariance matrix of the joint
distribution (X,Y, Z) as

Cov(X,Y, Z) =

 1 b b2

b b2 + 1 b3 + b
b2 b3 + b b4 + b2 + 1


On the other hand, the variables in G2 satisfy

X = ε′1, Z
′ = b2X + ε2, Y

′ =
b

b2 + 1
X ′ +

b

b2 + 1
Z ′ + ε3,

where ε1, ε2, ε3 are i.i.d. centered Gaussians, but the variances are 1, b2 + 1, 1
b2+1 respectively. We can calso check that the

covariance matrix of the joint distribution (X ′, Y ′, Z ′) is

Cov(X ′, Y ′, Z ′) =

 1 b b2

b b2 + 1 b3 + b
b2 b3 + b b4 + b2 + 1


It follows that (X,Y, Z) and (X ′, Y ′, Z ′) follow the same distribution, hence the two DAGs are indistinguishable. Notice
that the minimum strength of the edges among the two networks is b2, whereas the ratio of the variances in the second
network is 1 + O(b2). Thus, we have concluded our example to show a pair of graph that is not distinguishable if the
variance ratio is at least 1 +O(bmin).

E.2. Comparison to the PC Algorithm

A standard approach for structure recovery is the PC algorithm (Spirtes et al., 2001), which is based on conditional
independence testing. In order to provide rigorous guarantees for correct recovery, most works rely on some form of the
strong faithfulness assumption. It has been noted in prior work (Uhler et al., 2013) that this assumption might be too
restrictive. Indeed, we next demonstrate that this assumption need not hold in our setting.

More formally, the strong faithfulness assumption requires that for any nodes a, b and subset S ⊆ V , if, by the graph’s
structure, a, b are not independent conditioning on S, then the conditional correlation of a, b conditioning on S is lower
bounded. However, in our model this does not necessarily hold. We give the following example: consider the graph with
three nodes X,Y, Z, and we have the model as

X = ε1, Y = bX1 + ε2, Z = bY − b2X + ε3

Here, ε1, ε2, ε3 are i.i.d. N (0, 1). We can derive that Z and X are independent, as we could write Z = bε2 + ε3. This
happens due to path cancellation.

We complement the theoretical observations with experiments that show how our method compares to the PC algorithm.
We use the PC algorithm package in causal-learn (Zheng et al., 2024). We use the same setting as in the simulation
experiments of Section 4, with the hyperparameters n = 5, 10, d = 2, 3, and with bmax = 1. We set 100 trials and the figure
shows how much portion of graphs are correctly identified. All the graphs are random graphs. We note that in general, the
PC algorithm is only guaranteed to find the correct Markov Equivalence Class, since some orientations depend on the order
of increasing variance, which is extra information about the model that PC doens’t use. Therefore, we consider that the
PC algorithm correctly identifies the graph if it outputs any graph in the same Markov Equivalence Class. This means that
it detects all colliders (i.e. a child with at least two parents) and the skeleton (edges without directions). In Figure 6, we
present the percentage of times that the PC correctly identified the Markov Equivalence Class, as well as the percentage of
times that it identifies the correct skeleton, which is a relaxed goal. The result is as follows.
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Figure 6. Comparison with the PC algorithm

In Figure 6, we notice that the PC algorithm behaves poorly even for the task of finding the skeleton of the graph, if the
number of nodes becomes larger. This is explained by the observaton that the faithfulness assumption is less likely to hold
if the number of nodes is larger. Note that we generate the edge weights with random signs, so as the number of nodes
increases, the possibility of cancellations, such as the ones we saw in our previous example, also increases.

E.3. Adaptivity of Algorithm 1: the case of unknown σ2, βmin or d

One reasonable question concerns the situation when one or more parameters of the problem is unknown when we run
Algorithm 1. Below, we explain some simple modifications that ensure the algorithm adapts to the unknown parameters.
Essentially, we would like to argue that even if we do not the parameters a priori, if the algorithm is given enough samples it
will succeed in identifying the graph.

Unknown σ2. We notice that with the equal-variance assumption, miniVar(Xi) = σ2. Therefore, we can find the
variable with empirical smallest variance, and take the empirical variance as σ̂2. As we’re given O(b−4

min) samples, we can
have with high probability, σ̂2/σ2 − 1 to be ±b2min/10 (proven by Lemma A.3.) Thus, the error is small enough to make the
Proposition A.1 hold, by slightly shrinking the threshold of judging whether a node is the immediate parent. In particular,
the following modification of Proposition A.1 holds, with a similar proof.

Proposition E.1 (with unknown σ2). (1) If T contains all the parents, then there exists some J ⊆ T and |J | ≤ d such that
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the conditional variance of Xi|xJ is σ2. With high probability, it is no more than σ̂2(1 + b2min/10).

(2) If T does not contain all the parents, then there exists a parent that is not in T , so for any coefficient vector βT each
Xi −XTβT is a Gaussian random variable that has variance at least (1 + b2min)σ

2. Specifically, for any J ⊆ T , for any
coefficient βJ , Xi −XJβJ also has variance ≥ 1 + b2min. With high probability, it is no less than σ̂2(1 + 9b2min/10).

Therefore, we can assume that σ2 is known and furthermore assume σ2 = 1.

Algorithm 4 Estimating the DAG Information Theoretically

input Samples (X(1), X(2), . . . , X(m))
output Topology Ĝ

1: Phase 1: Finding the Topological Ordering, not knowing d and bmin.
2: T = []

3: Find X1 = argminX V̂ar(X) and put i ∈ T
4: d̂ = 1
5: while |T | < n do
6: M ← ∅,FOUND← False
7: for i ∈ [n]\T do
8: for J ⊆ T, |J | ≤ d̂ do
9: βJ ← Regress Xi on XJ

10: MSE ← 1
m

∑
j

(
X

(j)
i −X

(j)
J βJ

)2
11: if MSE ≤ 1 +O(

√
d̂ logn
m ) then

12: T ← T .append(i)
13: FOUND← True
14: end if
15: end for
16: end for
17: if FOUND = False then
18: d̂← d̂+ 1
19: end if
20: end while
21: Phase 2: Finding the parents, knowing d but not bmin.
22: b̂min ← 1
23: for i ∈ T do
24: S ← nodes in T before i
25: for J ⊆ S, |J | = min(|S|, d) do
26: PASSED← True
27: for K ∈ S\J ,|K| ≤ min(|S| − |J |, d) do
28: βJ∪K ← Regress Xi on XJ∪K
29: if ∃k ∈ K : |β̂k| ≥ b̂min or |β̂k| ≤ b̂min/40 then
30: PASSED← False, break.
31: end if
32: end for
33: if PASSED = True then
34: β̂ ← regress Xi on XJ

35: pa(i)← {j ∈ J : |β̂j | ≥ b̂min} , break.
36: end if
37: end for
38: if PASSED = False then
39: b̂min ← b̂min/2,go to line 23.
40: end if
41: end for
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For unknown bmin and d. Without knowing bmin, we need to consider the following issue: because of the noise, the
strength of the edge could be arbitrarily small. Therefore, we could never distinguish the case with faint signal versus no
signal. Therefore, when sweeping through the possible values of bmin, we may enter a region where all the detected edges
have strength more than bmin, and the rest have much less. We may not infinitely search for bmin. Our solution is to change
the algorithm as Algorithm 4.

We first explain what is changed from Algorithm 1. In Phase 1, we add a variable FOUND to determine whether the current
estimate d̂ is enough to explain the variance of the next node in the ordering. We changed the threshold for MSE in line 11
so that it does not include d, bmin. If we are provided sufficient samples, by Proposition A.1, we take the next node with
small MSE. If no node has small enough MSE, then FOUND is False, and there is no next node. We can conclude that the
number of neighbors d̂ is not sufficient to make MSE small enough (there are missing parents), so we need to increment d̂ to
d̂+ 1 to fit.

In Phase 2, we changed the threshold in line 29. In line 29, we need to find all the edges to have strength either b̂min or
≤ b̂min/40 for some K. If we are given a sufficient number of samples, then with high probability, the ground truth for all
those weights is either b̂min/2 or ≤ b̂min/20. If for some b̂min we cannot find such a K (so PASSED is False), it means that
even if J ∪K covers all the parents, the coefficients are not within that range. Therefore, we need to make b̂min smaller and
try the algorithm again.

We can perform Phase 1 of Algorithm 4 without knowing d and bmin. However, we need d to perform Phase 2 of Algorithm
4, but not bmin. And we may change our guarantee to the following, which is comparable to Theorem 2.1. Notice that the
number of samples doesn’t change in Informal Theorem E.2 and only slightly increases in Informal Theorem E.3.

Informal Theorem E.2. Suppose we run Algorithm 4 using m independent samples generated from a DAG G according to
(17). If Assumption 1.1 holds, then there exists an absolute constant C > 0, such that the following guarantees hold. Phase
1 of Algorithm 1 succeeds in finding a correct topological ordering of the nodes with probability at least 1− δ, provided that

m ≥ C 1

b4min

(d log(n/d) + log(1/δ))

Informal Theorem E.3. Suppose we run Algorithm 4 using m independent samples generated from a DAG G according to
(17). For a given node, we define a good set of parents as follows: there is a b > 0, such that for all reported i→ j, |bij | ≥ b
and for other not reported bij , |bij | ≤ b/10. If Assumption 1.1 holds, then there exists an absolute constant C > 0, such that
the following guarantees hold. Provided that Phase 1 of Algorithm 1 succeeds in finding a correct ordering, Phase 2 finds
the good set of parents for each node with probability at least 1− δ, provided that

m ≥ C τ(G)
b2min

(
d log(n/d) + log(

1

δ log(1/bmin)
)

)
We give a sketch for proving the algorithm’s correctness.

1. Sketch proof of Theorem E.2. From Lemma A.3, we know that the ratio between MSE and the variance is 1
mχ

2
m.

Therefore, the largest deviation should be O(
√
d log n/m), which can be a rubric for the conditional variance gap

(i.e., if it is not the next node, then the conditional variance is O(b2min), which is O(
√
d log n/m), by Proposition

A.1). Therefore, with high probability, this algorithm will terminate when d̂ = d and finally find the true parents. The
running time is at most d times the Phase 1 of the original Algorithm 1.

2. Sketch proof of Theorem E.3. Since we are given a sufficient number of samples, by the proof of Lemma A.5
and Corollary A.6, we can derive that if J ∪ K contains all the parents, then with high probability, the error of
βj − β̂j is always ≤ O(bmin). Then, if we have all weights either b̂ij ≥ b or b̂ij ≤ b/40, then with high probability
|bij | ≥ b− bmin/80 or |bij | ≥ b/40 + bmin/80, which is |bij | ≥ b/2 or |bij | ≤ b/20, so this achieves our guarantee.
Notice that this algorithm terminates when b̂min < bmin/2, so the number of trials of bmin will be O(log(1/bmin)),
and by union bound, we can have the algorithm succeed.

E.4. Extension to Sub-Gaussian Noise.

One further extension of the model is that we relax the structure of the noise εi: the noise is sub-Gaussian. We assume that
for all the samples (X(k)

1 , X
(k)
2 , . . . , X

(k)
n ), the model satisfies:
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X
(k)
i =

∑
j∈π(i)

bjiX
(k)
j + ε

(k)
i , (17)

Where all the noise ε(k)i are independent. Furthermore, for all i, the noise ε(1)i , ε
(m)
i are independent sub-Gaussian matrices,

where Var[ε
(k)
i ] = 1 and the sub-Gaussian norm is no more than ψi. Now, we show that we can perform Phase 1 in 1.

We start with the proof of Theorem 2.1 in Section A. To finish the proof of finding the ordering, we take the same proof by
measuring V E and BE. It boils down to proving that with this number of samples, V E and BE are upper bounded by
V E ≤ (1 +O(b2min))Var[Xi|xJ ] and also BE ≤ O(b4min)Var[Xi|xJ ]. The correctness can be guaranteed by Lemmas A.2
and A.3, so it just suffices to prove these two lemmas when Gaussian noise is substituted by sub-Gaussian noise, and the
inequality holds for some different CV and CB .

Before that, we use the following Hanson-Wright Inequality (Rudelson & Vershynin, 2013).

Lemma E.4 (Hanson-Wright). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent components Xi which
satisfy E[Xi] = 0 and ∥Xi∥ψ2

≤ K. Let A be an n× n matrix. Then, there is a universal constant c such that for every
t ≥ 0,

P[|X⊤AX −E[X⊤AX]| > t] ≤ 2 exp
[
− cmin

( t2

K4∥A∥2F
,

t

K2∥A∥op

)]
.

Proof of Lemma A.2. We know that β̂ − β∗ is a multivariate zero-mean Gaussian with covariance matrix

(
∑m
j=1X

(j)
J X

(j)
J

⊤
)−1. This follows from the closed-form solution of OLS. So we know that

m∑
j=1

((
X

(j)
J

)⊤
(β∗
J − β̂J)

)2
= (β∗

J − β̂J)⊤
( m∑
j=1

X
(j)
J X

(j)
J

⊤)
(β∗
J − β̂J).

Let X be the matrix obtained by vertically stacking X
(1)
J , X

(2)
J , . . . , X

(m)
J , and let Y be the column vector Y =

(X
(1)
i , X

(2)
i , . . . , X

(m)
i ). The error vector ε is also a column vector, ε = (ε

(1)
i , . . . , ε

(m)
i ). By OLS, we have

β̂J = (X⊤X)−1(X⊤Y ) = (X⊤X)−1X⊤(Xβ∗ + ε),

which implies
m∑
j=1

((
X

(j)
J

)⊤
(β∗
J − β̂J)

)2
= ε⊤

(
X(X⊤X)−1X⊤)ε.

Therefore, let A = X(X⊤X)−1X⊤, which is a projection matrix. We know that ∥A∥2F = k, ∥A∥op = 1, and K = ψi.
Also, since ε(k)i are independent noise with variance 1, we have E[ε⊤Aε] = k. Accordingly, we can set

m = O
(
(log(1/δ) + k)ψ2

i /ε
)
,

and that suffices.

Proof of Lemma A.3. The sum of squares of all random variables is a special case of the Hanson-Wright Inequality
(Rudelson & Vershynin, 2013) with A = Im. Therefore, for the expected sum of squares of all Y (k)

i ’s, we have

P
[∣∣∣ m∑
i=1

Y
(k)
i

2 −mV 2
∣∣∣ > tV 2

]
≤ 2 exp

[
−c min

( t2

ψ4
i m

,
t

ψ2
i

)]
.

Hence, we know that
m = O

(
log( 1δ )

ψ2
i

ε2

)
suffices.
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F. Further Simulation Results
The data setting is the one described in Section 4. We provide here some more simulation results. We have two configurations
of data. We vary different d, n, bmax, N parameters and test the results.

Figure 7. Figure for bmax = 1

Figure 7 shows a set of simulation results with bmax = 1. The test metric is to test 100 different random graphs, and for
each graph test for those graphs whether (Gao et al., 2022), Algorithm 1 and Algorithm 2 discover the same topology.

We also performed another set of experiments for bmax = 2 and the results are shown in Figure 8.

The test metric is to test 100 different random graphs, and for each graph test for those graphs whether (Gao et al., 2022),
Algorithm 1 and Algorithm 2 discover the same topology. Also, we add the number of false positive edges with 95%
confidence interval (centered with mean and ±2σ error region) as in Figure 9. Because of the long runtime, for the case
when d = 4 and n = 30, the experiment of Algorithm 1 is not performed.

For all the cases we can find out that eventually, when the number of samples m grows, Algorithm 1 and Algorithm 2
converge at a faster rate than (Gao et al., 2022). We can see that for bmax = 1 case all the algorithms perform better then for
bmax = 2, which is expected from the theoretical results, since τ(G) and R grows much faster (as an exponential function)
when bmax is larger than 1. For both (Gao et al., 2022) and Algorithm 2, we see a degradation in performance as n increases,
while comparatively, Algorithm 1 is not affected as much. This can be explained by the growth of τ , which seems to be
sublinear in n, in contrast with R which grows linearly and the condition number which grows superlinearly (see also
Figure 1).

31



Learning Gaussian DAG Models without Condition Number Bounds

Figure 8. Figure for bmax = 2

Figure 9. Figure for bmax = 1
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G. Code

1 import numpy as np
2 from sklearn.linear_model import Lasso
3 from sklearn.linear_model import LinearRegression
4 import random
5

6 def sample_d(lst, d):
7 # Sample <=d things in the list
8 n = len(lst)
9 if n==0: return []

10 parents = []
11 probability = min(d/(n+2),1/2)
12 for node in lst:
13 if random.random() < probability:
14 parents.append(node)
15 return parents[:d]
16

17 def generate_config(n, d, b_min, b_max):
18 # Sample a random Bayesnet condiguration of n vertices with <=d indegree
19 order = list(range(n))
20 random.shuffle(order)
21 coefficient = {i:{} for i in range(n)}
22 parents = {i:set() for i in range(n)}
23 B = [[0]*n for _ in range(n)]
24 for i in range(n):
25 node = order[i]
26 prt = sample_d(order[:i],d)
27 parents[node] = set(prt.copy())
28 for p in prt:
29 abs_value = (b_min+(b_max-b_min)*random.random())
30 sign = (2*random.randint(0,1)-1)
31 bij = abs_value * sign
32 B[p][node] = coefficient[node][p] = bij
33 return order, coefficient, parents, np.array(B)
34

35 def generate_sample(B, N):
36 ’’’
37 From the sample configuration sample a set of values. N is the number of
38 samples, B is the coefficient matrix.
39 ’’’
40 n = B.shape[0]
41 raw = np.random.normal(0,1,[N,n])
42 return raw@np.linalg.inv(np.eye(n)-B)
43

44 def combination(lst, d):
45 # List all subsets (as list) with <=d elements in lst
46 if d == 0 or len(lst) == 0:
47 return [[]]
48 else:
49 return combination(lst[1:], d) + [[lst[0]]+j for j in combination(lst[1:], d-1)]
50

51 def choose(lst, d):
52 # List all subsets (as list) with =d elements in lst
53 if d == 0:
54 return [[]]
55 elif d > len(lst):
56 return []
57 else:
58 return choose(lst[1:], d) + [[lst[0]]+j for j in choose(lst[1:], d-1)]
59

60 def lr(data, cand, index):
61 ’’’
62 Do OLS linear regression, given the data, candidate of nodes (cand) to
63 regress on and the index of the node whom to regress on. Return the
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64 coefficient (if cand is nonempty) and the MSE
65 ’’’
66 assert index not in cand
67 N = data.shape[0]
68 Y = data[:,[index]]
69 X = data[:,cand]
70 coef = np.linalg.inv(X.T@X)@(X.T@Y)
71 mse = ((X@coef-Y)**2).sum()/N
72 return coef.T, mse

Listing 1. Data-sampling algorithm

1 def topo(data, d):
2 ’’’
3 Find the topological order given the data and d. Return the topological
4 order as a list of nodes.
5 ’’’
6 N, n = data.shape
7 rem_nodes = list(range(n))
8 top = [np.argmin(sum(data**2))]
9 rem_nodes.remove(top[0])

10 for _ in range(n-2):
11 best_mse = 1_000_000
12 next_node = -1
13 for r in rem_nodes:
14 mse = 1_000_000
15 for cand in combination(top, d):
16 coef, mse1 = lr(data, cand, r)
17 mse = min(mse,mse1)
18 if mse < best_mse:
19 best_mse = mse
20 next_node = r
21 rem_nodes.remove(next_node)
22 top.append(next_node)
23 top.append(rem_nodes[0])
24 return top

Listing 2. Phase 1 of Algorithm 1: topological order

(Gao et al., 2022)

1 def learning_parents_g(data, order, d):
2 ’’’
3 Using Gao’22’s algorithm to find the patents given the topological order.
4 Return the partents for each node as a dictionary.
5 ’’’
6 n = data.shape[1]
7 parents = {i:set() for i in range(n)}
8 for i in range(n):
9 if i==0:

10 continue
11 prev = order[:i]
12 node = order[i]
13 mse = 1_000_000
14 parent_superset = None
15 # Find C_j to be argmin(v_jC)
16 for cand in combination(prev, d):
17 coef, mse1 = lr(data, cand, node)
18 if mse1 < mse:
19 mse = mse1
20 parent_superset = cand
21 parent = set()
22 for pa in parent_superset:
23 parentm1 = parent_superset.copy()
24 parentm1.remove(pa)
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25 coef, mse1 = lr(data, parentm1, node)
26 if abs(mse-mse1) >= gamma:
27 parent.add(pa)
28 parents[node] = parent
29 return parents

Listing 3. Finding the parents using (Gao et al., 2022) algorithm

1 def learning_parents_v(data, order, d):
2 ’’’
3 Using the inefficient algorithm to find the patents given the topological
4 order. Return the partents for each node as a dictionary.
5 ’’’
6 n = data.shape[1]
7 parents = {i:set() for i in range(n)}
8 for i in range(n):
9 cache = {}

10 if i==0:
11 continue
12 prev = order[:i]
13 node = order[i]
14 parent_superset = None
15 if i <= d:
16 parent_superset = prev
17 else:
18 for J in choose(prev, d):
19 passed = True
20 others = list(set(prev)-set(J))
21 for K in choose(others, min(d,i-d)):
22 JKsorted = tuple(sorted(J+K))
23 if JKsorted not in cache.keys():
24 # print("new", JKsorted)
25 coefJK, mse1 = lr(data, sorted(J+K), node)
26 cache[JKsorted] = coefJK
27 # print(coef)
28 else:
29 # print("cache")
30 coefJK = cache[JKsorted]
31 cK=[abs(coefJK[0][m]) for m in range(len(J+K)) if JKsorted[m] in K]
32 if max(cK) >= b_min/2:
33 passed = False
34 break
35 if passed:
36 break
37 parent_superset = J
38 coef, mse1 = lr(data, parent_superset, node)
39 parent = set(n for (c,n) in zip(coef[0], parent_superset) if abs(c) >= b_min/2)
40 parents[node] = parent
41 return parents

Listing 4. Finding the parents using the Phase 2 of Algorithm 1

1 def lasso(data, cand, index):
2 N = data.shape[0]
3 Y = data[:,[index]]
4 X = data[:,cand]
5 Y1 = data[:,[index]]
6 X1 = data[:,cand]
7 lambda_n = 0.01
8 if cand == []:
9 return [], (Y**2).sum()/Y.size

10 reg = Lasso(fit_intercept = False, alpha = lambda_n, copy_X = False).fit(X,Y)
11 coef = reg.coef_
12 return coef, ((X@np.array([coef]).T-Y)**2).sum()/N
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13

14 def learning_parents_e(data, d):
15 # Learn the parents by LASSO, the efficient algorithm
16 N, n = data.shape
17 rem_nodes = list(range(n))
18 top = [np.argmin(sum(data**2))]
19 rem_nodes.remove(top[0])
20 parents = {i:set() for i in range(n)}
21 for _ in range(n-1):
22 best_node = -1
23 parent = set()
24 best_mse = 1_000_000
25 for node in rem_nodes:
26 coef, mse = lasso(data, top, node)
27 if mse <= best_mse:
28 best_mse = mse
29 best_node = node
30 parent = set(n for c, n in zip(coef,top) if abs(c) > b_min/2)
31 parent = set(list(parent)[:d])
32 parents[best_node] = parent
33 top.append(best_node)
34 rem_nodes.remove(best_node)
35 return top, parents

Listing 5. Algorithm 2: the topological order and parent

1 n = 5 # Choose any n you want
2 d = 2 # Choose any d you want
3 b_min = 0.5
4 b_max = 1 # Choose any b_max you want
5 sigma = 1
6 gamma = b_min**2/2 # As Gao’et al 2022
7 repeat = 45 # Choose the number of trials you want
8

9 def doing_regular(tup):
10 ’’’
11 Genetare a process to perform all three of those algorithm
12 tup is of 2 integers (j, N) where j is a dummy parameter and N is the
13 number of the samples.
14 Return the result of whether they have find the correvt parents for three
15 algorithm.
16 ’’’
17 j, N = tup
18 if j%20 == 0: print(j)
19 order, coefficient, parents, B = generate_config(n, d, b_min, b_max)
20 data = np.array(generate_sample(B, N))
21 order = topo(data,d)
22 g = learning_parents_g(data, order, d) == parents
23 v = learning_parents_v(data, order, d) == parents
24 e = learning_parents_e(data, d)[1] == parents
25 return g, v, e # Gao et al’s, inefficient, efficient

Listing 6. Paremeter settings and function to do the experiments
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